
DEDICATION TO GENE H. GOLUB ON THE OCCASION
OF HIS 15TH BIRTHDAY

SIAM has short abbreviations for the names ofits joumalsSIREV, SINUM, SISSC,
etc. For over a year now, this particular issue of SIMAX has been known as SIGENE,
because it is dedicated to Gene Golub on the occasion of his 15th birthday. Yes, that’s
fight, 15th. Gene gets to legally celebrate his birthday only every fourth year. But you
probably already knew all that. Because you probably already know Gene.

I can’t think of anybody else who knows more people, and who is really liked by
more people, than Gene Golub. That’s because he has devoted his life to this business
to numerical analysis and scientific computing. In fact, most of us have actually been to
his home at one time or another. We’re his family. And, for many of us, he is part of
our extended family.

Gene’s professional family is richly international. Over the last 30 years, thousands
of people have visited Gene, studied with Gene, and worked with Gene and his group
at Stanford. Many of these have been young people from outside the United States: grad
students from Latin America and Europe and post docs and visiting scholars from all
over the world. And then Gene has returned the visits. For someone who says he hates
to travel, he sure does a lot of it.

Through these many friends, Gene has deeply affected our profession. He has helped
to make it warm, friendly, personal, and fun.

Thanks, Gene.
Gene earned three degrees in Mathematics from the University of Illinois in the

fifties. He spent a year on a fellowship at Cambridge (where his office mate was Velvel
Kahan), a year each at Lawrence Radiation Lab and Space Technology Labs, and then,
in 1962, he came to Stanford. He’s been there ever since, although it seems like Stanford
allows him to take a sabbatical ofsome kind almost every other quarter. He has honorary
degrees from Oxford, Link6ping, Grenoble, Waterloo, Dundee, and Illinois. He was
elected to the Swedish Royal Academy of Engineering Sciences in 1986 and to the U.S.
National Academy of Engineering in 1990.

His California license plate appropriately says "Dr. SVD." He has published almost
100 papers. The first, with Richard Varga on Chebyshev iterative methods, was published
in Numerische Mathematik in 1961. The most recent is a joint paper with Peter Arbenz,
soon to appear in SIMAX. But the September 23, 1991 issue of his CV already lists four
more papers "accepted for publication."

His book with Charlie Van Loan, Matrix Computations, is now in its second edition
and is the definitive reference and text in the field.

He has edited or coedited half a dozen conference proceedings. He has been on the
editorial board of fifteen different journals. So far, twenty students have done their Ph.D.
dissertations under Gene’s supervision. More are on the way. An interdepartmental degree
program in Scientific Computing and Computational Mathematics is now in its third
year at Stanford and Gene is the director.



Many of his professional activities have involved SIAM. He’s been on the Council
and the Board of Trustees. He was President of SIAM from 1985 to 1987. And, he is the
Founding Editor of not one, but two, SIAM journals: SISSC and SIMAX.

Gene was recently named the Fletcher Jones Professor of Computer Science at
Stanford (an honor he shares with Don Knuth). But this is not his first endowed chair.
For years, the Numerical Analysis Group at Stanford had offices in an old, intimate
house on the edge of campus known as Serra House. Once during that time, Gene was
offered an endowed chair at another prestigious university. The crew in Serra House
responded by giving Gene a new piece of furniture for his office--the Serra House Chair.

He stayed at Stanford.
Happy 15th Birthday, Gene, from all of us. Now is the time to start planning the

celebration of your 16th. It’s OK to have the party at your place, isn’t it?

Cleve Moler

EDITOR’S NOTE

The SIAM staff is indebted to everyone who made the publication of this issue
possible, but especially to Dan Boley, Jack Dongarra, Alan George, Paul van Dooren,
and Bob Plemmons, our industrious and discreet SIGENE editors. We also thank John
de Pillis for supplying the portrait of Gene and Cleve Moler for providing an overview
of Gene’s first 15 years.
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CONSTRAINED MATRIX SYLVESTER EQUATIONS*
JEWEL B. BARLOWt, MOGHEN M. MONAHEMIt, AND DIANNE P. O’LEARY$

Dedicated to Gene Golub on the occasion of his 60th birthday, with
gratitude for his tradition of fruitful research in linear algebra, in-
spired by applications.

Abstract. The problem of finding matrices L and T satisfying TA- FT LC and TB 0 is
considered. Existence conditions for the solution are established and an algorithm for computing the
solution is derived. Conditions under which the matrix [CT, TT] is full rank are also discussed. The
problem arises in control theory in the design of reduced-order observers that achieve loop transfer
recovery.
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1. Introduction. In this paper we consider the following problem: Let n, m,
and p be given integers. Given A E nx,, B Tnxp, C ,mxn, and F
(n--m)x(n--m) find L 7(n-m)xm and T Tt(n-m)xn such that

(1) TA- FT LC,

(2) TB-O,

Sylvester [10] considered the homogeneous version of (1)in an 1884 paper. For
this, reason, (1) is often called a matrix Sylvester equation. Liapunov considered (1)
with AT F and LC I in an 1892 monograph [6].

The constrained Sylvester problem (1), (2), and (3) arises in control theory, in
the design of reduced-order observers that achieve precise loop transfer recovery [11],
[7]. Here, the state model of the system is

and the observer z E ,/(n-m)xl

5c= Ax + Bu,
y Cx,

satisfies

Fz + (TB)u + Ly.

Tsui [11] has shown that the constrained Sylvester problem is the relevant one to
consider in the design of L and T.

Received by the editors February 11, 1991; accepted for publication (in revised form) June 18,
1991.

Aerospace Engineering Department, University of Maryland, College Park, Maryland 20742.
Computer Science Department and Institute for Advanced Computer Studies, University of

Maryland, College Park, Maryland 20742 (oleary@cs.umd.edu). The work of this author was sup-
ported by Air Force Office of Scientific Research grant AFOSR-87-0158.

1



2 J.B. BARLOW, M. M. MONAHEMI, AND D. P. O’LEARY

In 2 we discuss existence and uniqueness of solutions to matrix Sylvester equa-
tions. The section following that concerns existence and uniqueness of solutions to the
constrained Sylvester problem (1) and (2). The computational algorithm developed
in that section is summarized in 4. In 5 we consider conditions under which that
algorithm produces a solution to the full problem (1), (2), and (3).

2. Existence of solutions to matrix Liapunov equations. It is well known
that a matrix Liapunov equation

TA- BT C

has a unique solution T for every choice of C if and only if ,4 E :Rn n and B E Tmm
have no common eigenvalues. In this section we briefly review this result and related
results for the case of common eigenvalues. Our purpose is merely to establish enough
notation to discuss conditions under which the full rank condition (3) is violated.
Therefore, to simplify the discussion, we consider only the case in which 4 and B
each have a complete set of eigenvectors. The general case is studied using the Jordan
canonical forms of these matrices (see, for example, [4, Chap. 8]) but leads to the
same conclusions.

Let the eigendecomposition of A be ,4 UtDAUt1, where DA is diagonal with
elements cu, j 1, n. Similarly, let B UDU1, where D is diagonal with
elements i, 1,..., m.

Then TA- BT C is equivalent to

UITfl[UA U ]TUA al,vA

or, with definitions d UICUA and UITUA,

Writing this equation componentwise, we obtain

(4) (aj i){ij ij, 1, m, j 1, n.

This leads to the standard result that there is a unique solution (and therefore a
unique T) for every choice of if and only if aj i # 0 for all values of and j.

If any aj I 0, then there is no solution to (4) if IJ # O, and an infinite
number of solutions if dIJ 0, since {IJ is then arbitrary. Since T Ut3Ufi. 1,
each arbitrary component of contributes a term IgUlVY to T, where ux is the Ith
column of U and vy is the Jth row of U1.

In the problem of interest, the matrix C is LC, where L is to be determined, so
it is sometimes possible to produce a solution to the Liapunov equation even if there
are common eigenvalues.

Later we will be interested in conditions that ensure that a matrix related to
and be full column rank. Suppose there exists a nonzero vector u such that
and Cu 0. (This is equivalent to saying that the control system is not observable.)
If A is a simple eigenvalue of ,4, then a column of and the corresponding column of

will be zero. If A is a multiple eigenvalue, then all columns of C may be nonzero,
but there will be linear dependence among columns of corresponding to eigenvectors
of that eigenvalue. In this case, the corresponding columns of T will have the same
linear dependence, since the values aj in (4) are all equal.
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3. Development of an algorithm for the constrained problem. We ex-
amine the question of existence and uniqueness of the solution to (1) and (2), and we
develop an algorithm for determining the solution if it exists.

Note that there are (n- m)p equations in (2) and (n- m)n equations in (1).
There are (n- m)n unknowns in T and (n- m)m unknowns in L, so there are more

equations than unknowns if m < p.
We may assume that B has full column rank; if not, throwing away the redundant

columns does not change the problem. Therefore, the number of rows n in B must
be greater than the number of columns p; otherwise, the only solution to TB 0
is T 0. (This is an explanation of the fact that loop transfer recovery cannot be
accomplished if the circuit is broken at an "output point.")

Therefore, we may assume that n > p and rank(B)= p.
We can eliminate the constraint TB 0 by using the QR factorization of B to

define an unconstrained matrix Z. To do this, factor B as

where S E PP is full rank and W E Tn is an orthogonal matrix: wTw I. If
we partition W into its first p columns W1 and its remaining n-p columns W2, we
have

Since the columns of W2 form a basis for the orthogonal complement of the subspace
spanned by the columns of W1, and since TWS 0 if and only if TW 0, we know
that

(6) T ZWf
for some matrix Z (n-m) (n-p).

Substituting this in the Sylvester equation (1) and multiplying on the right by
the nonsingular matrix W, we obtain

zw2TA[w, W2]- Fzw2T[w, W2] LC[WI, W2].

This yields the two relations

(7) ZA. FZ LC2,

(8) ZA LC,

where A WTAW Tt(’-p)p, A. WTAW2 Tt(’-p)(’-p), C1 CW1
7"P, and C2 CW2 Tt" (’-P).

We now consider two cases, based on the relation between p, the number of
controls, and rn, the number of observed variables. We assume in both cases that C1
is full rank.
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3.1. Case I: p > m. As noted above, in this situation, there are more equations
than unknowns, and in general, no solution exists.

The RQ factorization of the m p matrix C1 is

C,= [/,0] [Q* ]Q2

where QI Tmxp, Q2 T(p-m)xp, mm, and/ has rank m.
Now (8) gives us the relation

ZAQT LCQT [L/, 0],

or, letting AIQT G [G1, G2],

ZG L, ZG2 O.

Using this formula in (7), we obtain

ZA2 FZ ZG-IC2,
or

(9) ZG2 =0,

(10) Z(A2 G_ft-C2) FZ O.

We now have a problem in exactly the same form as the original equations (2) and (1),
except that the Sylvester equation (10) is homogeneous. Further reduction proceeds
exactly as above in order to find a change of variables that produces an unconstrained
Sylvester equation. However, unless A2- G-C2 and F have at least one common
eigenvalue, the only solution to (10) is Z 0.

We will not consider this case further.

3.2. Case Ih p <_ m. Consider a QR factorization of the m p matrix C1 as

where Q x, Q. x(-p),/ pxp, and/ has rank p.
Now let

L
where e (-m)xp and T(-)x(m-p). Prom (8), we have that

ZA1 LC1

so

Using this formula in (7), and letting

ElQTc2 E2
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we obtain

ZA2-FZ [L1,L2]QTC2 [ZAI-I,L2] E2

or

(11) Z(A2 AI-E) FZ ]2E2.

We have succeeded in reducing the original constrained Sylvester problem (2) and (1)
to an unconstrained one through the change of variables T ZW2T. The (n-m)(m-
p) entries of ]-2 are free parameters. For each choice of ]-2, (11) has a unique solution,
as long as the matrices A2 A-EI and F have no common eigenvalues.
Section 2 discusses the existence of the solution in the case of common eigenvalues.

Note. If C fails to have full rank, then we have

where Q E T"r, Q2 E T"(’-r),/ T,/5 T(p-), and/ has rank r. A
derivation following the steps above leads to the Sylvester equation (11) but with the
side constraint

where A denotes the first r columns of A and A12 denotes the remaining columns.
Thus we reduced the problem to a smaller constrained Sylvester equation of the same
form as the original, and the process needs to be repeated. [:1

4. The resulting algorithm. The following algorithm computes a solution to
the constrained Sylvester problem (1) and (2).

(12) TA- FT LC,
(13) TB O,

under the assumptions that n > rn > p, rank(CB) p, and (redundantly) rank(B)
p.

Step 1. Factor B into its QR factors

where S ")PP is full rank and W 7nn is an orthogonal matrix:
wTw I. Partition W into its first p columns W and its remaining
n p columns W2.
Step 2. Set A1 W2TAW T(n-p)p, A2 W2TAW2 Tt(n-p)(n-p)

C CW Tt"p, and C2 CW2 ’(-P).
Step 3. Perform a QR factorization of the rn p matrix C1 as
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where Q1 E Tmxp, Q2 7mx(m-P), .[::l 7pxp, and/ has rank p.

Step 4. Let

QTc2 E2

where E1 7px(n-p) and E2 T(m-p)x(n-p).

Step 5. Solve the Sylvester matrix equation Z(A2 Al-lE1)
FZ 2E2, where the entries of 2 are chosen randomly.
Step 6. Set L1 ZAI-1 nnd L [L1,L2]QT.
Step 7. Set T ZW.

The software tasks needed to implement the algorithm are matrix multiplication,
the QR factorization [3], and an Mgorithm for solving unconstrained Sylvester prob-
lems [1], [5]. The highest-order terms in the operation counts are cubic in n, m, and p,
with constants depending on the specific choice of software. There is substantial po-
tential parallelism in the computation, since there are well-known parallel algorithms
for each of these basic tasks; see, for example, [9], [8], and the references therein.

For examples of applications of this algorithm to loop transfer recovery, see [7].
5. Necessary conditions and sufficient conditions for solutions to the

full problem. In this section we develop some conditions that are necessary in order
to obtain a solution T to the problem (1), (2), and (3). For ease of reference, we
define

where T (n-m)xn and C mxn.
Recall that we already assumed, without loss of generality, that n > p and

rank(B) p. We will consider the case p < m, since the other case has a solu-
tion only under accidental conditions. We also restrict ourselves to the case in which
F has no eigenvalues in common with the matrix A A-E1 of (11). Under
these circumstances, (1) and (2) always have a solution, and the only issue is the rank
ofT.

Recall that W and Q are n n orthogonal matrices. We note that T is full rank
if and only if the matrices

and

QC E 0
E1
E

are full rank, and it is sometimes easier to work with these.
NECESSARY AND SUFFICIENT CONDITION 1. For T to be full rank, it is necessary

and su]ficient that QT C1 (or, equivalently, CI) and [ZT, ET2 be full rank.
Our goal is to express such conditions more obviously in terms of the data matrices

A, B, C, and F.



CONSTRAINED MATRIX SYLVESTER EQUATIONS 7

NECESSARY CONDITION 1. The matrix C must have full rank m.
Proof. If aTc 0 for some nonzero a, then [0T, aT]T 0 and T is not full

rank.
NECESSARY CONDITION 2. The system A, B, C must be regular [2, p. 661], i.e.,

the matrix CB must have full rank p.
Note. This condition is also necessary and sufficient for the existence of a full

rank triangular factor/ for C1.
Proof. Recall from (5) that the first p columns of W span the range of B. For

TW to be full rank, it is necessary that C1 have full column rank p. Now, C
CW CBS-1, so it is necessary that CB be full rank.

NECESSARY CONDITION 3. The system must be observable, i.e., the only vector
y satisfying Ay #y and Cy 0 must be the vector y O.

Note. If we add the assumption that A and F have no common eigenvalues, then
this result is easy to prove. Suppose there is a nonzero y satisfying Ay #y and
Cy O. Then, since TA- FT LC,

TAy- FTy (#I- F)Ty LCy O,

so Ty 0. This fact, along with Cy 0, implies that :r is rank deficient. If we avoid
this extra assumption on the eigenvalues of A and F, then the outline of the proof is
similar, but it must be done in terms of the reduced Sylvester equation (11).

Proof. Suppose there is a nonzero y satisfying Ay #y and Cy O, and let

WTy--[ yl]Y2
so that y- Wy + W2y2. Then

Ay A(WIy + W2y2) #(Wy + W2y2).

Multiplying by W2T and using the definitions following (8), we obtain

W2TAWyl + w2TAW2Y2 Ay + A2y2 #y2.

Now, Y2 is an eigenvector of , since

(14) fye (A2 At-QTCW2)y.
A(u + -IQcw.u:). A(u + -QC(u- Wl)). A(u + -QrCu -QCWu)

PY2,

since Cy 0 and CWI Q, so QTI CW [. Further,

E: Qcwu. Qc(u- w) QcwI 0,

since QCW1 O.
Consider the reduced Sylvester equation (11) Z-FZ ]-2E2, and multiply by

y2:

Ziy2 FZy2 #Zy2 FZy2 (#I- F)Zy2 ]-2E2y2 0,
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so, since # is not an eigenvalue of F, we must have Zy2 O.
We have a vector Y2 that satisfies E2Y2 0 and Zy2 O, so QT/W is rank

deficient. Thus, observability is necessary for a full rank T. 0
These necessary conditions are not sufficient, as shown by the following example.
Example. Let

A= 0 1 1 B= C= 0 0 1-1 0 -2 1

It is easy to see that C, B, and CB are all full rank. The eigenvectors of A are the
columns of the matrix

0 1.0000 1.0000
1 -0.0819 0.4523
0 0.4343 -0.7676

so the system is observable. We calculate

[1 01E2=[ 1 0 ], = 0-3

so in using the decompositions in 2 to solve the reduced Sylvester equation of Step
5 we obtain

=[ 0].

Since this matrix has a zero column regardless of the choice of ]-2, the solution matrix
will as well, and we will have a rank deficient T.

NECESSARY CONDITION 4. The reduced system must be observable, i.e., the only
vector y satisfying fiy #y and E2y 0 must be the vector y O.

Proof. The proof of this result, motivated by the example above, follows from the
discussion at the end of 2.

If Necessary Conditions 1-4 are satisfied, then we conjecture that there exists
a choice of the matrices 2 and F so that the algorithm yields a solution to the
constrained Sylvester problem (1), (2) satisfying the full rank condition (3). The
first two necessary conditions guarantee the existence of full rank triangular factors
for B in Step 1 and C1 in Step 3. Some freedom in the choice of F is needed so
that its eigenvalues are distinct from those of ., guaranteeing the existence of
solution of the reduced Sylvester equation in Step 5. The remaininfl freedom in F,
the other two necessary conditions, and freedom in the choice of L2 in Step 5 can
be used in satisfying the condition that [ZT, ET2] be full rank. In practice, of course,
the eigenvalues of any given matrix F will virtually always be distinct from those
of A, and thus the algorithm will successfully compute a solution to the constrained
problem, although it may not be possible to satisfy the full rank condition.

See [7] for numerical computations using this algorithm in control design of
flexible arm, helicopter flight, and aircraft flight dynamics.

Acknowledgments. We are grateful to the referees for their helpful comments.
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THE COMPONENTWISE DISTANCE TO THE NEAREST
SINGULAR MATRIX*

JAMES DEMMELf
Dedicated to Gene Golub on the occasion of his 60th birthday

Abstract. The singular value decomposition of a square matrix A answers two questions. First,
it measures the distance from A to the nearest singular matrix, measuring distance with the two-
norm. It also computes the condition number, or the sensitivity of A-1 to perturbations in A, where
sensitivity is also measured with the two-norm. As is well known, these two quantities, the minimum
distance to singularity and the condition number, are essentially reciprocals. Using the algorithm
of Golub and Kahan [SIAM J. Numer. Anal., Ser. B, 2 (1965), pp. 205-224] and its descendants,
these quantities may be computed in O(n3) operations. More recent sensitivity analysis extends this
analysis to perturbations of different maximum sizes in each entry of A. One may again ask about
distance to singularity, condition numbers, and complexity in this new context. It is shown that
there can be no simple relationship between distance to singularity and condition number, because
the condition number can be computed in polynomial time and the distance to singularity is NP-
complete. Nonetheless, there are some useful inequalities relating the two, especially in the case of
componentwise relative perturbations.

Key words, distance to singularity, conditioning, singular value decomposition
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1. Introduction. The singular value decomposition (SVD) of a real n by n
matrix A is written A UEVT, where U is n by n and orthogonal, V is n by n and
orthogonal, E diag(rl,..., an) is n by n and diagonal, and al >_ _> an >_ O. It
is well known that an is the distance from A to the nearest singular matrix, where
we measure distance either in the two-norm I1" 112 or the Frobenius (Euclidean) norm

I1" liE. Furthermore, the condition number of A with respect to inversion is a(A)
I[AII2. IIA-III2 Ol/fin. This means that a small perturbation 5A of A causes a small
perturbation of A-1 bounded by

II(A + 5A)- A-1ll2 ll6AII2 t- O(II AII ,).

Note that if we normalize A to have unit norm IIAII2 1, then the condition number
and smallest singular value are reciprocals. The first successful algorithm for com-
puting the SVD was described by Golub and Kahan in [13] and further developed in
[5]-[7], [14], [10]; it can compute the SVD stably in O(n3) floating point operations.

More recent perturbation theory and error analysis have tried to extend this
analysis by considering structured linear systems, where 5A is no longer bounded by
a "round ball" of the form 115AII2

_
w or I]hAIIF

_
w. Instead, we bound hA in terms

of a fixed nonnegative matrix E and the smallest scalar w satisfying

I6Aij

_
wEij

for all and j. We will write this set of inequalities in the shorthand 1hAl <_ wE,
where 1hA is the matrix of absolute entries of hA and the inequality is interpreted

Received by the editors February 11, 1991; accepted for publication (in revised form) May
8, 1991. This research was supported by National Science Foundation grants DCR-8552474 and
ASC-8715728. This author is also a Presidential Young Investigator.
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componentwise. Another way to describe w is

d m3x
ij Eij

where 0/0 is interpreted as 0. Thus we can think of w as a scaled infinity-norm of hA,
interpreting 5A as a vector of dimension n2.

Given this componentwise way to measure hA, we can ask four related questions,
motivated by analogous properties of the SVD:

(1) How big can II(A +hA)-1- A-III/IIA-I] be as a multiple (A,E).w of w for
small w? (A, E) is called the condition number of A with respect to E.

(2) What is the smallest w for which there is a 5A satisfying ]hA <_ wE and
A + 5A is singular? Denote this minimum value of w by w_(A, E). w__(A, E) is
the distance from A to the nearest singular matrix in the metric defined by
E.

(3) What is the complexity of computing (A, E) and w__(A, E)?
(4) How are (A, E) and w__(A, E) related? In particular, are they reciprocals?
The first question was answered by Bauer in 1966 and Skeel in 1979-80 [4], [21],

[22]; we survey this material in 2 of the paper. In particular, we show that (A, E) can
be reliably computed in O(n3) time (or even less if fast matrix multiplication/inversion
techniques due to Strassen, Pan, Winograd, and others are used [17]).

The second question was answered by Rohn in 1989 [18]; we discuss this result in

3. The answer is a simple expression involving 4n eigenproblems of dimension n.

A more recent result of Rohn and Poljak answers question (3); they show that
computing w_(A, E) is NP-complete, even in the apparently simple case where Ej 1.
We discuss this result in 4, and show that their result implies that any numerical
algorithm that computes a sufficiently accurate approximation to w__(A, E) must be
able to solve a particular NP-complete problem exactly. Thus, unless P=NP, which
is widely believed to be false, computing w__(A, E) will take an exponential amount of
time.

We now have a simple answer to question (4) above. Since (A, E) can be com-
puted in polynomial time (in fact O(n3)), and computing w__(A, E) is NP-complete,
there cannot be any simple (i.e., polynomial) way to compute one from the other. In
particular, they cannot be reciprocals.

Nonetheless, there are some simple inequalities relating (A,E) and w__(A,E),
especially for the particular value E IAI. This corresponds to relative perturbations
in each entry of A, and is the value of E of most interest in practical computations [4],
[21], [22], [1], [2], [15]. In 5 we show that the maximum value of ((AD,.IADI))-over all nonsingular diagonal D bounds w__(A, IAI) from below and cannot be much
smaller, possibly unless A is close to a certain set of codimension 4. We prove they
are close in a variety of special cases, and conjecture that they are always close.

2. Bauer and SkeeFs perturbation theory. We consider the system of linear
equations Ax b and the perturbed system (A / 5A)(x + 5x) b. Subtracting these
two equations and rearranging yields

5x A- hA. (x + 5x).

Applying the triangle inequality yields
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and taking norms on both sides and dividing by II x / 5xl II yields

15xl < wll IA-11 E II.
If I1" denotes the infinity norm, we can show that this inequality is attainable. More
generally, it is only attainable to within a constant depending on the choice of vector
norm. This justifies the definition

a(A,E) =_ IA-l E I].
Later in this paper we will use several different norms I1" II.

3. Rohn’s formula for the distance to a singular matrix. To state Rohn’s
result [18], [19], we need some notation. $1 and $2 will denote signature matrices,
i.e., any diagonal matrices with diagonal entries +/-1. Note that there are 2n signature
matrices of dimension n. po(X) denotes the real spectral radius of X:

po(X) max{IAI A is a real eigenvalue of X }
or 0 if X has no real eigenvalues. Now we may state Rohn’s theorem.

THEOREM 3.1 (see [18]).
1

w__(A, E)
maxs1 ,$2 Po ($1A- $2E)

where the maximum is taken over all pairs of signature matrices.
In particular, consider the case Eij 1. Then E uuT where u is the column

vector of all ones, and

po(S1A-1S2E)-- po(S1A-1S2uuT) po(uTS1A-S2u)_= luTS1A-1S2ul,
SO

1 1
w_(A, E)

maxs1,s2 luTSIA-S.ul maXlxl:lyl: IxTA-Yl
where the maximum is over all pairs of vectors, each of which has entries +/-1. Note
the close resemblance of this to the formula for the smallest singular value; the only
difference is that we take the maximum over all pairs of unit vectors Ilxl12 IlYlI2 1.

4. Rohn and Poljaks NP-completeness theorem. In [20] it is shown that
computing maxlxl=lyl=u xTBy is NP-complete. In other words, unless P NP, there
is no significantly cheaper algorithm than simply computing all possible xTBy. Their
reduction is to the max-cut problem, which we outline here.

Let G (N, E) be a weighted graph with nodes N, edges E and edge weights
w E R. Let S c N and define the cut 5S as the set of all edges with one endpoint
in S and one not in S. Let w(hS) be the sum of the weights of all edges in 5S. The
max-cut problem is to find S maximizing w(hS). Given any positive integer m, it is
NP-complete to decide if there is an S such that w(hS) is at least m; this is true even
if each edge has weight 1, so that w(hS) is just the cardinality of 5S [12].

Rohn and Poljak reduce max-cut to computing maxll=lyl= xTBy as follows.
Given G (N,E) and w 1, n- the cardinality of N, and e the cardinality of
E, represent N by the integers from 1 to n. Define the matrix B by

0 if(i,j)E, ij,
Bj- -1 if(i,j) EE; ij,

r ifi-j.
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Here r is any integer exceeding 2e; this guarantees that the matrix B is diagonally
dominant and in fact well conditioned if we want. Then Rohn and Poljak show that
if MC is the value of the max-cut, then

max xTBy 2 MC + r n e.

They do this as follows: since B is diagonally dominant, x y when the maximum
of xTBy is attained. Thus

1

2. card(hS) + r. n- e,

where card(hS) is the cardinality of the cut set defined by S {i" y 1}. Maxi-
mizing on both sides yields the result.

This reduces the NP-complete problem max-cut to maxll=lyl=u xTBy. A similar
reduction works in the opposite direction.

Now we show that any sufficiently accurate numerical algorithm for computing
w_(A, UUT) 1/maxlxl=lyl=u xtA-ly would have to do an exponential amount of work,
unless P-NP. From the previous discussion, we see that by taking r 4e _< 4n2 in
B, for example, we can guarantee that the usual condition number of B is less than
3. Letting A B-1, we see that each entry of A- B can be computed quite
accurately, say, with an error ij 15Bijl bounded by 1/6. (This requires accuracy
increasing with n, but suffices to prove the point.) Suppose that the algorithm for
maxlxl=lyl=u xtBy is stable in the sense that it computes the correct answer to within
+/-1/6 for a slightly perturbed matrix B + 5B’ with ’]j 15Bjl < 1/6. Then since

max xtBy] < E]hBJ] < 1/6,max xt(B + hB)y
Il=lyl= ij

we finally get that the error in the computed value of maxll=ll= zTA-I is less
than 1/6 + 1/6 + 1/6 1/2. Since the true value is an integer, we can round to the
nearest integer to get it exactly. Thus we can solve an NP-complete problem exactly,
as claimed.

Note that this also proves the more general result that there is no simple (polyno-
mial) function yielding (A, E) given any data computable in polynomial time from
the entries of A and E.

g. Inequalities relaing (A, E) and (A, E). Even though there can be no
simple formula relating (A,E) and (A,E), we may still seek to relate them by
inequalities. The following proposition gives a simple one-sided inequality.

PROPOSITION 5.1. Let n(A, E) IA-11 "E I, where II" is any operator norm.
Let p(.) denote the spectral radius. Then

1 1
E) > >

E)

If A- has a checkerboard sign pattern, the first inequality is an equality.
Pro@ The Perron-Frobenius theorem implies that

po(S1A-x2E) p(]n-l] E) ]A-I g .
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Now apply Rohn’s theorem. The first inequality is attainable if A-1 has a checker-
board sign pattern. U

We give another more elementary proof of the second inequality in the theorem
in the special case of norms satisfying the additional properties

IlXll IXl II and 0 _< X _< Y = IIXII IIYII.
Choose any w < ((A, E))-1. Then if ISAI <_ wE, we have

IIA-A[I-< IA-11 IA[ [[-< w[[ IA-IE < 1,

implying that A + 5A A(I + A-SA) is invertible. Thus (n(A, E))-1 _< w__(A, E).
Since we can find matrices whose spectral radius and norm differ arbitrarily, we

cannot expect to bound w__(A, E) from above by any function of n(A, E). For example,
let

and E IA]. In this case p(lA-]. E) 1 and IA-] E II 2/.
This last example makes it clear that to bound w__(A,E) from above by some

function of n(A, E), we need to have E depend on A in some way. We begin by
noting that if D and D2 are arbitrary nonsingular diagonal matrices, then

w__(A, E) w_(DAD2, DED2)

since [SA _< wE if and only if [DISAD2[ <_ w[DED2[ and A+SA is singular if and only
if DAD2 + DSAD2 is singular. Similarly, p([A-1] E) p([(DAD2)-] IDLED2[).
On the other hand, although n(A, E) is independent of row scaling by D1, since

(A, E)- IA-I E II- II ](DA)-ll (DIE) [I- (DA,DE),

it is not independent of column scaling by D2, as the last example shows.
By letting the column scaling D2 vary, we can prove the following theorem.
THEOREM 5.2. Let I1" denote any p-norm. Then

w_(A, E)_>
1 1

p(IA--IE) minD2 n(AD2, ED2)"

If IA-I[ E is irreducible, the minimizing D2 can be given as follows. Let x and
yT be the right and left Perron vectors of [A-[ E, respectively, and let q satisfy

/q1/p + l/q l. Then D2,ii y(/p xi
Proof. The proof is a variation on the proof of Lemma I in [3]. There Bauer shows

that for B > 0 and C > 0,

(1) min (IIDIBDelI IIDCDII) p(BC).
D ,D2

Let x > 0 and yT > 0 be the right and left Perron vectors, respectively, of BC, and
x2 > 0 and y2

T > 0 the corresponding Perron vectors of CB. Then Bauer shows that
--liP1/Pxil/q and D2,ii Y2i 2ithe minimizing D and D2 are given by D,i Yi

We note that Bauer’s argument depends only on the positivity of the components
of xi and yi, which according to the Perron-Frobenius theorem is guaranteed just by
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the irreducibility of BC and CB. In particular, we can take C I, as long as B is
irreducible.

Now consider the minimization problem (1) subject to the side constraint D1
D-1. Along with the choice C I this changes our minimization problem into

minD2 IID;1BD211. This means that the minimum can be no smaller than p(BC)
p(B). But the choice C I means xl x2 and yl y2, so from the formulas for the
unconstrained minimizing D1 and D2, we see that D1 D-1 and so the constrained
and unconstrained problems attain the same minimum.

If B IA-11 E is irreducible, this proves the theorem. If B IA-11 E is
reducible, we can reduce to the irreducible case as follows. Assume without loss of
generality that B has been permuted to block upper triangular form with blocks Bij
such that the diagonal blocks Bii are irreducible (the diagonal blocks correspond to
the strongly connected components of the graph of B). It is possible to choose D so

that D’IBD’2 has the same diagonal blocks as B but the off-diagonal blocks are as
small as we like. Now we can choose D to minimize the norm of each diagonal block
of (0202) B(D2D2’) individually. This makes the overall norm as close to p(B) as
desired. Note that there is not necessarily any D2 that attains the minimum in the
case where two diagonal blocks of B have spectral radius p(B). D

This proof works for a wider class of norms than the p-norms; see [3] for details.
We do not know how weak the inequality in Theorem 5.2 can be. We can get an

upper bound for w_(A, E) based on perturbing one component of A at a time.
PROPOSITION 5.3.

1
>_ w_(A, E).

maxi IAl[ Eji

Then the upper bound is always within a constant of the trace ofLet A ben by n.

n2 1 1

tr(IA-11 E) maxij [A51 Eji tr([A-11 E)"

Proof. The perturbation Aij + 5Aij of Aij that make A + 5A singular is precisely
(A1)-1; this follows from block Gaussian elimination as in [8]. This corresponds to
w 1/(IA11 Eij) in 15AI <_ wE. Minimizing w over all and j produces the upper
bound. The relationship with tr(IA-11E) is elementary. [:]

This upper bound can be arbitrarily weak, as can be seen from the example

Here both off-diagonal entries of A must be perturbed simultaneously to make it
singular.

To make further progress, we specialize to the case E IAI. This corresponds to
making relative perturbations in each entry of A, and is the choice of E of most interest
in numerical applications [4], [21], [22], [1], [2], [15]. We will present a number of
special cases where the inequality in Theorem 5.2 is nearly sharp, i.e., where w__(A, IAI)
is bounded above by a constant multiple of 1/p(IA-11 IAI). In fact, we will show that
it is only possible for w__(A, IAI) to greatly exceed 1/p(IA-11 IAI) in case A is close
to a set of codimension 4, a very thin set indeed. Based on this, we conjecture that
w__(A, IAI) is always bounded above by a constant multiple of 1/p(IA-11 IAI).
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THEOREM 5.4. The inequality

"/ > (A, IAI) >(2) p(IA-l IAI) p(IA-l IAI)

holds in the following cases:

(1) For 2 by 2 matrices with / 4;
(2) For triangular matrices with / 1, in which case w__(A, IAI) 1/p(IA-11

]AI) 1;
(3) For n by n symmetric positive definite matrices with / n2
(4) For n by n matrices with 1 >_ IAijl >_ > 0 with " n2/.
Remark. Theorem 5.4 (3) also appeared in [9].
Proof.
(1) If

(2)

(3)

then a straightforward computation shows that the upper bound in Proposi-
tion 5.3 is given by max(ladl, Ibcl)/lad-bcl, and the lower bound by 1/p(IA-11
IAI) (x/ + v/-)2/lad- bcl. It is easy to verify that the upper bound is
never more than four times the lower bound.
To make an upper triangular matrix singular without perturbing below the
diagonal, a diagonal entry must be made equal to 0. This means w__(A, IAI)
1. Clearly, IA-11 IAI is also triangular with unit diagonal, so all its eigenvalues
are 1.

1/2Write A DXD where D is diagonal with Di A and X 1. Then
p(IA-11 IAI) p(IZ-ll IXI). Since the entries of Z are bounded by 1 and
the largest entry of X-1 is on its diagonal, we have maxj IXll IXjI
maxk X-k. Also,

P(]X-1] IXl) -< Ix-l] IX] ]l -< Ilx-lllllxll < n2" maxX-kk

yielding the result.
(Note that maxkk X-k is approximately the usual 2-norm condition number
of X, and so is approximately the condition number for the eigenproblem for
A, where we measure errors in eigenvalues by their relative error [11]. Thus
we see that w__(A, IAI) is approximately the reciprocal of the condition number
for the eigenproblem for A.)

(4) It is easy to verify that p(IA-l IAI) <_ IIA-111IIAII <_ IIA-111n and
maxij IAll IAjiI >_ rmaxij IAill >_ llA-ll/n. Combining these two
inequalities yields the result. [:]

To proceed, let us without loss of generality restrict ourselves to the compact set
of matrices 8 where IIAIIF 1. Let Af be the subset of consisting of nonsingular
matrices; N" is an open dense subset of S. The existence of a constant "), so that (2)
is true for all matrices is clearly implied by

(3) :f(A) p(lA-l IAI)/tr(IA-1l IAI)

being a bounded function on Af, because if it is bounded by #, say, then we can take

7 n2# by Proposition 5.3. Since IA-I. IAI _> I, the denominator of f(A) is bounded
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below by n, and the only way f(z) could be unbounded is for the numerator to be
unbounded. Since A has Frobenius norm 1, this means A-1 must be unbounded.
Thus, we can restrict our search for a bound f(z) <_ # to a small neighborhood of the
singular matrices.

The next theorem shows that in the generic case, that is, when we are close to a
matrix of rank n- 1 (in addition to a kind of irreducibility criterion), we expect f(A)
to be very close to 1. Thus if our upper and lower bounds on w__(A, IAI) are ever very
far apart, they must be near a set of codimension at least min(n, 4).

THEOREM 5.5. Let A have rank n-1, n >_ 3, with right and left unit null vectors
v andut: Av=O andutA=O. Supposelutl .IAI.IvIO. Then asbAO we have
f(A + 5A) -- 1. Thus f(B) can only become unbounded (if it does at all) when B is
close to a variety of codimension min(n, 4).

Proof. Let A + 5A UEV il aiuv be the singular value decomposition
of A, where 115AII. is small. Then an <_ IIiAIl., the other ai are much larger, the
last column Un of U is close to u, and the last column v of V is close to v. Also,

0(A-1 i=1 alviui alvut + ). Thus

IA-I IAI-- o-lvl I’1" IAI + O(o--).

Now consider the term allvl lull. IAI, which has rank 1. Since it has rank 1
and is nonnegative, its trace and spectral radius are identical: allutl IAI. Ivl. By
assumption, lutl IAI. Ivl is nonzero, so for tiny hA, IA-11 [A is a small perturbation
of a nonnegative rank 1 matrix, and so f(A + hA) is close to 1.

This argument breaks down either when A is nearly rank n-2, or lutl IAI. Ivl O.
It is easy to verify that the set of matrices of rank at most n- 2 has codimension 4.
If lutl IAI. Ivl 0, then either a row or column of A is zero (a set of codimension n),
or at least four entries of A are zero (corresponding to the nonzero entries of u and

Finally, we consider 3 by 3 matrices. If a nonzero 3 by 3 matrix is close to singular,
then either it is close to rank 2 but far from rank 1, or its inverse has this property.
This is enough to prove that f(A) in (3) is bounded for all nonsingular 3 by 3 A.

THEOREM 5.6. Let A be 3 by 3. Then there is a constant 7 such that

7 > w___(A, IAI) >p(IA- I.]AI) p(IA-[.]A[)"

Proof. We wish to show that f(A) is bounded for all nonsingular 3 by 3 A. We
begin by restricting the set of nonsingular matrices for which we need to prove the
result. In particular, we show that we can consider without loss of generality the
bounded set C of matrices where each entry is in the range [-1, 1] and each row,
column, and 2 by 2 minor contains at least one +/-1.

If a matrix A is nonsingular, all its rows and all its columns are nonzero. By
dividing each row of such a matrix by its largest entry, and each column of the
resulting matrix by its largest entry, we get a new matrix where each row and each
column contains at least one +1. We can further guarantee that no 2 by 2 minor
of A fails to contain a +1. Suppose without loss of generality that the upper left
2 by 2 submatrix has largest absolute entry a < 1. Then entries (3,1), (3,2), (1,3),
and (2,3) must all be +/-1. Now multiply rows 1 and 2 by 1/a and column 3 by a;
this leaves the +/-l’s in column 3 unchanged and introduces a +/-1 in the upper left 2
by 2 submatrix. All these transformations consist of diagonal scalings leaving f(A)
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unchanged. Therefore, every nonsingular A has a representative in C with the same
value of f, so it suffices to prove that f is bounded on .

Now let be the closure of g. K; is a compact set with - C consisting of
singular matrices. Next, we show that for every rank 2 matrix A in we must
have lutl IAI. Iv 0, in the notation of Theorem 4. We argue by contradiction.
First, z =_ lutl IAI cannot be zero unless one or more rows of A is zero, which is
impossible. Now ztlvl can be zero if and only each zivi O. Clearly not every zi can
be nonzero, because then v would be 0. If two zi were nonzero, only one vi could be
zero, implying that A had a zero column, a contradiction. So z must have exactly
one nonzero component, and v at most two nonzero components. Since v cannot have
exactly one nonzero component (which would imply A had a zero column), it must
have exactly two nonzero components. The same reasoning shows that u has exactly
two nonzero components. But if lutl IAI. Ivl 0 and each of u and v has two nonzero
components, A must have a 2 by 2 minor exactly 0, a contradiction. So luTI IAI. Ivl
cannot be zero.

By Theorem 5.5 this means around every rank 2, A E , we can put a small ball
such that for any A E and in the ball, f(A) is close to 1.

Now consider a rank 1 matrix A . We claim that all the entries of A are 1:
Write A xy, and suppose All xly 1. Then since each entry of A is bounded
by 1 in absolute value, we must have Ixil _< IX ll and lYil- lYll for 1, 2. So the
only way to have +/-l’s in the other rows and columns is to have all Ixl identical and
all lYI identical. Now by Theorem 5.4(4), f(A’) must be bounded for all A’ C in a
small ball surrounding A.

We have now constructed an open cover of the rank 2 and rank 1 matrices in K
with the property that f is bounded on C intersected with their union. Around each
A C we can also find an open set within which f is bounded, since f is continuous
and finite on C. All these sets taken together form an open cover of the compact set, so by the Heine-Borel theorem there is a finite subcover. Taking the maximum of

f on this finite collection of sets yields a finite bound for f on all of C.
The evidence presented here leads us to make the following conjecture, which has

also been made by Higham [16].
CONJECTURE. There is a constant % possibly depending on dimension, such that

> w_(A, IAI) >p(IA-11 IAI) p(IA-l IAI)

for all nonsingular A. Since

p([A-[ IAI) minn(AD, IADI)
D

where the minimum is taken over all nonsingular diagonal D, this would mean that
the componentwise relative distance to the nearest singular matrix is approximately
the reciprocal of the smallest condition number attainable by column scaling.

Note added in proof. Nick Highham and the author have found a 4 by 4 rank
2 matrix in a neighborhood of which the upper bound in Proposition 5.3 can be
arbitrarily weak.
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Abstract. Total least squares (TLS) is one method of solving overdetermined sets of linear
equations AX B that is appropriate when there are errors in both the observation matrix B and
the data matrix A. Golub was the first to introduce this method into the field of numerical analysis
and to develop an algorithm based on the singular value decomposition. However, as pointed out
by Golub and Van Loan, some TLS problems fail to have a solution altogether. Van Huffel and
Vandewalle described the properties of these so-called nongeneric problems and proposed an extension
of the generic TLS problem, called nongeneric TLS, in order to make these problems solvable. They
proved that the solution of these nongeneric TLS problems is still optimal with respect to the TLS
criteria for any number of observation vectors in B if additional constraints are imposed on the TLS
solution space. These constraints are further scrutinized in this paper a.nd compared with other
approaches in linear regression.

Key words, total least squares, singular value decomposition, errors-in-variables, latent root
regression, collinearity
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1. Introduction. Solving sets of linear equations is a basic issue in many appli-
cations. If these sets Ax . b are overdetermined, then generally only an approximate
solution can be computed, for instance by using a least squares (LS) or total LS (TLS)
approach. The basic principle of TLS is that the noisy data [A; b], while not satisfy-
ing a linear relation, are modified with minimal effort, as measured by the Frobenius
norm, in a "nearby" matrix [A; b] which is rank-deficient so that the set Ax b is

compatible. This matrix [A; b] is a rank one modification of the data matrix [A; b].
The term "total least squares" (TLS) was coined in [10] although its solution, using
the singular value decomposition (SVD), was already introduced in [9] and [8]. More
generally, the TLS problem is defined as follows.

DEFINITION 1 (Ordinary TLS problem). Given an overdetermined set of rn linear
equations AX . B, B E Treg, in n d unknowns X. The total least squares (TLS)
problem seeks to

(1) minimize [A; B] [A; B]
f] e

(2) subject to R(B) C_ R(A).

Once a minimizing [A; B] is found, then any X satisfying

(3) AX B

is called a TLS solution and [AA; AB] [A; B]- [A; B], the corresponding TLS
correction.
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Whenever the TLS solution is not unique, the minimum norm solution, denoted
by X, is singled out.

Unless stated otherwise, we assume that the set of equations AX B is overde-
termined, i.e., m > n. For the one-dimensional problem, i.e., d 1, the matrices are
replaced by their corresponding vector notations, e.g., the vectors b and x are used
instead of the matrices B and X.

R(S) and Rr(S) denote, respectively, the range and row space of a matrix S.
Denote the SVD of the m n matrix A, m > n, by:

(4) A UEV’T

with

and denote the SVD of the m x (n + d) matrix [A; B], m > n, by:

(5) [A; B] UEVT

with

u Vl [Ul,..., n uru

{Vll V12 ] rV V21 V22 d --[Vl’’’’’ vn’ Vn+l’’’’’ Vn+d]’ V E Tn+d, vTv =In+d,
n d

E =diag(al,... ,an+t) Tm("+d) t min{m- n,d}, o > > O’n+ > 0

For convenience of notation, we define ai 0 if m < <_ n + d.
Using this notation, we call the problem generic if for ap > ap+l an+l

with p <_ n, the submatrix

(6)
Vn+l,p+l Vn+l,n+d 1Vn+d,p+l Vn+d,n+d

with vj,i the jth component of v

of V in (5) has full row rank d. If an > an+l (i.e., p n), this means that V22 in
(5) is nonsingular (or Vn+l,,+l 0 if d 1). The TLS solution of generic problems,
called generic TLS solution, can be computed with the algorithm of Golub and Van
Loan [10] and is given by

(7) f -ZF-1

where Z, F are obtained by postmultiplying [Vp+l, ", Vn+d] with an orthogonal matrix
Q such that

(8) [Vp+l, V,+d]Q [ YO ZF
n-p d

n
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For one-dimensional TLS problems, the generic TLS solution (7) reduces to a simple
scaling of the last column vector [zT; 7]T in (8)"

(9) --z/7.

Whenever V is rank-deficient (or 7 0, if d 1) the problem is called nongeneric.
_< ,as proven in [20] [19], and the TLS problem (1)-(2) fails toIn this case, an rn+

have a finite solution altogether. For example,

[000]A- b= and [AA;Ab]= 0 e 0
0 0 2 0 e 0

then for all e > 0, b-Ab E R(A-AA). Thus there is no smallest value of II[AA;/Xb]llF
for which b- Ab R(A- AA).

The following remark is important here. In this paper, we assume that the data
have been properly scaled in advance. This assumption implies that the rows and
columns of [A; B] have been scaled in such a way that the errors in its entries are
independent zero-mean variables with equal variance. The failure to approach these
conditions may result in spurious indications of rank deficiency of the matrix V in (6),
a phenomenon that results in the detection of "artificial" nongeneric TLS problems
that are not meaningful on the basis of what the source problem proclaims about the
significance of each entry in [A; B].

In [19], we described the properties of these nongeneric TLS problems and gen-
eralized the TLS computations, as given by Golub and Van Loan, in order to solve
these problems. It was proven that the proposed generalization still satisfies the TLS
criteria (1)-(2) for any number of right-hand side vectors bi provided additional con-
straints are imposed on the TLS solution space. The significance of these problems
and their constraints, as well as some additional properties, are investigated in more
detail in this paper. Section 2 describes the one-dimensional nongeneric TLS problem
(d 1) while the multidimensional nongeneric TLS problem (d > 1) is considered in

3. Finally, 4 gives the conclusions.

2. The nongeneric one-dimensional TLS problem.

2.1. Problem description. Let (5) be the SVD of [A;b]. If ap > ap+l

an+l, p _< n; then the TLS problem (1)-(2) fails to have a solution if all
Vn+l,j 0, j p + 1,..., n + 1. The properties of these so-called nongeneric TLS
problems are described by [19, Thm. 3.1]. For clarity of exposition, we repeat this
theorem here.

THEOREM 2.1 (Properties of the nongeneric one-dimensional TLS problem). Let
(4) (respectively, (5)) be the SVD of A (respectively, [A;b]). Let b’ be the orthogonal
projection of b onto R(A) and [; b"] [A; b](I [zT; 7]T[zT; 7]) the rank n approxi-
mation of [A; b], computed from (8)-(9). If Y’(aj) (respectively, U’(aj)) is the right
(respectively, left) singular subspace of A associated with aj, then the following rela-
tions can be proven:

(10) (a)Vn+l,j-0 vj= 0 with v’
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(b) Vn+l,j O == aj a
(c) Vn+I,j --O == b_k u’

k

d) v,+,j O = u u’
e Vn+, =0 b" _k u’
f v,+l,j O == b _k u’

with k j -1 or k j and l

_
k

_
n,

with u’ E U’ (aj ),
with u’ U’(aj),
with u’ U’(aj),
with u’ U’ (ai ).

If aj is an isolated singular value, the converse of relation (c) and (e) also holds.
In particular, assume that (Tn > (Tn+l and v,+,n+l 0. Then, this theorem

yields:

(11) an+=an, Un+-+/-un, Vn+I= , 0

and b, b as well as b are orthogonal to

It is easy to see that the generic TLS approximation [; b] Ein=l aiuiv and cor-

responding TLS correction matrix [A; Ab] n+ltn_t_lvTn+l minimizes IlIAd; A]IIF
but does not satisfy the constraint b R(A) and therefore, this [A; b] does not solve
the TLS problem (1)-(2). Indeed, using (4), (5), and (11), we obtain:

[A; b] [A; b] [AA; Ab] [A; b] an+lu+iv+

(TiUiV b (Tntn o-iuiv b
i--1 Li--1

Observe that this approximation makes A rank-deficient! Indeed, A is reduced to
a matrix A of rank n- 1 while b is not changed at all. Since rank(A) n- 1 <
rank([A; b]) n, it follows that b R(A). Moreover, (11) also yields"

[A; b]v,+ 0 Av 0,

(12) [A; b]v,+ a,+U+l = Av + 0 b Av a’ u,’ 0 if a,’ is small.

of the set Ax 0 describes an approximate linearThis means that the solution vn
relation among the columns of A instead of estimating the desired linear relation
between A and b.

In these situations, described by Theorem 2.1, the ordinary TLS problem (1)-
(2) as such has no solution. Indeed, in order to satisfy e R(.), we have to make
one direction v e Rr([A; b]) orthogonal to Rr([A; b]), i.e., [A; b]v 0, and such that
Ax b is compatible. If v Vn / v/1 2 Vn+l then for every > 0, the correction
matrix

(13)
[A; Ab [A; b](eVn + V/1 2 V,+)(eVn + V/1 2 V,+)T

(ea,U + V/1 2 an+iUn+)(evn + V/1 2 Vn+)T

satisfies b- Ab R(A- AA). This implies that the data A,b are projected in
the lower-dimensional subspace orthogonal to au, + x/’l 2 an+lUn+l The TLS
corrections are given by"

(14) IlIAd; AbllF qe2an2 + (1- e2)an2+.
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However, in order to satisfy (1) simultaneously, e must be as small as possible. This
"smallest" e cannot be determined and therefore, there is no "smallest" II[AA; Ab]llF
for which b E R(A). Moreover this approach makes the problem very ill conditioned.

Indeed, using (13), the solution of (A- AA)x b- Ab is given by:

(15) [T; _lIT

(16)

If is small, then the coefficients of are inflated and have large variances due to the
influence of the second term in (16).

The following question now arises: how can we solve these nongeneric TLS prob-
lems in a meaningful way? From the earlier equations, it is clear that these problems
only occur whenever A is nearly rank-deficient (a’ 0) or when the set. of equations
is highly conflicting (a’n , an+l large). The latter situation is easily detected by in-
specting the size of the smallest a for which Vn+l, 0. If this singular value is large,
the user can simply conclude that the data are not appropriate for linear modelling
using TLS and as such reject the problem. In the first situation (a’ 0), two options
are possible. Either the user can remove the dependency between the columns of
A by removing appropriate columns in A such that the remaining submatrix Ap of
dimension m p, p < n, has full rank and then apply TLS to the reduced problem
Apx , b in order to obtain an estimate of the remaining parameters. The position of
the nonzero entries in Vn+l determines which columns of A, i.e., which variables in
the model, are dependent. How to pick these columns is a problem of subset selec-
tion. Procedures for discarding or selecting columns in A are available in a variety of
settings, e.g. see [13], [14], [18], [11, 12.2]. Another way is solving a nongeneric TLS
problem defined below, i.e., additional constraints are imposed on the TLS problem
(1)-(2) in order to make the problem solvable and stabilize the solution.

DEFINITION 2 (Nongeneric one-dimensional TLS problem). Given an overdeter-
mined set of m linear equations Ax b in n unknowns x. Let (5) be the SVD of
[A; b]. The nongeneric one-dimensional TLS problem seeks to

(17) minimize [A; b] [A; b] IIF
[/; b"’] E mx(n+l)

(18) subject to b e R(A)
(19) and [AA; hb]vj 0 Vj max {p}<j<n+l.

VnTl,pO

Once a minimizing [A; b] is found, then any x satisfying

(20) Ax b

is called a nongeneric TLS solution and [AA; Ab] [A; b]- [A; b] the corresponding
nongeneric TLS correction.

2.2. Solution and properties. The nongeneric TLS problem is solved as fol-
lows.
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THEOREM 2.2 (Nongeneric one-dimensional TLS solution). Let (5) be the SVD
of [A; b] and assume vn+l,j 0 for j p + 1,..., n + 1, p <_ n. If ap_ > ap and
vn+,p O, then

(21) [;b] UVT with diag(a,-.. ,ap_,O, ap+,...,a,+)

solves the nongeneric TLS problem (17)-(19).
correction matrix is

The corresponding nongeneric TLS

(22)

and

1
(23) -[V,p, vn,v]T

Vn+l,p

exists and is the unique solution to Ax b.
Proof. The nongeneric TLS approach searches in the (n + 1)-dimensional row

space of [A; b] for an approximatio^n [A b] of rank n with minimal deviation [AA; Ab]
such that (18) is satisfied and [AA; Ab]vj 0, j p + 1,-.., n + 1. Since [A; b]

aiuiv + +1aiuiv and the rank n TLS approximation [; b [A; b]
[AA; Ab], these last constraints imply that

n+l

c +
i--p-F1

where C is a rank (p 1) approximation of [A; b]p _.i=P aiuiv.
Hence, the nongeneric TLS approach must look in the p-dimensional space

R([A; b]p) for an approximation C of rank p- 1 with minimal approximation effort
[[[AA; Ab]llF such that (18) is satisfied. Using the Eckart-Young-Mirsky theorem [11,
Thm. 2.5.2], [20, Thm. 2.3] and the properties of the SVD, this minimizing [AA; Ab]
is given by (22). The condition ap-1 >a^p ensures that (22) is the unique minimizer.

The nongeneric TLS approximation [A; b] of rank n is then given by (21). Since Vp
belongs to the null space of [A; b], i.e., [A; b]vp 0, and since Vn+l,p 0, (18) is sat-

isfied, i.e., b E R(A). The solution of the nongeneric TLS problem is then obtained
by scaling Vp until its last component is -1, which proves (23). The uniqueness of
follows from the condition that rp_

Theorem 2.2 is a correction of [17, Thm. 1-4]. The latter reference does not
include condition (19) and as a result, the proof there is not correct. This condition
is crucial in the statement of Theorem 2.2 because, without it, the nongeneric TLS
problem is not solvable and as a result, the nongeneric TLS solution does not exist.
For example, if p n in Theorem 2.2, the nongeneric TLS solution (23) is given by

(25) [r; _1iv -v/v+,

T Observe thatwith corresponding nongeneric correction matrix [AA; Ab] anunvn
a smaller II[/XA;/Xb]IIF can be found if we omit the constraint [AA; Ably,+1 0,
namely, every [AA; Ab] of the form (13) with 0 < e < 1. However, since no "smallest"
s can be determined such that (17)-(18) are satisfied simultaneously, the nongeneric
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TLS problem is not solvable without condition (19). Moreover, as said before, the
corrections (13) make the problem very ill conditioned and inflate the coefficients of
the corresponding solution. As shown in 3, these solutions are not even meaningful
since they induce false correlations between A and b.

There is no restriction in imposing the condition O’p_ > O’p. Indeed, if O’p--1 O’p,
then the nongeneric TLS solution still exists but is possibly not unique.

The nongeneric TLS solution (23) also equals the minimum norm TLS solution
computed in the restricted row space

Rr([A; b]) Rr([A; b]) \ R([vp,..., Vn+l]).

This result follows directly from (8) using the assumptions Vn+,j 0 for j p
1,.-.,n / 1.

Since vn+,j 0 for j p / 1,..., n / 1, vector Vp completely characterizes the
linear relationship between A and b. Indeed,

[A;b]v Av au, j p + 1, n + 1,

[A; b]vp apUp.

Observe that ap measures the degree of incompatibility of the TLS problem Ax .. b
and thus indicates how closely b is linearly related to A. A small ap implies that
[A; b]vp , 0 and hence, there exists a strong linear relationship between A and b given
by Up. As ap is increasing, b becomes less dependent from the columns of A and hence
the validity of the imposed linear model Ax b must be questioned.

Note also that nongeneric TLS problems do not occur if we are only interested
in estimating a linear relationship between the columns of [A; b], no matter which
column is used as right-hand side. If, then, Vn+,n+ 0, we simply replace b by any
column a of A provided V,n+ O.

In practice, Vn+l,n+ is rarely equal to zero but close-to-nongeneric TLS problems
in which Vn+,n+ . 0 are not uncommon. As shown in Theorem 2.1, this occurs when
an approaches O’n+ 1. In those cases, the generic TLS solution can still be computed

is very closebut is unstable and becomes very sensitive to data errors when
to zero [10]. Identifying the problem as nongeneric stabilizes the solution and makes
it rather insensitive to data errors, as shown below.

Example 1. Consider the TLS problem Aox . bo,

Ao= 0 10- and bo=
0 0 1

illustrated in ig. 1 (n 2). Since the set of equations is highly incompatible, the
nongeneric TLS problem is likely to occur. Taking the SVD (15) of [Ao; bo], we observe

and by Theorem 2.1 (see Fig. 1) and thethat Vn+l,n+ 0. Hence, b0 2_ un Vn+l Vn
nongeneric TLS solution 0 of the unperturbed problem Aox bo must be computed.
Using Theorem 2.2, we obtain o -[2/(Vr- 1), 0]T from v2.

Perturb A0 and b0 with

AA= 0 0 and Ab= 0-a

0 10-a

Taking the SVD (15) of [A; b] [Ao + AA; bo + Ab], we now obtain Vn+,n+l 10-a

and an’ -an+l O(10-s). Computing the generic TLS solution (9) from Vn+l (p n)
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^o

uu=
FI(. 1. Geometric illustration of Example 1. X, Y, and Z are the coordinate axes. Ao has

two columns a and a, and bo is the observation vector. The nongeneric TLS approximation is

given by a,a2, b’o. The LS approximation bo is the orthogonal projection o] bo onto R(Ao). u, u2
(respectively, Ul, u2) are the left singular vectors of Ao (respectively, [Ao; bo]).

produces a very sensitive, unstable solution, given by 1, 10s / 104]T. However, since
Hence the nongenericthe perturbation level is 10 s, we may conclude that b 2_ u,.

TLS solution must be computed. Using Theorem 2.2, we obtain 0 +A- [2/(v/-
1),2.10-S/(V- 3)]T from v (n 2). Observe that IIAII2 10-8 is very small
and the perturbed TLS solution stable.

Using Theorem 2.1, the following useful characterization of the nongeneric TLS
solution (23) can be proven.

THEOREM 2.3 (Closed-form expressions of the nongeneric TLS solution). Let (4)
(respectively, (5)) be the SVD of A (respectively, [A; b]) and assume that V+l,j 0
for j p + l,...,n + l, p

_
n. If ap_l > ap and vn+l,p O, the nongeneric TLS

solution equals:

(26) (ATA aI,)-lATb
p--1

2)--1 o.

Proof. Since [:l]is proportional to Up, it is an eigenvector of [A; bIT[A; b] corre-
2 Hence, it satisfies the eigenvector equations:sponding to the eigenvalue

or

(29) (ATA apI,) ATb,
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(30) bTA + a2p bTb.

We first prove that ATA- aI is nonsingular. Hereto, a’p_l > o.p > 0. must hold.
Since the solution is nongeneric, it follows that o.p > o.p+l. Indeed, if by the

contrary o.p <_ o-p+l, we necessarily have o-p o-p+l since o-i _> 0-i+1, for all i. In this

case we would compute the minimum norm TLS-solution [:1] in R([vp,..., Vn+l]).
Since vn+l,p #: 0 we can compute a generic TLS solution, a contradiction since is
nongeneric. Thus o.p > ap+. Since we also assumed o-p-1 > o.p,o.p is not a repeated
singular value and hence Vp is also unique, up to a scaling factor.

Now, the interlacing property for singular values [11, Cor. 8.3.3] implies that:

(31) >...>0.’ > > >_0-1

__
0-1 p--1 O’p o.p

__
o"p+

__ __
o-n o"n+

Since Vn+l,j 0 for j p+l,..., n+l, it follows from Theorem 2.1(b) that o.j 0._ 1.

Hence, we have o.p+l o.’p. Since ap > o-p+1 is also assumed, we must have o.p > o.’p.
We next prove that 0-_1 > o.p by contradiction. Assume that o.’p_ <_ o-p; then,

from (31), we necessarily have that o.’p_ o.p.
Since o-p_’ is a singular value of A with corresponding singular vector Vp_l, we

obtain from the corresponding eigenvector equations:

ATAv -1 o’p-lVp-1 o’pVp--1

or

Equation (32) implies that

is also a right singular vector of [A; b] corresponding to o-p, a contradiction since the
right singular vector Vp, corresponding to o-p, is unique up to a scaling factor and has
a nonzero last component: Vn+l,p O. Thus O’i0_ >O’p.

Since o.’p_l > ap > ap’ is now proven, (ATA- o.In) is nonsingular. Hence, (26)
then follows immediately from (29). Now take the SVD of (26)"

Since Vn+I,j 0 for j p/ 1,’", n / 1, we have from Theorem 2.1(c) that b _L U_l,
i.e., ui’Tb 0 for p, n. Substituting this into (33) proves (27).

Observe that the expressions of the generic and nongeneric TLS solutions coincide
for p n / 1, i.e., when the additional constraints (19) vanish.

The following remark is important here. Comparing the expressions of the (non)gen-
eric TLS solution with the closed-form expression of the LS solution:

(34) x’ (ATA)-IATb,

we observe that TLS applies a deregularizing procedure, a kind of reverse ridge re-
gression. From a numerical point of view this looks bad since subtracting o.2pI makes
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the problem more ill conditioned. However, we should realize here that this subtrac-
tion is essentially motivated by the statistics of the problem, as shown below. It is
well known in regression analysis that the ordinary LS solution x given by (34) is
generally an inconsistent estimate of the true parameters x0 in an errors-in-variables
model given by:

(35) Aoxo=bo, A=A0+AA and b=b0+Ab.

Only A, b are known. A0, bo are unknown constants and the rows of the error matrix
[AA; Ab] are assumed to be independently and identically distributed with common
zero mean and associated error covariance matrix given by a2I. It is easily proven
[6], [16] that under quite general conditions x’ does not converge to x0 but ("plim"
means probability limit):

( )_12 AAo + a2In x0
2 plim ATA xo.(36) Pmlim x’ xo -av -av
\m--.

This implies that the LS solution is asymptotically an underbiased estimate of the
true parameters xo in (35). The asymptotic bias can be removed by subtracting the
error covariance matrix ([AA; Ab]T[AA; Ab]) ma2In from ATA in (34) ($ denotes
the expected value operator) and a consistent estimator can be derived [16], [15], [5]:

(37) (ATA ma2In)-lATb.

This is clearly a modification of the ordinary LS estimate. It corrects for the extra
sources of error in an errors-in-variables model and can be considered as a "method-
of-moments" estimator in the following sense:

Let (4) and (5) be the SVD of A and [A; b], respectively. Assume first that an > an+l,
i.e., the TLS problem is generic. Under the assumptions of model (35), we can prove
that limm 162n+1 a2 with probability one [7], [16], which implies that (37) and

2(26) are asymptotically equivalent for p n + 1. Hence, subtracting an+lI makes
the TLS solution (26) to a consistent estimate of the true parameters xo in (35). See,
e.g., [7], [6], [16], [5], and [2] for a description of the consistency conditions of the TLS
solution in errors-in-variables models of the form (35) or transfer function models
arising in system identification.

If the TLS problem is nongeneric, then ap2 > a2p+l O-2n+1 holds. From
expression (26) it follows that the nongeneric TLS solution will be an overbiased
estimate of the true parameters x0 in (35). The smaller the difference 0-p2 0-2n+1, the
smaller the bias, the more compatible the set of equations Ax . b and the better
the nongeneric TLS solution estimates the true parameters xo. Moreover, if the
assumptions of model (35) hold, the nongeneric TLS problem can be made generic

AToAo exists and is positive definite [7,by adding more equations provided limm--.
Lemma 3.3].
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2.3. Additional constraints. Since Rr([A; Abe) [T; _lIT, the additional
constraints [AA; Ab]v 0 are equivalent with the requirement

[_l ]-l-vj Vj with Vn+l,j=O.

The introduction of these additional constraints in the nongeneric TLS approach can
be motivated as follows. The singular vectors vj with negligible or zero last component
and associated with a small singular value, are called nonpredictive multicollineari-
ties in linear regression since they reveal multicollinearities (i.e., approximate linear
dependencies between the columns of A) in A that are of no (or negligible) value in
predicting the response b. In fact, if Vn+l,n+l 0, then using Theorem 2.1 yields

is the smallest singular value, (12) means that A is(11) and (12). Since an ffn+l
nearly rank-deficient or else the set of equations is highly incompatible. Since also
b 2_ un Un+l, there is no correlation between A and b in the direction of u U+l.
Hence, it does not make sense here to apply a correction of the form (13) since this
correction "creates" a correlation between A A- AA and b b- Ab in the direc-
tion un+l. Applying such corrections would induce a wrong interpretation about the
exact relation between A and b. If b _k un+l, then also keep the TLS approximation
b _k un+l as done in our nongeneric TLS approach. Therefore, the strategy of non-
generic TLS is to eliminate those directions in A which are not at all correlated with
the observation vector b. Indeed, solving a set of equations is computing the relation

ofbetween A and b. If there is no correlation between b and a left singular vector uj
it is better to eliminate that direction rather than forcing a solutionA, i.e., b _t_ uj,

in that direction.
Latent root regression [21] follows a similar approach. It minimizes the residual

sum of squares IIAx-bll2 subject to the same constraints, i.e., [:1] _k all nonpredictive
vj. The latent root (LR) regression estimator was developed by Hawkins [12] and
Webster, Gunst, and Mason [21] as an alternative for the principal component (PC)
estimator when estimating the true parameters x0 in a linear regression model, defined
by"

Axo b0,
(40)

g(Ab) 0 and

b b0 + Ab, A, b known,

g(AbAbT) aI.
If (4) is the SVD of A, then the PC estimator, more commonly known as the minimum
norm LS solution or truncated SVD solution [3] in numerical analysis, is given by:

P Tujb(41) Xpc E _--’-Vj
j=l aj

where vp+l,..., Vn are multicollinearities between the columns of A.
Let [A; b] be the m x (n+ 1) matrix whose first n columns contain the standardized

regressor variables and whose last column contains the standardized values of the
response variable. Denote the singular values and corresponding right singular vectors
of [A; b] as in (5) and let v" [vT; Vn+l,j]. Then the LR estimator is given by:

P

(42) XLR E fjvJ
j=l
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where

--2
Vn-t- l,j O’j

2 0.--2fj Epq=l Vn+l,q q

and Vp+l,’", Vn+l are the nonpredictive multicollinearities.
Observe that the LR estimator also makes

[ X_Lf ] -1- all nonpredictive multicollinearities,

corresponding to the n-p+1 deleted terms in (42). To accomplish this, the coefficients
fj in (42) are determined by first setting fj 0 if vj identifies a nonpredictive
multicollinearity and then selecting the remaining values to minimize the residual
sum of squares. If p n + 1, i.e., there are no nonpredictive vj, then the latent root
regression estimate equals the LS solution. This is a way of stabilizing the solution
in linear regression when the data in A are nearly multicollinear (a 0). It is well
known that then the ordinary LS solution tends to be inflated and predicted values
may be unreasonable.

The nongeneric TLS solution is another way of handling this multicollinearity
problem and stabilizing the TLS solution.: No.generic TLS minimizes the applied
corrections IlIA- A; b- b]llF subject to Ax b and the same constraints as used
in latent root regression. If there are no nonpredictive vj, then the nongeneric TLS
solution equals the generic TLS solution, as proven in Theorem 2.3. Moreover, The-
orem 2.1 proves the equivalence between these nonpredictive vj with Vn+l,j 0

of A. This implies that LR, PC and non-and corresponding multicollinearities v
generic TLS eliminate, the same multicollinearities. The relation between PC, LR,
and (non)generic TLS depends primarily on the size of the smallest singular value ap,
corresponding to a Vp with v+,p 0. If a is small, close connections exist between
nongeneric TLS and these biased regression estimators. This is evident by comparing
the expressions (41) and (26) of the PC estimator and the nongeneric TLS estimator,
respectively. The comparison between LR and TLS estimation is based on (23). As-
suming n-p + 1 nonpredictive multicollinearities, we observe from (42) and (2a) the
strong, though different, relation between the two methods. As ap decreases, the con-
tribution of Vp in (42) will dominate and thus XLR approaches . For those problems,
the nongeneric TLS estimator looks promising but the merits of the nongeneric TLS
estimator can be questioned when the sets of equations are more incompatible (i.e.,
ap increases). This occurs when the data are not appropriate for linear modelling.
In this case the user must reject the problem as irrelevant from a linear modelling
point of view. Large ap also occur in the presence of outliers in the data, i.e., large
errors in the measurements. These outliers make the (non)generic TLS solution un-
stable and considerably deteriorate its accuracy [1]. The same holds for the other
regression estimators, although the loss in accuracy is less dramatic. In these cases
robust procedures which are rather insensitive to outliers should be considered, e.g.,
by downweighting measurement samples that give rise to high residuals; see, e.g., [1],

3. The nongeneric multidimensional TLS problem. The properties given
in Theorem 2.1 can be generalized to multidimensional nongeneric TLS problems
AX , Bmxd (d > 1); see [19, Thm. 3.4]. Since conditions concerning the mul-
tiplicity of a,+l are imposed, this theorem does not describe the properties of all
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nongeneric TLS problems. Let us first assume that an > an+l and V22 is singular
so that the generic multidimensional TLS solution : -VI2V does not exist.
Analogouslyo th one-dimensional problem, we could construct a multidimensional
analogue [AA; AB] of (13) such that R(B) C_ R(A). Since II[AA; AB]IIF depends on, no "smallest" II[AA; AB]IIF can be computed and hence the TLS problem (1)-(2)
has no solution. In order to solve these problems and compute a solution with re-
duced sensitivity, the nongeneric one-dimensional problem (17)-(19) is generalized as
follows.

DEFINITION 3 (Nongeneric multidimensional TLS problem). Given an overdeter-
mined set of rn linear equations AX .. B, B E md, in n d unknowns X. Let (5)
be the SVD of [A; B]. The nongeneric multidimensional TLS problem seeks to

(43) minimize
e

(44) subject to R(B) C_ R(A)

(45) and [A.;A][w ]nod =0 v[w10 ER([ V1V2 ])
where

V2 d [Vq+, Vn+d]

and q maximal such that V2 is nonsingular. Once a minimizing [A; B] is found, then
any X satisfying

AX B

is called a nongeneric TLS solution and [AA; AB] [A; B]-[A; B], the corresponding
nongeneric TLS correction.

In [19, Thm. 3.3] the nongeneric multidimensional TLS problem (43)-(45) is

solved and the theorem shows how to compute the nongeneric TLS solution X. A
proof is included in [20, Thm. 3.15]. This nongeneric TLS solution also equals the
minimum norm TLS solution computed in the restricted row space

Rr([A;B])

given by Rr([A; B]) \ R([vq+,..., Vn+d]) [20].
Observe that in generic problems the additional constraints (45) can be neglected.

Consider the SVD (5) of [A; B]. If an > an+, the TLS problem (1)-(3) is solvable
provided V22 is nonsingular. Hence, q n in (45). Since V22 is nonsingular, no
[wn0 d’ w 0, exists such that

V2 Y= 0

for some y and hence, the constraints (45) vanish. In case of nonuniqueness (assume
that ap > ap+ an+ with p

_
n), the minimum norm generic TLS solution

(7) is singled out with F nonsingular. Since all [] e R([vp+,..., Vn+d]) belong to

R([]) and R([Y0 ]) -k R ([ FZ ]) R ([ -I ])
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because of the orthonormality of [Vp+l,..., v,+d]Q, the constraints (45) are automat-
ically satisfied and need not be imposed.

It is worthwhile to discuss here in more detail the significance of the additional
constraints (45). As mentioned in the previous section, the vectors [] identify nonpre-
dictive multicollinearities, i.e., approximate linear dependencies between the columns
of A which do not reveal anything about the relation between A and B and which are
of no (or little) value in predicting B. This is because:

(46)
w B] w 2 wT o2 < o0 A; 0 ATAw O’n-t-d

If aq+ is small, then a .. 0 and (46) implies:

w(47) Aw 0 V 0
n
d e R([vq+l,...,v,+d]),

i.e., there exist n-q independent approximate linear dependencies between the
columns of A or, A is close to a rank q matrix. The closer the linear relations in
(47) are to zero, the stronger are the multicollinearities and the more damaging are
their effects on the generic TLS solution.

In order to stabilize the coefficients of the generic TLS solution, nongeneric TLS
imposes the constraints (45). Since

these imply that the nongeneric TLS solution X must satisfy

(48) wT 0 V 0 e R([Vq+l, Vn+d]),

i.e all nonpredictive multicollinearities [w0] are eliminated from the solution or esti-
of Amator. The same is true for the ordinary LS solution. Small singular values a

and their corresponding right singular vectors identify multicollinearities whose effects
goes to zero. In order to stabilize theon the LS solution are more damaging as a

LS solution, these small singular values are set to zero, i.e., A is reduced to a rank
r matrix and the minimum norm solution X i=lr ai-lviuiTB, called truncated
SVD [3] in numerical analysis and principal component estimator in linear regression
[4], is computed in the reduced r-dimensional subspace of R(A). In a sense, we could
thus say that the nongeneric TLS solution stabilizes the coefficients of the generic
TLS solution in errors-in-variables models (35) just as the truncated SVD solution
(or PC estimator) and the LR regression estimator (when d 1) stabilize the coeffi-
cients of the LS solution in regression models (40) when multicollinearities are present
in the data A, B. A more thorough statistical analysis is needed in order to reveal
the merits of the nongeneric TLS estimator in multicollinearity problems.

Equation (46) shows that the nongeneric TLS estimator will be more accurate as

aq+l goes to zero. Large (rq+ imply highly incompatible TLS problems and hence
the accuracy of the nongeneric TLS estimator, as well as the relevance of the problem
to be solved, may be questioned.



34 SABINE VAN HUFFEL

If the conditions of [19, Thm. 3.4] are satisfied, then the vectors w in the addi-
tional constraints (45), identifying nonpredictive multicollinearities, are given by right
singular vectors v of A. If not, the nongeneric TLS solution still exists but in these
cases, w can be any vector within the row space of A. These vectors still identify
nonpredictive multicollinearities if the sum of squared projections of the rows of A
onto w, i.e., 2 wTATAw, is small. This occurs when Oq+l is not much larger than
an+d, which implies that w is most likely oriented along the lowest right singular vec-

of A However, large values of a will occur if at least one subset Axi bitors vn,
of AX B is highly incompatible. It affects the accuracy of the other solutions when
solving the d-dimensional TLS problem. In this case, it is expected to obtain more
accurate TLS solutions i, 1,..., d, by solving d separate one-dimensional TLS
problems Axi . bi, 1,..., d.

4. Conclusions. Whenever multicollinearities, i.e., approximate dependencies,
between the columns of A are as strong or even stronger than the linear relation
between A and B, TLS problems AX B become very ill conditioned and even
lack a solution satisfying the TLS criteria. This happens when the set of equations
AX B is highly incompatible or when the data matrix A is (nearly) rank-deficient.
In order to make these problems solvable and well conditioned, an extension of the
generic TLS problem, called nongeneric TLS, has been proposed. Nongeneric TLS
problems satisfy the same TLS criteria, as formulated in the generic TLS problem, but,
in addition, impose constraints on the solution space. These additional constraints,
which eliminate all multicollinearities between the columns of A from the TLS solution
space, are scrutinized and compared with LS, LR, and PC regression. It is shown that
LR and PC estimators eliminate the same multicollinearities from the LS estimator as
does the nongeneric TLS estimator from the generic TLS estimator, thereby greatly
reducing the estimator variances. In this sense we could thus say that nongeneric TLS
stabilizes the coefficients of the generic TLS solution in errors-in-variables models, just
as PC and LR stabilize the coefficients of the LS estimate in linear regression models,
when multicollinearities are present in the data.

Finally, it should be noted that nongeneric problems do not occur if we are in-
terested in estimating linear relationships between the columns of [A; B] no matter
which columns are used as right-hand side.
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1. Introduction. Let S- [sij] (1 <_ i,j <_ n) be a (0, 1,-1)-matrix of order n.
Then S is a sign-nonsingular matrix (SNS-matrix) provided that each real matrix with
the same sign pattern as S is nonsingular. There has been considerable recent interest
in constructing and characterizing SNS-matrices [1], [4]. There has also been interest
in strong forms of sign-nonsingularity [2]. In this paper we give a new generalization
of SNS-matrices and investigate some of their basic properties.

Let S [sij be a (0, 1,-1)-matrix of order n and let C [cij] be a real matrix
of order n. The pair (S, C) is called a matrix pair of order n. Throughout, X [xj]
denotes a matrix of order n whose entries are algebraically independent indeterminates
over the real field. Let S o X denote the Hadamard product (entrywise product) of
S and X. We say that the pair (S, C) is a sign-nonsingular matrix pair of order n,
abbreviated SNS-matrix pair of order n, provided that the matrix

A=SoX+C

is nonsingular for all positive real values of the xij. If C O then the pair (S, O) is
a SNS-matrix pair if and only if S is a SNS-matrix. If S O then the pair (O, C)
is a SNS-matrix pair if and only if C is nonsingular. Thus SNS-matrix pairs include
both nonsingular matrices and sign-nonsingular matrices as special cases.

The pairs (S, C) with

and

S= 1 1 0 C--- 0 2 0
0 0 0 3 0 0

are examples of SNS-matrix pairs.
Let (S, C) be a SNS-matrix pair of order n. In this note we prove that the number

of nonzero entries of S is at most (n2 + 3n- 2)/2. This result extends a theorem of
Gibson [3] for SNS-matrices to SNS-matrix pairs. We also strengthen a theorem of
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Murota [5] and apply it to obtain a more general bound on the number of nonzero
entries of S in terms of a parameter which is naturally associated with a SNS-matrix
pair.

2. Main results. Let (S, C) be a matrix pair of order n. The determinant

det(S o X + C)

is a polynomial in the indeterminates of X of degree at most n over the real field. We
call this polynomial the indicator polynomial of the matrix pair (S, C) because of the
following proposition.

THEOREM 2.1. The matrix pair (S, C) is a SNS-matrix pair if and only if all
the nonzero coe]ficients in its indicator polynomial have the same sign and there is at
least one nonzero coe]ficient.

Proof. Assume that (S, C) is a SNS-matrix pair. Clearly the indicator polynomial
has a nonzero coefficient. Consider a monomial

(1)

occurring in the indicator polynomial with a nonzero coefficient. By taking the
that occur in (1) large and all others small, we see that any monomial that occurs
in the indicator polynomial with a nonzero coefficient can be made to dominate all
others. Hence all the nonzero coefficients have the same sign. The converse is im-
mediate.

For SNS-matrix pairs (S, C) with C O the indicator polynomial is a homo-
geneous polynomial of degree n. In this case Theorem 2.1 is a standard fact about
SNS-matrices.

The following is a theorem of Murota [5].
THEOREM 2.2. Let S and C be real matrices of order n, and let A S o X + C.

Assume that det A is a nonzero scalar. Then there exist permutation matrices P and
Q such that PAQ has an L U-factorization

(2) PAQ LU,

where L is a lower triangular real matrix, with Os above and nonzeros on its main
diagonal, and where U is an upper triangular matrix whose entries are polynomials of
degree at most 1 in the entries of X, with Os below and ls on its main diagonal.

The next theorem is a strengthening of Theorem 2.2.
THEOREM 2.3. Let S and C be real matrices of order n, and let A S o X + C.

Assume that detA is a nonzero scalar. Then there exist permutation matrices P
and Q such that PSQ is a strictly upper triangular matrix. The matrix S has at
most n(n- 1)/2 nonzero entries, and if equality holds then for the same permutation
matrices P and Q, PAQ is an upper triangular matrix.

Proof. First suppose that det(A) is a nonzero scalar, and let P, Q,L, U be as in
Theorem 2.2. We claim that for each k 2,..., n, there are entries z,,..., zk-1 of
X such that the entry in row of column k of U is a linear polynomial in z,,..., zi
(i 1,..., k- 1). This follows by induction using the fact that each entry of A
contains at most one of the indeterminates of X. Since the first row of PAQ equals a
nonzero scalar multiple of the first row of U, each entry in the first row of U contains
at most one of the indeterminates of X. The second row of PAQ equals a nonzero
scalar multiple of the second row of U plus a scalar multiple of the first row of U.
Hence each entry of U in its second row contains at nost one indeterminate not in the
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entry of U immediately above it. Continuing like this we verify the claim. If zi occurs
in the (i,k) position of U, then zi occurs in the (i,k) position of PAQ (1 _< _< k-1),
and hence cannot occur on or below the main diagonal of PAQ. Therefore PSQ is a
strictly upper triangular matrix and hence S has at most n(n- 1)/2 nonzero entries.

Now assume that S has exactly n(n-1)/2 nonzero entries. Suppose that there is a
nonzero entry of L below its main diagonal, say, in row i. Then the ith main diagonal
entry of PAQ LU is not a scalar, contradicting the fact that PSQ is strictly upper
triangular. Therefore L is a diagonal matrix and PAQ is upper triangular.

In the proof of our main theorem we shall use the following theorem of Gibson
[3]. If B is a real matrix, then IBI denotes the matrix obtained from B by replacing
each entry with its absolute value.

THEOREM 2.4. The maximum number of nonzero entries in a SNS-matrix S of
order n equals

n2 / 3n- 2
2

with equality if and only if there exist permutation matrices such that PISIQ
where

(3) Tn

1 1 1 1 1
1 1 1 1 1
0 1 1 1 1

0 0 1 1 1
0 0 0 1 1

We note for later use that each submatrix of Tn of order n- 1 has all ls on its
main diagonal.

We now obtain a bound on the number of nonzero entries of S in a SNS-matrix
pair (S, C) in terms of the degree of the indicator polynomial. We denote the strictly
upper triangular (0,1)-matrix of order m with all ls above the main diagonal by Urn.
The all ls matrix of size m by p is denoted by Jm,p.

THEOREM 2.5. Let (S, C) be a SNS-matrix pair of order n whose indicator poly-
nomial has degree k. Then the number of nonzero entries of S is at most

() +2k- 1 ifkTO,

If equality occurs, then there exists an integer r with 0 <_ r <_ n- k and permutation
matrices P and Q such that

(4) ,S, pier Jr,k Jr,n-k-r]Tk Jk,n-k-r Q.
0 0 U__

Moreover, for each k wih 0 <_ k <_ n there eziss a SNS-raariz pair (S, C) such hat
[S satisfies (4).

Proof. If k 0, then the theorem follows from Theorem 2.3. For the remainder
of the proof we assume that k 0.

The matrices Tk and Un_k_ are vacuous.
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First suppose that k n. By Theorem 2.1 all the nonzero coefficients of the
indicator polynomial have the same sign, in particular the coefficients of the mono-
mials of degree n have the same sign. It follows that S is a SNS-matrix, and hence
by Theorem 2.4 the theorem holds in this case.2

Next suppose that 0 < k < n. Without loss of generality, we assume that

A12 ](5) A Ael Ace

where AI is a matrix of order k whose main diagonal entries have degree equal to
1, and det A22 is a nonzero scalar. We assume that S, C, and X are correspondingly
partitioned into blocks Sij, Cij and Xi, respectively. By Theorem 2.3 $22 has at
most (n- k)(n- k- 1)/2 nonzero entries. It follows that (S, C) is a SNS-matrix
pair of order k whose indicator polynomial has degree k, and hence, as above, $1
is a SNS-matrix. By Theorem 2.4 the number of nonzero entries of S1 is at most
(k2 + 3k- 2)/2. Since A22 is nonsingular, we may assume that the minors of its main
diagonal entries are nonzero. We claim that diagonally opposite entries of $12 and
$2 cannot both be nonzero, and hence the total number of nonzero entries in $12 and
$2 is at most k(n-k). Suppose to the contrary that there exist integers p and q with
1 _< p _< k < q _< n such that 8pqSqp O. Then XpqXqpXll...Xp_l,p_lXp+l,p+l...Xkk
appears in a nonzero term of degree at least k+ 1 in the indicator polynomial of (S, C),
contradicting the assumption that the indicator polynomial has degree k. Putting
these three bounds together we obtain the first assertion of the theorem.

Suppose that S has exactly

2
+2k-1

nonzero entries. Then S has exactly (k2 + 3k- 2)/2 nonzero entries and hence by
Theorem 2.4 we may assume that IS1[ Tk. Also See has exactly (n-k)(n-k-1)/2
nonzero entries and hence by Theorem 2.3 we may assume that $22 Un-k and A22
is an upper triangular matrix with nonzero scalars on its main diagonal. Moreover,
[S121 -]Setl]-- Jk,n-k. We claim that row q of $21 and column q of S12 cannot both
contain a nonzero entry. Suppose to the contrary that there exist integers pl, P2,

and q with 1 _< P,Pe <_ k < q <_ n such that 8plqSqp O. The property of Tn
noted following its definition implies that the minor of the (pl,p2) entry of A has
degree k- 1. The minor of the (q- k)th diagonal entry of Ae2 is a nonzero scalar.
Hence there is a nonzero term of degree k + 1 in the indicator polynomial of A--a
contradiction. Thus there exists an integer r such that [$2[ has r rows of ls with
corresponding rows of 0s in [S21, and k r rows of 0s with corresponding rows of ls
in [S2 [. It is now easy to see that there are permutation matrices P and Q such that
(4) holds. The theorem now follows.

Let (S, C) be a SNS-matrix pair of order n. If the degree of the indicator polyno-
mial is n, then as shown in the proof of Theorem 2.5, S is a SNS-matrix. If the degree
of the indicator polynomial is 0, then it follows from Theorem 2.3 that there exists a
SNS-matrix S which can be obtained from S by replacing n 0s with ls. We do not
know whether it is always possible to find a SNS-matrix S* which can be obtained
from S by replacing some of its 0s with +/-ls.

The matrices Ur and Un-k.-r are vacuous.
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Let A be an n by n real symmetric matrix, with eigenvalues

and a corresponding orthonormal set of eigenvectors ql, qn’, thus

A=QAQr QTQ=I
where A Diag (X1, X) and Q [ql, "", qn]. In 1949, the following theorem
was proved by Fan [Fan].

THEOREM 1.

k

k max tr XtAX.
xTX=Ik

Here Ik is the identity matrix of order k, and hence X is a matrix whose columns are k
orthonormal vectors in n. (All matrices are assumed to be real, but extension to the
case where A is complex Hermitian is straightforward.)

In the case k l, the theorem reduces to the Rayleigh principle; in the case k n,
it states only that the trace of a square matrix is the sum of its eigenvalues. Cases <
k < n are natural generalizations of the Rayleigh principle and are also reminiscent of
the Courant-Fischer theorem, which first appeared in 1905 [Fis]. (The Courant and
Fischer versions differ in the infinite-dimensional case.) The Courant-Fischer theorem
may be stated succinctly as follows.

THEOREM 2.

Xk max min v rXrAXv.
xTx= Ik vTv=
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For both Theorems and 2, it is immediately clear that the fight-hand side is greater
than or equal to the left by taking X q,, qk]. The proof of the Courant-Fischer
theorem is completed by the following argument: for any X, take v to be orthogonal to
the first k- rows ofQrX; then vrX rAXv <= Xk. Completing the proofofFan’s theorem
is somewhat harder, however. Clearly, letting Y QrX, the result is equivalent to the
following:

k

] Xi max tr YrAY.
yTy Ik

Since A is diagonal,

(2)
k

tr Y rAY= E E Xi y},
j=li=l

and one might suppose the rest of the proof to be straightforward. Only a few lines of
inequalities are in fact required, but deriving these is not a completely trivial exercise;
for the details, see Fan’s original proof. Obtaining Theorem as a consequence ofTheorem
2 does not seem to be any easier. Another approach uses properties of doubly stochastic
matrices and will be described below. Therefore, although it is hard to imagine that
Rayleigh, Fischer, or Courant would have been surprised by Fan’s result, it is quite
plausible that they were not aware of it. Actually, Marshall and Olkin [MO point out
that Theorem is a special case of a much more general but less well known result of
von Neumann dating to 1937 [vN]:

ffi’ri max tr UBVC,
uTu In’VTV= In

where ffl >-- >-- fin and r, >- >= rn are, respectively, the singular values of the n by
n nonsymmetric matrices B and C. See [MO, Chap. 20 for the proof.

There is a vast literature on various inequalities for sums and products ofeigenvalues
of symmetric matrices; see particularly [BB, Chap. 2 ], [Bel, Chap. 8 ], [MM, Part II],
[Fri], and references therein. However, we are not aware that any of the many results
available in the literature are particularly relevant to the discussion here, except as
noted below.

The purpose of this note is to describe an easy but interesting result, which then
leads to a trivial proof of Fan’s theorem. This result, while not new, is so beautifully
simple that its obscurity is surprising.

THEOREM 3. Let

and

’1 { yyr. yry= I }

ft2 W: W= Wr, tr W=k,O<= W<=I}.

Here Y has dimension n by k, so that YYr is a projection matrix oforder n and rank k,
and W has dimension n by n, with the last condition meaning that W and I W are
both positive semidefinite. Then ft2 is the convex hull of ft,, and 1 is the set ofextreme
points of ft2.

Theorem then follows as a consequence, because

(3) tr YrAY=tr YYrA,
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and maximizing this linear function over Y Yr e "l is equivalent to maximizing it over
We ft2. Since

tr WA ] XWii
i=1

the fact that the maximum value is 2; = ki follows trivially from the conditions on
IV. Equivalently,

k

(4) Xi max tr VA,
Vfl2

as V e 2 if and only if W QrVQ ft2.
We derived Theorem 3 before we found it in the literature. Our proof is as follows.

The fact that any convex combination of elements of ftl lies in 2 is immediate. Also,
using the spectral decomposition of W, which has eigenvalues lying between 0 and
that sum to k, it is clear that any element of2 with rank greater than k is not an extreme
point. The only candidates for extreme points, then, are those with rank k, i.e., the
elements of 2. But it is not possible that some rank k elements are extreme points and
others are not, since the definition of ft2 does not in any way distinguish between different
rank k elements. Since a compact convex set must have extreme points, and is in fact
the convex hull of its extreme points, the proof is complete.

A slightly different proof ofthis theorem was given in 1971 by Fillmore and Williams
[FW ], a paper whose existence was recently brought to our attention by H. Woerdeman
and C.-K. Li. The paper is primarily concerned with the numerical range of a matrix,
which in the symmetric case is simply the line segment [X, ),1 ], together with general-
izations of this notion, and is referenced in the subsequent literature on generalized
numerical ranges, e.g., [GS], [Poo]. However, [FW] does not seem to be well known
in the general linear algebra community. We do not know of an explicit statement of
Theorem 3 that appeared before 1971. S. Friedland has pointed out that the result may
be obtained, in fact in a more general form, by using Theorem 4 below in conjunction
with the classical technique of majorization [MO] and that, furthermore, the result is
related to a 1950 theorem ofLidskii [Kat, p. 145 ]; however, such approaches to Theorem
3 are considerably more complicated than the trivial proof just given. It seems very
surprising that Theorem 3 is so little known, especially given its resemblance to the
following famous theorem.

THEOREM 4. Let 23 be the set ofn by n permutation matrices, and let ’4 be the set
of n by n doubly stochastic matrices, i.e., nonnegative matrices whose row sums and
column sums are one. Then 4 is the convex hull offt3, and f3 is the set ofextreme points
of4.

This theorem is usually attributed to Birkhoff, who discovered it in 1946, although
Chvfital [Chv, Chap. 20] notes that it was given by Krnig in 1936 [Krn, p. 381]. It has
been rediscovered, reproved in various ways, and generalized by many authors; see [MO,
Chap. 2] for an extensive discussion.

Theorem 4 has also been used as the basis for proving Fan’s theorem, e.g., [RV,
Chap. 6 and [MO, Chap. 20 ]. The former reference proves Theorem as a consequence
ofsome general inequalities proved using Theorem 4; the latter gives a more direct proof
as follows. We have already noted that the maximization objective in Theorem may
be written in the forms (2) and (3); another equivalent form is

(5) XrZe,
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where e is the k-dimensional vector with all elements equal to one, X [)kl, )kn] T,
and Z is the matrix of dimension n by k whose elements are defined by zo y}. Since
Y has orthonormal columns, the column sums of Z are one and the row sums are less
than or equal to one. Clearly, there exists an n by n doubly stochastic matrix whose first
k columns are the columns of Z (simply extend Y to a square orthogonal matrix).
Consequently, maximizing (5) over permissible values of Z cannot give a larger value
than maximizing

(6) XrSf
over all n by n doubly stochastic matrices S, where fis the vector with first k elements
equal to one and last n k elements equal to zero. By Theorem 4, this is equivalent to
maximizing (6) over the permutation matrices, giving an upper bound of Z= Xi for
the maximization objective and completing the proof of Theorem 1. (The last step is
actually slightly different in [MO ], using majorization instead of Theorem 4.) Note, by
the way, that not all doubly stochastic matrices can be obtained using such a construction
([MO, Chap. 2]). This does not affect the proof since, as noted at the beginning of the
discussion, the lower bound for the maximization objective is immediate.

The parallels and differences in the two proofs of Theorem given above are quite
striking. The first proof used Theorem 3, writing the maximization over the nonconvex
set ft and noting that maximizing instead over its convex hull f2 led to the desired
conclusion. The second proofused Theorem 4, writing the maximization over the convex
set "4 and noting that maximizing instead over its extreme points 23 led to the desired
conclusion. (For a third proof, see [RW].)

It is a well-known consequence of Fan’s theorem that, because the left-hand side of
is the pointwise maximum of the linear functions on the fight-hand side, the sum of

the first k eigenvalues of a matrix is a convex function of its elements. The same property
is also deduced from (4). We show in [OW] that formulas for the subdifferential of the
eigenvalue sum may be derived from either of these two max formulations, but that the
latter is particularly useful, for a reason related to the discussion in the preceding paragraph;
ft2 is convex, while 3 is not. It follows from either derivation that the sum of the first k
eigenvalues is a smooth function of the matrix elements, i.e., the subdifferential reduces
to a gradient, if and only if),k > Xk / 1. Our interest in this subject arose from consideration
ofminimizing sums ofeigenvalues of matrices that are specified only in part; see [CDW
for some applications and [OW] for further details. For the important special case k
1, see [Ove]. Finally, [OW] also addresses extremal properties of sums of the largest
eigenvalues in absolute value, giving some interesting generalizations of the results dis-
cussed here.

REFERENCES

BB E.F. BECKENBACK AND R. BELLMAN, Inequalities, Springer-Verlag, New York, 1971.
[Bel] R. BELLMAN, Introduction to Matrix Analysis, Second Edition, McGraw-Hill, New York, 1970.
[Chv] V. CHVTAL, Linear Programming, W. H. Freeman, New York, 1980.
[CDW] J. CULLUM, W. E. DONATH, AND P. WOLFE, The minimization of certain nondifferentiable sums of

eigenvalues ofsymmetric matrices, Math. Programming Stud., 3 (1975), pp. 35-55.
[Fan K. FAN, On a theorem of Weyl concerning the eigenvalues oflinear transformations, Proc. Nat. Acad.

Sci. U.S.A., 35 (1949), pp. 652-655.
[FW] P.A. FILLMORE AND J. P. WILLIAMS, Some convexity theorems for matrices, Glasgow Math. J., 12

1971 ), pp. I10-117.
[Fis] E. FISCHER, Ober quadratische Formen mit rellen Koeffizienten, Monatsh. Math. Physik, 16 (1905),

pp. 234-249.
[Fri] S. FRIEDLAND, Convex spectralfunctions, Linear and Multilinear Algebra, 9 1981 ), pp. 299-316.



THE SUM OF THE LARGEST EIGENVALUES 45

[GS] M. GOLDBERG AND E. G. STRAUS, Elementary inclusion relations for generalized numerical ranges,
Linear Algebra Appl., 18 (1977), pp. 1-24.

[Kat] T. ITO, A Short Introduction to Perturbation Theory for Linear Operators, Springer-Verlag, New
York, 1982.

K6n D. KONIG, Theory ofFinite and Infinite Graphs. Birkh/iuser, Boston, 1990 (translation of Theorie der
endlichen und unendlichen Graphen, Akademische Verlagsgesellschaft Leipzig, 1936).

[MM M. MARCUS AND H. MINC, A Survey ofMatrix Theory and Matrix Inequalities, Allyn and Bacon,
Boston, 1964.

MO A.W. MARSHALL AND I. OLKIN, Inequalities: Theory ofMajorization and Its Applications, Academic
Press, New York, 1979.

[Ove] M.L. OVEr,TON, Large-scale optimization ofeigenvalues, SIAM J. Optim., 1992, to appear.
[OW] M.L. OVEgTOr ArqD R. S. WOMWgSIV, Optimality conditions and duality theory for minimizing

sums of the largest eigenvalues of symmetric matrices, Computer Science Department Report
566, New York University, New York, NY, 1991; submitted to Math. Programming.

[Poo] Y.-T. PooN, Another proofofa result of Westwick, Linear and Multilinear Algebra, 9 (1980), pp. 35-
37.

[RW] F. RENDL AND H. WOLKOWICZ, Applications ofparametric programming and eigenvalue maximization
to the quadratic assignment problem, Math. Programming, to appear.

[RV] A.W. ROBERTS AND D. E. VARBERG, Convex Functions, Academic Press, New York, 1973.
[vN] J. VON NEUMANN, Some matrix inequalities and metrization ofmatrix space, Tomsk Univ. Rev.,

(1937), pp. 286-300; Reprinted in John v. Neumann: Collected Works, Vol. IV, A. H. Taub,
ed., Macmillan, New York, 1962, pp. 205-219.



SIAM J. MATRIX ANAL. APPL.
Vol. 13, No. 1, pp. 46-67, January 1992

(C) 1992 Society for Industrial and Applied Mathematics
006

REGULARIZATION OF DESCRIPTOR SYSTEMS BY DERIVATIVE AND
PROPORTIONAL STATE FEEDBACK*

ANGELIKA BUNSE-GERSTNER’, VOLKER MEHRMANN, AND NANCY K. NICHOLS

Dedicated to Gene Golub on the occasion ofhis 60th birthday

Abstract. For linear multivariable time-invariant continuous or discrete-time singular systems it is customary
to use a proportional feedback control in order to achieve a desired closed loop behaviour. Derivative feedback
is rarely considered. This paper examines how derivative feedback in descriptor systems can be used to alter
the structure of the system pencil under various controllability conditions. It is shown that derivative and
proportional feedback controls can be constructed such that the closed loop system has a given form and is also
regular and has index at most I. This property ensures the solvability of the resulting system of dynamic-
algebraic equations. The construction procedures used to establish the theory are based only on orthogonal
matrix decompositions and can therefore be implemented in a numerically stable way. The problem of pole
placement with derivative feedback alone and in combination with proportional state feedback is also investigated.
A computational algorithm for improving the "conditioning" of the regularized closed loop system is derived.
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bility, optimal conditioning
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1. Introduction. We consider linear time-invariant continuous or discrete-time dy-
namical systems of the form

E.:=Edx/dt=Ax(t)+Bu(t), X(to)=Xo,()

(2) y(t)=Cx(t),

or

(3)

(4)

Exk + Axk + Buk, Xo given,

Yl Cxk
where E, A e n,n, B e n,m, C "’, and rank(B) rn _-< n, rank(C) p =< n. Here
x(t) or xk " is the state, y(t) or yk e P is the output, and u(t) or u e m is the input
or control of the system. Such systems are called descriptor or generalized state-space
systems. In the case E I, the identity matrix, we refer to (1), (2) and (3), (4) as
standard systems.

Descriptor systems arise naturally in a variety of circumstances 19 ], 13 and have
recently been investigated in a number of papers 18 ], 4 ]- 7 ], 10 ]-[ 12 ], 14 ], 16 ],
17 ], 20 ]-[ 26 ]. The response of a descriptor system can be described in terms of the

eigenstructure of the matrix pencil

(5) aE-BA.

Received by the editors February 25, 1991; accepted for publication (in revised form) July 31, 1991. This
research was supported in part by FSP Mathematisierung. The research of the first two authors was supported
in part by SFB 343, Diskrete Strukturen in der Mathematik.

? Fachbereich Mathematik und Informatik, Universitit Bremen, Postfach 330440, D-2800, Bremen 33,
Germany (abg@informatik.uni-bremen.de).

Fakultit fiir Mathematik, Universitit Bielefeld, Postfach 8640, D-4800, Bielefeld 1, Germany
(umatf108@dbiunill.bitnet). Present address, Institut f’tir Geometrie und Praktische Mathematik, RWTH Aachen,
Templergraben 55, D-5100, Aachen, Germany.

Department of Mathematics, University of Reading, Box 220, Reading RG6 2AX, United Kingdom
(smsnicho@am.rdg.ac.uk).

46



REGULARIZATION OF DESCRIPTOR SYSTEMS 47

In order to alter the behaviour of the system, it is customary to use proportional state or
output feedback to modify the matrix A. The closed loop system pencil then becomes

(6) oE- 3( A + BFC),

where the control is taken to be u Fy + v or uk Fyk + v. In the theory of matrix
pencils, the roles of E and A are interchangeable, but the analogous use of derivative
state or output feedback in multivariable systems has not been investigated much in the
literature. Derivative feedback modifies the matrix E, and the closed loop system pencil
then becomes

(7) c(E+ BGC) t3A
where the control is taken to be u -G3 + v or u -Gy + + v.

Derivative information has long been used in the practical design ofPD controllers.
Recently it has been applied in the construction of a discrete-time observer using both
current and past output data in the current state estimation [18 ]. This leads to a system
for the error with a matrix pencil of the form

(8) a(E+ GC)- 3(A + FC).

Even for nonsingular E the use of the output derivative information is valuable, and it
is shown in 18 that choosing G such that the condition number of E + GC is small
gives improved state estimates.

Theoretical aspects of derivative feedback for descriptor systems are studied
in a few recent papers [4], 16 ], 21], [26 ]. A control of the restricted form u
F(ax :f) + v is discussed in 4 ], 21 ], 26 ]. In 16 a full state feedback of the form
u -G + Fx + v is studied for the pole placement problem. In these papers
the main task of the derivative feedback is to transform E into a nonsingular matrix
E + BG. Complete controllability and regularity of the system pencil (5) is assumed.

In this paper we investigate both derivative and proportional state feedback and
examine the properties that can be achieved with these types of feedback under various
controllability conditions. Applications to pole placement are also considered. Detailed
proofs of results previously presented in [2] are given and new results on strongly con-
trollable systems are derived.

The principal aim of this paper is to provide numerically stable methods for con-
structing the feedback controllers based on orthogonal matrix decompositions 9 ]. Parts
of the mathematical theory developed here have been derived concurrently by Dai [6 ].
Additional assumptions are required in [6], however, and the techniques used for con-
structing the feedback matrices in [6] are not suitable for numerical computation. It is
assumed in 6 that the matrix pencil 5 associated with the system ), (2) or 3 ), (4)
is regular. This assumption is not required to establish the results presented here. Fur-
thermore, in [6] it is necessary to transform the system into separate "fast" and "slow"
subsystems in order to obtain the feedback controls. This transformation is well known
to be computationally unreliable [22]. The proofs given here do not require this trans-
formation; and it is shown specifically how to select a feedback in a numerically stable
way so as to ensure that the closed loop system is regular and that the controllability
(observability) properties of the system are preserved.

In the next section ofthe paper we introduce notation and examine how the response
of the system depends on the eigenstructure of the associated matrix pencil. Definitions
of complete and strong controllability are given and the significance of these conditions
is discussed.

In 3 we summarize the system properties that can be achieved by derivative and
proportional state feedback under the different controllability conditions. It is shown
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that a system that is completely controllable can be transformed into a standard system
by derivative feedback. It is shown, furthermore, that a system that is strongly controllable
can be transformed into a regular system of index at most (that is, a system in which
impulses are excluded) by either proportional or derivative state feedback. Derivative
feedback can be used, however, to increase the explicit degrees of freedom defining the
solution space (reachable subspace) of the system. The construction of the required
feedback matrices is obtained by reducing the system pencil to an equivalent "canonical"
form using orthogonal transformations that are numerically stable [9 ]. Most but not all
ofthe conclusions ofthis section can also be achieved by output derivative and proportional
feedback. Preliminary results are presented in [1] and [2 ].

In 4 applications to the pole placement problem are discussed. The extent to which
the poles can be assigned by derivative and/or proportional state feedback whilst retaining
regularity is examined under the different controllability conditions.

In the final section we discuss a numerical technique for regularizing the dynamical
part of a descriptor system by a derivative feedback which optimizes the conditioning of
E + BG. The results of the paper are then summarized, and concluding remarks
are given.

2. Definitions and properties. The system equations (1) and (3) are said to be
solvable if and only if the system pencil (5) is regular, that is,

(9) det(aE-t3A)O V(a,/3)C2\ {0,0}.
For solvable systems there exist unique solutions for any sufficiently smooth input

and any admissible initial conditions corresponding to an admissible input [3 ], [25 ].
The behaviour of the system response is then governed by the eigenstructure of the
system pencil. In the next section we examine the eigenstructure of generalized state-
space systems and in the following section we define conditions that ensure the control-
lability (observability) of the system.

2.1. Eigenstructure of descriptor systems. For a regular pencil generalized eigen-
values are defined to be pairs (a.,/j) C 2 such that

(10) det (ajE-3A)=O, j: 1,2, ,n.

Observe that pairs (a, /3) and (ta, t/3j.), e C\ { 0 are identified. Eigenvalue pairs
(a,/3) where/3 4:0 are said to be finite and, without loss of generality, can be taken to
have the "value" X aj/. Pairs where/3 0 are said to be infinite eigenvalues. The
maximum number of finite eigenvalues that a pencil can have is less than or equal to
the rank of E. (For a pencil that is not regular, the generalized eigenvalues are similarly
defined as pairs (a,/3j.) such that the pencil loses rank.)

For regular pencils the solution of the system equations can be characterized in
terms of the Kronecker canonical form (KCF) [8]. In this case there exist nonsingular
matrices X and Y (representing the fight and left generalized eigenvectors and principal
vectors of the system pencil, respectively) which transform E and A into the KCF:

11 YrEX= YTAX=
0 0

0

Here J is a Jordan matrix corresponding to the finite eigenvalues of the pencil and N is
a nilpotent Jordan matrix such that N 0, N =/= 0, corresponding to the infinite
eigenvalues. The index of the system, denoted by ind (E, A), is defined to be equal to
the degree m ofnilpotency. (For pencils that are not regular, the KCF can also be defined
and the index is then given similarly by the dimension of the largest nilpotent block in
the KCF. See [1] and [8].)
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We observe that if a descriptor system is regular then it is of index 0 if and only if
E is nonsingular. In this case the system can be reformulated as a standard system and
the usual theory applies. In practice the reduction to standard form can be numerically
unstable, however, ifE is ill conditioned with respect to inversion. Hence, even for index
0 systems, it may be preferable to work directly with the generalized state-space form.

We observe that if a descriptor system is regular then it is of index at most if and
only if it has exactly q rank(E) finite eigenvalues. Conditions for the system to be
regular and ofindex less than or equal to are given in the following lemma 10 ]. (Here
and in the following we denote the nullspace of a matrix M by f(M).)

LEMMA 1. Let E, A ffn,n. Let Soo and Too be full rank matrices whose columns
span the null spaces /’(E) and I/’( ET"), respectively. Then thefollowing are equivalent:

aE {3A is regular and indoo (E, A =< 1,
(ii) rank([E, ASoo]) n,

(iii) rank n.TA
For systems that are regular and of index at most 1, there exists a unique solution

for all admissible controls with consistent initial conditions. Such systems separate into
purely dynamical and purely algebraic parts, and in theory the algebraic part can be
eliminated to give a reduced-order standard system. The reduction process, however,
may not be numerically stable [15].

For higher-index systems, if the control is not sufficiently smooth, impulses can
arise in the response of the system and the system can lose causality [23 ], [1]. It is
desirable, therefore, to use a feedback control that ensures that the closed loop system is
regular and of index less than or equal to 1, if possible. In the next sections we show that
this can be achieved under certain "controllability" ("observability") conditions.

2.2. Controllability and observability of descriptor systems. The definitions ofcon-
trollability and observability for standard control systems can be extended to descriptor
systems. However, various types of controllability/observability can be identified [25].
Here we investigate the properties ofthe generalized state-space system ), (2) and (3),
(4) under the following conditions:

CO: rank aE- t3A B n

(12) Cl:rank([)E-A,B])=n

C2: rank ([E,ASo B] n

v(,)ec\ {(o,o)}

VXC;

where the columns of Soo span X(E).

For systems that are regular, these conditions characterize the controllability ofthe system.
We have the following definition.

DEFINITION 2. Let aE A be a regular pencil. Then the triple (E, A, B) and the
corresponding descriptor system are said to be completely controllable (C-controllable)
if and only if condition CO holds.

We remark that a descriptor system satisfies CO, i.e., is completely controllable,
only if

(13) rank([E, B]) n.

Complete controllability ensures that for any given initial and final states Xo, xf
N of the system, there exists an admissible control that transfers the system from x0 to

xfin finite time [25 ]. Hence, descriptor systems that are completely controllable can be
expected to have properties similar to those of standard systems.

A weaker definition of controllability is given by the following.
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DEFINITION 3. Let aE 3A be a regular pencil. Then the triple (E, A, B) and the
corresponding descriptor system are said to be strongly controllable (S-controllable) if
and only if C and C2 hold.

We remark that C-controllability implies S-controllability. Clearly C follows from
CO for/3 4:0 and X a/[3. Condition C2 follows from (13), but is weaker. In the
literature, regular systems that satisfy C2 are often described as "controllable at infinity"
or "impulse controllable" 5 ], 10 ], 23 ]. For these systems "impulsive modes" can be
excluded. A descriptor system that has a regular pencil of index less than or equal to
is always controllable at infinity, since by Lemma we have rank([E, AS]) n.

The controllability conditions are preserved under certain transformations of the
system. Specifically, CO, C l, and C2, are all preserved under nonsingular "equivalence"
transformations ofthe pencil and under proportional state feedback. With the exception
of C2, these same conditions are also preserved under derivative state feedback. The
following lemma summarizes these results.

LEMMA 4. Let (E, A, B) satisfy CO or C1 or C2. Then for any nonsingular P and
Q n,n andfor any F m,n, the system (, , ), where

(14) ,=PEQ, =PAQ, =PB

or

(15) =E, A=A+BF, :=B,

also satisfies these conditions.
Furthermore, for any matrix G m,,, the system (/, J,/), where

(16) F=E+BG, 2=A, /=B,

also satisfies these conditions with the exception ofC2.
Proof. In ease 14 ), for all a,/3) e C2 \ { (0, 0) we have

(17)
rank aE A B])=rank(P[aE-13A, B [ QO 0])i

rank([ a/?- /,/1

and

(18)
rank([E,AS,B])=rank P[E,AQQ-Soo,B] 0 I

0 0

rank([,doo,/1),

where oo Q-I Soo spans dV(/). Therefore, CO, C1, and C2 are preserved under the
transformation (14).

In case 15 we have

(19)
rank([aE-3A,Bl)=rank [aE-A,B]-13F I

rank ([a-/3A,/1)
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and

(20)
rank([E,ASo,B])=rank [E,AS,B] 0 I

0 FSo

rank( [/,do,/]),

where o So, since E. Therefore, CO, C1, and C2 are all retained.
In case (16) the proof that CO and C are preserved is shown analogously to case

(15). Condition C2 is not necessarily preserved, however, since in the case (16), the
nullspace S is altered by the feedback and

An example is given in demonstrating that C2 is not necessarily preserved under
derivative feedback. If derivative feedback is used to change the system dynamics, it is
therefore necessary to be careful not to lose controllability at infinity. In the next section
we investigate the use of derivative feedback to make the system regular and of index at
most 1. Thus, the resulting system is always controllable at infinity. Regularity of the
original system is not needed to achieve this result.

Observability conditions for the time-invariant systems ), (2) and (3), (4) can
be defined as the dual ofthe controllability conditions. Specifically, a system represented
by the triple (E, A, C) is said to satisfy conditions O0, O 1, 02 if and only if the dual
system, represented by the triple (E 7r, A 7, Cr), satisfies CO, C1, C2, respectively. A
regular system is defined to be completely observable (C-observable) if and only if O0 is
satisfied and strongly observable (S-observable) if and only if O and 02 hold.

In the following sections we derive numerically stable techniques for constructing
feedback controllers to achieve particular objectives. By duality these techniques can also
be used in the construction of state estimators and observer-based controllers.

3. Derivative and proportional feedback for descriptor systems. In this section
we discuss conditions under which we can alter the structure of the system pencil (5)
by the use of derivative and/or proportional state feedback. We show that if the triple
(E, A, B) satisfies CO, i.e., is C-controllable, then the system or (3) can be transformed
into a completely controllable standard system by derivative feedback ]. We show also
that ifa system satisfies C and C2, then a closed loop system that is strongly controllable,
regular, and ofindex at most can be obtained by derivative or proportional feedback.
With derivative feedback, however, the explicit degrees offreedom describing the reachable
subspace of the system (corresponding to the number of finite poles of the closed loop
system) can be increased to a maximum equal to rank([E, B]). Previously it has been
shown that proportional state feedback can be used to obtain a regular closed loop system
ofindex at most and simultaneously to place q rank(E) poles 10 ]. Here we describe
a simpler numerical procedure for constructing a regular closed loop system of index at
most by proportional state feedback. This procedure does not guarantee that the closed
loop poles take specified values. In 4 techniques for pole placement are discussed.

In the first part of this section we give basic theorems that form the core of the
numerical construction techniques. Subsequently, the C-controllable and S-controllable
cases are each examined, and finally, the combined use ofboth derivative and proportional
feedback is discussed. Throughout the development we make extensive use ofthe singular
value decomposition (SVD) of a matrix M m,n, e.g., [9]. In the usual notation the
SVD is given by

0](21) M=U
0 0

VT’
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where U and V are m m and n n orthogonal matrices, respectively, and 2; is a
rank(M) rank(M) diagonal matrix with positive diagonal entries. Here we also refer
to the orthogonal reduction ofM to diagonal form

0](22) UTMV=
0 0

as an SVD ofM, because we always need it in this form.

3.1. Preliminary theory. The first lemma serves as a basic tool and provides a
"canonical" form for the system (1) or (3), which can be obtained in a numerically
stable way.

LEMMA 5. Let E E n,n, B n,m, and rank(B) m <= n. There exist orthogonal
matrices Q, U, and V such that

(23 QEU .E21 .E22 and QBV
0 0

where X1 and ,B are and m m diagonal matrices, respectively, with positive
diagonal entries, and E22 is an m s matrix with full column rank. The partitioning in
QEU and QBV is conformable.

Proof. Let

(24) PBV=
0

be an SVD of B. Let

0 I_ m]/5.(25) e= m 0

Then we obtain

0
PE(26) PBV= B’ E2’

with a compatible partitioning. Let

[2; 0](27) WEZ=
0 0

be an SVD of E, where 2; is an diagonal matrix with positive diagonal en-
tries. Then

W 0
PEZ= 0(28)

0 Im E21 /22
where [E2,/22] is a compatible partitioning of EzZ. Let Z2 be an orthogonal matrix
that does a "column compression"

(29) 22Z2 [E22,0

on E22 sHch that E2: has full column rank. The matrix Z2 could, for example, be derived
from an RQ-decomposition of22 (e.g., 9 ]),

(30) 2 [R,0]Z.
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Then from (26), (28), and (29) we get the desired transformation as

(31) 0 0 Im PEZ1 E2 E2:z
OIn_m_lO OIm 0 Z2 0 0

and

(32) 0 0 Im PBV= l-q

0 In-m-I 0 0 Im

In the next theorem we establish conditions that guarantee that there exist matrices
F and G such that the matrix pencil a(E + BG) [3(A + BF) is regular and of index at
most and such that rank(E + BG) r, where r can be chosen to be any integer
satisfying q m -< r =< q rank ([ E, B]).

THEOREM 6. Let E, A n,n, B tn’m with rank(B) m <= n, and let Soo be a
full rank matrix whose columns span E). Ifrank([E, ASoo, B]) n and r such
that 0 -< q m =< r -< q rank([E, B]), then there exist matrices F, G m,n such
that the matrix pencil a(E + BG) [3(A + BF) is regular, indoo E + BG, A + BF) <=
1, and rank E + BG r.

Proof. By Lemma 5 there exist orthogonal matrices Q, U, and V such that (23)
holds and we may choose

[ o](33) Soo=g 0
In-l-s

Partitioning QAU compatibly with QEU we have

All 312 A131
34 QAg A21 d22 A23/

131 332 333J
and then

(35) n rank([E,ASo,B]) rank QEU, Az3|, QBV
A331

implies that d33 must have full row rank, that is, rank(A33) n l- m.
Without loss of generality we may assume that the last n m columns of z33

are linearly independent. Ifthis is not the case, we can achieve this property by a "column
compression" of z33 to the fight using an RQ-decomposition ofz33 or with an SVD.

From (23) we see that rank(E) l + s and q rank [E, B]) + m. Let

(36) ( Gl, G2, G3
and choose G1 -2; E21 and G2, G3 such that

(37) E22 + /G2, /G3 2,0],

where 0%_ is an m (r l) matrix of full column rank. For instance, if r > + s, we
may select G2 0 and

(38) G3= 1/22
0
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where/22 forms a basis for the orthogonal complement ofE22 if r < l + s, then we may
choose G3 0 and

(39) G2 [O’-Z’lE22[II+-r]];
and if r l + s rank(E) then we may choose G3, G2 0. (The matrix /22 can be
obtained in practice from the RQ-decomposition (30) used in the reduction of Lemma
5.) Then QEU + QBV has rank equal to r precisely and its nullspace is spanned by

0

Now let 2 be an orthogonal matrix that gives a column compression of the last
n r columns of [3, d33] to the fight; that is, such that

[ 0 ]=[0,A34],(41) [z32’ d33
In-r

where A34 is a nonsingular (n l- rn) (n rn) matrix. This is achievable by our
assumption that the last n l- rn columns ofz33 are linearly independent. Then with

(42) Z--[ IrO JO]
we obtain

(43)

and

0 0 O]QEUZ+ QBVr 0 o2 0 0
0 0 0 0

All A12 A13 A14]
(44) QAUZ= A21 A22 A23 A24/"

A3! A32 0 A34J
Now let

(45) F=[F1,F2,F3,F4],
partitioned conformably with QAUZ, and choose F3 such that the m m matrix
[2, A23 + .,BF3] is of full rank. For instance, if r < + m, we may select F3
1(2 A23), where 2 spans the orthogonal complement of g2. (If( is as previously
suggested, 2 is easily constructed from E22 and/22.)

If r + rn rank ([E, B]), then we may select 0. Finally, with G VZ rUt,
F VZ TuT, we find that the nullspace ofE + BG E + BVZrUt is spanned by

(46) o-- gz
In-r

and it follows that

rank([E+BG,(A +BF)])

rank ( [ QEUZ+ QBV QAUZ+ QBVP)[ InO_ ] ] )
rank 0 O’2 A23 + BF3 A24 q- BF4 n.

0 0 0 A34
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By Lemma 1, the pencil a(E + BG) [3(A + BF) is therefore regular and has index less
than or equal to 1.

An immediate consequence of Theorem 6 is the following corollary.
COROLLARY 7. Let E, A Rn,n, B tn’m with rank(B) m <= n, and let So be a

full rank matrix whose columns span V E). /frank([E, AS, B]) n, then thefollowing
hoM:

There exists a matrix G 1m’n such that the matrix pencil a(E + BG [3A is
regular, has index at most 1, and rank(E + BG) rank E, B );

(ii) There exists a matrix F m,n such that the matrix pencil aE {3(A + BF) is
regular and has index at most 1.

Proof. The first result follows directly from the construction ofFand G in Theorem
6 in the case where r rank([E, B]). The second result, where r rank(E), also follows
as in Theorem 6, with the exception that G 0 is selected and F3 is constructed such
that the r r matrix

1 0 A3 ]
(48)

E21 E22 A3 + ZF3
is of full rank. The feedback F3 could, for instance, be taken as

(49) F3 ,l(Jzz-A23+E21-{1A13),
where/22 gives a basis for the orthogonal complement of E22. I--!

We remark that the decomposition (43) of Theorem 6 reveals the extent to which
the structure ofE + BG can be controlled by a derivative feedback G. In a later section
we discuss techniques for selecting G to give a "well-conditioned" regularization of the
descriptor system. Lemma 5, Theorem 6, and Corollary 7 provide the key steps in the
proofs of the following theorems. We note that these results can also be achieved using
the generalized singular value decomposition (see [9 ]), but the full reduction to this
decomposition is not needed here and it is preferable to use the decomposition (23),
which requires only orthogonal transformations, for numerical stability.

3.2. C-controllable systems: Derivative feedback. We now show that if the triple
(E, A, B) satisfies condition CO, then systems (1) and (3) can be transformed into
completely controllable standard systems by derivative state feedback. These results have
also been established in [16] and [6 ], but here numerically stable techniques for con-
structing the feedback are provided. Regularity of the system (E, A, B) is not required.

The main theorem is given as follows.
THEOREM 8. There exists a realfeedback control u -G + v or u -Gx + +

v such that the system defined by the triple E + BG, A, B) is C-controllable and the
matrix E + BG is nonsingular if and only if the triple E, A, B) satisfies CO, that is,
rank([cE -/3A, B]) n for all (c,/3) 6 -,2\ {(0, 0)}.

Proof. Condition CO implies that rank([E, B]) n, and hence rank([E, AS,
B]) n. Therefore, by Corollary 7, there exists G m,n such that rank(E + BG)
rank([E, B]) n. Now by Lemma 4, the condition CO is preserved under derivative
state feedback and the theorem follows immediately from the definition of C-con-
trollability. [5]

We remark that the condition rank([E, B]) n is both necessary and sufficient to
find G such that E + BG is nonsingular. Sufficiency follows from Corollary 7 and necessity
from the observation that

(50) E+BG [E,B][].
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From Theorem 8 we conclude that systems (1) or (3), which satisfy CO, can be
transformed into standard systems by derivative feedback. If the system matrix S E +
BG is nonsingular, then the corresponding closed loop system is equivalent to the stan-
dard system

( :=Ax+v
or

(2) x + Ax+v,
whereJ S-A, Jq S-B. Transformation to this standard form may not be numerically
reliable, however, ifS E + BG is ill conditioned with respect to inversion. The decom-
position (43) of Theorem 6 reveals the extent to which the conditioning of S can be
controlled by an appropriate choice of G. In a later section of this paper we discuss
techniques for selecting G to provide an optimally conditioned "regularization" of the
system.

The following example illustrates the regularization of a very simple system (given
in [23 ]).

Example 1. Let

B--(53)

Then (1) gives the equation of a simple electrical circuit, where x is the current and
x is the potential of the capacitor. The system is C-controllable. Let G [g, g with
g g= 0; then

(54) E+Ba=[Og g:

is nonsingular, and choosing u -G2 + v transforms the system into the system

2=Xl

which is equivalent to the completely controllable standard system

(56) gl gl gl

2=Xl
Ifg is taken to be veff small, the conditioning ofE + BG is veff poor and the standard
system (56) may be veff sensitive to peurbations. Selecting g 1, g2 0 optimizes
the conditioning ofE + BG and ensures that the system (56) is robust.

We have established here that a C-controllable descriptor system can be transformed
by derivative state feedback into a completely controllable standard system of full order.
By duality, the analogous results hold for C-observable systems.

We remark that the transformation to standard form cannot be achieved with pro-
portional state feedback alone. In the next sections we show that under the weaker S-
controllability condition, a closed loop system that is regular and of index at most can
be achieved by either derivative or propoional state feedback. Such systems are equivalent
to reduced-order standard systems and are completely controllable within a subspace of
less than full dimension.
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3.3. S-controllable systems: Derivative feedback. We now show that a system
(E, A, B) that satisfies C and C2 can be transformed by derivative state feedback into
a system (E + BG, A, B), which is regular and has index at most 1, has system matrix
E + BG ofmaximal rank equal to rank ([E, B]), and is S-controllable. The main theorem
is given as follows.

THEOREM 9. There exists a realfeedback control u -G2 + v or Uk --GXk + +
v such that the continuous or discrete closed loop system defined by the triple
(E + BG, A, B) is S-controllable and the system pencil a(E + BG) [3A is regular,
indo E + BG A <- 1, and rank E + BG rank E, B ifthe triple E A, B) satis-

fies C and C2, that is, rank([E A, B]) n for all C and rank([E, ASo,B])
n, where S forms a basis for A/(E).

Proof. By Corollary 7, C2 ensures the existence of a matrix G such that
a(E + BG) flA is regular, ind (E + BG, A -< 1, and rank(E + BG) rank E, B ).
The triple (E + BG, A, B) therefore also satisfies C2 and by Lemma 4, C1 is pre-
served under derivative feedback. Thus, the closed loop system is S-controllable.

We remark that the converse of Theorem 9 does not hold. The condition
rank([E, ASo, B]) n is not necessarily preserved under derivative feedback,
since So is altered. The condition rank([E, AS, B]) n is therefore sufficient, but
not necessary to obtain a regular pencil a(E + BG) A of index at most with
rank(E + BG) rank E, B ). An example is given in ].

From Theorem 9 we conclude that systems that satisfy C1 and C2, or are S-con-
trollable, can be transformed by derivative feedback into completely controllable, reduced-
order, standard systems with maximal dimension equal to the dimension ofthe reachable
subspace ofthe original system. By Lemma 5 and Theorem 6, C2 ensures that there exist
orthogonal matrices Q, U, V, and Z such that (23), (43), and (44) hold, where r
rank([E, B]) m + 1, A34 is nonsingular, and

(57) E’=
0 2

is also nonsingular. The last (n m)-block of algebraic equations of the equivalent
system Q(E + BG) UZ, QAUZ, QBV) can thus be solved and the corresponding variables
can be eliminated from the first (l + m)-block of equations, leaving a purely dynamical
descriptor system of the form (En, An, Bn), with En nonsingular. This reduced-order
system has dimension + m rank([E, B]) and is equivalent to the completely con-
trollable, standard system

(58)

or

(59)

=EAIz+EBv

Zk + =EIARZk+EIBRI)k.

The reachable subspace of this system is thus of dimension + m and the degrees
of freedom are all explicit in the initial conditions. To illustrate this result, consider the
following example.

Example 2. Let

(60) E= 0 0 A 0 B
0 0 0 0 0

This system is S-controllable but not C-controllable, and is already in decomposed
form (37) and (43). The solutions to this system are given by Xl -u, x2 -fi, and
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x3 0. For a specific choice of control, there are no degrees of freedom in the initial
state of the system. The reachable subspace over all possible choices of the control has
dimension 2 and is given by

If we now let G [g, g, 0 with g 4 0, then the feedback u -G2 + v transforms
the system into

(61 go -{- g222 Xl + V,

0=X3.
The last variable can be eliminated and the remaining dynamical system can be

transformed into standard form by inveing the matrix

[1 0](62)
g

to obtain the completely controllable system

)1

(63) gl
22 Xl Xz -- V.

g2 g2 g2

These equations can be initiated from any state with any control and the dimension
of the reachable subspace is precisely 2.

We remark that the reduction to standard form of systems that are regular and have
index at most may not be numerically reliable if the matrices A34 and ER obtained
from the decompositions (43) and (44) are not well conditioned for inversion. The
conditioning ofER is influenced by the selection ofthe derivative feedback G; the matrix
A34 is not affected by the feedback G.

We have now established that an S-controllable descriptor system can be transformed
by derivative state feedback into a reduced-order, completely controllable standard system
with explicit degrees of freedom in the initial conditions equal to the dimension of the
reachable subspace. By duality, the analogous results hold for S-observable systems. In
the next sections we examine what can be achieved with proportional feedback alone
and in combination with derivative state feedback.

3.4. S-controllable systems: Proportional feedback and other results. We next show
that a system (E, A, B) that satisfies C1 and C2 can be transformed by proportional
state feedback into a system (E, A + BF, B) that is regular, has index at most 1, and is
S-controllable. This result has been established (implicitly) in [5 ], [6 ], [7 ], and [10]
using various approaches. Here we give another proof, based on the decomposition of
Lemma 5, which allows for the construction of the required feedback in a numerically
stable manner.

The main theorem is given as follows.
THEOREM 10. There exists a realfeedback control u Fx + v or uk Fxk + v

such that the continuous or discrete system defined by the triple E, A + BF, B) is S-
controllable and the system pencil aE (A + BF) is regular and indoo E, A + BF) <=

ifand only if the triple (E, A, B) satisfies C and C2, that is, rank XE A, B
nfor all C and rank([E, ASoo,B]) n, where Sooforms a basis for V’(E).
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Proof. By Corollary 7, C2 ensures the existence of a matrix F such that cE
3(A + BF) is regular and indo (E, A + BF) =< 1. The remainder of the theorem is
established by applying Lemma 4, which ensures that C1 and C2 are both preserved
under proportional state feedback. V]

We remark that the condition rank([E, ASo, Bl) n is both necessary and sufficient
to find F such that aE- (A + BF) is regular and of index at most 1. This follows
because E and therefore S are not changed by proportional state feedback.

From Theorem 10 we see that systems that satisfy C and C2 can also be transformed
by proportional state feedback into regular systems of index at most and hence into
completely controllable reduced-order standard systems. The order ofthe standard system
is minimal, however, being equal to rank(E). The degrees of freedom in the reduced-
order dynamical system thus do not reflect the dimension of the solution space (i.e.,
reachable subspace) of the original descriptor system.

As an illustration consider again Example 2.
Example 3. Let (E, A, B) be given as in Example 2 by (60). Let F [f, f2, 0].

The feedback u Fx + v transforms the system into- =X2,

(64) 0 (1 +f )x, +fzx2 + v,

0 =X3,

which is regular and of index 1, providedf2 :/: 0. The last two equations of (64) can then
be solved explicitly and eliminated from the first to give

-I-f(65) .2= x,---;-v,
J2

a standard system oforder 1. The solution space ofthe system (64) is in fact ofdimension
2, and hence the degrees of freedom in the reduced-order system (65) do not explicitly
describe the solution space of the original system.

We conclude that although proportional state feedback can be used to eliminate
impulses by controlling poles at infinity, it cannot be used to regularize a descriptor
system completely. Using proportional feedback in combination with derivative feedback,
on the other hand, can provide good design techniques that are computationally reliable.
A suitable strategy is to use derivative feedback to obtain a well-conditioned regulariza-
tion of the dynamic-algebraic equations and then to apply proportional feedback to
achieve further objectives, such as pole assignment or stable reduction to a reduced-order
system. This approach is particularly attractive, since proportional feedback cannot make
the system lose regularity, once the rank of E has been maximized so that rank(E)
rank E, B ). We have the following theorem.

THEOREM 11. Ifrank(E) rank([E, B]) and rank([E, ASo ]) n, then for any
F m,n, rank E, (A + BF)So n. Here S defines a basisfor V(E).

Proof. Suppose there exists z :/: 0 such that zT[E, (A + BF)So 0. Then zTE
0 and zAS -zVBFS. But since rank(E) rank([E, B]), it follows that zVB
0, and thus zrAS 0. But then zT[E, AS] 0, which contradicts the assumption
that rank ([E, ASo n. V]

If a system (E, A, B) satisfies C1 and C2, it follows that there exists a deriva-
tive feedback G such that the system E + BG A, B) satisfies rank( E + BG B]
rank([E, B rank(E + BG), is regular and of index at most 1, and is S-controllable.
By Lemma 1, then, rank([E + BG, Ao]) n, where o gives a basis for
/(E + BG). Theorem 11 then guarantees that for any choice of F the system triple



60 a. BUNSE-GERSTNER, V. MEHRMANN, AND N. NICHOLS

E + BG A + BF, B) satisfies rank E + BG A + BF)oo n, and hence the system
remains regular with index at most 1.

We have shown here that an S-controllable system can be transformed by propor-
tional state feedback into a regular system of index at most 1, and hence into a reduced-
order, controllable standard system. By duality, analogous results hold for S-observable
systems. Of more practical significance, however, we have established that if a system
has already been transformed into a regular system of index at most by a derivative
feedback that maximizes the dimension of the dynamic part of the system, that is, the
system has been fully "regularized" by derivative feedback, then no proportional feedback
can cause the system to lose regularity.

We complete this part of the paper by examining the results that can be obtained
in general with a combination of derivative and proportional feedback.

3.5. Combined derivative and proportional feedback. We now summarize the results
that can be achieved by using both derivative and proportional state feedback together.
We show that for a system (E, A, B) that satisfies C and C2, a closed loop system can
be obtained such that the system pencil a(E + BG) B(A + BF) is regular and of index
at most 1, and such that rank(E + BG) r, where r is any integer between q m
and q rank([E, B]). (Here m rank(B).) We have the following theorem, which
follows directly from Theorem 6.

THEOREM 12. There exists a real feedback control u Fx G + v or uk
Fxk Gxk+ + v such that the continuous or discrete time system defined by the
triple (E + BG, A + BF, B) is S-controllable and the system pencil a(E + BG)
f3(A + BF) is regular, ind (E + BG, A + BF) <= 1, and rank(E + BG) r with

<= r <-_ q, where q rank([E, B]), m rank(B), andl q m, if the triple
(E, A, B) satisfies C and C2, that is, rank([ XE A, B]) n for all C and
rank E, AS, B n, where Sforms a basis for (E).

Proof The existence ofF and G such that a(E + BG) t3(A + BF) is regular and
of index at most 1, and rank(E + BG) r follows from C2 and Theorem 6. Then the
transformed system given by (E + BG, A + BF, B) must also satisfy C2, and by Lemma
4 C is preserved under both derivative and proportional state feedback, which establishes
the theorem. 71

We include Theorem 12 here primarily for completeness. It essentially shows that
if C1 and C2 hold, then we can transform the system or (3) by derivative and pro-
portional state feedback into a regular system of index at most with precisely rfinite
poles, where r is between rank E, B and rank E, B]) rank(B). We emphasize
that regularity of the original system is not required. Moreover, the feedback matrices F
and G that achieve the result can be constructed in a numerically stable manner, using
only orthogonal transformations.

Since the transformed system is regular and of index at most 1, it can be further
transformed into a completely controllable, reduced-order, standard system of precise
order r. For this reduction, however, the feedback matrices F and G must be selected
with care.

In the next section we examine how derivative and proportional state feedback can
be used to place the poles of the system in prescribed locations. In the final section we
derive a computational algorithm for optimizing the conditioning ofregularized dynamical
systems obtained by derivative and proportional state feedback.

4. Eigenvalue assignment in descriptor systems. We now examine the consequences
of the theory of 3 for the problem of eigenvalue assignment. The conclusions follow
directly from the "regularizability" results ofTheorems 8 and 9. We begin by stating the
pole assignment problem.
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PROBLEM 1. Given a triple of real matrices (E, A, B) and a set . { (c1, ill),
(2, f12), (c,, {3,) }, where (cj, flj) C2 and (cj, {3j) implies (ffj, ) for
j 1, n, find F, G m,n such that all pairs in . are generalized eigenvalues of
the matrix pencil a(E + BG fl(A + BF) and such that

(66) det (a(E + BG) (A + BF)) 4:0 for some (a, [3) t.J { (0, O) }.
The condition (66) ensures that the closed loop system obtained by the feedback

u Fx GA or Uk FXk GXk +l in system (1) or (3), respectively, is regular. In
assigning a set of eigenpairs by feedback, it is always possible for the closed loop system
to lose regularity, even if the original system is regular. It is important, therefore, in
assigning eigenpairs, to ensure that (66) holds.

The problem of pole assignment by proportional feedback alone has been treated
in [7] and [10]. In this case for systems that satisfy C1 and C2, at most r rank(E)
finite generalized eigenvalues (aj,/3j.),/3j. 4: 0, j 1, 2, r, can be assigned such that
the closed loop pencil is regular. The remaining n r infinite eigenvalues (a, 0), j
n r + 1, , n cannot be reassigned. By exchanging the role ofE and A in the system
pencil, it can be seen that under analogous conditions, at most s rank(A) nonzero
eigenvalues (a, /j.), %- # 0, j 1, 2, s (including infinite eigenvalues) can be
assigned with derivative feedback alone. It might, therefore, be expected that with both
derivative and proportional feedback, a full set of n eigenpairs could be assigned. This
is, in fact, the case if and only if the system satisfies CO. We note that no assumptions
are needed about the regularity of the system. We have the following theorem.

THEOREM 13. For any arbitrary set ’ ofn self-conjugate poles there exists a pair

of real matrices F and G solving the pole placement problem, Problem 1, ifand only if
the triple ofreal matrices E, A, B) satisfies CO, that is,

(67) rank([aE-13A,Bl)=n V(a,/3)C2\ {(0,0)}.

Proof. Since the triple (E, A, B) satisfies CO, the triple (A, E, B) also satisfies this
condition. Therefore, by Theorem 8 there exists a feedback matrix F1 m,n such that
A + BF1 is nonsingular and the standard system (I, (A + BF1 )-1 E, (A + BF1 )-1 B) is
completely controllable. It follows that there exists G m, such that G assigns k,

_-< k -< n, zero poles to this standard system, and, therefore, such that the pencil
c(E + BG) [3(A + BF1) has k infinite eigenvalues (aj, 0), j 1, 2, k. Let
P, Q Cn, be nonsingular matrices that transform this pencil into Kronecker canoni-
cal form:

(68) P(offE+ BG)-I3(A + BF1))Q= a
0

Partition PB [] analogously. The new triple

J 0
(69) ([ ON] [0 I] B2

still satisfies CO, by Lemma 4, and hence the triple (I, J, B1) is completely control-
lable. Thus, there exists F2 e m,n-k) such that the eigenvalues of J + B1F2 are
the finite eigenvalues (aj., /j.),/3; 4: 0, j n k + 1, n, belonging to &t’. Let F
F, 0 Q-l + F1. Then the pencil

(70) a(E+BG)-(A +BF)=P

has the required eigenvalues.
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Conversely, if there exist F, G m,n such that the pencil a(E + BG) 13(A + BF)
has arbitrary generalized eigenvalues, then there exist F and G such that the pencil has
arbitraryfinite eigenvalues, that is, such that E + BG is nonsingular and the eigenvalues
of (E + BG)- (A + BF) are arbitrary. The standard system (I, (E + BG)- (A + BF),
(E + BG)- B) must therefore be controllable. The triple (E + BG, A + BF, B) must
then satisfy CO, and by Lemma 4 the triple (E, A, B) also satisfies this condition. [3

The construction of feedback matrices F, G in the proof of Theorem 13 requires a
reduction to Kronecker canonical form, which in general is not a numerically reliable
technique. Furthermore, the poles ofthe closed loop pencil obtained by this construction
are not in general robust with respect to perturbations in the system matrices. In order
to assign an arbitrary number of infinite poles to the closed loop system, the pencil must
be allowed to have index greater than 1. Such systems are necessarily less robust than
systems ofindex less than or equal to 1. Moreover, due to the Jordan form ofthe nilpotent
part of the system, ill-conditioned transformations cannot be avoided.

In practice, it is not generally desirable to assign finite poles to infinite positions. If
the number of infinite poles to be prescribed is limited, then the feedback matrices F
and G can be constructed such that the closed loop pencil is not only regular and has
the required finite poles, but also has index at most 1. Up to n finite eigenvalues can be
assigned if and only if the triple (E, A, B) satisfies CO. Under the weaker assumptions
C1 and C2, up to q rank([E, B]), finite poles can be prescribed. These results follow
directly from Theorem 12. We have the following general result.

THEOREM 14. For any arbitrary set of r self-conjugate finite poles (aj, [3),
[3 4: O, j 1,..., r, and n r infinite poles (a;, 0), j r + 1,..., n, where q
rank([E, B]) >= r >= q rank B), there exists a pair of real matrices F and G solving
the pole placement problem, Problem 1, such that the pencil a(E + BG) (A + BF)
is regular and ind E + BG, A + BF) <= ifthe triple ofreal matrices E, A, B) satis-

fies C and C2, that is, rank([ XE A, B]) n for all C and rank([E, AS, B])
n, where Sforms a basisfor ff E).

Proof By Theorem 12, there exist matrices G and F such that the pencil
a(E + BG) 13(A + BF is regular and of index at most and rank(E + BG) r,
where q- m =< r =< q rank([E, B]), m rank(B). The system (E + BG,
A + BF, B) is, moreover, S-controllable. It follows that there exists F2 which assigns to
this system up to r rank(E + BG)finite poles and such that the closed loop system
(E + BG, A + BF, B), with F F + F2, is regular and of index at most 1. (See [5],
[7 ], [10].) By definition, this system has precisely n r infinite poles, which establishes
the theorem. [3

Conditions C and C2 are sufficient but not necessary for the results of Theorem
14 to hold. If it is required to assign precisely n finite poles, then CO is both necessary
and sufficient. Sufficiency follows directly from Theorem 14, since CO implies C1 and
C2 and rank [E, B]) n. Necessity follows from Theorem 13.

In order to assign precisely n finite eigenvalues (assuming CO holds) we may select
G such that E + BG is nonsingular, by Theorem 8, and then select F to assign the
prescribed poles to the equivalent standard system (I, (E + BG)-A, (E + BG)- B).
For this strategy to be computationally reliable, it is important to ensure that E + BG is
well conditioned for inversion. In the next section we describe a technique for selecting
G to optimize the conditioning ofE + BG. (In practice, it may not be possible to ensure
that E + BG is nicely conditioned; in this case the techniques of 10 can be applied to
the generalized state-space system (E + BG, A, B) to assign the n prescribed finite poles
as robustly as possible.)

If the weaker conditions C1 and C2 hold, but CO does not, then it is possible to
assign a maximum of precisely q rank([E, B]) < n finite poles. In this case, by
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Theorem 9 we may select G such that rank(E + BG) rank([E, B]) q and the pencil
is regular and of index I. As demonstrated in 3.3, the corresponding closed loop sys-
tem can then be transformed into a reduced-order, completely controllable system
(Ee, Ae, Be) of dimension q, where Ee is nonsingular. It is then possible to choose Fe
to assign the required finite poles to the standard system (I, ElAe, E Be), and hence
to construct F such that the pencil a(E + BG) [3(A + BF) has the required finite
eigenvalues. By Theorem 11, this pencil is regular and of index 1. For this strategy to be
numerically stable, it is necessary for Ee to be well conditioned, and also for A34 (defined
in 3.1 to be well conditioned in order for the reduction to the lower-order system to
be computationally reliable.

A similar approach can be used for constructing the solution to the general problem
of assigning rfinite poles, where q m =< r =< q, first applying Theorem 12 to obtain a
regular S-controllable system (E + BG, A + BF, B), where rank(E + BG) r, and then
using a reduction to a lower-order standard form. In practice, however, this "reduced-
order" approach may not be as efficient or as reliable as applying a direct procedure such
as that of 10 to the "regularized" descriptor system in order to assign the poles.

In the next section, we develop techniques for "regularizing" the descriptor system
so as to ensure that the dynamic part of the closed loop system is as well conditioned as
possible.

5. Algorithm for regularizing a descriptor system. In previous sections we have
examined conditions under which the descriptor systems and (3) can be "regularized"
by derivative and proportional state feedback, that is, conditions that ensure that a closed
loop system can be constructed which is regular and of index at most 1, and is S-con-
trollable. Regularity ofthe original system is not required, and the construction procedures
are based on numerically stable techniques.

It has been shown in general that it is desirable in constructing a closed loop system
of the form (E + BG, A + BF, B) to ensure that E + BG is "well conditioned" in some
sense. In this final section ofthe paper we present a computational technique for generating
a feedback G in such a way as to control the conditioning of the system matrix E + BG.
In addition it is desirable to ensure that A + BF is chosen such that the transformed
descriptor system can be reduced to a standard system in a numerically stable way. A
technique is also described for achieving this result. It is assumed that the system
(E, A, B) satisfies C and C2.

In order for the matrix E + BG to be well conditioned (with respect to inversion
of the nonsingular part), it is necessary for the ratio O’max/0"mi of the largest singular
value O’max, to the smallest nonzero singular value rmin of E + BG, to be minimal. Now
by Theorem 6, there exist orthogonal transformations Q, U, V, and Z and a feedback
G such that Q(E + BG)UZ is of form (43); moreover, G can be chosen such that g2,
defined in (37), is of the form

(71) 02--[ 2 ]0

where 2 is an r r diagonal matrix with positive diagonal components and q
rank(B) =< r _-< q rank([E, B]). It follows that the singular values ofE + BG are given
by the diagonal components of 2 and Z2. Since Z arises from the decomposition (23)
of E and cannot be altered by feedback, we find that the minimal possible condition
number is amax/amin ]IZ 11211Zi- 112. This value is attained provided the diagonal com-
ponents of Z2 are selected to lie between the smallest and largest diagonal components
of.
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In the case r q rank([E, B]), the system generated by this procedure is regular
and of index at most 1. In the case r < q, in order to obtain a system that is guaranteed
to have these properties, it is necessary to use both derivative and proportional feedback.
The proportional feedback matrix F must be selected, by Theorem 6, such that (47)
holds. It is desirable also to select Fsuch that the last (n r) (n r) principal submatrix
of Q(A + BF) UZ is well conditioned with respect to inversion. As indicated in previous
sections, the reduction of the descriptor system (E + BG, A + BF, B) to a lower-order
standard system is then expected to be computationally reliable.

From Theorem 6 it can be seen that if o2 is of the form (71 ), then (47) holds if
we select

3
-A23 F4=-IA24,

where 3 is an (m + l- r) (m + l- r) diagonal matrix with positive diagonal ele-
ments. Then

(73) Q(A+BF)UZ
0 In- 0 A34

has singular values given by the singular values of A34 and the diagonal components of
Z3. To optimize the conditioning of (73), we must therefore select the components of
Z3 to lie between A XM and A34 2.

If we let

(74)

be an SVD ofA34 and define

(75) 0=[II+mO

W2A34Z3 4

W2
Q O= UZ II +

0 Z3’
then the pencil a(E + BG) (A + BF) constructed in this way is orthogonally equivalent
to the pencil

(76) Q[o(E+BG)-(A+BF)]=:o
0 0

-i
A3 A

where

2;1 0
2;A(77) 2;R

0 2 0 4
and 2;R, 2;a are as well conditioned as possible. The transformed descriptor system given
by the triple (E + BG, A + BF, B) can therefore be reduced to the standard system

78 2 z+/v

or

(79) z+ z+/v,
where the system matrix is given by

(80) A= Z(A-AzaleA3).

The sensitivity ofthis computation to round-off errors then depends on the conditioning
of ; and Z4, which are determined by E, A, and B.
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We have established here a stable numerical technique for constructing a "regular-
ized" descriptor system (E + BG, A + BF, B) that is as well conditioned as possible. It
is assumed that (E, A, B) satisfies conditions that correspond to S-controllability, but
regularity of the original system pencil aE- A is not needed. The computational al-
gorithm for determining the required derivative and proportional state feedback matrices
G and F is summarized in full in the Appendix. This procedure can also be extended to
the problem of regularizing the systems ), (2) and 3 ), (4) by output feedback. This
topic is currently under investigation. Preliminary results are given in [1 ].

6. Conclusions. We investigate here the use of derivative and proportional feedback
in descriptor, or generalized state-space, systems. We define various conditions for con-
trollability (observability) and demonstrate to what extent the system can be altered by
derivative and/or proportional state feedback under these conditions.

It is established that systems that satisfy conditions ensuring complete controllability
can be transformed into standard systems (of full dimension) by a combination of de-
rivative and proportional state feedback. It is shown, furthermore, that in this case, with
state feedback, all of the poles of the system can be assigned to prescribed positions.

It is also established that systems that satisfy conditions ensuring strong controllability
can be transformed by derivative and proportional state feedback into systems that are
regular and of index at most and have precisely r finite poles, where r lies between
q rank([E, B]) and q rank(B). Moreover, it is shown that these r poles can be
assigned to arbitrary (finite) locations. Such systems are "impulse controllable" and can
be transformed into reduced-order standard systems of precise dimension r.

The proofs of these results do not require regularity of the original system. Fur-
thermore, the procedure for constructing the feedback matrices which regularize the
closed loop system are based on orthogonal matrix decompositions and are numerically
stable. In practice it is desirable not only that the closed loop descriptor system is regular,
but also "well conditioned," in the sense that the reduction to standard form is com-
putationally reliable. We show here that the feedback matrices that regularize the system
can also be chosen to optimize the "conditioning" of the closed loop system, and a
computational algorithm for achieving this result is presented.

7. Appendix: Algorithm for regularizing a descriptor system.
Step 1. Find orthogonal matrices/, V such that

using the singular value decomposition of B.
Step 2. Let

0 /_

and partition

compatibly with
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Step 3. Find orthogonal matrices W, ZI such that

[Zl O] Xl=diag(al,...,al(81) WE1ZI
0 0

by the singular value decomposition of
Step 4. Partition EzZI [E21,/22] compatibly with WIEI ZI and find an orthogonal

matrix Z2 such that/22 Z2 [E22, 0], where E22 is of full column rank. This can, for
example, be achieved by an RQ-decomposition of E22.

Step 5. Let

(82) Q= 0 0 I Pfi, U Zl
Ii 0

0 In-l-m 0 0 Im 0 Z2

Step 6. Select r such that q rank ([E, B >= r >= q rank(B). Find orthogonal
matrices I, 2 such that

[ 0 ]=[0,,4], ,4=diag(al+m+l,...,an)(83) W[O, In-I-m]QAU(J
In-r

by the singular value decomposition of [0, In_t_m]QAU(J[I,_,], where t) is chosen
such that the lower fight (n l rn) (n rn) block of QAUO is nonsingular.
The matrix t) can, for example, be found by an RQ-decomposition of the lower fight
(n l s) (n l rn) block of QA U, which is of full rank.

Step 7. Let

0
Q, r= UO 2

Step 8. Select

(85) 2 diag (at + 1, fir), 3 diag O" + 1, 0"1 + m),

where

(86)
j=l+ 1, ,r,

j=r+ 1, ,l+m.

(87)

Step 9. Select

G V[ G1, G2, G3,0 0T, F= V[O, O, F3,F4] Or,
where

(88)
0

-[E22’0]

-A23), F4 1A24,

with

(89) [0][A23’A241=[O’Im’O]O-A
In_r
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SEPARABLE NONLINEAR LEAST SQUARES
WITH MULTIPLE RIGHT-HAND SIDES*

LINDA KAUFMAN" AND GARRETT SYLVESTER

Dedicated to Gene Golub on the occasion ofhis 60th birthday

Abstract. One of the significant problems in modal analysis, that of extracting modal parameters from
experimental data, can be written as a separable nonlinear least-squares problem in which a linear combination
of nonlinear functions is fit to data in many data sets. The linear parameters are to be specific to each data set
but the nonlinear parameters have to minimize the least-squares function for all the data sets. Golub and
LeVeque have devised a method for problems like the modal analysis problem where there are multiple data
sets. For determining the Jacobian J of the problem, their algorithm essentially computes a decomposition as
if there were only one data set and then uses this decomposition for all the data sets. Many general nonlinear
least-squares solvers compute an orthogonal decomposition of the Jacobian and after the Golub-LeVeque
algorithm has been applied, this decomposition is the most time-consuming portion of the method. This paper
proposes using the orthogonal decomposition of a specific derivative matrix for one data set to reduce the work
in determining the orthogonal decomposition of the Jacobian for all the data sets. For general minimizers which
require jrj, rather than J itself, the paper shows how to compute jTjquickly to take advantage ofthe structure
of the Jacobian in the multiple data set case. For the modal analysis problem, the nonlinear variables in the
model also separate, which gives the model additional structure that is exploited to further reduce the construction
time. We find that with the economies of speed and storage described below, nonlinear parameter fitting to
extract modal parameters from large data sets becomes computationally feasible.

Key words, nonlinear least squares, variable projection
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1. Introduction. In many mathematical modeling problems one wishes to fit data
y in a least-squares sense by a model of parameters to be determined. Often this model
can be formulated as a linear combination of nonlinear functions as in the exponen-
tial model

(1.1) ce’t q- c2e"t at- C3 y(t)

or the Gaussian model

(1.2) ce-"t + c2e-aa(t-a3)2 q- c3e-a4(t-as)a,- y( t)

or the pole finding problem where one has complex data and the model

(1.3) c/( io- a) + c/( iw a2) , y(w).

Notice that all these models have linear parameters c, a vector of length l, nonlinear
parameters a, and a vector of length p to be determined, and have the general form

(1.4) n(c, a) c() +f().
j=l
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In separable nonlinear least-squares problems one has data y 6 R and one wishes to
determine the unknowns in a model having the form of (1.4) so that

is minimized.
One could give a problem of the form of 1.5 to a general nonlinear least-squares

solver, but it might be more economical to take advantage of the structure of (1.4) and
determine the c’s implicitly as in Golub and Pereyra 5]. They use the fact that for any
given a, the optimal c that minimizes (1.5) is given by

(1.6) c: +(y-f)

where + is the Moore-Penrose generalized inverse of ff (see [7]). Golub and Pereyra
show that the value of a that minimizes

(’(o) , + (o) I)( f- y)

also minimizes 1.5 ). They use the value of a that minimizes (1.7) to determine c from
1.6 ). Since effective nonlinear least-squares solvers usually demand the specification of

the Jacobian matrix, i.e., the matrix of first partials, Golub and Pereyra derive a formula
for the columns of the Jacobian matrix J of 1.7 ), which can be easily computed using
the derivative ofthe matrix and the QR decomposition ofthe matrix. The advantages
of using the Golub and Pereyra approach are several-fold. In the first place, the approach
reduces the number of parameters in the problem. If c is a vector of length p and c of
length 1, then the Golub and Pereyra approach reduces the problem from p + parameters
to p parameters. Secondly, one does not have to supply initial guesses for the linear
parameters. Thirdly, the linear parameters and nonlinear parameters often are of different
orders of magnitude, which can play havoc with unsophisticated nonlinear least-squares
solvers. This problem is avoided with the Golub and Pereyra approach.

This paper was motivated by a sequence of problems arising in modal analysis and
discussed in more detail in 4. The simplest of these problems had 80 data sets each
with 2400 observations that were to be fit with the same general model which had 288
nonlinear parameters and 84 linear parameters. The linear parameters could vary over
the data sets, which meant there were really 80 84 or 6720 linear parameters, but the
nonlinear parameters were supposed to be the same across all the data sets. Treating the
problem as a separable problem rather than a standard one reduced the number of
unknowns by a factor of 21. However, the matrix still had 192,000 rows and 6720
columns, unpleasantly large. Fortunately, as pointed out by Golub and LeVeque [4
while trying to do a biological data analysis problem which had similar constraints, the

matrix has the form

G
G

where G represents the model for one data set. In the modal analysis problem G had
2400 rows and 84 columns. As pointed out in [4 ], the QR decomposition of , which
was the main ingredient in the Jacobian calculations needed by the underlying general
nonlinear least-squares solvers, could be easily computed from the QR decomposition
of G, a less daunting calculation.
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In 2 of this paper we will consider some further enhancements of the ideas in 4]
to handle the multiple data set problem. The algorithm in 4 treated only the problem
of setting up the Jacobian and did not consider using the Jacobian. Many nonlinear
least-squares solvers require the QR decomposition ofthe Jacobian and this often becomes
the most time-consuming portion of the computation. We show how to decrease this
portion of the computation when f is a function of very few of the nonlinear variables;
for most of the data sets provided there are more than about five nonlinear variables.

In 3 we consider the case in which jTj is requested by the underlying nonlinear
least-squares solver, rather than the Jacobian itself. If each element of a appears in only
a few columns of G, using this approach is very attractive. Theoretically in the small
version ofthe modal analysis problem, using the techniques of 3 reduced the operation
count by a factor of 2 over the techniques of 2. In a larger problem with about 2.7
million observations, 30,000 linear parameters and about 1,300 nonlinear parameters,
there was a reduction of a factor of 8 in number of operations.

Section 4 gives a description ofthe moda! analysis problem. Applying the techniques
of 2 and 3 to a small version of the problem requires a reasonable amount of com-
putational resources. However, these techniques are not sufficient to handle a physically
realistic version of the problem. Fortunately, further algebraic structure can be used: the
nonlinear variables themselves separate. One can partition ot

r into (,, z, s) ,
and the G matrix itself has the following structure:

(1.9) G

B

B
B

A(s)S()
A(s)S2(2)

A(s)Sz- (D-
A(s)SD(z)

The matrix B in 1.9) is independent ofthe nonlinear variables. In 4 we take advantage
of the fact that the matrix A is repeated and not dependent on the variables.

Soo and Bates 9 have recently discussed a problem ofassigning knots for B-splines,
which reduces to a separable nonlinear least-squares problem where there is a further
separation ofthe nonlinear variables. Their G matrix of(1.9) has the same zero structure
but the diagonal blocks vary and the fight-hand column blocks are just considered as
general matrices. They use a two-stage algorithm for finding the QR decomposition of
G that is similar to ours but must take into consideration the generality of their blocks.
Moreover, in our case because the right-hand column blocks all begin with the same
matrix A, the work in forming the Jacobian for all the variables is much less and the
Jacobian matrix contains huge blocks of zero rows for these variables.

The techniques of 2 and 3 reduce the work of a multiple data set problem to
essentially that of one data set. In 4, each data set consists of several data sets but the
unknowns are all nonlinear. The techniques of handling the innermost data sets are
slightly different from those given in 2 and 3 so that 4 gives more than a numerical
application ofthe techniques of 2 and 3. The methods of 2 and 3 reduce the problem
in (1.7) to one essentially involving only the G matrix in (1.8). The methods in 4
reduce the problem to one involving little more than the A matrix in (1.9). The saving
in space means that one can fit the problem in a modern computer, and essentially
reduces computational months to an hour.

2. Multiple data sets when the Jacobian J is requested. In this section we present
a detailed description ofthe separable nonlinear least-squares algorithm for multiple data
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sets when the underlying nonlinear least-squares solver requests that the user provide
the Jacobian matrix J. At each iteration most nonlinear least-squares solvers solve a
linear least-squares problem with the Jacobian by performing a QR decomposition of J.
Golub and LeVeque 4 have shown that the Jacobian for the multiple data set problem
has special structure. We will show in this section that this structure can be used to reduce
the number of nonzero rows that the general nonlinear rows thinks are in the Jacobian.
Thus the work involved in computing the QR decomposition ofthe Jacobian is reduced.
For the big example given in 4, using this structure while determining the QR decom-
position decreased the total computation time by a factor of 7.

Many algorithms for minimizing

(2.1) IIr() I1=

require the user to provide a subroutine for computing r and the Jacobian J whose kth
column is given by

Or()
(2.2) Jg Oa,
In the separable least-squares case

(2.3) r(c) (+-I)( f- y)--P(y- f)

and the derivatives of P are

2.4 OP(c) 0(c) 0(c) + (c) (y f)..--- (y f) e() . /() + e() .
The easiest way to compute (2.3) and its Jacobian involves the QR decomposition

of (a) given by

(2.5) Q b t Z t ( R t R o

where Q is an orthogonal matrix, Z is a permutation matrix, and if is an n matrix
of rank m, R is an m m upper triangular matrix. In (2.3) r is simply given by

(2.6) r=QT(0 )In-
Q(Y- f)"

The matrix Q is seldom explicitly formed. It is usually composed ofa sequence ofHouse-
holder transformations and only the information needed to apply these transformations
to a vector such as y f is stored. This requires nm + O(m) space and often the
matrix is overwritten to store this information.

Kaufman [6] pointed out that if one partitions Q(a) as

(2.7) Q(c) ( Q(O)Q2(oO
where Q2 has n m rows, then

(2.8) ]]r]12 Q2(a)(y- f)[I---]ll[2,
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and she suggested working with Q2(a) rather than using / I as in Golub and Pereyra
5 ]. Assume Z is partitioned as Z (Z Z2), where Z has m columns. In 6 it is shown

that the derivative

(2.9)

0Qz(a) o(,) )(Y f) -Q2(or) Oak
+ +H (y f)

( -Qz(a) O’(a) H)0 ZR-Q + (Y- f)’

where H is dependent on the exact representation chosen for Q2. (Note that although
Q1 is unique up to a diagonal unitary matrix, Q has more freedom to vary. Moreover,
for Gauss-Newton methods and Marquardt procedures, which are the most widely used
general nonlinear least-squares solvers, the H matrix can be neglected because of or-
thogonality considerations (see [6 ]). Again there is no need to form the Q matrix ex-
plicitly. Only the information needed to apply the Householder transformations is needed.
The subroutine NSG in PORT 3 implements the separable nonlinear least squares
algorithm suggested in [6] using the general nonlinear least-squares algorithm described
in [1].

As shown in [4 ], for the multiple data set problem, where has the form (1.8),
one needs only the QR decomposition of G given by

where if there are u data sets in the problem so that G is (n/u) (l/u), then/ is a
nonsingular upper triangular matrix of rank , and Q may be partitioned as

(2.11) 0:22
where 2 has n u rh rows, and Z may be partitioned as Z (Z, Z2) where Z has r
columns.

If one ignored the structure of if, computing its QR decomposition would require
nl2 + O(nl) multiplications. Taking advantage of its structure reduces the operation
count to nl2/u + O(nl/u2) multiplications. In a small modal analysis example, ignoring
the structure of meant that more than 8570 billion multiplications would be required
to compute its QR decomposition, while taking advantage of its structure reduced the
number of multiplications to about 17 million, a speedup of 510,000. More significantly
it reduced the space requirements from over a billion words to about 3 million words.

Let n/u and [= l/u. If one designated the data for the ith data set as yi, and
the nonlinear term in the model as f;, then r of (2.6) is given by

T( 0 I_, )((Y’-f’)
(2.12) r=

OT(0 Ia-,h)O(Yu--fu)
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and of (2.8) is given by

(2.13)

Let

02(o0(yl fl ))Q2(a)(yu-fu)

(0 )oOG(a) 21(1_10)( I, )(2.14) B=
Ia_m 0a 0

Then the equivalent of (2.4) is

(215) 0P(a) (-oT(B+BT)o(yl-fl))Oa-’-(y- f)
-OT(B+BT)O(yu-fu)

Moreover, the equivalent of (2.9), neglecting H, is

--02(a) OG(a) j,/_101 (y

(2 16
OQ2 ot)
Oak

(Y-- f)

21 q-lO (Y"-f" /
Thus the QR decomposition of G and the derivative of G are used s times during the
computation of the Jacobian. This reuse of data is evident in the operation counts.

Normally finding the Jacobian using (2.9), but ignoring H, one might proceed as
follows.

K algorithm.
Form u=Q(y-f)

(2) Partition u ()
(3) Solve Rw=v. Set C=ZlW
(4) For k=l, ,p

Ob( a) Of
Form the columns ek cga--- C-- ak ofE

(5) Form J= (0 ,,_m)QE
Assuming that Q is not explicitly formed but saved as a sequence of House-

holder transformations, steps (1) and (5) of the above algorithm together require
m(2n m)(p + 1) + O(m(p + 1)) multiplications. Step 3 requires m/2 operations
and assuming that there are d derivative columns, step (4) requires nd operations.

In the multiple data set case it makes more sense to apply ( to the derivative
matrices of G and f directly rather than to the equivalent of E as in the last step of the
above algorithm. Thus to implement the equivalent ofKaufman’s algorithm using (2.16 ),
one would proceed as follows.

Golub-LeVeque-K algorithm.
(1) Fori=l,...,u

Form ui =Q(yi- fi)
Partition ui (,,.)
Solve/wi =vi. Set ci lWi.
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(2) Let D the nonzero columns of all the derivatives of the columns of G taken
with respect to all the elements of a. D should have d columns.

(3) Form M=-( I_)O_D.
(4) For k=l, ,p

Let Mk be those columns ofM corresponding to derivatives with respect of ak
with columns of zeros inserted so that M has [columns.
The kth column of the Jacobian is given by

c+(0

kMcu+ (0
In the above algorithm step requires about 2nr urn2 2 multiplications and

step 3 requires 2rird multiplications. In step (4)M will probably have several columns,
which are all 0. If one takes advantage of these columns while working with Mg, then
step (4) requires nd multiplications, which means that there is a substantial saving, as
Golub and LeVeque indicate.

Implementing the Golub-Pereyra algorithm using (2.15) in the multiple data set
case is slightly more complicated and one would proceed as follows.

Golub-LeVeque-GP algorithm.
)-(3) Proceed as in the Golub-LeVeque-K algorithm.

(4) For k=l, ,p
Let Mk be those columns ofM corresponding to derivatives with
respect to a with columns of zeros inserted so that it has/columns.
Let M2 be the last ri rfi rows ofM.
For =1, s

Form Ilik-- M’ri
Solve lTwki ZTllki
The kth column of the Jacobian is given by

T( MkW c ) + O- r( O I m ) OOf
ak

Because ofthe size ofour Jacobian, we needed an underlying nonlinear least-squares
solver that accepted groups ofrows ofthe Jacobian and did not require the whole Jacobian
at once. Thus we could not consider the general nonlinear least squares solver in MIN-
PACK 8 ]. We chose to use RN2G in PORT 3 ]. For our problem it is very natural to
compute that part of the Jacobian corresponding to a specific data set and reuse the
Jacobian space. Thus only O(np/u) space is needed, which means that it is usually
possible to solve most problems with multiple data sets on even modest machines using
the Golub-LeVeque algorithm. However in some circumstances one can further enhance
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the Golub-LeVeque algorithm by looking at the intended use of the Jacobian by the
general nonlinear least-squares solver.

A general nonlinear least-squares solver usually solves a linear least-squares system
with the Jacobian it has obtained. Thus after the Jacobian is computed using the Golub-
LeVeque-K algorithm, the QR decomposition of the Jacobian will be determined at the
cost of u( rh)p2 + O( u(r rh)p) multiplications. When p is greater than say 5, the
cost of this additional QR decomposition can be significant. Excluding the cost of com-
puting G and its derivatives, 10 percent of the computation time for our small modal
analysis problem was spent in forming the Jacobian with the Golub-LeVeque-K algorithm
and 90 percent of the computation time was spent in obtaining its QR decomposition
by the general nonlinear least-squares solver.

If the underlying least-squares program is only going to compute the QR decom-
position of the Jacobian and perform no further computations with the Jacobian, there
is no need to apply the r in step (4) of the Golub-LeVeque-GP algorithm. This elim-
inates most of the excess work of the Golub-LeVeque-GP algorithm over the Golub-
LeVeque-K algorithm. It also suggests a mechanism for decreasing the number of nonzero
rows in the Jacobian if the nonlinear term is not present (i.e., f 0) in both the K and
GP versions of the Golub-LeVeque algorithm.

If the nonlinear term is absent in the model and if ri rh > d, the number of
nonzero rows in the Jacobian can be decreased by performing a QR decomposition on
the last ti rh rows of the M matrix of the Golub-LeVeque algorithm. Thus one finds
an upper trapezoidal matrix U of rank ma, an orthogonal matrix Qa, and a permutation
matrix Za such that

(2.17) QaMZa U
0

where M represents the first rh rows of the M matrix. Now U is substituted in step (4)
of the Golub-LeVeque algorithm for M and each residual block is multiplied by Qa.
Because columns oftheMmatrix appear in all ofthe data sets, by doing one decomposition
we decrease the number of nonzero rows in the Jacobian for all the data sets.

Thus instead ofgiving the general nonlinear least-squares solver a Jacobian that has
u ( rh) nonzero rows, the general nonlinear least-squares solver should be given a
Jacobian that has ma u nonzero rows. The idea costs (- rh)ma(2d- ma) multipli-
cations to perform the decomposition in (2.17) and 2u(g- rh)ma multiplications to
apply Qa to the residual, but it reduces the cost in step (4) of the Golub-LeVeque-K
algorithm anct in the QR decomposition of the Jacobian from (u(ri- rh))(d + p2)
multiplications to mau(d + p2) multiplications. In the small modal analysis problem
where d is about 2p and ma is about p, one could save about 298 billion multiplications
by performing 13.5 billion multiplications. Moreover, one can apply Qa to the u residuals
simultaneously and take even further advantage of a multiprocessing machine.

Let X md/(l- ff"l). Incorporating (2.17) into the Golub-LeVeque-K algorithm
speeds up the computation of the QR decomposition of the Jacobian by approximately

(2.18)
(p- )pu

2mau + ku(p )p + ma(2d- ma)

In the small modal analysis problem with p 288, md 288, d 576, k approximately
.125, and u 80, using (2.17 was certainly beneficial as Table 4 indicates. However for
simpler problems the case for using (2.17 is not as apparent. Certainly for the exponential
fitting problem in 1.1 with p 2, (2.18 suggests that one would not use (2.17 ).
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TABLE
Timefor problem (2.19).

Time for Golub-LeVeque-K Time for Golub-LeVeque-K
u without (2.17) with (2.17) Ratio (2.18)

5 2.3 1.7 1.4 1.5

10 3.8 2.6 1.5 1.8

50 15.9 9.4 1.7 2.1

To see whether (2.17 helps in a relatively small example, we considered the problem
(commonly called "Osborne 2") given in [5] of fitting Gaussians with an exponen-
tial background

(2.19) ale-’lt + a2e-"2(t- ce5)2 + a3e-"3(t- c6)2 + a4e-’4(t- t7)2,
which had p 7. We used the data used by 5 which had 65 observations and repeated
those observations for u data sets and varied u. Table shows our results on a Vax 8550
using the Golub-LeVeque-K algorithm using (2.17) and not using (2.17). Time is re-
ported in seconds and has about a 10 percent accuracy. The underlying nonlinear least-
squares solver was the one given by Dennis, Gay, and Welsch [1] with fixed scaling and
use of the S matrix in their quadratic model disabled. The inner product routine was
replaced by one that did not check for underflows each multiplication. Table shows
the total time for the problem so one could ascertain the global effect of using (2.17).
The computations all required 16 function evaluations and 13 derivative evaluations for
convergence. The data corroborates our theory that the QR factorization ofthe Jacobian
dominates the computation and that (2.18 is a fairly good predictor of the behavior of
the total algorithm.

If the same nonlinear term appeared in all data sets, i.e., all the fi’s were identical,
one could augment the M matrix (2.13) with the nonzero derivative columns of f and
use the same technique. In the problem suggested by Sylvester [10 for about 95 percent
of the data sets the nonlinear term was missing. However, as explained in 4.1.3, the
nonlinear term had such a special form that (2.17) could be used even to handle the
nonlinear terms.

In this section we have shown that with multiple data sets one can reduce the
computation beyond that given by the Golub-LeVeque algorithm by reducing the number
ofnonzero rows that the general nonlinear least-squares solver thinks are in the Jacobian.

3. Multiple data sets when jTj is required. In the previous section we considered
the multiple data set problem when the Jacobian J is requested and at each iteration the
underlying nonlinear least-squares solver solves a linear least-squares problem using the
QR decomposition of the n p Jacobian J given by

where Qj is an orthogonal matrix and Rj is an upper triangular matrix with p rows. In
this section we consider nonlinear least-squares solvers which at each iteration solve a
linear least-squares problem by determining the Cholesky factor of A jTj. In infinite
precision arithmetic the two methods produce the same result. In the multiple data set
problem, the matrix A has special structure and, as we will show in this section, computing
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A and its Cholesky factorization can be much more efficient than going through the QR
route. The speedup depends on the number ofterms in the model in which each nonlinear
variable occurs. In our big modal analysis problem the speedup in the overall problem
was a factor of 8.

In the QR approach of the previous section the matrix Qj is rarely saved and all
that is needed is Rj and Qjx for some vector x. However, theoretically, neglecting roundoff
error, these quantities can be computed in a different manner. If A jTj and if the
Cholesky factorization of A is

(3.2) A=RR,,
where RA is an upper triangular matrix, then, up to the sign of the rows, RA Rj.
Moreover, if

(3.3) x RTTJx,
then xa Qjx up to the corresponding signs of the elements. Thus theoretically one
could compute A and use (3.2) and (3.3) rather than computing 3.1 ). The main reason
that (3.1) is preferred is stability, especially when J is nearly singular. It is easy to construct
examples in which J is nonsingular, but because of roundoff error A will be numerically
singular (see 7 ). Moreover, the error in the computation ofRj depends on the condition
number of J, while that of Ra depends on the square of the condition number of J.
When n is approximately p the number of multiplications required by (3.1) is approxi-
mately that expended for determining A and R. When n )) p the price of using (3.1)
is about double that for computing A and RA, but it is usually considered a modest price
because of the information about singularity which one gleans, and because in many
nonlinear least-squares problems computing (3.1) is not the most time-consuming part
of the problem compared to determining the Jacobian.

In our situation with multiple fight-hand sides, the case for computing jTj and
using (3.2) and (3.3) is somewhat stronger. First of all, redundant terms in the model
will be revealed in the QR decomposition of the model matrix. Thus the information
which is usually obtained from the Jacobian about singularity can be obtained to a
certain extent elsewhere. Secondly, there are problems in which the computation of the
QR decomposition is the major portion ofthe time for the total algorithm, and by going
through the normal equations approach of (3.2) one can gain factors much larger than
2 by taking advantage of the fact that this is a multiple fight-hand side problem. Note
that we are not advocating that an approach similar to (3.2) be taken for the model
matrix if; we are only advocating it for the Jacobian.

Let j(i) represent the Jacobian for the ith data set. Then

(3.4) jTj= j(i)Tj(i).
i=I

If the nonlinear term fi is missing from the ith data set, then referring to the Golub-
LeVeque-K algorithm in 2, the kth column of Ji) has the form

3.5 j i)= Mtcci.

If A (i) ji)7"ji), then its (k, u) component is
(i) T T(3.6) ^k, Ci (MkMu)ei.

Since each parameter might appear only a few times in a model, only a few columns of
M might be nonzero. In the case of(2.19) the matrix MMu will have only one nonzero
element and thus can be precomputed easily and used for all data sets.
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As in the Golub-LeVeque-K algorithm, let Mbe the concatenation of the nonzero
derivative columns of G which have been multiplied by Q2. Let

(3.7) 2= MT"M.
Assume each of the p nonlinear variables appears in v columns of G so that 2Q has
vp rows and columns. Assuming that .r has been precomputed, then computing
A i) by multiplying first by ci on the fight and then the result by c on the left requires
p2(v2 + v)/2 multiplications. Computing A requires p2u(v 2 + v)/2 multiplications and
computing RA in (3.2) requires p3 / 6 multiplications. In comparison, ifM is ofrank ma,
computing the QR decomposition (3.1) using (2.17) requires about umap2 multiplica-
tions. Thus if ma p and v 1, as in (2.19), the time required for (3.1) with (2.17
divided by the time required to find RA would be

(3.8) p/(1 +p/(6u)),

a healthy speedup for large values of p. In the modal analysis problem in which v 2
and ma p, the speedup is about

(3.9) p/(3+p/(6u)).

For the largest problems with p 1500 and d 260, (3.9) comes to about 378, which
makes using jTj very attractive.

Of course there is the initial overhead of computing of (3.7) and Jrx in (3.3).
Computing k] requires /d2 / 2 multiplications. However when using (3.1) one would
want to compute the QR decomposition in (2.17). When using (3.2) this is no longer
necessary. Computing (2.17 requires (r7 Dmd(2d ma) multiplications. Thus when
ma d, computing M is about half the cost of computing the decomposition of (2.17)
and if ma d/2, they both require about the same amount of effort. If one uses the
normal equation approach, the J matrix itself need not be computed or stored. If one
does not use (2.17 when using the QR approach, the cost offorming JTx is approximately
that of forming J, once M and the e’s have been determined. If one uses (2.17 with the
QR approach, then the cost of actually forming the Jacobian is reduced, but one has to
apply Qa to the residual which again is similar to forming Jx. Thus the additional
overhead for using the normal equations approach is no more than the overhead ofusing
(2.17 and the QR decomposition approach. For problems in which after using (2.17 ),
computing (3.1) is the dominant user of time, then using (3.2) and (3.3) is more cost-
effective.

Fortunately, in the PORT library the subroutine MNH, a general minimizer in
which the user provides the Hessian matrix of second partials, delivers the same iterates
when given jTj as the Hessian as N2G does when the S approximation to the Hessian
is set to the 0 matrix. Thus one is able to assess the speedup computationally. Table 2

TABLE 2
Timefor problem (2.19).

Time for Golub-LeVeque-K Time for Golub-LeVeque-K Time for normal
without (2.17) with (2.17) equations

5 2.3 1.7 1.2

10 3.8 2.6 1.6

50 15.9 9.4 4.7
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shows the computation time for (2.19) for the Golub-LeVeque-K algorithm with and
without (2.17) and for MNH using jTj as the Hessian. For this problem (3.1) was a
small part of the total computation and thus a large speedup is not noticed. In the next
section, where we give a more detailed accounting of the modal analysis problem, we
show that for the large problem, using the normal equations approach versus the QR of
the Jacobian with (2.17) gives an overall speedup of about 8 for the largest problem.
Thus, the normal equations approach is not simply one to be used if the appropriate
software is available. It is definitely the method of choice.

4. The modal analysis problem. In this section we describe a sequence of separable
nonlinear least-squares problems arising in the decomposition of multichannel transfer
function data into complex natural modes 2 ]. Applying the Golub-LeVeque algorithm
to the largest problem in the sequence reduces the numbers ofmultiplications per iteration
by a factor of about 500 and reduces the space requirements from about 100 billion
words to about 50 million words, a huge decrease but still insufficient. Applying the
algorithm given in 3 reduces the operation count by another factor of 50 but still does
not decrease the space requirements significantly. In this section we use the fact that the
G matrix of 2 has the structure of( 1.9) and that the nonlinear variables separate further.
Our ideas reduce the operation count by another factor of 15 and reduce the space
requirements to about 7 million words for the largest problem, an amount that is tolerable
for the Multiflow machine, where the algorithm has been implemented.

Using engineering-oriented notation, the modal analysis problem can be stated as
follows: Fit the complex data Ykrd, k <= NI, r <= NR, d <- Nz, d <= r, in a least-squares
sense to the model

(4.1) rlkra -t- -t- rdt( io)",
m= lOdk-- Sm l(.Okm S *m u= -NL

where (-1 )1/2, , indicates conjugation, and the w’s are known sample frequencies.
The physical interpretation ofthe fitting problem (4.1) is as follows. A body, for example
an airplane, is driven by time-harmonic forces of angular frequency w applied at No
points, indexed by d. The resulting velocity (in some direction) is measured at NR "re-
ceive" points, indexed by r. As the frequency is stepped through a set of NK samples in
some measurement band, one obtains transfer functions Ygrd from applied force to velocity
response. The resonant characteristics of the body can be investigated by identifying the
complex poles Sm and residues rmdm of the Nt in-band modes describing the transfer
function data. The out-of-band modes are collectively modeled by the last term
NU
,=-U, rd,,( iwk)" in (4.1).
A sequence of large-scale problems of the type (4.1) has been investigated, and, in

one ofthe largest, Nt is 61, No is 10, NR is 261, N/ is 520, and v Nv + NL + is about
3. Thus there are 520 261 10 1,357,200 complex data points. The unknowns rm
for Nz < r =< NR appear linearly. There are 251 61 15,311 of them and they are
complex. The/3’s, which we call background coefficients, also appear linearly. They are
real and there are only about 7830 of them, a small number compared to the other
numbers in the problem. There are 61 complex s’s which appear strictly nonlinearly,
and there are 61 10 610 complex Pdm, d <= Nz, which appear quadratically, and one
may wish to treat them slightly differently than the s’s. Obviously the problem has many
unknowns, which appear linearly and nonlinearly, and much data.

One way to organize the problem is to consider that there are NR data sets. The first
No have a strict linear term with the/’s and a strict nonlinear term, involving the ffdm
and Sm, with no linear coefficients. The last NR No data sets each have N/ No
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5200 complex observations and the model may be viewed as trying to find a linear
combination of nonlinear terms as in a separable nonlinear least-squares problem. To
help us describe the problem, let y be the N/ min r, Nz)-element data vector for the
rth data set, let s be a vector containing all the s’s, let lr be a vector containing the brm’S,
let Br be a vector containing all the rdu’S, and let k (k , kNro)T. Assume the
elements of a complex N/ v matrix B are given by

4.2 bkj (iwk) J NL

and let Gr be a block diagonal matrix containing r copies of the B matrix along its
diagonal so that Gr Ir B. Then for data set r, r <- Nz, there exists a vector fr(S, k)
which takes into consideration the first term in (4.1) so that the least-squares problem
for this data set can be expressed as minimizing

(4.3)

For r > No the model for (4.1) will have more linear variables and there is no need to
have a separate function f. For these data sets one can form a matrix A which is only a
function of the s’s and matrices Sa that are only a function of ka and put them into a
matrix G which has the form of (1.9). Moreover the S matrices in complex arithmetic
would be diagonal.

Obviously the problem is a separable nonlinear least-squares problem with multiple
fight-hand sides. Since the columns of Gr for r < No, are submatrices of G, one can use
the Golub-LeVeque algorithm easily and at least for the NR No data sets, i.e., for 95
percent of the data sets, (2.17 is applicable.

In Table 3 we give approximate storage requirements for the various algorithms
discussed in this section for the large modal analysis problem and a smaller test problem
which had about 80 data sets, each with 1200 complex observations, and (referring to
(4.1)) had Nz 3, Nt 42. The storage requirement for the routines requiting the
explicit Jacobian was based on subroutine RN2G in the PORT library [3 ], which is
based on the algorithm given in [1]. This subroutine was chosen because it does not
require the whole Jacobian at once but accepts groups of rows. We chose to deliver a
block at a time. The storage requirement for the algorithm supplying jT-j was based on
MNH in PORT. Table 3 indicates that the storage requirements are still a major concern
and it is this concern that will be addressed in this section.

Table 4 gives an approximate multiplication count for each iteration for the various
sections of the various algorithms in 2 and 3 for the two modal analysis problems
covered by Table 3. No attempt was made to take advantage of the structure of G in
(1.9) in any of the estimates. The table shows how using the ideas of Golub-LeVeque
decreased the cost ofthe total algorithm and left that part of the problem, which seemed
inconsequential at first, as the most time-consuming operation. It shows how the idea of

TABIE 3
Comparison ofmethodsmStorage requirements.

Variable projection algorithm [6]

Golub-LeVeque algorithm

Normal equations

Small problem

1400 10

2.6 106

2.1 106

Big problem

936 108

.49 108

.38 108
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TABLE 4
Comparison ofmethodsmNumber ofmultiplications.

Variable projection [6]:
Decomposition of
Determining Jacobian
QR of Jacobian
Total

Golub-LeVeque algorithm:
Decomposition of
Determining Jacobian
QR of Jacobian
Total

Golub-LeVeque with (2.17):
Decomposition of
Determining Jacobian
QR of Jacobian
Total

Using J rj:

Decomposition of
Determining Ar and gradient
Determining A and RA

Total

Small problem

857 101
74 1010
1.6 101
933 101

1.7 107
37.3 107
1590 107
1629 107

1.7 107
85 107
191 107
287 10

1.7 107
117 107
2.4 107
121 107

Big problem

274 1013
23 1013
.5 1013

298 1013

.2 10
15 109

488 101
490 10l

.2 10
71 109

631 109
702 10

.2 199
90 10
1.8 109
92 109

computing the QR decomposition ofMin (2.17) made a significant dent in the problem,
and that the normal equations approach of using JTJ yields further substantial savings.
Now the biggest part ofthe problem again involves the matrices that make up the Jacobian.

Let us consider the G matrix of (1.9) generated from the modal analysis problem.
Although the elements in the modal analysis problem are complex, we can implement
the problem in real arithmetic by doubling the number of observations and doubling the
number of columns in the A and S matrices. The S matrices will be block diagonal with
diagonal blocks of order 2 2. Assume B in (1.9) is a v matrix and A is a w
matrix where > (v + w). Thus G will have No rows. We shall assume B has full
rank and thus there is no need for column pivoting for stability when dealing with B.
As we shall show, one can reduce the problem of obtaining the QR decomposition of G
to one involving the QR decomposition of (BI A) followed by another decomposition
of a matrix that has Nz w rows and considers the information in the S matrices.
Specifically, consider the QR decomposition given by

o ZA 0

where Yis an orthogonal matrix, ZA is a permutation matrix, Vis a v v upper triangular
matrix, W is a v w matrix, and T is an mA W trapezoidal matrix of rank mA. Let

Iuz, (R) Y)G (INo 0
z
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From (1.9) we see that there must exist a permutation matrix Z such that

(4.5) Z,=
v ws o I

TSI)
o TN/

which is almost in upper triangular form. Let C be the matrix with ND X mA rows and
w columns

(4.6)
TS )

Assume C has rank mA. Let/6 be the sequence of Householder transformations, which
reduces C to the upper trapezoidal matrix (K:K where K is upper triangular and has
mA rOWS SO that

(4.7) 13C=( KO K).O
When/3 is applied to rows vND + through ND(V + rnA) of Z( of (4.5) the upper
triangular matrix/ of (2.10) is produced.

Since the S matrices are block 2 2 matrices, this decomposition requires far less
storage space than neglecting the algebraic structure of G. Applying to a vector x
involves

ND applications of Y in (4.4) to appropriate subvectors.
(2) Applying of (4.7) to the appropriate elements of INz t Yx.
Assuming the matrices are of full rank, obtaining the QR decomposition ofG without

taking advantage of its structure requires O(NDt(NDV + W)2 (NDV + w)3/3) multi-
plications. Applying the transformations that make up the matrix to a vector requires
about another 2NDt(Nzv + w) (NDv + w)2 multiplications. If one takes advantage of
the structure of G as outlined above, then t(v + w) 2 + NDW3 (I q- w)3/3 w3/3
multiplications are required to obtain the information for the decomposition and another
2t(v + w) + 2NDW2 (V + W) 2 W2 multiplications to apply the information to a
vector. Thus the cost of computing the decomposition is greatly reduced, but the cost of
applying the transformations to a random vector, such as the data for all the data sets,
is slightly more. Because most of the columns in the derivative of G have the same
algebraic structures as the matrices of G, applying Q to these columns using Y and P is
cheap as we shall see.

4.1. When a Jacobian is required. In this section we discuss the structure of the
Jacobian for the modal analysis problem and show how to use this structure to decrease
the work involved in obtaining its QR decomposition. The information in 4.1.1, which
discusses the columns of Jcorresponding to the k variables, is also relevant to computing
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jrj, in 4.2. We show that one can reduce the number of nonzero rows ofthe Jacobian
corresponding to the k variables without using the trick in (2.17 ). In 4.1.2, we consider
the columns of J corresponding to the s variables. Here we use a trick akin to (2.17)
which is not relevant to 4.2. In 4.1.3 we consider the nonlinear terms and show that
they fit into the general framework.

4.1.1. The k variables. The fact that the decomposition of G is separated into two
decompositions helps in holding down the cost of forming the Jacobian and the space
required to store its components. Recall that the elements of k can be indexed as dm
and that for any m, $dm is found only in Sd. Thus OG/O/dm looks like

(4.8)
OG

Odm

o\

o /
The only significant computation and the only nonzero elements in Q2(0G/OlPdm) come
from applying/ of (4.7) to

0
(4.9)

which contributes to at most (N )m rows of the Jacobian for any data set. This
means that for each data set the Jacobian will have the structure

(4.10)

In the large problem the matrix of(4.10) is 10,400 rows by 1220 columns, but D accounts
for only 1098 of the rows and E for 122 columns.

In addition, because of the zeros in (4.9), one can construct/; so that D is easy to
compute and D will have special structure. Since the matrix T occurs for each variable
in (4.9), one can form D of (4.10) by applying P to the No block diagonal matrix

’= T
T
T
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Let 0 P]? and partition

(4.11) t9=

19ND 19ND1 19N02 19NDND]

If/3 is formed by first eliminating the last block of (4.6) using the next to the last
block and working upwards, then 19i,j 0 for > j + 1. Moreover, one can show that
the D matrix of (4.10) will have the following block structure:

(4.12)

X X X X

X X X
0 X X

Since most of the work in the total problem is involved in getting the QR decomposition
of the Jacobian and since that work grows quadratically with the number of nonzero
columns in each block handed to the nonlinear least-squares solver, using the block
structure of C in (4.6) to determine/ of (4.7) to produce a matrix with the structure of
(4.12) lowers the operation count of the largest part of the problem. More specifically
for No 4 one would witness a decrease of about 30 percent in the total computation
time and for Nz 10 nearly 60 percent.

Since about 90 percent of the nonlinear variables are in if, our two-stage decom-
position forces most of the Jacobian matrix to be zero without using the trick in (2.17 ).
Moreover, the major contributor to the storage requirements of this algorithm has been
sharply reduced.

4.1.2. The s variables. Unfortunately the columns of the Jacobian corresponding
to the s variables require more computation and have more nonzeros. Assume that there
are Ns elements in the vector s. To apply to OG/Osk one would first apply Yto OA/Osk
to obtain

OA [ Alk

I A2g(4.13 Y
OSk A3k/

where A has v rows, A2 has mA rows, and A3 has (mA + I)) rows. We thus have

(4.14)

A2kS

0 A2kSNz
Sk A3kS1

A3SN,

The bottom part of (4.14) corresponds to the E matrix in (4.10) and a trick similar to
that given in 2 can eliminate most of the nonzero rows in that matrix.
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Let Nrepresent the nonzero columns of all concatenations of all the msA3k matrices
and assume N has d columns and is of rank rnN. Let L be an orthogonal matrix and ZN
be a permutation matrix such that

where M is an upper trapezoidal matrix of rank raN. Let us redefine (2 as

2 I IND(R) L

where , is a permutation matrix which would move all the zero rows of IND (R) () to
the bottom. Now the E matrix of (4.10) really has the form

where/ accounts for ND mu of the ND (t v mA) rows of E. For our large
problem, E would account for 1220 rows of the 10,400 rows in the Jacobian for each
data set.

Combining the results of 4.1.1 and 4.1.2 we see that for the large problem for
each data set, only 2440 rows ofthe original 10,400 rows ofthe Jacobian have nonzeros.
Moreover only 122 columns of the original 1220 may be considered as dense. Because
of the structure of our Jacobian, we needed an underlying nonlinear least-squares solver
that accepted groups of rows of the Jacobian and did not require the whole Jacobian at
once. We chose to use RN2G in PORT 3 ], which processes the portion of rows of the
Jacobian one column at a time and skips transformations whenever there is a zero column.

4.1.3. Nonlinear function. The presence of a strictly nonlinear term in the model
would seem to hurt our efforts to decrease the number of rows and columns in the
Jacobian matrix. In the modal analysis problem about 5 percent of the data sets had a
nonlinear term and it was first assumed that for these data sets one would pay the full
price of obtaining the QR of the Jacobian. However, on second glance it was realized
that the nonlinear terms had a structure similar to that given in (1.9). For those data
sets with a nonlinear term, the last column block was missing and in its place one had
a nonlinear term of the form

(4.16)

A(s)bil(i, ll/l tfi(a) A(s)bi2.(i, tP2),
A s bii( tl/i

where the matrix A is the same one that appears in (1.9) and (4.4) and the vector b0. is
some vector specific to the data set. For these data sets r Q2,i f;, where Qz,g comes from
the QR decomposition of Ii (R) B and is independent of a.

Because the variables in (4.16) separate and have the same basic structure as the
last column block of (1.9), the Jacobian for the ith data set, J;, looks similar to (4.10)
except that D is mA. As in 4.1.2 the number of nonzero rows in the E portion of
the matrix can be drastically reduced by multiplying it by I; (R) L, where L is the matrix
described in (4.15). Thus some of the machinery generated for the separable problem
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could be used for the nonlinear problem and handling the nonlinear term required no
extra work.

4.2. When jr./is required. In 3 we mentioned that, for problems like the modal
analysis problem, rather than computing the Jacobian itself e/plicitly it is much more
efficient to compute A jTj. Much of the machinery of 4.1 is still relevant when A
is computed and the Jacobian itself is not needed. The main exception is that the de-
composition in (4.15 to help decrease the number ofrows for the s variables is no longer
needed. For the modal analysis problem the matrix 2Q of 3.7 would be constructed as
follows:

Form M"i,j(1) ,,at!!)j,, 00 for 1, No, and j 1, i, where 0 is given
in (4.11).
Fori= 1,2,...,N

Form Hi

AiSNo
Form .) 0for 1, N, andj 1, Ns
Form fi’. (3, T

,2,i HH2 + A3ia3j for 1, Ns and j 1, i, where
A3i comes from (4.13 ).

To obtain the matrix A we do not have to construct J but we can proceed as in 3 using
the matrices:

Set A 0
For 1, N,

If the kth column of the Jacobian coesponds to fft,’ and the jth column of
the Jacobian corresponds to fit’,2’, then set

Xkj Xkj+ mt,t Ot,,ji)
If the kth column of the Jacobian coesponds to ff,, and the jth column of

the Jacobian coesponds to s,, then set

If the kth column of the Jacobian coesponds to s, and the jth column cor-
responds to s,, then set

Since Ot 0 for > j + 1, the cost of computing) is cut by a factor of 3 if a block
is used. Similarly, the cost of computing 2) is divided in half if block ff is used.

Table 5 gives a comparison of the operation counts of the various potions of the
various algorithms given in this section with those that did not use the fact that G has
special structure and that a separates into s and . Table 6 gives a comparison of the
storage requirements. The problems are exactly those given in Table 3. From Table 6 it
is obvious that the idea ofseparating variables within each block was absolutely necessa
in order to store the large problem. Using the separation of variables technique does not
greatly affect the operation counts when only the Jacobian is required, but when A rather
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TABLE 5
Comparison ofmethods--Number ofmultiplications.

Golub-LeVeque with (2.17):
Decomposition of
Determining Jacobian
QR of Jacobian
Total

Using J rj:

Decomposition of
Determining )fir and gradient
Determining A and RA

Total

Structured G-L-K, General/:
Decomposition of
Determining Jacobian
QR of Jacobian
Total

Structured G-L-K, Block/:
Decomposition of
Determining Jacobian
QR of Jacobian
Total

Structured J rj, Block/:
Decomposition of
Determining/1 and gradient
Determining A and RA

Total

Small problem

1.7 107
95 10
191 107
287 107

1.7 107
117 107
2.4 10
121 107

.6 10
10 107

105 107
116 107

.6 10
10 l07
84 107
95 107

.6 10
18 107
2 107

21 107

Big problem

.2 10
71 109

631 109
702 10

.2 10
90 10
1.8 109
92 109

.3 108
23 108

521 109
524 109

.3 108
20 108

242 109
245 109

.3 108
45 108
14 108
60 108

than J is used, we see a drop in the operation count of another order of magnitude with
the implementation of the ideas in this section.

The algorithms in this section were implemented on a Multiflow machine. At first
only the small problem was considered. As predicted the change in computation time

TABLE 6
Storage requirements ofvarious methods.

Golub-LeVeque

Normal equations

Structured G-L-K with
General P

Structured G-L-K with block

Structured normal with block

Small problem

26 105

21 105

6.4 105

6.3 105

5.8 105

Big problem

49 106

38 106

8.7 106

7.5 106

6.5 106



88 LINDA KAUFMAN AND GARRETT SYLVESTER

TABLE 7
Percentage oftimefor structured J rj on multiflow.

Applying Y of (4.4)

Determining A from kit’s

Determining R from A

Handling nonlinear terms

Applying/ of (4.7)

Determining the hit’s

Determining gradients other than above

Other (including user and decompositions)

22.4

17.7

15.4

12.7

11.6

9.2

6.8

4.2

from the general P algorithm using the Jacobian to the one with block P was about 20
percent. The QR of the Jacobian required about 80 percent of the computation time for
each iteration, slightly lower than predicted, because of the effort that the second author
expended to adapt that part of the algorithm to the Multiflow machine. When the al-
gorithm was changed from determining J to jTj, we witnessed a factor of 5 decrease in
the computation time for the small problem, just about the amount that Table 5 suggests.
Besides computing jTj, one had to also compute the gradient JTr for the underlying
minimizer. The Multiflow machine is particularly adept at the inner product calculations
required by the subroutines forming the gradient. The subroutine computing A required
a larger portion ofthe computation time than estimated in Table 5. The compiler directives
did not work as well as they did for the subroutine computing RA, primarily because the
former had a bit of indirect addressing and the latter was mainly straight inner products.
On the Multiflow using the structured jTjalgorithm each iteration for the small problem
requires about 40 seconds and for the big problem about 1200 seconds. The ratio is
similar to that predicted by our estimates. Table 7 gives the percentage of work done by
various parts of the algorithm for the big problem on the Multiflow. It should be obvious
that fine tuning any one part of the algorithm will not make a major difference.

The initial estimates of the nonlinear parameters were made using a frequency-
domain polyreference Prony-type algorithm l0 ]. In principle, the Prony-type code is
exact for noiseless data ofthe form (4.1), but as is well known, the performance of such
codes degrades significantly in the presence of noise. The nonlinear fitting algorithm we
have described is intended to ameliorate this performance loss, and, as we have dem-
onstrated, is computationally feasible on large-scale problems.

Acknowledgment. The authors would like to thank David Gay for many helpful
discussions. The second author would like to acknowledge the contributions ofa number
of colleagues: Art, Frank, Gary, and Les.

REFERENCES

[1] J. E. DENNIS, D. M. GAY, AND R. E. WELSCH, An adaptive nonlinear least-squares algorithm, ACM
Trails. Math. Software, 7 1981 ), pp. 348-368.



BLOCK SEPARABLE NONLINEAR LEAST SQUARES 89

2 D. J. EWINS, Modal Testing: Theory and Practice, John Wiley, New York, 1984.
3 P. A. Fox, ED., The PORTMathematical Subroutine Library, AT&T Bell Laboratories, Murray Hill, NJ,

1984.
[4] G. H. GOLUB AND R. LEVEQUE, Extensions and uses of the variable projection algorithm for solving

nonlinear least-squares problems, Computer Science Report SU 326, Stanford University, Stanford,
CA, 1978.

5 G. H. GOLUB AND V. PEREYRA, The differentiation ofpseudo-inverses and nonlinear least-squares problems
whose variables separate, SIAM J. Numer. Anal., 10 (1973), pp. 413-432.

[6] L. KUFMAN, A variable projection methodfor solving separable nonlinear least-squares problems, BIT,
15 (1975), pp. 49-57.

[7] C. L. LAWSON AND R. J. HANSON, Solving Least-Squares Problems, Prentice-Hall, Englewood Cliffs,
NJ, 1974.

[8] J. J. MORE, B. S. GARBOW, AND K. E. HILLSTROM, User Guide for MINPACK-1, Report ANL-80-74,
Argonne National Laboratory, Argonne, IL, 1980.

9] Y.-W. Soo AND D. M. BATES, Loosely coupled nonlinear least squares, in Comput. Statist. Data Anal.,
to appear, 1992.

10] G. S. SYLVESTER, Structure and performance of a polyreference frequency-domain prony algorithm, in
preparation.



SIAM J. MATRIX ANAL. APPL.
Vol. 13, No. 1, pp. 90-101, January 1992

(C) 1992 Society for Industrial and Applied Mathematics
0O8
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FOR THE TRIANGULAR SYLVESTER EQUATION

WITH sep- ESTIMATORS*
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Abstract. Coarse grain message passing and shared memory algorithms for solving the quasi-triangular
Sylvester equation are discussed. The basic algorithm is of block type, i.e., rich in matrix-matrix operations.
The focus is on computing reliable estimates ofthe sep- function (a natural condition number for the Sylvester
equation and the invariant subspace problem). Estimators based on the Frobenius norm and the l-norm,
respectively, are presented. Accuracy, efficiency, and reliability results are presented. The applicability of the
estimators to both the shared memory and distributed memory paradigms are discussed. Some performance
results of the parallel block algorithms with condition estimators are also presented. The reliability of both
estimators are very good. The Frobenius norm-based estimator is much more efficient in both sequential and
parallel settings (on average between four to five times). Further, it is applicable to both the standard and
generalized problems.

Key words. Sylvester equation, parallel algorithms, condition number estimation

AMS(MOS) subject classifications. 65F05, 65W05

1. Introduction. In 16 ]-[ 18 and 21 we present and discuss parallel block al-
gorithms for solving the triangular Sylvester equation

1.1 AX+XB=C,

where the unknown X is m-by-n and A, B, and C are given m-by-m, n-by-n, and m-by-
n matrices, respectively, with real entries and A, B are upper triangular (possibly upper
quasi-triangular ). This paper gives a brief survey of distributed and shared memory

-1block algorithms and focuses on methods for computing reliable estimates of the sep
function that are based on effective triangular Sylvester solvers. Equation (1.1) has a
unique solution ifand only ifA and -B have disjoint spectra. The sep function (introduced
later in 2) measures the distance (separation) between the spectra ofA and -B.

If A and B are upper triangular, the unknown X in (1.1) can be solved for by
elementwise identification as follows:

Cij-- Er: + aikXlj-- E{ xil,:blj
(1.2) Xij--

aii -- bjj

First we solve for Xm l, then Xm -II or Xm2 and so on diagonal by diagonal. The parallel
block algorithms are all based on the sequential block algorithm TSYLV_B in Fig. 1.1.

Let M and N be the block sizes for A and B, respectively. Solving for the first M-
by-N block of X (i.e., Xnb_A, 1) results in solving a "small" upper triangular Sylvester
equation (in the following, denoted by an M-by-N subsystem). The solution of this
subsystem is then used to update the remaining blocks in the first block column and the
last block row of the fight-hand side C with respect to A and B, respectively. Then we
can solve a similar system for the next block ofX in the first block column. To get the

Received by the editors February 11, 1991; accepted for publication (in revised form) June 14, 1991.
"f Institute of Information Processing, University of Umefi, S-901 87 Sweden (bokg@cs.umu.se and

peterp@cs.umu.se). Financial support has been received from Swedish Board ofTechnical Development (STU)
contracts STU-712-89-02578 and STU-726-90-02307.

A quasi-triangular matrix is a block triangular matrix with possible 2-by-2 blocks on the diagonal cor-
responding to pairs of complex conjugate eigenvalues.

9O
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for j 1 to nb__B { nb_B is no. of diagonal blooks in B}
for i =nb_A downto 1 {nb_A is no. of diagonal blooks in A}
{solve for Xj blook in (i, j)th subsystem}
A,X + X,S C
{substitute Xj block into remaining equations}
for k= 1 to i-l{update block column j of C}
C C A,X

for k=j+ 1 to nb_B {update block row i of C}
C C x,

FIG. 1.1. Block algorithm TSYLV_B.

complete Xwe have to solve m/M,n/Ntriangular Sylvester equations. Each, except the
last one, is followed by an updating of Cwith respect to A, B, and the recently computed
block of X. By choosing M and N n in TSYLV_B we get a row-oriented level-2
algorithm. Similarly, by choosing N and M m the block algorithm reduces to a
column-oriented level-2 algorithm. These are used for solving the M-by-N subsystems.

Sequential and numerically stable algorithms for solving the general Sylvester equa-
tion are presented in 2 and 11 ]. The problem of transforming A and B to Schur form
is not emphasized here. The solution of the triangular Sylvester equation is the second
main step of the algorithm in 2 ]. A fine grained message passing algorithm is described
in [20]. From an algorithmic point of view the triangular Sylvester equation is a natural
extension ofthe solution of triangular systems of equations, a problem that is inherently
fine grained and sequential [13]. If m or n then A or B are scalars and the
Sylvester equation reduces to a triangular system. We find applications in control theory
for the Sylvester equation, e.g., pole assignment for linear systems 3 ], 6 ].

The rest of the paper is outlined as follows. In 2 the separation between two
matrices is defined and its relation to the Sylvester equation is shown. Error bounds for
the invariant subspace problem and the Sylvester equation, which motivate reliable es-
timates of the sep- function, are also reviewed. In 3 sep- estimators based on the
Frobenius norm and the 1-norm, respectively, are presented. Accuracy, efficiency, and
reliability results are also presented. In 4 this qualitative comparison is complemented
by an evaluation ofthe applicability ofthe estimators to the shared memory and distributed
memory MIMD paradigms. Section 5 presents some performance results of the parallel
block algorithms with condition estimator. Finally, some conclusions are summarized
in6.

1.1. Notation used in the paper. I1/11 and IIAIIF denote the spectral norm and the
Frobenius norm of a matrix A, respectively. O’mi (A) denotes the smallest singular value
of A. Aij denotes the (i, j) block of A and a.j denotes the (i, j) element of A. A (R) B
denotes the Kronecker product of the matrices A and B. vec (A) denotes an ordered
stack of the columns ofA.

2. Separation between two matrices and Sylvester’s equation. One objective for
studying the triangular Sylvester equation is its relation to the problem of computing
well-conditioned invariant subspaces, which we illustrate below:

(2.1) S-1MS=
0 I 0 I -B
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The block upper triangular matrix M in Schur canonical form is block diagonalized by
S if and only if the 1, 2) block of S-IMS is zero. For a given M and a specification of
the spectrum ofthe 1, block we can order the eigenvalues ofM along the block main
diagonal giving A, B, and C in the Sylvester equation. The sensitivity of the invariant
subspaces spanned by the two block columns of S is proportional to the inverse of
sep (A, -B), the separation between the matrices A and-B [22]:

AX+XB F2.2 sep (A, B min
x0 IIXIIF IIz-’ll ’ (z)ffmin

where Z I, (R) A + Br (R) Im. Below we summarize the perturbation theory for invariant
subspaces and clusters of eigenvalues that will lead to computable error bounds (for
details, see [7] and [22]). Let X be the m-dimensional fight invariant subspace corre-
sponding to the 1, )-block A ofM. The spectral projector belonging to the eigenvalues
ofA is defined by

(2.3) P=
0

Ilella =(1 +

where X satisfies AX + XB C in (2.1). Now, let X’ be the fight invariant subspace of
M+ AM, where AMis an ran-by-ran general perturbation ofM. Then, if aMIIF satisfies

(2.4) sep- (A,-B) PII_IlzXMIIF< ,
the m eigenvalues ofthe 1, )-block ofM + AMwill remain disjoint from the eigenvalues
outside the cluster [22] and the maximum angle between the m-dimensional invariant
subspaces X and X’ can be bounded as [7]

(2.5) Oma X, X ’) arctan ( sep (A, B)
4 sep-I (.h jil PI[2 aMIIF

Moreover, the absolute value of the difference between the average of the eigenvalues of
the unperturbed and perturbed clusters can be bounded as [7

(2.6) kavg kvg 2 ElIF IIPII2.
Note that sep -I (A, -B) is also the natural condition number for the Sylvester

equation itself [11]. Let AA, AB, and AC be general perturbations of A, B, and C,
respectively. Now, if the perturbations satisfy

(2.7) sep -l (A,--B)(IIAAIIF+ IlaBllF) 1/2,
then the relative error in the solution ofthe perturbed Sylvester equation can be bounded
as [111"

(2.8) IIAXIIF _--<4 sep -l (A,--B)(IIAAIIF+ ABIIF).IIXIIF
When backward stable algorithms are used to solve the invariant subspace problem or
the Sylvester equation, the norm of the perturbations is bounded by O (macheps) times
the norm of the input matrix (macheps denotes the relative machine precision). To
conclude, ell2 and sep- (A, -B) are the crucial quantities in the error bounds.

In (2.4)-(2.6) we may replace Ilezll by (1 + IIXIIF) l/a to get easier-to-compute
but somewhat weaker bounds [7], [22 ]. However, the smallest singular value of Z
I (R) A + Br (R) Im is costly to compute exactly (it requires O(m3r/3) flops). The next
section presents methods to compute an estimate of IIz - 112 /tlmin(Z tO much lower
cost.
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3. sep -1 estimators. It is possible to compute lower bounds of sep -1 (A, -B) by
solving the triangular Sylvester equation. Here we describe two estimators, one based on
the Frobenius norm (see 5 ], 19 ], 18 ], 23 and one based on estimating the 1-norm
of a matrix (see [12], [14], [15]).

3.1. A Frobenius norm-based estimator. By assuming that A and -B have disjoint
spectra (i.e., sep (A, -B) is nonzero), it is straightforward to derive the following bound
from AX + XB C:

(3.1)
I[Xllr
[ICI[F

-< sep-1 (A,-B).

By choosing the fight-hand C such that the left-hand side of (3.1) is as large as possible,
we get a lower bound for sep -l (A, -B). We have implemented both distributed and
shared memory block algorithms for one of the estimators proposed in [19] (see 4
below). The cost of computing the condition estimator is O(mZn -t- mnz) flops, i.e., the
same cost as solving a triangular Sylvester equation.

First we note that TSYLV_B can be written in a more compact form, showing that
1.1 is equivalent to

(3.2) AiiXO -t- xijejj CO Z AikXkj -t- XikOkj
k=i+l k=l

for j 1, nb_B, 1, n b_A. For each pair (i, j) the subsystem (3.2) is a
system of the form Zox y (=h -f), where Zo I (R) Aii + Bff (R) I and h and fare
vector notation for C0 and the block matrix sum, respectively (e.g., h vec (Cij)). Since
each M-by-N subsystem (3.2) solves a Sylvester equation with diagonal blocks of size 1-
by-1 or 2-by-2 all these sub-subsystems can be written in a compact form similar to
(3.2). Dropping subscripts, we denote a sub-subsystem by Zx y =h -f) and proceed
as follows: Each element of h is chosen to + or 1. The sign of h is chosen with a look-
ahead procedure similar to the Linpack estimator 9 ], except that our fight-hand sides
are loaded with substitutions from earlier computations (fabove). Given a LU decom-
position of Z we use the algorithm BSOLVE in 19 when solving for y (see Fig. 3.1 ).

Finally, we have to make a backward substitution with U to get x U-I(L-y).
We get a contribution to the estimator from each sub-subsystem and the local choice of

for /= 1 to N{N =dim (Z), l, 2 or 4}
{add _+l to the /th element of y}
Yu+= l+yk, Yk-=--l+Yu
s+= ly,+l + 7+ lye-

{compute the kth element of
if {S+>_-S-) then yu=yu+ else
{compute the remaining right-hand sides}
for =k+ i to N

FIG. 3.1. Algorithm BSOLVE.
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fight-hand sides yields a global fight-hand side C where all elements are + 1. Thus our
lower bound based on the Frobenius norm is

IIx I1 IIx IIF3.3 SF’-- cII----- mn)l/’----.
We gain some performance by having separate code segments for the upper triangular
and quasi-triangular cases, respectively.

3.2. A 1-norm-based estimator. In 12 a method for estimating A-1111 is presented
that only requires A -Ix andA -Tx (A -1 orA -r are not needed). The algorithm is improved
in [14] where one code is described that can serve as a condition estimator for all linear
equation solvers. We can apply this to AX + XB C by remembering that solving 1.1
is equivalent to solving Zx c where Z In (R) A + Br (R) Im, x vec (X), and c
vec (C) and for a given c we have to supply Z c or Z -rc. We can use the same algorithm
(code) for Z-rc by simply using CT as the fight-hand side and exchanging A and B in
the call to the triangular Sylvester solver. Finally, we have to transpose the solution to
get Z-rc. Our Fortran-like algorithm for computing the lower bound est of [Iz-llll is
outlined in Fig. 3.2. Now by using the norm inequality IIFll/(n) /2 <= IIFllz, for any
matrix F of size n-by-n, we convert the lower bound est of Z-1 Ill to a lower bound
of IIz - 112. We obtain the following 1-norm-based lower bound of IIz -1112:

est
(3.4) Sl" (mn)l/2.
The cost for computing (3.4) is about TTER times the cost of one Sylvester solve. The
l-norm-based estimator has so far only been implemented for the shared memory block
algorithm (see 4). A similar approach is proposed to be incorporated in LAPACK
[l], [41.

3.3. Accuracy, efficiency, and reliability results. In this section we present some
results that show and compare the efficiency, accuracy, and reliability ofthe two estimators.
The tables show the exact value of sep- (A, -B), together with the products p
SIO’min(Z) and PF SFffmin(Z). We also show the product ql est /[IZ -l Ill where est
is the lower bound of [IZ - Ill in (3.4). TTER is the number of Sylvester solves needed
to compute Sl. T1/TF shows the ratio between the execution times for computing Sl and

l0

kase O; ITER= O; mn=m,n
compute a new estimate
call donest (mn, v, c,isgn, est,kase)
if (kase .no. O) then

ITER= ITER/ 1
if (kase oq. l) then

compute z-lc solve AX + XB C)
else (kase .oq. 2)

compute Z-re (solve BXr+XrA= Cr)
endif
goto 10

endif

FIG. 3.2. Algorithm for Z-’ Ill estimator.
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TABLE 3.1
Accuracy and reliability results for examples 1, 2, and 3.

95

-1
Ex. m n p q, ITER T/TF p, O" min(Z)

1.0 1.0 0.7 1.0 0.5
2 2 0.298 0.45 5 6.6 0.907 0.699
4 4 0.226 0.65 5 4.3 0.630 0.701
8 8 0.693e- 0.39 5 4.9 0.410 0.701
10 10 0.451e- 0.32 5 4.8 0.351 0.701
32 32 0.426e- 2 0.10 5 4.7 0.144 0.701

2 10 6 0.130e 0.14 7 6.8 0.510e- 0.130e + 6
10 6 0.103e- 0.25e- 5 5.2 0.152 0.746e + 5
12 12 0.847e 0.63 11 10.5 0.190 0.538e + 5
12 12 0.661e 0.84e 5 5.1 0.132 0.208e + 9
32 12 0.537e 2 0.35e 5 5.1 0.631e 0.109e + 6
32 12 0.461e 3 0.47e 2 5 5.1 0.559e 0.181e + 9
64 2 0.496e 0.45 5 5.5 0.172 0.565e + 5

3 10 6 0.142e 0.10 9 7.2 0.246 0.758e + 3
10 6 0.979e 0.36 9 7.3 0.317 0.34 le + 2
12 12 0.179e 0.11 5 4.0 0.145 0.197e + 4
12 12 0.285 0.81 5 4.1 0.156 0.287e + 5
32 12 0.950e- 5 0.21e 3 9 7.3 0.104 0.249e + 8
32 12 0.694e- 2 0.37e- 5 4.0 0.102 0.221e + 3
64 2 0.195e 0.96e 5 4.2 0.170 0.303e + 3

SF, respectively, and measures the relative efficiencies ofthe two estimators. The reliability
of the estimators is proved if 0 < Pl, PF ----< and their accuracy is determined by how
close the products are to (Pl or PF equal when we have equality in the lower bounds
(3.3)-(3.4)). The product ql (which should also satisfy 0 < ql --< is displayed in order
to make the qualitative comparison between the estimators more fair. For example, a
small value of Pl and a value of ql close to show that the lower bound of IIZ -1 II1 is
accurate while the 1-norm-based lower bound of Z-1112 is poor. The different qualitative
behaviour illustrates cases when the inequality IIZ -1111/(mn)1/2 =< iiz-1112 is weak.

In Table 3.1, some ofthe results for the following three examples are shown. Example
shows aij j, bij i. Example 2 shows upper triangular matrices A and B with the

nonzero elements chosen randomly in [-0.5, 0.5 ]. Example 3 shows strict quasi-triangular
matrices A and B with the nonzero elements chosen randomly in [-0.5, 0.5 ]. Table 3.2

TABLE 3.2
Accuracy and reliability results for example 4.

m n a Pl q ITER T/TF

4 4 0.5 0.383 1.0 4 3.0
10 10 0.5 0.155 1.0 4 3.8
6 3 0.25 0.297 1.0 4 3.9
6 4 0.125 0.230 1.0 4 4.1
6 6 0.0625 0.192 1.0 4 4.0
16 16 0.6 0.105 1.0 4 3.9
32 32 1.0 3.5e- 1.0 7 7.5

32 32 0.99 2.7e + 1.0 7 6.9
32 32 0.95 3.0e + 2 1.0 4 4.0

-1
PF O’min(Z)

0.408 0.291 e + 4
0.166 0.29e + 11
0.302 0.143e + 7
0.231 0.76e + 10
0.192 0.49e + 16
0.115 0.14e + 16
9.2e- 0.82e + 18

0.530 0.39e + 17
0.385 0.44e + 17
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shows some of the results for example 4: A and B are upper triangular [24]: A
Jm( 1, -1 ), B Jn(-1 + c, where Jn(d, s) denotes a Jordan block of dimension n
with dand s as diagonal and superdiagonal elements, respectively, and a real > 0. Example
4 is an ill-conditioned problem with multiple eigenvalues (A and -B have the eigenvalues
and a, respectively). The uniprocessor results in Tables 3.1 and 3.2 are computed

on an ALLIANT FX/2816 system.
For the examples below the horizontal line in Table 3.2 we have computed the

Frobenius norm-based estimator as IIx lIFI IICIIF. The reason is that IIx liF/(mn) 112

overestimates the true value of sep- (A, -B). This can only happen when we have a
very ill conditioned problem O’mi (Z) is close to zero) giving solutions ofsome subsystems
with very large components and when we get cancellation of terms in the updating and
solving phase of the system related to the sep- estimator. We also see that the 1-norm-
based estimator overestimates, too. Since the condition number sep- nearly equals 1/
macheps, the "true" values of sep- and z-’ I1 are likely to be inaccurate. Note that
in all these cases the inverse of both estimators is zero to machine precision and signals
the extreme ill-conditioning correctly. Of the 20 results presented in Table 3.1, the Fro-
benius norm-based estimator gave somewhat better results in 19 cases (PF >= P ). In 14
of 20 results, PF >= ql. Of the first seven results presented in Table 3.2, PF >= P in all
cases, while PF <= ql.

Accuracy and reliability results for large problems are difficult to compute. One
problem is that it is very expensive to compute the exact value of the smallest singular
value of Z In (R) A + B 7r (R) Im. For example, if m n 1024, then Z requires 8796
Gbytes of memory to store and about 10 8 flops to get the exact value of sep- (A, -B).
Therefore, we have to rely on examples where we know or can "easily" estimate the true
value of sep- (A, -B). In Table 3.3 we show some results for example 5. Let aii
bii 1.0 for all i, and all nonzero aij bo 1.O/(mn) for 4: j. Then O’min(Z tends to
2 as m and n tend to infinity. A and B tend to the identity matrix I at the same time.
The uniprocessor results in Table 3.3 are computed on an IBM 3090 VF/600J system.
For this problem, up to as large as we could handle (m n 1024), the Frobenius
norm-based estimate of sep- (A, -B) is exact to two decimals precision (PF ). The
1-norm-based estimate of sep -l (A, -B) differs approximately with a factor (mn) 1/2

from the predicted value, which is due to the fact that z-’ll z-’ll for this example.
This means that PF q and that IIz - 11 is accurately estimated, but the accuracy
decreases as a function of m and n when we estimate IIz-’l12 with s (3.4), which is the
quantity required by the error bounds in 3.

Note that since both estimators are based on heuristics, there is no guarantee that
they will always compute a good estimate of sep -l (A, -B). See also the counterexamples

TABLE 3.3
Accuracy and reliability results for example 5.

-1
Ex. m n p, ITER T/TF PF PF/Pl O’mi (Z)

0.100e + 1.0 0.100e + 1.0 0.500
8 8 0.137 5 2.0 0.100e + 7.3 0.504

32 32 0.322e 5 3.1 0.100e + 31.1 0.500
64 64 0.159e 5 4.8 0.100e + 62.9 0.500(es)
128 128 0.787e 2 5 5.0 0.100e + 127.1 -"-
256 256 0.392e 2 5 4.9 0.100e + 255.1 -"-
512 512 0.195e 2 5 5.0 0.100e + 512.8 -"-
1024 1024 0.977e 3 5 4.8 0.100e + 1023.5 -"-
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in [5] and [19] and the discussion in [14] and [15]. Recently, the preliminary version
of the code for estimating sep -l (A, -B) in LAPACK [1] became available to us. We
have repeated all tests presented here with that code and received similar results as with
our 1-norm-based estimator.

4. Shared memory versus distributed memory block algorithms. In order to effi-
ciently compute bounds (discussed in 2) for large problems on high performance com-
puters, the sep- (A, -B)estimators have been implemented in our shared memory and
distributed memory block algorithms for solving the triangular Sylvester equation. Besides
the qualitative comparison of the 1-norm-based and Frobenius norm-based estimators
in 3, we evaluate the applicability ofthe estimators with respect to the two most common
paradigms of commercially available multiprocessor systems: distributed memory mul-
ticomputers (DMM) and shared memory multiprocessors (SMM). As background, we
shortly review the characteristics of our parallel block algorithms.

The level-3 algorithm TSYLV_B (see Fig. 1.1 has an inherent parallelism at the
block level similar to the elementwise algorithm 1.2 ): (i) X-blocks on the same diagonal
can be computed in parallel, (ii) the updating ofblocks in C can be done in parallel (for
details, see [16] and [17]). The parallelization of TSYLV_B differs somewhat for the
shared memory and distributed memory target MIMD machines (ALLIANT FX/8 and
Intel iPSC/2 hypercube, respectively). The implementation languages used are C for
iPSC/2 (dynamic allocation of arrays makes it easy to handle messages and storage
allocation on the local processors) and Fortran 77 for ALLIANT FX/8 (optimized level-
3 BLAS 8 exists). Since two-dimensional arrays are stored rowwise in C and columnwise
in Fortran, we choose the orientation of the block algorithms accordingly. Since most of
the work are matrix-matrix operations (updatings of C) or matrix-vector operations
(solve subsystems), processors are preferably equipped with vector facilities (i.e., of
SIMD type).

In the shared memory block algorithm the two updating loops in TSYLV_B are
merged into one loop, which then is parallelized. Subsystems are solved sequentially and
block columnwise. Inside a subsystem we can utilize vectorization, vector concurrency,
or COVI-mode (concurrent outer vector inner; for details, see 16 ). Ifwe both compute
a lower bound for sep- (A, -B) and solve the Sylvester equation, we can concurrently
solve the M-by-N subsystems belonging to the Sylvester equation and the sep- (A, -B)
estimator, respectively. Separate codes are handling the triangular and the quasi-triangular
cases. The code handling the quasi-triangular case can with some loss of efficiency be
used on triangular problems.

In the distributed memory block algorithms the two outermost loops in TSYLV_B
are exchanged and then the outermost loop is parallelized. Subsystems are solved diag-
onalwise (starting at the (nb_A, )-block of X) and possibly concurrently. No other
parallelism, except possibly vectorization, is performed inside a subsystem. The solution
of subsystems can be seen as a wavefront starting at the southwest corner of X and
propagating to the northeast corner. Block row and block column updates are performed
concurrently over the two updating loops. Since block rows are wrap-mapped onto the
processors, a specific block row will be updated by a single processor, while a block
column will be updated by possibly all processors (see [17] for details).

As mentioned above, data are distributed by row-block-wrap-mapping, i.e., contig-
uous blocks of rows are assigned to the nodes in the usual wraparound fashion. The
distributed memory algorithms are: DRB_AC, DRB_ABC, and a ring variant of
DRB_AC. The first two algorithms are of fan-out type, i.e., messages are broadcasted
to all processors by utilizing the direct connect module ofthe iPSC/2 (cut-through rout-
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ing). In DRB_AC, matrices A and C are distributed by row-block-wrap-mapping and
all nodes store B. However, if there is not enough memory on the local processors, we
may also distribute B over the processors, which is done in DRB_ABC. The arrival of
X-blocks in the fan-out algorithms is to some extent nondeterministic and requires some
extra logic and checking. In the ring variant of DRB_AC the arrival of X-blocks is
deterministic, which makes the algorithm easier to understand and its behaviour pre-
dictable. Moreover, it is possible to implement a ring-oriented distributed algorithm on
a shared memory MIMD machine. Performance results show that there is no loss of
efficiency over 5 percent for the ring variant ofDRB_AC compared to the fan-out version,
even though the balancing of communication is worse for the ring variant 21 ].

The scalar (SX) and vector (VX) versions of our distributed implementations are
textually similar and handle both the triangular and the quasi-triangular cases. The only
difference is what subroutine library we use and what memory space for arrays is allocated.
Theoretical performance models of the distributed algorithms show good agreement be-
tween predicted and real performance 17 ], 21 and are used to predict near-to-optimal
block sizes Mand N. We have also investigated different strategies for variable blocking,
but our experience is that the static choice ofblock sizes is preferable [21 ].

All parallel block algorithms have the option to compute a lower bound of
sep- (A, -B). The Frobenius norm-based estimator SF is straightforwardly and efficiently
implemented in both the shared memory and distributed block algorithms. For example,
the node program ofthe distributed algorithms is extended with algorithm BSOLVE (see
Fig. 3.1 for computing local contributions to the estimator. The data flow and parallelism
are similar for SF and the parallel triangular Sylvester solvers and SF can therefore be
computed almost as efficiently as solving one triangular Sylvester equation (see the results
in 5).

This is not the case for the 1-norm-based estimator. First ofall, computing s involves
the solution of several (ITER) triangular Sylvester equations and since all processors
must have access to the vector c after each Sylvester solve (see Fig. 3.2), this imposes a
synchronization bottleneck for any parallel algorithm that implements s. Further, some
ofthe iterations correspond to solving a transposed Sylvester equation, which has different
access patterns of the matrices A, B, and C, respectively. This is not a big problem for
SMM but it is for DMM. Let us illustrate the intricacies for the ring variant ofDRB_AC.
Here B is stored on each node and A and C are row-block-wrap-mapped, as described
earlier. In order to obtain a similar distributed block algorithm for the transposed problem,
A r must also be distributed similarly, i.e., we also require A to be column-block-wrap-
mapped. This requires more local memory and extra communication overhead propor-
tional to the message traffic involved by A in the ring variant of DRB_AC (for details,
see [17] and [19]).

5. Performance results. For performance results of the distributed memory and
shared memory block algorithms we refer to [17 ]-[ 19] and [21]. Here we only give a
briefperformance comparison between the shared memory implementations (ALLIANT
FX/ 8 and the distributed memory implementations (iPSC/ 2 hypercube). Table 5.1
displays execution times in seconds for the scalar (SX) and vector (VX) versions of the
distributed algorithm DRB_AC (using 64 and 16 processors, respectively) and for the
shared memory implementation ofTSYLV_B (using eight processors). When running
the SX and VX versions ofDRB_AC on one processor, we have seen that the VX version
is at most a factor 3.125 times faster. The results in Table 5.1 show that there is a relative
gain in using vector boards on the iPSC/2 hypercube.



-1PARALLEL BLOCK ALGORITHMS FOR ESTIMATING sep

TABLE 5.1
Timing results for distributed and shared memory block algorithms.

m n DRB__AC(SX) 64P DRB._AC(VX) 16P TSYLV_B 8P

256 4.57 4.54 6.9
256* 5.96 5.75 16.32
512 9.02 10.38 21.37

1024f 249.7 102.8

* This is a strict quasi-triangular problem, i.e., the block diagonal of A and B
consist of m/2 and n/2 2-by-2 blocks, respectively.

f DRB__ABC is used since DRB_AC could not solve such a large problem. Each
node stores one row block of B. Extra communication cost: each node needs all p
row blocks of Bnb_A/p times.
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For an increasing number of processors, there is a relative gain in both computing
a Frobenius norm-based boundfor sep -1 (A, -B) and solving the Sylvester equation at
the same time (illustrated in Table 5.2). The top line shows an example run on the
ALLIANT FX/8 with eight processors, m n 256 and each third and fourth diagonal
block in A and B is 2-by-2. The results beyond the horizontal line correspond to
DRB_AC (SX) run on the iPSC/2 with m n 256, A and B strict upper triangular,
and p 8, 16, and 64. All times T are in seconds. Note the relatively bad performance
of the parallel shared memory version of TSYLV_B in the "condition estimator" case.
The explanation is that the code for solving the upper triangular Sylvester equation uses
the optimized level-2 BLAS routine DTRSV (triangular solve), while the Frobenius
norm-based estimator uses BSOLVE. This effect almost disappears when we both perform
a Sylvester solve and compute a sep- estimator.

6. Conclusions. Block algorithms are appropriate for solving the triangular Sylvester
equation (1.1) on distributed memory multicomputers (DMM) as well as on shared
memory multiprocessors (SMM) with memory hierarchy. The choice of block sizes is
very much architecture-dependent. The communication/computation cost ratio tc/tA is
an important characteristic that determines the overall efficiency ofdistributed algorithms.
Here tc denotes the cost ofcommunication between adjacent nodes in a message passing
environment (350 #s (microseconds) for the iPSC/2) and tA denotes the cost for one
flop 1.54 #s for the iPSC/2 with SX boards). A DMM with large ratio (227 for the
iPSC/2) requires a more coarse grain block algorithm. Theoretical performance models
for the distributed block algorithms predict near-to-optimal block sizes 17 ], 21 ]. We
have seldom seen more than 10 percent better performance on p 32 and 64 processors.

TABLE 5.2
Timing comparisonsfor Sylvester solver and sep- estimator.

m n p T(AX + XB C) T(sep-(A, -B)) T (both) gain in %

256 8 15.61 22.77 24.16 37.1

256 8 23.61 23.71 47.59 -0.6
256 16 12.51 12.56 24.91 0.6
256 64 6.85 6.86 10.57 22.9
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The communication cost for a corresponding SMM ratio includes the cost oftransferring
data between different levels in the memory hierarchy (e.g., a global main memory, a
global cache memory, and vector registers as for the ALLIANT FX/8 [10]. The choice
of block size is now determined so that data can be reused as much as possible at the
top of the hierarchy (fit the size of cache memory and match the length of the vector
registers).

The distributed memory and shared memory block algorithms have successfully
been used to compute reliable estimates of sep -1 (A, -B). Two estimators, one based
on the Frobenius norm (SF) and one based on the 1-norm (Sl), have been described. By
replacing sep- (A, -B) by one of the estimators SF and s, respectively, we obtain
computable error bounds for the invariant subspace problem and for the Sylvester equation
itself (see also 1]). Uniprocessor results show that the 1-norm-based estimator is, on
average, between four and five times as expensive as the Frobenius norm-based estimator.
The estimators give very accurate results, on average, within a factor 5 and seldom worse
than within a factor 100 1000 for large problems) of the true value of sep -1 (A, -B)
for the problems we have studied. In the evaluation of the estimators with respect to the
DMM and SMM parallel paradigms, we conclude that SF can be efficiently implemented
in our parallel triangular solvers, while, e.g., a distributed implementation of Sl both
requires extra memory and induces extra communication overhead. In summary, the
reliability ofboth estimators is very good but, overall, the Frobenius norm-based estimator
is to be preferred since it has a much better efficiency, both in sequential and parallel
settings.

As the sep- function is the natural condition number for the invariant subspace
problem M- hi, the dif-l function is the corresponding condition number for the
deflating subspace problem ofM- XN [22]. Now block diagonalizing the pair (M, N)
as in (3.1) corresponds to solving for R and L in the generalized Sylvester equation
(AR + LB, DR + LE) C, F). Generalized Schur methods for solving the generalized
Sylvester equation with Frobenius norm-based dif- estimators are presented in 19].
The distributed and shared memory block algorithms presented here can straightforwardly
be extended to the generalized Sylvester equation. Note that Z-Tc (see Fig. 3.2), where
now Z is a matrix representation of the generalized triangular Sylvester equation, does
not generally correspond to solving a transposed system as in the standard case. So it is
not clear that a generalized triangular Sylvester solver can be used to compute Z-rc.
The applicability of the Frobenius norm-based estimator to both the standard and gen-
eralized problems makes it even more attractive.

Acknowledgments. The authors are grateful for suggestions from the referees that
made the efficiency and accuracy comparison between the estimators more complete.
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Abstract. In this paper, the successive overrelaxation (SOR) method for the solution of a linear system
whose matrix coefficient A is block p-cyclic consistently ordered is discussed. In recent works, many researchers
considered some "natural" assumptions on the spectrum a(Jp) of the block Jacobi matrix Jp associated with A
and answered the following question: What is the repartitioning of A into a block q-cyclic form (2 _-< q _-< p)
which yields the best optimal SOR method for the solution ofthe given system? In this paper, the same question
is answered in the most general case considered so far, that is, under the assumption a(J) c [-ap, 3u] R\

1, o }, a, >_- 0. It is also shown that the results in all previous works are recovered as particular subcases
of the case considered here.

Key words, iterative solution of linear systems, successive overrelaxation (SOR) iterative method, block
p-cyclic consistently ordered matrices, optimal relaxation factor
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1. Introduction and preliminaries. For the solution ofthe nonsingular linear system

1.1 Ax=(D-L- U)x b,

where A e C n’n is partitioned into a p p block form, D := diag (All, A22, App),
with diagonal blocks square and nonsingular, and L and U strictly lower and strictly
upper triangular matrices, respectively, we consider the block successive overrelaxation
(SOR) method

(1.2) x(m+l)=.,ox(m)+w(D-oL)-lb, m=0, 1,2,

(1.3) ’,o:=(O-ooL)-l[( -w)O+wU],

with x 0) arbitrary and the relaxation factor w e (0, 2). As is known (see, e.g., Varga 17
or Young [20]), a measure of the asymptotic rate of convergence of (1.2)-(1.3) is
0(), where 0(’) denotes spectral radius. For convergence, O() < constitutes a
necessary and sufficient condition and it holds that the smaller 0()(< is, the faster
the asymptotic convergence is. So the problem of the determination of the optimal w,
namely, that which minimizes 0(), is of vital importance.

To solve the problem in question, we usually assume a given structure for the spec-
trum a(T) of the Jacobi matrix

(1.4) T: D-I(L + U)

associated with A in 1.1 ). This problem has not been solved in the general case. However,
ifA possesses Young’s "propertyA" (Young 19 ]; see also 17 or 20 ]) or, more generally,
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Varga’s "block p-cyclic consistently ordered" property 16 ]; see also 17 or 20 ]), then
under some further assumptions on a(TP), for example, "a( Tp) is nonnegative" and
"p(T) < I," we can determine optimal values for oa and p(q), denoted from now on
by wp and op, respectively. In Varga’s work 16 ], as well as in other researchers’ work
that followed (see, e.g., [8], [10], [5], [18 ]), oap and op were found under various as-
sumptions on (T).

In this paper, it is assumed that A possesses the block p-cyclic consistently ordered
property (or A is "p-cyclic" for short) and is of the form

(1.5) A

-A 0 0

A21 A22 0
0 A32 A33

Ap,p_

so that its associated Jacobi matrix Jp is given by

"0 0 0

T200’’
0 T 0

(1.6) Jp := T

Alp

App

TI"

Tp 0

where Tj := -AAjk, k p forj 1, and k j forj 2( )p. From now on, the
SOR method 1.2)-( 1.3 ), with A being of the form 1.5 ), will be referred to as the "p-
cyclic SOR."

Markham, Neumann, and Plemmons 9 were the first to consider the problem of
repartitioning a 3-cyclic matrix A into a 2-cyclic one for the solution of a least squares
problem (see and 14 ). Based on optimal results obtained previously by Kredell 8
for p 2 and by Niethammer, de Pillis, and Varga [10] for p 3, in the cases of non-
positive spectra a(J2) and r(J33), and by observing that a(J)\ { 0 } = a(J)\ { 0 }, they
came up with two important results. First, the optimal 2-cyclic SOR was better than the
optimal 3-cyclic one, and second, the former method was convergent for any p(J3) <
oo [8] while the latter one was convergent only for p(J3) < 3 [10]. Motivated by their
work and a similar result in the case of a class of monoparametric p-step Euler methods
4 ], Galanis, Hadjidimos, and Noutsos 5 obtained, among other results, the following
more general one. A repartitioning of the p-cyclic matrix A in 1.5 ) into a (p + / 2 ]-
cyclic form (with [s] denoting the integer part of the real number s) in the cases of
nonnegative and nonpositive spectra a(JVp) yielded a better optimal cyclic SOR. So, a
repetitive application of their conclusion leads to the obvious one that a repartitioning
of A into a 2-cyclic form yields, eventually, an optimal 2-cyclic SOR better than the
original optimal p-cyclic one. Furthermore, it is noticed that when we go down, via the
aforementioned successive repartitionings, from the p- to the 2-cyclic SOR, we obtain
better and better optimal q-cyclic SORs, but apparently not all the intermediate values
of q 3( )p are covered. However, the basic idea of repartitioning was being ques-
tioned because there was the impression that whatever was gained by improving on the
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convergence was lost due to the extra arithmetic required per iteration. Then came Pierce
[12 with a very surprising result: By repartitioning a p-cyclic matrix A into a q-cyclic
one (q < p), the arithmetic required for one iteration of either the p- or the q-cyclic SOR
is exactly the same! This is true for any q-cyclic repartitioning, q 2 )p 1, of the p-
cyclic matrix A. For example, ifp 7 in 1.5 ), the 3-cyclic repartitioning of it indicated
below by the solid lines

All

A32 A33
A43

A17

(1.5’) A A44
A54 A55

A65 A66
A76 A77

yields a 3-cyclic SOR that requires exactly the same arithmetic per iteration as the original
7-cyclic SOR.

Pierce, Hadjidimos, and Plemmons [13], based on Pierce’s work [12], settled the
question of the strict decrease of the optimal spectral radii of the q-cyclic SOR obtained
from the repartitioning into a q-cyclic form of the original p-cyclic matrix for all values
of q 2( )p. More specifically, they showed that for a(J,) nonnegative and under the
assumption/9(Jp) < 1,

(1.7) /9</93< </90-1 </90< 1,

while for r(Jpp) nonpositive and under no restriction on/9(Jp), they showed that there
exists a unique k e { 2, p such that

(with k/(k 2) oe for k 2) so that

where q k + )p. Immediately after the result in [13] was established, Eiermann,
Niethammer, and Ruttan 2 raised, indirectly, the question as to what the best repar-
titioning would be if, instead of considering a nonnegative or a nonpositive spectrum for
JpP, one considered a real spectrum. In [2] a numerical example was presented for a 4-
cyclic matrix with r(J) real, /3 0.9, and a [0, 2 ], where -0/4, 4 were the two
extreme eigenvalues of J]. It was shown there that any ordering in terms of increasing
magnitude of/92, /93, /94 (the optimal spectral radii of the q-cyclic SORs corresponding
to 2-, 3-, and 4-cyclic form repartitionings) was obtained as a was allowed to vary in
[0, 2 ]. Also, a particular theoretical example was considered, where for a p-cyclic matrix
with/9(Jp) / < and a(J) real it was shown that/90 </92.

The object of this paper is to give the solution to the problem in the general case of
a p-cyclic consistently ordered matrix of the form (1.5) under the assumption r(J) c
\ {[1, )}. In 2 we present and state the main results followed by a number of
comments and remarks that clarify some basic points. Also, a discussion is presented,
an illustrative table is given, and numerical examples are presented which help one "de-
cide" how to partition A for the best optimal SOR convergence. Finally in 3 we give
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the proofs of the statements of 2, preceded by a number of statements necessary for
the analysis that follows.

Before we close this section, we would like to note the following. First, it is worth
mentioning that the results ofthe present paper can be directly applied for the computation
ofthe steady state distribution vectors of large-scale finite Markov chains that possess p-
cyclic infinitesimal generators. (For this the reader is referred to the most recent work
by Kontovasilis, Plemmons, and Stewart [7].) Second, it should be said that it would be
worth investigating whether the idea of the cyclic repartitioning discussed in this paper
applies to the case where instead of minimizing 0(&), we are interested in minimizing
IIOwm [12, with the integer m being fixed, as has recently been considered by Golub and
de Pillis 6 ].

2. Main results, comments, and discussion.
2.1. The main results. We begin with the statement ofthe following two theorems,

the second of which includes only known results given in a compact form. The proof of
the first theorem can be found in 3.

THEOREM 2.1 (of the best repartitioning). Let Jp be the block Jacobi matrix (1.6)
associated with the linear system 1.1 ), whereA has thep-cyclic consistently orderedform
(1.5), p >_- 3, and let a(J) c [-a, [3], with -a, [3p e a(J), where 0 <= [3 < and
0 <= a < oo. Assume that A is repartitioned into a block q-cyclic consistently orderedform
(2 <- q < p) and denote by OOq and Oq the relaxation factor and the spectral radius ofthe
optimal q-cyclic SOR (q 2( )p). Then thefollowing hold:

(I) If
a p- 2

(2.1) 0_-<< P

then there exists a unique integer { 2, 3, p } satisfying

and such that

(2.3a)

and

pl<Pl-<’’" <02<1

(2.3b) 0l+1<0l+2 <’’" <00< 1.

Furthermore, to each [3 (0, there corresponds a unique value ofa, namely,

given by

201/1_( d- o)BP/I)l/p,(2.4) at,t +
0

where 0 is the unique root, in (0, ), ofthe equation

(2.5) P(l+ 0) l+ -(l+ )l+ p=O,
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such that

(2.6a) Pl < Pl + for ( l-- 2 )tip
(2.6b) pl pl + for c Cl,l + l,

1- )(+ l)/p

(2.6c) Oz> Pz + for cz, +

Consequently, in case (2.6a) the l-cyclic SOR gives the best optimal one, in (2.6c) the
+ )-cyclic SOR gives the best one, while in (2.6b) both the l- and the l + )-cyclic

SOR give the best optimal SOR method.
(II) If

(2.7) p-2<c
p t

then

(2.8) top < op < <o3<o2<1

and the original p-cyclicform gives the best optimal cyclic SOR.
(III) If

(2.9) 1,

where the case 0 is also included, then

(2.10) tOp-" tOp- /93 to2 --/P <

and any one of the q-cyclic Gauss-Seidel methods, q 2( )p, is the best optimal
cyclic SOR.

(IV) If
o p

(2.11) 1<-=<
/3 p-2’

the conclusions are identical to those in case II ).
(V) If

p o
(2.12) p_-- < _-< ,
where / corresponds to the case > O, O, then there exist a unique integer
k e {2, p } such that

(2.13)
k

<to(JP)<= k-2

and a unique integer e 2, min (p 1, k) }, satisfying

(2.14) - < ]
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such that

(2.15)

and

(2.16)

Pl<Pt-l<’’" <P3<P2<l

with q k + )p and with equality holding in ok <= ifand only ifk > 2 and equality
holds in (2.13). Furthermore, for k, the l-cyclic SOR gives the best optimal one.
For l < k to each a (0, ((l + )/(l ))(t+ 1)/p), there corresponds a unique value of
[3, namely

given by

20 /l_( -o)aP/l)I/p

(2.17) /z’z+ + #

where # is the unique root, in (0, ), ofthe equation

(2.18)

such that

aP(l-p)l+ -(l+ 1)l+1p=0

(2.19a) Or< 01 +

(2.19b) 0l at + for B {3t,t+ ,
l- )(t+ )/p

(2.19c) Pl>Pl+l forBl,l+<B< a.

Consequently, in case (2.19a) the l-cyclic SOR gives the best optimal one, in case (2.19c)
it is the l + )-cyclic SOR, while in case (2.19b) both the l- and + )-cyclic SOR give
the best optimal cyclic SOR, respectively.

THEOREM 2.2 (of optimal and best optimal values). Under the assumptions of
Theorem 2.1 let O)r and Or denote the relaxation factor and the spectral radius of either
the best optimal or any optimal r-cyclic SOR (provided it converges) corresponding to an
r-cyclic repartitioning ofA in 1.5 with r { 2, 3, p }. Then O)r and Or are givenfrom
the equations

(2.20) ( Olr-" [r) ) Olr qc" {r)
TO) r__ Olr’-- o) 1):0

and

Ol -l" B ( Ol ql- [ )(2.21) pr--(r_Or-------(o)r- 1)-- TO)

where O) is the unique positive root of(2.20) in

max +rmin 1, +
r’4- a r
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and where

r--2[3P/r __p/r t(r--2)r/p

(2.22a) O/r r iff -<

(2.22b) O/r Olp/r,

(2.22c) Olr-Ol
p/r r=r--20p/r iff(r)r/ptr -2 <--"

2.2. Comments and remarks. After having stated Theorems 2.1 and 2.2, it is nec-
essary to make a number of comments and remarks.

(i) It should be stressed that some ofthe relations in Theorem 2.1 must be interpreted
in a broader sense. For example, in case (V) if k 2, then the fight-hand side of (2.13
should be considered as being and the corresponding inequality as a strict one, and
since 2 in this case, the same interpretation applies to (2.14). Moreover, (2.15 and
(2.16) will be equivalent to 02 < and/92 < =< p(Wq), q 3 )p, respectively.

(ii) As is seen in Theorem 2.1, the decisive factor relating to which out of all possible
cyclic repartitionings gives the best optimal r-cyclic SOR depends mainly on the relative
position of the ratio a/13 with respect to the numbers (p 2)/p, 1, and p/(p 2).

(iii) In cases (I) and (V) ofTheorem 2.1 the ratio a/ alone does not specify which
one out ofthe two possible successive repartitionings gives the best optimal r-cyclic SOR.
Then the value of a in the former case and both values of a and/3 in the latter one are
the additional decisive factors.

(iv) The particular cases (a) a 0,/3 > 0, (b) a =/3 0, and (c) a > 0,/3 0,
which were given here as special subcases, are the ones that were considered and solved
in [13]. By just looking at the results given in cases (I) and (V) of Theorem 2.1 it is
concluded that those obtained in [13] for a(J) nonnegative hold also in case (I) for
2 and a < 0/2,3, while those for a(Jpp) nonpositive hold in case (V) for k 2 and for

2 < k and/3 </32,3.
(v) The numerical example in [2], mentioned in the Introduction, where p 4,

/3 0.9, and c was taking values in [0, 2 ], is in agreement with the theoretical results
ofTheorem 2.1. Also, the already mentioned theoretical example in 2 ], in which it was
shown that op < 02, is a very special case of case (II) of Theorem 2.1.

(vi) Although it is not explicitly stated in Theorem 2.1 we can easily decide about
the relative magnitude of/gql and ou2 corresponding to any q- and q2-cyclic repartitionings
ofA even if this is not directly presented here. For example, if the assumptions of case
(I) of the theorem are satisfied, where q 6 { 2, }, q2 E { l + 1, p }, ao,,a can
be found in a way quite analogous to that in which at,t + was found and a decision along
the lines suggested by (2.6) can be made. The same applies to case (V) where for < k
the numbers q,,q play similar roles to those of aq,,q in case (I). In fact, based on this
observation, we can devise a simple algorithm to order all Oq’S, q 2( )p, in increasing
order of magnitude in both cases (I) and (V).

(vii) As was already mentioned, Theorem 2.2 is not a new one. It is simply adjusted
to be in agreement with the notation of Theorem 2.1, and is a compact form of all the
known theorems concerned with optimal values for the r-cyclic SOR, r 2 )p, when
a(Jpp) c \ {[1, )}. It follows a pattern already presented in [3]. So, the classical
results of Young [19], a(J) >= 0, O(J2) < 1, Varga [16 ], r(J) >= 0, p -> 3, 0(Jp) < 1,
and also of Kredell [8], a(J22) =< 0, Niethammer, de Pillis, and Varga [10], r(J33) =< 0,
O(J3) < 3, Wild and Niethammer [18 ], and Galanis, Hadjidimos, and Noutsos [5 ],
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coveting both the nonnegative and the nonpositive cases for a(J), can be easily recovered.
Furthermore, Theorems and 2 ofEiermann, Niethammer, and Ruttan [2 are included
in Theorem 2.2, which is also important.

(viii) The methods used in 3 to prove Theorem 2.1 are "elementary" algebraic
methods. We did not try to use "directly" complex analysis statements and the "elegant"
geometric approach involving hypocycloids of cusped and shortened type as was done
in 11 ], 4 ], 18 ], 5 ], and especially in 2 ]. This was because it "seemed" that we could
not always have a particular region strictly contained within another, as, e.g., in 2, Thm.
3]. So we could not draw conclusions as to the relative magnitude of the corresponding
spectral radii ofthe optimal SORs involved, while these conclusions were drawn "easily"
by using algebraic methods.

2.3. How can one "decide" how to repartition? Given a p-cyclic (p >= 3) matrix A
ofthe form 1.5 ), the practical question, which arises naturally, is: How can one "decide"
how to repartition A so that the best possible optimal SOR convergence can be achieved?
Or, in other words, how can one make use ofthe findings ofTheorem 2.1 and determine
the cyclicity r that gives the best repartitioning?

We answer this question under the assumption that a(J) is real. In such a case we
estimate lower and upper bounds for the spectrum in question by considering any ofthe
diagonal blocks of JpP, preferably those of the smallest possible order. Let these bounds
be _b and b, respectively. If b >_- 1, then no optimal convergent SOR method can be
obtained. If b < 1, then set

(2.23) ap min ( O,_b ), /’ max b, 0 },
with a, fl >_- 0, and form the ratio a/. The value of this ratio indicates the basic case
(or subcase) in Table in which the cyclicity r of the best repartitioning is to be sought.
In subcase I (ii) (V(i)) the integer and the real at,t + (the integers k, and, if < k, the
real/t, / 1) have to be determined in order to distinguish further subcases. Having obtained
r from Table l, the optimal parameters ofthe r-cyclic SOR can be determined by applying
(2.20)-(2.21 of Theorem 2.2, with ar, fir being given from the corresponding case of
(2.22), essentially indicated by the ratio a/fl (or /a) considered previously.

2.4. Numerical examples. In this section 14 numerical examples are given in order
to show how easy it is to make use of Table 1. These examples cover all possible cases
and subcases except the two trivial ones I (iib) (a a1,1 / and V(iBb) ( Bt,t / and
are presented in the self-explained Table 2. The cyclicity of the matrix coefficient A in
1.5 is considered to be p 4, 0.8 (< in all but example 14, where 0, and a

is given 14 Values in [0, 5]. In examples and 14 we are obviously in subcases I (i) and
V(ii), respectively, so the cyclicity r 2 ofthe best repartitioning is immediately implied
from Table 1. Since (p 2)/p 0.5 and p/(p 2) 2, we readily see from Table
that examples 6, 7, and 8 are in cases II, III, and IV, respectively, hence the corresponding
values for r follow directly, while examples 2-4 are in subcase II (ii) and examples 9-13
in V(i). The integer is to be found in all the latter examples (examples 2-4, 9-13)
while k is to be found only when a/fl > p(p 2) 2, that is, in examples 9-13. In
examples 2 and 3, l 2 and therefore a2,3 is determined from the corresponding equations
(2.4)-(2.5). Since, as is seen, a < a2,3 and a > a2,3, respectively, the former example is
in subcase I (iia), while the latter one is in I (iic), and the best cyclicities r 2 and 3 are
readily implied. The situation in examples 4 and 5 is similar except that 3. In examples
9 and 10, due to the fact that 3 < k 4, 3,4 has to be determined using (2.17)-
(2.18). Obviously, there are two different values for 3,4 because of the two different
values for a. It is then readily found out that in example 9 we are in subcase V(iBc),
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TABLE
Cyclicity ofthe best repartitioning.

Case
Value or domain
of the ratio

Values of and at.t+ (or
if further subcases have

to be considered Further subcases

Cyclicity
of the best

repartitioning

(i) 0
(0 o </3 < 1)

(ii) (0, (p- 2)/p) Determine the largest integer

lG {2, 3, ,p- 1}:
((1- 2)/ly =< (a//3)

and then at,t+ from (2.4)-(2.5)

1,1+ 1"
l+1

II [(p- 2/p), 1)

III
(0 =< c =/3 < l)

2,3, ,p?

IV (1, p/(p 2)]

V (i) (p/(p 2), ) Determine the largest integers

kG {2, 3, ,p}:
((k- 2)/k) <- (l/aP),
l {2, 3, ..., min (p- 1, k)}

((l- 2)/l)l<=(p

(ii) c
(a > 0,/3 0)

and, if < k, then/3u
from (2.17)-(2.18)

(A) k
(B) l<k

(a) ((1- 2)/l)t/Pa
<= <

(b) /3 =/3t, +,

(c)/3,+, </3
< ((l- )/(l+ 1))(l+l)/pot

/,l+ 1"
l+1

Either will do.

" Any will do. The optimal SOR is the Gauss-Seidel method.

TABLE 2
Cyclicity r ofthe best repartitioningfor p 4.

Example (a,/3) /3 k al, 1, /31,1+
Case or subcase

in Table

(0, 0.8) 0 2*
2 (0.15, 0.8) 0.1875 2
3 (0.3, 0.8) 0.375 2
4 (0.36, 0.8) 0.45 3
5 (0.38, 0.8) 0.475 3
6 (0.5, 0.8) 0.625
7 (0.8, 0.8)
8 (1.5, 0.8) 1.875
9 (1.62, 0.8) 2.025 4 3
10 (1.7, 0.8) 2.125 4 3
11 (1.9, 0.8) 2.375 4 2
12 (2.0, 0.8) 2.5 4 2
13 (3.5, 0.8) 4.375 2 2
14 (5.0, 0) o 2* 2*

a2,3 0.2183632

a3.4 0.3701637

/33,4 0.7946596
/33,4 0.8374480
/32.3 0.7861522
/32,3 0.8419411

I(i)
I(iia)
I(iic)
I(iia)
I(iic)
II
III
IV
V(iBc)
V(iBa)
V(iBe)
V(iBa)
V(iA)
V(ii)

2
2
3
3
4
4

2,3,4
4
4
3
3
2
2
2

No need to be given!
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while in example 10 we are in V(iBa). Examples 11 and 12 are similar to the two
previous ones except that 2. Finally, in example 13 it is found out that k 2;
we are therefore in subcase V(iA), and the conclusion r 2 readily follows from
Table 1.

In connection with examples 12, 13, and 14 it would be worth noting the following:
In all three of them and in view of the fact that a >= p(p 2) 2, the original 4-cyclic
SOR diverges for any value of w. However, in example 12 both the 3-cyclic and the 2-
cyclic repartitionings lead to convergent SORs and the best out of the two optimal ones
happens to be the 2-cyclic SOR. On the other hand, in examples 13 and 4 and because
of the additional fact that a4/3 > 3/(3 2) 3, even the 3-cyclic repartitioning fails to
produce an SOR that converges for some o. So, in the last two examples it is only the
2-cyclic repartitioning that (always) produces convergent SORs and leads, therefore, to
the best SOR method.

3. Proof of Theorem 2.1.
3.1. Introductory basic material. The key to the proof of Theorem 2.1 is to prove

case (II) first. For this and for all the other results, the analysis is mainly based on the
recent works by Wild and Niethammer [18]; Galanis, Hadjidimos, and Noutsos [5];
Pierce, Hadjidimos, and Plemmons [13]; and Eiermann, Niethammer, and Ruttan [2].
We begin our analysis by stating and proving four lemmas that will be very useful in the
sequel.

LEMMA 3.1. Thefunction

(31) y(x) (x-2)x xe[2, ),

is strictly increasing.
Proof. On differentiating (3.1), we obtain

(3.2) dy/dx= y(x)z(x),

where

(3.3) z(x):=ln(X-2) x+ -1
x x-2

z(x) is well defined and differentiable in (2, ). Thus, it is readily found out that

(3.4) dz/dx’-.,-4<O, x6(2, ),

where for convenience we use the notation "" to denote equality of sign between two
expressions. Equations (3.4) imply that z(x) strictly decreases with x and therefore

inf z(x) lim z(x) 0,
xe (2,oo) x’-"

in view of (3.3). So, z(x) > 0 and from (3.2), by virtue of (3.1), it is concluded that
y(x) strictly increases in (2, ), taking on positive values. Noting that y(x) is continuous
on [2, oe and that y(2) 0 completes the proof.

COROLLARY 3.1. For any integer p >= 3, there holds:

3.5 y( 2 < y( 3 <... < y(p- < y(p),

with y being thefunction in (3.1).
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LEMMA 3.2. Let p >= 3 be a given integer and a, b be positive constants satisfying

with b < 1. Then thefunction

(3.6)
X 1/xg(x) 1--(bl/X-a ),

definedfor all real x e 2, p], takes on only positive values.
Proof. For a >= b the validity of the statement is obvious. For a < b (< ), it is

(3.7) g(x)2 b 1/x

x

To prove that the fight-hand side of (3.7) is positive, since 0 < b < 1, is equivalent to
proving that

(3.8) = x

But

(3.9)
b- p x

with the first inequality in (3.9) holding by our assumptions on a and b and the second
one by virtue of Lemma 3.1. This proves that g(x) in (3.6) is always positive. q

LEMMA 3.3. Let c and d be distinct constants satisfying

(3.10) 0<c<l, 0<d.

Then thefunction

(3.11)
riO): [(c-d)o+(c+ d)] In (1/2[(c-d)o+(c+ d)])

+(-c In c+d In d)o+(-c In c-d In d), e[o, ],

is strictly increasing, taking on only negative values and the value zero at to 1.
Proof. f(to) is a well defined and twice continuously differentiable function on

[0, ]. It is easy to derive that

(3.12) f’(to)=(c-d){1 +In (1/2[(c-d)to+(c+d)])} +(-c In c+d In d)

and

(c-d) 2

(3.13) f"(to)= >0 Vtoe[O, 1].
(c- d)to + (c+ d)

Thusf’(to) strictly increases with to in [0, 1]. Hence

(3.14)

min f’(to)=f’(0) l+ln
pe[0,1] (1 +J)]}-{1 +ln [(1 +)

] =’z(x),
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where we have set x cd. The function z(x) in (3.14) is twice continuously differentiable.
So it can be obtained that

and

dz_x-1 (x+l)dx x+
I-ln

2x

d2z
(3.15) dx----5 x- 1.

Consequently, if c > d, then x > and from (3.15) it is concluded that dz/dx strictly
increases, as a function ofx e 1, ), and thus

min dz--= l =0.
xtl,o) dx x

Therefore, dz/dx is always positive in 1, ), implying that z(x) strictly increases with
x. So from (3.12) and (3.14) it is obtained that

(3.16) min f’(p)=f’(O)>d inf z(x)=0.
a [0,1] xe(1,o)

If c < d, then x < and from (3.15) we have that dz/dx strictly decreases with x
increasing in (0, 1], and

min
dz dz

O.
x(o,l dx dX

Therefore we arrive at the same relations (3.16) as before. However, the result (3.16)
and the strictly increasing nature off’(p) in [0, ], proved previously, imply that f(o)
is strictly increasing in [0, ]. On the other hand,

max f(p)=f( 1)=0,
o [0,]

as is readily checked, which proves the lemma. E]

LEMMA 3.4. Let the relation

(3.17) F(x, )’= -( 1/2 [(b /x- a/)o +(b 1/ + a /)]) 0,

in x and p be given, where p >= 3 is a known integer, and a and b (< positive con-
stants satisfying

b- p

Then o is a well-definedfunction ofxfor all x [2, p and x is a well-definedfunction
ofo [0, 1]. Moreover, p is a strictly decreasingfunction ofx [2, p].

Proof. Obviously, F as well as

Fx -( 1/2[(b/X-a/X)o+(bl/X+ al/X)])x

{In (1/2[(bl/X-al/X)o+(bl/X+a/X)])

1/2[(-( 1/xZ)b /x In b+( 1/xZ)a /x In a)p
+(_..-_( 1/xZ)b /x In b-( 1/xZ)a /x In a)]]+ x 1/2 ii fT-;-_ a i/x )p + i-b7;- 77]
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and

Fo= 1-x(1/2[(b/X-a/X)p+(bl/X+a/X)])x- 1/2(b/X-al/X),
which can be rewritten by using (3.17) as

(3.18)

and

Fx=_1/2p- /x {[ (b/X_a/X)p+(b/X+a/X)]

ln (1/2[(b/X-a/X)o+(bl/X+a/X)])
+(-b/x lnb/X+a/x lna/X)o

+(-b/x lnb/X-a/x lna/X)}

X l/x l/x(3.19) F,,= l--(b/-a
respectively, are continuous functions of x and 0 for all x [2, p] and o [0, 1]. Fur-
thermore and for all the aforementioned values ofx and o, F >= 0 (with equality holding
for o by virtue of Lemma 3.3, with c b /x and d a /x, while Fp > 0 by virtue
ofLemma 3.2. Therefore, by the Implicit Function Theorem (see, e.g., [15, Thm. 14.1]),
o is a well-defined function of x [2, p] and x is a well-defined function of o [0, 1].
Moreover, do/dx exists, is continuous, and is given by

Fx(3.20) o’= -=<0,F.
with equality holding for o 1. So p is a strictly decreasing function of x 2, p] and
the proof is complete.

Now we have all the necessary tools to prove case (II) of Theorem 2.1 and subse-
quently all the other cases of the theorem in question.

3.2. Proof of ease (II) of Theorem 2.1. Let q refer to any q-cyclic repartitioning
(as well as to p itself) of the p-cyclic matrix in 1.5 and let the assumptions of case (II)
of Theorem 2.1 hold. As is known from [13], there holds

(3.21) a(J)\ { 0 r(JpP)\ { 0 }, q=Z(1)p.

Then, if- aqq and/3g denote the extreme eigenvalues of Joq, where aq,/3q > 0, it will be

Otq a /q, q b /q(3.22)

where we have set

(3.23)

In our case we have

implying

a ap, b P.

1>-- >=
p

Now from 3.22)-(3.23) and by Corollary 3.1, we readily obtain that

l>q= q
q=2(1)p,
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or equivalently,

(3.24)
q- 2 < O/q

=re<l, q=2(1)p.
q /q

Thus the optimal parameters of the q-cyclic SOR will be determined from (2.20) and
(2.21 of Theorem 2.2, with r q and O/r and/r being given by (2.22b), where in view
of(3.22),

Or-- al/q r-- bl/q

Consequently, O)q is the unique positive root in

(1 1+ bl/q-al/q)bl/q+ai

of the equation

(3.25) ( (al/q+ bl/q) )q (a/q+
2

o
(bl/q_al/q) (oo- 1)=0,

while Oq is given by

(al/q+b /q) ((a/q+b/q) )
q

(3.26) ’q=(bl/q-al/q) (Wq- 1)=
2

0)q

Dropping the index q from Oq, for simplicity, and eliminating (.Oq from the two equations
in (3.26), we obtain

(3.27) p={1/2[(bl/q-al/q)p+(bl/q+al/q)]} q, q=2(1)p.

Now we embed the set of integers { 2, 3, ..., p } into the set of real numbers of the
closed interval 2, p ]. We then observe that the difference of the two members of 3.27
set equal to zero is nothing but the relation F(x, ) 0 in (3.17) of Lemma 3.4, where
the real q now plays the role of the real x in (3.17 ). As can be readily checked, all other
assumptions ofLemma 3.4 hold. Therefore, all the conclusions of this lemma hold true.
Consequently, 0 is a strictly decreasing function of x [2, p], which effectively proves
(2.8).

3.3. Proof of ease (I) of Theorem 2.1. This time condition (2.1) is satisfied or,
equivalently,

0__<- <
p

From these inequalities, in view of (3.22)-(3.23) and Corollary 3.1 and because

2

we are readily led to the conclusion that there exists a unique integer l e 2, 3, , p }
such that

(3.28) 0<(/2) or, ot
p x,,] (/--1)l+1 ( )< < _< p-2p

from which (2.2) follows. But now from (3.28) the following inequalities are implied:

0__</-2 <
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which are of the same type as those in (2.7), with instead ofp. Thus the conclusion of
3.2 holds for all q 2( )l, implying the validity of (2.3a). On the other hand, for all

q + )p, the analysis of 13 for the nonnegative case applies directly, leading to
the conclusion (2.3b). It remains to compare Ol and ol +l, which are to be determined
by Theorem 2.2. For the optimal/-cyclic SOR, having in mind from (3.28) that

l-2<al
--1

formulas (2.20), (2.21 are applied with (2.22b). In other words col is the unique
root in

of

(3.29) ( olP/lJc flP/l) ) ap/l-lr- p/l)
2

co ([p/l__ otP/l) co 0,

while or is given by

olP/l’3c P/l) ( olP/lnt- p/l) )l.(3.30) t91 (p/l__ otp/1) (COl--
2 cot

For the optimal (l + )-cyclic SOR it is

a+2 l-1
0_< ...<

3l+1 l+

and formulas (2.20), (2.21) with (2.22a) apply. Thus COl +1 is the unique root, in
(1, (l + 1)/l), of

(3.29’) (p/(l+ 2co)l+ (l+ 1)1+
ll (o- 1)=0

while Pl +2 is given by

3pl(l+ 2)COt + l(col + 1)(3.30’) 01+

Eliminating COl and COl + from the equations in (3.30) and (3.30’), respectively, we obtain

{1 P/l aP/l) P/I aP/l) }l(3.31) Pl [( pl-t-( +

and

)l+(3.31 ’) Ol + [3p
+ 0l +
/+1

It is known, and can be very easily checked, that for a fixed (p and l are fixed) provided

and

a_. al )
l/p

2)
l/p ,1)

[0,(--1)(l+l)/p)+1
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0t in (3.31 (or in (3.30)) is a strictly increasing function of a, while o + in (3.31 ’)
remains fixed. Since from the analysis so far it follows that for

l-2
l’

pl<pl+l,

while for

a/+ l--1
/3l + l+ 1’ Pl + < Pl,

it is implied that for

there exists a unique value of a (/3 is kept fixed in (0, )), denoted by Oil, + 1, such that
Pl Pl +1. TO determine 19 := 191 191 +1, we find the unique value of 19 e (0, ), which
satisfies 3.31 ’), namely,

(3.32) 19= P(I+P)l+l

/+1

(Note: To show that a unique value of 19 exists, rewrite (3.32) as

(3.33) h(19):=P(l+19)l+-(l+ 1)/+ 19 =0
and verify that

and

h(O)=pll+l>O, h( 1)=(/+ )(l+ 1)(/3p_ 1)<0

h’(19) (l+ )[3P(l+ p)l-(l+ )l+
’’P(l+p)l+l--(l+ 1)l(l+p)’(l+ 1)19-(l+p)=l(p-- 1),

if (3.33) is used, and so h’(19) < 0 for all 19 e (0, 1).) Next, having found 19, we solve
(3.31) for a to obtain

(2p l/l--( "ff-p)p/l)l/p(3.34) a1,l +
t9

Consequently, the conclusions in (2.6) readily follow and the proof of case (I) is com-
plete.

3.4. Proofs of cases (lll)-(V) of Theorem 2.1. For the proof of case (III) we note
that the particular case a B 0 was presented in 13 ]. In case 0 < a < 1, we may
follow a limiting process argument by assuming that a -- - continuously. In such a
case the results of case (II) apply since then for values of a very close to it will be

Olq--OlP/qqJ (P-2)p/qq-2" ,.p]q> , q= 2( )p.
P q

So the optimal values for each q will be found from (3.25)-(3.26), which, in view of
(3.23), can be rewritten as follows:

(3.25’) ([P/q-- OlP/q)( Olp/qql" p/q) )q2
w (apie + P/q)(w 0
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and

./+ ft./+) )+.(3.26’) 0= 2
oq

For c /3-, (3.25’) gives in the limit O)q for all q 2( )p, while from (3.26’) we
have pq =/3p for all q 2( )p.

For the proof of case (IV) a process analogous to the one for case (II) is followed.
This time the function

(x)xy(x)
x 2

xe(2, o0),

is considered assuming that for x 2, y(2) o0, y(x) is the inverse of the function
considered in Lemma 3.1 and Corollary 3.1 and is thus strictly decreasing for x e
2, o0 ). Consequently,

[Jq[3"’’01"otP/q(p)p/q q
(3.24’) <-- --;77. < =< q=2(1)p

p-2 q-2

analogous to (3.24). So the optimal parameters will be given again by 3.25 and (3.26),
the only difference being that

Wq(1+ bl/q-al/q )bl/q+al/q,

As a consequence, we have that (3.27) holds even in this present case. The remainder
of the proof is a repetition of the argumentation of the proof of case (II) and shows the
validity of (2.8).

For the proof of case (V) we begin (i) by noting that the case a > 0,/3 0 was
given in [13], and (ii) with a basic observation made in [13]. More specifically, if

p(j,,) =, < P
p-2

is not valid, that is, if

then the p-cyclic SOR will diverge for any value of w. But the possibility of a q-cyclic
repartitioning leading to a convergent optimal SOR is not excluded. For example, for
q 2, it will be

p-2 </3p /322<o0 2-2

as was pointed out in the Introduction (see also remark (i) in 2.2), and therefore
convergence for the optimal 2-cyclic SOR will be guaranteed. So it is clear from (2.12)
that, in view of the decreasing nature of the function (x/(x 2))x, there exists a
unique integer

k{2, ,p}

satisfying (2.13). Thus for q k + )p, if this set is not empty, the optimal q-cyclic
SOR, whatever this optimal is, will diverge and this is stated in the rightmost inequality in
(2.16 ). For all other values ofq e 2, min (p 1, k) }, a method ofproofanalogous
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to that of the proof of case (I) is followed. In other words, we again claim the existence
of a unique integer l satisfying (2.14), which is true due to the decreasing nature
of(x/(x 2))x. Obviously, for all q l + )k, provided this set is not empty, there
will hold

(qq)q/P____Ol
and a reasoning along the lines of 13] in the nonpositive case shows the validity of the
strict inequalities in (2.16). For q 2( )l, the proof follows exactly the same pattern
ofproofas in the corresponding part ofcase (IV). It is obvious that for l k, the analysis
so far leads us to the conclusion that the optimal/-cyclic SOR gives the best SOR method.
This is because for k it is as if we are in case (IV) with l (or k) playing the role ofp.
For < k to decide which of Ol and Ol +1 is the smallest of the two, we note that for a
fixed a e (0, ((l + )/(l ))t+ )/p) and a varying/3 so that

ot +1 remains fixed while ot strictly increases with/3. An analogous analysis to the one
before in the proof of case (I) easily yields the results in (2.17 )-(2.19 and the proof is
complete. [2]

Acknowledgments. The authors wish to thank Bob Plemmons for his very construc-
tive comments and suggestions on an earlier version ofthis paper. We also thank Dimitrios
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PREDICTING THE BEHAVIOR OF FINITE PRECISION LANCZOS AND
CONJUGATE GRADIENT COMPUTATIONS*

A. GREENBAUMf AND Z. STRAKOS

Dedicated to Gene Golub on the occasion ofhis 60th birthday

Abstract. It is demonstrated that finite precision Lanczos and conjugate gradient computations for solving
a symmetric positive definite linear system Ax b or computing the eigenvalues ofA behave very similarly to
the exact algorithms applied to any of a certain class of larger matrices. This class consists of matrices which
have many eigenvalues spread throughout tiny intervals about the eigenvalues ofA. The width ofthese intervals
is a modest multiple of the machine precision times the norm of A. This analogy appears to hold, provided
only that the algorithms are not run for huge numbers of steps. Numerical examples are given to show that
many of the phenomena observed in finite precision computations with A can also be observed in the exact
algorithms applied to such a matrix .4.

Key words, conjugate gradient, Lanczos, finite precision arithmetic

AMS(MOS) subject classifications. 65F10, 65F15

1. Background and introduction. The Lanczos algorithm for computing eigenvalues
and eigenvectors of a symmetric matrix and the conjugate gradient algorithm for solving
symmetric positive definite linear systems were introduced in the early 1950s by Lanczos
12] and by Hestenes and Stiefel [11 ], respectively. It was recognized at that time that

the algorithms often failed to behave as they would in exact arithmetic due to the effect
of rounding errors. Engeli, Ginsburg, Rutishauser, and Stiefel [5], for example, applied
the conjugate gradient method (without a preconditioner) to the biharmonic equation
and demonstrated that, for a matrix of order n, convergence did not occur until well
after step n (although exact arithmetic theory guarantees that the exact solution is obtained
after n steps). For this and other reasons, the algorithms did not gain widespread popularity
at that time.

With the idea of preconditioning in the conjugate gradient method, interest in this
algorithm was revived in the early 1970s, with several important papers appearing, in-
cluding work by Reid [16] and by Concus, Golub, and O’Leary [4 ]. Due largely to the
personal efforts ofGene Golub and those that he influenced, news of the effectiveness of
the conjugate gradient method as an iterative technique spread quickly throughout the
scientific computing community, and the algorithm soon became the most popular
method for solving symmetric positive definite linear systems. Although the effect of
rounding errors on the conjugate gradient algorithm was not well understood, it was
observed numerically that (with a good preconditioner) either the method converged
before rounding errors had any significant effect on the iterates, or, whatever the effect
of roundoff, it was not catastrophic.

Further attempts were made to understand the effect of rounding errors on these
two mathematically equivalent algorithms, and why, if they were run for enough steps
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to be significantly affected by roundoff, the effects were not disastrous. Wozniakowski
[20] considered a special version of the conjugate gradient (CG) algorithm and showed,
essentially, that a finite precision implementation converged at least as rapidly as the
method of steepest descent. More precisely, if the linear system to be solved is Ax b,
if ek x xk denotes the error in the kth iterate, and if K is the condition number of
A, then the A-norm of the error at step k satisfies

IlellA(+2e)(-)/
e- ilIA / O(),

where e is the unit roundoff of the machine and O(e) denotes terms involving the prod-
uct of e with the norm of various powers of A, x, and a constant. Wozniakowski also
gave a bound on the ultimately attainable accuracy using this special version of the
CG algorithm:

(2)
lim sup <-_ K3/2C,- [Ix[1

IIb-Axll2
lim sup =< A C.- IIxl12

Cullum and Willoughby [3] proved a result similar to for a more standard version
of the CG algorithm.

The bound is a large overestimate ofthe actual error, however. Ifthe CG algorithm
really converged as slowly as the method of steepest descent, it would seldom be used.
Methods such as the Chebyshev algorithm or Richardson’s method would be far superior.
The bound was derived by considering individual steps ofthe CG algorithmmassuming
only that a particular step k is implemented accurately, it follows that the error at step
k is reduced at least as much as it would be by a steepest descent step. Yet, an example
due to Crowder and Wolfe [2] shows that unless one considers all steps of the CG
algorithm, one cannot hope to establish much faster convergence than this. That is, if
the initial search direction is chosen incorrectly but all other steps of the algorithm are
implemented exactly, then convergence may be almost as slow as the method of steepest
descent.

The following simple 3 by 3 example presented in [2] illustrates this phenomenon:

A ro= pO= 14
4f -3f

If r is the initial residual for a linear system with coefficient matrix A, and if, instead of
taking the initial search direction pO to be r we set pO as above, then if the remaining
CG formulas,

Fk-1 T k-I

rk= rk- 1_ P Apk-p-- lTAp--

pk r- rrAP- pk-1,p- Ap- k= 1,2,
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are implemented exactly, then rk will satisfy

rk=Qr-, k-l,2,..., whereQ= 0 -1/5 -2V/5
0 2V/5 -1/5

Thus, the residual vector is rotated at each step through the angle arccos (-1/5) and
reduced in size by a factor of-. Similarly, the A-norm of the error is reduced by a factor
of at each iteration. This is somewhat faster than the steepest descent bound,

r-1 9

r+l 11’

but it is slower than the Chebyshev method, which would converge at an asymptotic rate

-1
.52.

+1
While most work on the CG algorithm was focusing on individual steps, the effects

of rounding errors on the Lanczos algorithm were being studied from a more global
point of viewconsidering the effects of roundoff over the entire course of the compu-
tation. Paige 13 wrote the Lanczos recurrence equations in matrix form along with the
matrix ofperturbations resulting from finite precision arithmetic. Using this formulation,
he analyzed the loss of orthogonality among the Lanczos vectors. He showed that loss
of orthogonality is only in the direction of converged Ritz vectors. From this it followed
that at least one eigenpair must converge by step n. Paige later showed also that Ritz
values "stabilize" only to points near eigenvalues of A [14]. The implications of these
results as far as the rate of convergence of the Lanczos or CG algorithm were not
so clear.

Parlett and Scott [15] used Paige’s results to suggest a "fix" for the Lanczos algo-
rithmselective orthogonalization. This requires saving the Lanczos vectors and orthog-
onalizing against Ritz vectors as they converge. Further work on reorthogonalization
strategies, as well as on understanding the behavior ofthe algorithms without reorthogo-
nalization, was carried out by Simon 17 ]. He showed that until approximate orthog-
onality is lost, the tridiagonal matrix generated by a finite precision Lanczos computation
is, indeed, the approximate projection of the matrix A onto the span of the Lanczos
vectors (which may or may not be the desired Krylov space). Grcar [8] attempted a
forward error analysis of the conjugate gradient algorithm. He showed that under a
certain assumption, called the "projection property," the coefficients generated in a finite
precision CG computation are within about e of those that would be generated by the
exact algorithm, as long as the vectors remain within about Ve of the exact ones. Thus
the initial deviation from exact arithmetic can be analyzed as if the coefficients were
given rather than computed at each step.

In [10] a form of backward error analysis was developed for the Lanczos and CG
algorithms. There it was shown that finite precision computations, run for no more than
some number J steps, generate the same tridiagonal matrices at each step as the exact
algorithms applied to a larger matrix A, having possibly many more eigenvalues than A,
but whose eigenvalues all lie within tiny intervals about the eigenvalues of A. A bound
on the size of these intervals was derived in terms of the machine precision e and the
bound J on the number of steps. Using this analogy it was possible, in some cases, to
derive more interesting bounds on the convergence rate ofthe CG and Lanczos algorithms.
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For example, assuming that the widths of the intervals containing the eigenvalues ofA
are much smaller than the smallest eigenvalue ofA, it follows that the condition number
ofA will be approximately the same as that ofA. Hence any exact arithmetic error bound
in terms of the condition number K ofA will hold, to a close approximation, for finite
precision computations; e.g.,

ellA <_ 2 [-3
IlellA /

This error bound was conjectured in [20 ], but it could not be proved with the approach
used there. The bound derived in [10] on the size of these intervals was, unfortunately,
a large overestimate. Thus, while bounds such as (3) were established if the machine
precision e was small enough, in many realistic problems the bound on the interval size
was too large to provide useful information. A procedure was given to actually compute
the matrix A, however, and numerical computation of this matrix for many examples
indicates that the eigenvalues ofA are actually contained in much smaller intervals than
the proven bound would suggest.

While it was proved in [10] that the behavior of finite precision Lanczos and CG
computations is identical to that of the exact algorithms applied to a particular matrix
A, in this paper we demonstrate numerically that it is also very similar to that of the
exact algorithms applied to any matrix, say, A, which has many eigenvalues spread
throughout tiny intervals about the eigenvalues of A. Thus, the qualitative behavior of
a finite precision computation can be understood by understanding the behavior of the
exact algorithms applied to such matrices. The size ofthe intervals is a modest multiple
of the machine precision. It is not clear if this similarity is maintained if the algorithms
are run for huge numbers of steps (say,)7105), but for more realistic computations, the
similarity is demonstrated. For test problems, we consider a class of matrices introduced
in 18 ]. There the behavior ofthe finite precision computations was compared with exact
arithmetic theory and shown to give surprising results. In this paper we show why this
behavior is to be expected. This similarity can also be used to explain the differences
observed in [19] between the actual behavior of incomplete Cholesky and modified in-
complete Cholesky preconditioners and that predicted by exact arithmetic theory.

Finite precision CG computations for solving an n by n symmetric positive definite
linear system Ax b sometimes fail to converge after n steps, especially when n is small.
In such cases, it is demonstrated that exact CG applied to the corresponding large linear
system: b also requires more than n iterations to converge. More commonly, finite
precision CG computations converge in far fewer than n steps, and the same holds for
the exact CG algorithm applied to any matrix whose eigenvalues are clustered in tiny
intervals about the eigenvalues of A. Frequently, finite precision CG computations go
through several steps at which there is only a modest reduction in the error and then at
the next step there is a very sharp decrease in the error. This same behavior is observed
in the exact CG algorithm applied to matrices whose eigenvalues are distributed in n
tight clusters about the eigenvalues ofA.

Related to this phenomenon of slow convergence followed by a sudden drop in the
error, is the phenomenon of multiple "copies" of eigenvalues appearing in finite precision
Lanczos computations. Finite precision Lanczos computations frequently generate several
close approximations to some of the eigenvalues ofA before finding any close approxi-
mations to some of the other eigenvalues. Analogously, depending on how the clusters
ofthe larger matrix are distributed, the exact Lanczos algorithm applied to may find
several eigenvalues within some of the clusters before finding any in some of the other
clusters. It is demonstrated that the rate ofoccurrence ofmultiple "copies" ofeigenvalues
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in finite precision Lanczos computations with matrix A is very similar to the rate at
which the exact Lanczos algorithm applied to J finds different eigenvalues within the
same cluster.

Sections 2-4 present numerical examples to demonstrate these phenomena. Impli-
cations of this analogy are discussed in 5.

2. Description of numerical experiments. The matrices considered in this paper
were introduced in [18] and have eigenalues of the form

i-1
(4) ,i hl + ()kn- ,l)p n-i, 2, ,n, pc(O, 1),

where n, 9, and K ),n/X are fixed. For most of our experiments we have taken n
24, h .1, K 1000, and p .4, .6, .8, .9, 1.0. These eigenvalues are plotted for each
value of p in Fig. 1. Eigenvalues that are too close to be distinguished on the horizontal
axis have been plotted vertically. For the smaller p-values, the eigenvalues are very tightly
clustered at the lower end ofthe spectrum. The minimal difference, ,2 , corresponding
to p .4, .6, .8, .9, and 1.0 is 7.6e- 9, 5.7e 5, .032, .43, and 4.3, respectively.

The algorithm used in these experiments for solving a symmetric positive definite
linear system Ax b and computing the eigensystem ofA is as follows [11], [12]"

Given an initial guess x, compute r b Ax, and set p0 ro.
For k 1, 2,

t.k- T .k-

Compute ak_
pk- rApk-
ilk-1Set Tk,k- +.

O/k O/k 2

Take x x- + ak lpk-
Compute rk rk- ak- Apk- 1.

Fkrt’k
Compute

Fk- 1Tlek-
Set T, + T + . .

O/k-

Take pk= t.k h- lkpk-

The tridiagonal matrix T generated at step k will be denoted T(k), and its eigenvalues
are taken as approximate eigenvalues ofA (Ritz values). The eigenvectors ofA can also
be approximated if the previous residual vectors, r, rk- , have been saved, but we
will not discuss the computation of eigenvectors here. When solving linear systems, we
will refer to this algorithm as the conjugate gradient method, or CG, while when using
it to compute eigenvalues we will refer to it as the Lanczos algorithm. The equivalence
of this method to the usual Lanczos process [12 in exact arithmetic is well known, and
arguments in [3], [10] establish similar behavior in finite precision arithmetic as well.
Numerical experiments with other variants ofthis algorithm have yielded similar results,
as described in 18 ].

The above algorithm was applied to matrices A of the form

A UAU7,
where U is a random orthogonal matrix and A diag ,, An) is defined in (4). In
all cases, a random fight-hand side vector and a zero initial guess were used. Experiments
were carried out on a Sun Sparcstation using double precision arithmetic (about 16
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FIG. 1. Eigenvalue distributions for different o-values.

decimal digits). Most of the experiments were performed using MATLAB, making the
algorithms relatively simple to implement.

We first compare finite precision computations for solving Ax b or computing
the eigenvalues of A to the exact arithmetic algorithms applied to the same problem.
"Exact arithmetic" was simulated by saving all residual vectors and using full reorthogo-
nalization at each step. That is, the formula for r becomes

Fk Fk- k- lAPk-
For kount 1, 2,

Forj= 1, k- 1,
FkTFj

Fk Fk FJ
FJTI.J

Endfor
Endfor

It is shown in 14 that the iterates generated using this modified algorithm do, indeed,
resemble those that would be generated by the exact algorithm applied to a slightly
different matrix (of the same order) with a slightly different initial vector. Until the size
of the vector r approaches IIAII maxj= ,...,llxll, where e is the machine precision, the
recursively updated r is very close to the true residual, b Ax [10 ].

We also compare the finite precision computations involving the matrix A to "exact
arithmetic" (full reorthogonalization) computations involving a larger matrix . The
matrix was taken to have a total of 11 n eigenvalues, with eleven eigenvalues uniformly
distributed throughout each of n tiny intervals about the eigenvalues ofA. Several ofthe
experiments were also performed with a matrix having 21 eigenvalues evenly distributed
in each of these same intervals, and the results were indistinguishable when presented in
plots such as Figs. 1-9. Most of the experiments were performed with intervals of width
10 -2, or approximately

50 llhll,
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where e 2 -52 is the unit roundoff of the machine. Some experiments were performed
with different size intervals to see the effect of the interval width on the behavior of the
algorithms. The finite precision computation for Ax b, with initial guess x, or initial
residual r, was compared to the exact arithmetic computation for b, with initial
guess 0 and initial residual , where

(5)
m+l

ki,j_ k + j-- 2 "6, j= m m 11 6 10-2,
rn-1

0 [9, bi,l bi,2 hi,m, and Z bi,i) 2 Urb) l, n,
j=l

where 1, , ,n are the eigenvalues ofA and U is the orthonormal matrix ofeigenvectors
ofA.

3. Results of CG computations. Here we show the remarkable similarity between
a finite precision CG computation to solve Ax b, with initial residual r, and the exact
CG algorithm applied to the larger linear system b, with initial residual 0.

Figure 2(a) shows the convergence of finite precision CG computations applied to
the linear system Ax b, for the five different p-values listed in the previous section.
The right-hand side vector b was taken to have random components, uniformly distributed
between 0 and l, and the initial guess x was taken to be zero. The A-norm of the error
at each iteration divided by the A-norm of the initial error

(x-x,A(x-x)) 1/2

(x-x,a(x-x)) 1/2

is plotted. (The "exact" solution x was computed as UA -1UTb.) Note that although
exact arithmetic theory ensures that the correct solution is obtained after n 24 steps,
the finite precision computation requires significantly more than n steps for some of the
p-values. For certain values of p the computation seems to be considerably more affected
by rounding errors than for other values. Convergence slows as p goes from .4 to .6 to
.8, but then improves as p reaches .9 and 1.

For comparison, Fig. 2 (b) shows the convergence ofthe exact CG algorithm applied
to the same linear system, with the same initial guess. In contrast to the finite precision
computation, there is little difference between the results for p .8, .9, and 1.0, with the
slowest exact arithmetic convergence rate occurring for p .9.

The behavior of the finite precision computations much more closely resembles
that of the exact CG algorithm applied to the linear system A b (defined in (5)),
shown in Fig. 2(c). Here the A-norm of the error at each iteration divided by the A-
norm of the initial error is plotted. As with the finite precision CG computations, con-
vergence slows as p goes from .4 to .6 to .8, but then improves for p .9 and 1. The
qualitative convergence behavior in Fig. 2 (c) is also similar to that ofthe finite precision
CG computations, in that, for certain p values, both go through stages at which little
improvement is made for several steps and then a sharp drop in the error is seen at a
subsequent step.

To see the effect ofthe interval.size on the convergence rate ofthe exact CG algorithm
applied to a matrix A with eigenvalues clustered in these intervals, we tried several different
interval sizes for the case p .6. That is, we considered matrices A whose eigenvalues
were clustered in intervals ofwidth 6 10 -1, 10 -12, 10-1, and 10 -6 about the eigenvalues
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FIG. 2. (a) Finite precision CGfor Ax b. (b) Exact CGfor Ax b. (c) Exact CGfor .42 b.

of A. As before, each matrix J was taken to have eleven eigenvalues in each interval,
uniformly distributed, and the initial residuals f0 were set according to (5). Figure 3
shows the convergence of the exact CG algorithm applied to the different problems
J b, along with that of the finite precision computation for Ax b. While the exact
computation with the matrix of interval width 10 -13 most closely resembles the finite
precision computation, similar qualitative behavior is reflected in all of these computa-
tions, except perhaps the one with interval width 10 -6, which is considerably slower to
converge. Thus, it appears that a precise estimate ofthis interval width is not even necessary
to predict the qualitative behavior of finite precision CG computations. They resemble
exact CG computations for any matrix J with eigenvalues spread throughout small in-
tervals about the eigenvalues ofA, and the interval size can be anywhere within a rather
wide range. The remainder of the CG comparisons will use 10 -2 as the interval width
for the eigenvalues ofJ.

While most of our experiments have been performed with very small matrices
(n 24), similar phenomena can be observed with larger matrices, for which the CG
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algorithm is more often used. For large matrices, our comparisons with exact arithmetic
computations for . become quite time- and storage-consuming, however, since is
eleven times as large as A and it is necessary to save all residual vectors and reorthogonalize
at every step. Still, we have performed one experiment with a matrix A of order 100. The
eigenvalues ofA are still defined by formula (4), with n 100, l .1, K 1000, and
we took p .8. Figure 4 shows the convergence of finite precision CG for solving Ax
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10_12.
0 10 20 30 40 50 60 70 80 90 100

Iteration

FIG. 4. Exact andfinite precision CG (n 100, o .8).
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b, exact CG for solving Ax b, and exact CG for solving the larger problem A2 b.
Note the close resemblance between the first and last of these curves and the significant
differences from the exact CG computation for Ax b. Although this type of behavior
is frequently seen in practice, it may not be realized that rounding errors are significantly
affecting the convergence rate, since there is no exact arithmetic computation with which
to compare.

4. Results of Lanczos computations. Here we show the similarity between the ei-
genvalue approximations generated at each step of a finite precision Lanczos computation
with matrix A and initial vector r and those generated at each step of an exact Lanczos
computation with the larger matrix and initial vector ?0, defined in (5).

Figures 5 (a), 6 (a), and 7 (a) show the eigenvalue approximations generated by a
finite precision Lanczos computation with matrix A, for the cases o .6, .8, 1.0. Similar
results were observed with the other p-values. In order to distinguish clustered eigenvalues,
we have plotted on the vertical axis not the actual eigenvalues, but the index of each
eigenvalue of A, from to n. An approximate eigenvalue that lies, say, 1/r of the way
between eigenvalue and eigenvalue + ofA, will be plotted on the graph at y-value
+ . Eigenvalue approximations that are too close to be distinguished on the vertical

axis have been plotted horizontally. For clarity, we have plotted the eigenvalue approx-
imations only at every fourth step. In most cases, we see multiple copies of the larger
eigenvalues appearing before any close approximations to the smaller, clustered eigen-
values appear. It should be remembered, however, that for the smaller o-values, these
small eigenvalues are very tightly clustered, and there may be a close approximation to
the cluster, even though the individual eigenvalues have not been identified. Only in the
case o does the finite precision computation find all n eigenvalues by step n.

For comparison, Figs. 5 (b), 6 (b), and 7 (b) show the eigenvalue approximations
generated every fourth step ofthe exact Lanczos algorithm applied to the same matrices,
with the same initial vectors. Here no "multiple copies" are observed, and all of the
eigenvalues are identified after n steps.

The eigenvalue approximations generated by the finite precision computations much
more closely resemble those generated by the exact Lanczos algorithm applied to the
matrix , with initial vector y0, shown in Figs. 5 (c), 6 (c), and 7 (c). In these figures we
again see multiple close approximations to the larger eigenvalues appearing before step
n, except in the case 1. The rate of appearance of these multiple copies also appears
to be similar to that in the finite precision computations with matrix A.

We point out that for p 1.0, the effect of roundoff on the Lanczos process is
minimal (cf. Figs. 7 (a), (b); also Figs. 2 (a), (b)). After n iterations the process is "re-
started" and it computes all eigenvalues twice in 2n iterations. For < 1.0, the "restarting"
is more frequent and multiple copies of large eigenvalues are computed simultaneously
with single approximations to small eigenvalues. It can be observed that ifa finite precision
Lanczos computation generates a close approximation to each eigenvalue ofA at some
step, then the error in the corresponding finite precision CG computation drops dra-
matically at that step. See Figs. 6(a) and 2(a) ( .8), between 32 and 36 itera-
tion steps.

Again, to see the effect of the interval width on the eigenvalue approximations
generated by an exact Lanczos computation for a matrix with eigenvalues clustered in
these intervals, we tried several different interval sizes, for the case .6. That is, we
considered matrices whose eigenvalues were clustered in intervals of width 6 10 -13,
10 -1, and 10 -6 about the eigenvalues ofA. As before, each matrix was taken to have
eleven eigenvalues in each interval, uniformly distributed, and the initial residuals 0
were set according to 5 ). Figures 8 (a-c) show the eigenvalue approximations generated
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at every fourth step by the exact Lanczos algorithm applied to each of these matrices A.
Note the similarity between each of these figures (as well as Fig. 5(c) with 6 10 -12)
and Fig. 5(a), showing the eigenvalue approximations generated by a finite precision
Lanczos computation for the matrix A. Figure 8 (a) 6 10 -13) shows the closest resem-
blance to the finite precision computation, while Fig. 8(c) (6 l0 -6) has some-
what more copies of the larger eigenvalues and somewhat fewer approximations to the
smaller ones.

Finally, in Figs. 9(a-c), we have plotted results from a larger problem, with n
100, p .8. Again, note the similarities between the eigenvalue approximations generated
by the finite precision Lanczos computation for the matrix A (Fig. 9(a)) and those
generated by the exact arithmetic Lanczos computation for the matrix A (Fig. 9 (c)).
Unlike the exact Lanczos computation for A (Fig. 9 (b)), these procedures both generate
multiple close approximations to some of the larger eigenvalues before finding any close
approximations to some of the smaller ones. The rate at which these multiple approxi-
mations appear is also similar in Figs. 9 (a) and 9 (c).
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FIG. 9. (a) Finite precision Lanczos on A p .8 ). b Exact Lanczos on A p .8 ). c Exact Lanczos
on .4 (p .8).
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5. Further discussion and open questions. We have demonstrated numerically that
the behavior of finite precision Lanczos and CG computations with a matrix A closely
resembles that of the exact algorithms applied to matrices that have many eigenvalues
spread throughout tiny intervals about the eigenvalues ofA. In 10 it was proved that
the eigenvalue approximations generated by a finite precision Lanczos computation are
identical to those generated by the exact algorithm applied to a certain larger matrix A,
and that the A-norm of the error in the equivalent finite precision CG computation is
reduced at approximately the same rate as the -norm ofthe error in the exact algorithm.
Eigenvalues of the matrix A lie in tiny intervals about the eigenvalues of A (provided
that the finite precision computation is not run for too many steps), but A might have
many or only a few eigenvalues in some of these intervals.

Using these analogies, the problem of estimating and bounding the convergence
rates of these algorithms in finite precision arithmetic reduces to a problem ofestimating
or bounding the convergence rates of the exact algorithms applied to certain classes of
matrices. If an error bound can be established for the exact algorithm applied to every
matrix whose eigenvalues lie within these intervals, then it will hold (at least to a close
approximation) for the finite precision computation. If an error estimate is good for the
exact algorithms applied to every matrix with many eigenvalues spread throughout these
intervals, then it will also be a good estimate for the finite precision computation. We
will not derive such bounds and estimates here, but it is not difficult to see how they
might be derived (as, for example, in (3)), and some examples are given in [10].

A question that is frequently asked is whether a finite precision Lanczos computation
eventually finds all eigenvalues of a matrix, or, at least, all well-separated eigenvalues
and at least one close approximation to multiple or tightly clustered eigenvalues. Using
the analogy developed in 10 between finite precision Lanczos computations run for no
more than J steps and the exact algorithm applied to a matrix whose eigenvalues lie
within intervals ofwidth, say, 6j, about the eigenvalues ofA, this question can be translated
as follows: Is there a J such that the exact Lanczos algorithm applied to every matrix
whose eigenvalues lie within intervals ofwidth 6j about the eigenvalues ofA--with initial
vector ?0 satisfying

(6) 2 (?0 i,z)2 (ro Hi)2 n

where u u are the eigenvectors ofA and i,l, 1, are the eigenvectors of
J corresponding to the eigenvalues clustered about i, 1, n--finds at least one
eigenvalue from each cluster within J steps? We know of no simple and general sufficient
conditions for the existence of such a number J, so this question remains open.

Of course, if the interval widths 6s could be bounded (with a suitably small bound)
independent of J, then it would follow that a finite precision Lanczos computation would
eventually find every eigenvalue ofA whose eigenvector contained a nonnegligible com-
ponent in the initial vector. (That is, it would find at least one close approximation to
every well-separated eigenvalue and every eigenvalue cluster with a nonnegligible com-
ponent in the initial vector.) For (6) implies, in this case, that the interval about each
eigenvalue has a nonzero weight. From Favard’s theorem [6 it would follow that the
characteristic polynomials of the tridiagonal matrices generated by a finite precision
Lanczos computation were the orthogonal polynomials for a certain measure whose
support lies in the union of intervals t.J’= 1[ ; 6, + 6], where 6 is the bound on the
interval size. But the roots of the orthogonal polynomials are known to converge to all
weighted points (see, for example, ), so they would converge to at least one point in
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FIG. 10. (a) Double precision Lanczos (0 .6). Run for 10 5 steps. (b) Single precision Lanczos
(o .6). Run for 10 5 steps.

each of these intervals. Thus, we could then conclude that a finite precision Lanczos
computation would eventually find an approximation within 6 of each eigenvalue ofA.

Whether this interval size can be bounded by a small number i independent of J
is an open question. (Of course, there is some bound that is independent of J. From
Gershgorin’s theorem and the formulas for the elements of the tridiagonal matrices, it
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can be seen that all approximate eigenvalues generated by a finite precision Lanczos
computation lie in the interval [min 2,max, 3max]. Hence the measure for which the
characteristic polynomials are orthogonal has its support in this set. But this is not a very
interesting bound.)

To try and determine whether such a bound 6 exists, we have run a finite precision
Lanczos computation for the case 0 .6, n 24, for 105 steps, and we have computed
the spread of the eigenvalue approximations clustered about the largest eigenvalue ofA.
That is, we have taken all eigenvalue approximations that are closer to the largest eigen-
value of A than to any other eigenvalue of A, and we have computed the difference
between the largest of these and the second smallest of these. By the interlace theorem,
every future tridiagonal matrix will have an eigenvalue greater than the largest of these
approximations and an eigenvalue between each pair of these approximations, and
so, this difference gives a lower bound on the interval size 6 in which the weighted
points lie.

Results using double and single precision arithmetic are plotted in Figs. 10(a) and
10(b). For these experiments, we used the standard formulation ofthe Lanczos algorithm,
rather than the CG form presented earlier, to avoid problems with underflow. As can be
seen from the figure, this lower bound continues to grow with J at least out to J 105,
but it is growing very slowly. Whether it stops growing at some value significantly less
than the distance to the next largest eigenvalue, or whether these eigenvalue approxi-
mations would eventually fill the entire Gershgorin interval, we cannot say. This remains
an open question.

6. Conclusions. We have found the analogy between finite precision CG/Lanczos
computations and the exact algorithms applied to a larger matrix with nearby eigenvalues
to be useful in understanding and predicting the behavior of such computations. The
proven identity between finite precision computations for A and exact computations for
A enables one to prove results about finite precision CG/Lanczos computations. The
demonstrated similarity between finite precision computations for A and exact compu-
tations for matrices enables one to estimate the actual behavior of finite precision CG/
Lanczos computations. It provides a nice explanation of the phenomena observed in
18 ], for example. The proven bound on the size ofthe intervals containing the eigenvalues
of A is far from optimal, however, and it is hoped that this might be improved upon.
Interesting open questions remain about whether a finite precision Lanczos computation
eventually finds all eigenvalues and about how the algorithm behaves if run for huge
numbers of steps.
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Abstract. This paper shows how a theory for backward error analysis can be used to derive a family of
stopping criteria for iterative methods and considers particular members of this family. Some theoretical jus-
tification is given for why these methods should work well and experimental evidence is presented to justify
these claims.
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1. Introduction. An important aspect of any iterative method for approximating
the solution x* of the linear equation Ax b, where A is an n n real matrix and b is
an n-vector, is to decide at what point to stop the iterations. If the iterations are stopped
too early, then a poor answer may be obtained. However, too many iterations may waste
computer time without yielding a more accurate answer. We feel it is important to base
the stopping criteria on a sound theoretical framework and, in this paper, we use the
backward error analysis of Oettli and Prager [7] to develop a family of stopping criteria.
We show that this family includes some commonly used criteria and demonstrate that
other members of this family at least partially answer the above challenge. We briefly
discuss the underlying theory and introduce our criteria in 2. We illustrate the effect
of using our new techniques within a block iterative solver in 3 and discuss possible
extensions to nonlinear systems in 4. We present some concluding remarks in 5.

In the following text, AI (Ix I) will be used to denote the matrix (vector) whose
entries are the absolute values of the entries of matrix A (vector x). Inequalities of the
form E -> 0 are to be understood componentwise so that all entries ofE are nonnegative.

2. Backward error analysis and stopping criteria. We base our new criteria for
stopping iterative methods on the theory of Oettli and Prager [7 ], which in simple terms
can be stated thus:

Let and b be any real n-vectors and A a real n n matrix, and define r()
b A. For any matrix E, E >_- 0, and vector f, f >_- 0, define

Ir()il
(2.1) =max

(EI:[ / f)i’

where we take 0/0 to be 0 and o/0, for any nonzero p, to be . Then if w 4: , there
is a matrix 6A and a vector 6b with

(2.2) IAI =<E and Ibl f
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such that

(2.3) (A+ A)= b+ b.

Moreover, o is the smallest number for which such A and 6b exist.
If we therefore compute w for a given E and f we know that, when this quantity is

small, we have precisely the solution to a nearby problem.
Our stopping criterion will be to calculate w from (2.1) and to terminate the iterations

when o reaches a predetermined value or when it is clear that it will not decrease further.
Naturally, both the stopping criterion and the associated backward error will be crucially
dependent on the choice for E and f. In the remainder ofthis section we discuss possible
choices and compare them experimentally in the next section.

Skeel [8 ], [9] chooses E AI and f bl. When iterative refinement is used in
conjunction with Gaussian elimination for full matrices, he can thus obtain a solution
that is accurate in a componentwise backward error sense. Arioli, Demmel, and Duff
have extended Skeel’s work by choosing f differently to allow the determination of a
finite o when A is a sparse matrix. We could use the same definition of E and f that was
used by Skeel, and obtain the componentwise backward error

(2.4) o =max
(IAI I1 / [bl)i"

Although we examine that possibility experimentally in the next section, we do not think
that this is the best choice because it does not reflect the nature ofthe iterative processes
that we are studying. The Skeel choice assumes that the perturbation error in (2.2) and
(2.3) is restricted only to the nonzero entries, which was the attractive feature exploited
by Arioli, Demmel, and Duff[ for sparse direct solvers. However, the performance and
convergence of most iterative methods is governed by the eigensystem of the iteration
matrix or of the original matrix for which a sparse backward error is unknown. Second,
the main computation in many iterative methods is the successive multiplication of
vectors by the matrix. Powers ofA will be much denser than A and, in the limit, will be
full for irreducible matrices. We would also not expect an iterative method to produce
a solution yielding an o near machine precision, so that we would need to choose some
larger threshold to determine termination.

Another choice for E and f is to use a normwise backward error by setting E
[]AI[ ee and f [[bilge, where e is a column vector of all ones. This choice gives

IIr()ll
(2.5) o A I1 + IIb "We note that the common criterion of using the ratio of the residual to the fight-
hand side,

IIr()ll
(2.6) o3 [Ib

corresponds to taking a value of E equal to zero and thus assuming that all backward
error is in the fight-hand side. This can be misleading in the case when

b << A x* I1
because of bad scaling or cancellation occurring in the product Ax* when x* has some
large entries. In this case, even an that is a good approximation to x* can have a large
residual r(), although o2 is small.
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We observe that

(2.7) (02 =< (0 and 092 (03

but nothing can be said about the relative values of (01 and (03. Moreover, (01 is row and
column scaling independent, whereas (03 is dependent on row scaling, and (02 is dependent
on row and column scaling. However, this is in agreement with the fact that stationary
iterative methods depend on the spectral properties of matrices, and these are usually
dependent on row and column scaling. In this respect, we prefer (02 to (03 because (02 at
least takes into account situations where the ratio [[A[ll[x* /[Ibl[o is large because of
bad column scaling. In our experiments, we use the original unscaled data to compute
the different criteria. We suggest, however, that it is wise to perform a row scaling ofthe
original problem before applying any iterative or direct solver. In the symmetric case, it
would normally be advisable to scale both rows and columns so that symmetry is pre-
served.

Both the criterion used and the level to which we request that it be reduced should
depend on the initial problem. For example, if the operator A is known exactly (as in
the case ofsome finite difference operators) then it might be appropriate to use (03, which
only allows perturbations to the fight-hand side, whereas for iterative refinement with a
direct solver we have already seen that (0 is appropriate. We feel that, iflittle is known
about the problem or if the criterion has to be embedded in some general software, the
use of (02 provides the best compromise and is easy to implement.

Unfortunately, most stationary iterative methods, and also conjugate gradient and
Chebychev semi-iterative methods, do not guarantee a priori that (0, (02, and (03 can be
driven to machine precision. If we combine a general iterative method with iterative
refinement, it is possible to prove under certain conditions [6 that these three criteria
will converge to machine precision. However, too many steps of iterative refinement
might be necessary, making the overall cost prohibitive (especially for (01).

It is reasonable to require that the values of (02 and (03 are reduced to the same
magnitude as the degree ofuncertainty in the original data. Let us suppose that the values
of the matrix A and the fight-hand side b come from physical observations and mea-
surements. They will be affected by noise that can be denoted by AA and Ab. If

(2.8) [[AAI[=<r [[A[[ and Ab -_< 7-2 I[bll,

where r and 7-2 quantify the level of confidence in the data, then comparing the level of
noise on the original data given by (2.8) with the level of accuracy obtained in (2.2), it
is not sensible, with our choice for E and f, to decrease the value of (02 to much less than
the minimum of z /n and 7"2

Other choices for E and f (and hence (0) that we have considered include replacing
the matrix E [[A[[oee T by E [[A[[PA, where PA is the (0, 1) matrix representing
the pattern of A. This might substantially decrease the factor n implicitly included in
the infinity norm of ee T but would restrict the backward error to the nonzero entries of
A so that we can still respect the sparsity of the backward error while not imposing such
a strict criterion as (0. This choice and another of choosing (0 as

Ilr()l[

in order to balance the weight of the perturbations in A relative to those in b, might be
thought of as having some aesthetic merit. However, we have not found them very
competitive on a limited range of experiments and do not discuss them in detail in the
experiments that follow.
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3. Experimental results. We compare the various stopping criteria on a block it-
erative method developed by Arioli, Duff, Noailles, and Ruiz 2 ]. This method is a block
generalization of Cimmino’s method 5 ]. It does not require any particular property of
the coefficient matrix and so is applicable on a wide range of test problems. We partition
the matrix by blocks of rows, solve each resulting underdetermined problem using the
direct solution of an augmented system and use the conjugate gradient method to ac-
celerate the convergence. We can also introduce a preconditioning for the conjugate
gradient method. It is not relevant to discuss this approach in more detail here and the
reader should consult [2] if further information is required.

We illustrate the behaviour ofthese stopping criteria on two test problems, although
the results are typical of those for a far wider range of problems. At each iteration we
will compute the three stopping criteria (.01, 092, and 093, and compare their relative be-
haviour. The two experiments use the sparse matrices SHERMAN (of order 1000) and
LNS511 (of order 511 from the Harwell-Boeing set 4 ]. SHERMAN comes from oil
reservoir modelling. LNS511 arises in the solution oflinearized Navier-Stokes equations
for compressible flow. In both cases, the right-hand side is generated from a given solution
vector x*, where x/* n/i, 1, n. We use these two examples to illustrate some
of the main differences between the stopping criteria, both in the case of convergence
(SHERMAN1) and in the case of divergence (LNS511 ).

When there is convergence, as in Fig. 3.1, we first notice that the two stopping
criteria o2 and (.0 are much smoother than the componentwise backward analysis criterion
(w), which oscillates a lot until a good approximation to the solution is reached. The
scaled residual ((.o3) lies between the normwise backward error (o) and the componentwise
backward error (o) )o However, we have observed on some other problems that the curve
for O) can cross the curve for o many times, because of the oscillations in w. This is in
agreement with the discussion in (2.7) about the relative values of the three criteria.

On the other hand, when there is failure to converge, as in Fig. 3.2, the normwise
backward error (w2) oscillates the most, and even increases long before the others do. In
the LNS511 problem, for instance, the behaviour ofthe scaled residual 60 does not differ
much (at least before iteration 250) from that observed in the first part ofthe convergence
ofSHERMAN (iterations to 350). This is due to the fact that (.0 is much less sensitive

100

lO-P
10-10
10-11
10_1g

10-11
10-14i

10-111
10-17
10-18

50 I00 ifiO P-O0 250 300 350 400 450 500 550 600

ITERATION NUMBER

FIG. 3.1. Behaviour ofdifferent stopping criteria on matrix SHERMAN1.
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FIG. 3.2. Behaviour ofdifferent stopping criteria on matrix LNS511.

to variations in x than 092 However, the componentwise criterion w, which stays very
close to 1, shows that there are no improvements to the solution. But we must not forget
that w involves the computation of the matrix-vector product AI x(k)l and is thus
more costly than the normwise criterion (co2), which requires only the infinity norm of
the matrix A and the one-norm of the current iterate.

Note that the detection of a plateau in the behaviour of the convergence of any
criterion does not signify the end of the convergence or even the divergence. This can
be seen in the SHERMAN test problem, for example, where a plateau occurs just before
the superlinear convergence of the conjugate gradient acceleration process. Thus it is
dangerous to terminate when the w value becomes nearly constant, so we advocate ter-
minating either on a predetermined value or when an increase in w2 is observed.

4. Extensions to nonlinear problems. It is easy to extend the theory of Oettli and
Prager 7 to nonlinear systems. More precisely, we can state the following theorem.

THEOREM. Let >= 0 and >= 0 be an n n matrix and an n-vector, respectively.
Let F x be a nonlinearfunctionfrom R to R, b a vector ofR, and an approximate
solution ofthe problem

(4.1) F(x)=b.

There exist G and g so that is a solution ofthe perturbed problem
(4.2) F()+G:b+g

with

(4.3) IGI _-<1 and Igl

ifand only if
(4.4) Irl--Ib-F()l (11 +),
Furthermore, if wE and cof then the smallest co satisfying the theorem is

Iril(4.5) co max
(EII + f)i
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Proof. Since

r=b-F()=G-g

from (4.1) and (4.2), the "only if" part of the theorem follows immediately.
If we define R diag (r), D diag (1 I1 / ) and S diag (sign ()), then we

can define a matrix G and vector g as

G RD-1]S and g -RD-I.
We have, from the hypothesis (4.4), that

IRO- =<I

and so G and g satisfy conditions (4.3).
Furthermore, we have

G-g RD-11S+RD-
RD-(:II /

Re,

where e is the vector of entries equal to one. We have thus proved the "if" part of the
theorem.

For nonlinear problems it is more difficult to propose a good choice for E and f. A
possibility is to set the entries in E to the absolute values of the entries of the Jacobian
matrix J(x) of F(x) computed at the exact solution x * of the problem.

Obviously, this choice is not possible. A more realistic approach might be to set

E sup IIJ(x) ee T and f Ilbll e
xB(x*)

with B(x*) a ball of centre x* in which the algorithm converges. Note that it is not
necessary to have the exact value of

sup IIJ(x)ll
xB(x*)

but only a good approximation of it.
We do not at the moment have sufficient numerical evidence to support a particular

choice for E or f. We intend to conduct further experiments to determine how best to
do this in the nonlinear case.

5. Conclusion. We have established criteria based on backward error analysis for
stopping the iterative solution of linear equations and have demonstrated their use in
practice. The normwise backward error (o2) is always smaller than the other two criteria
and is the only one that in our tests reached machine precision when possible. Our
proposal is to use the value of o2 from (2.5) and to stop when it reaches a predetermined
value unless it increases or oscillates significantly. In these cases we terminate immediately.
The predetermined value will depend on the problem although in many cases we have
found it possible to drive o to near the machine precision. We recommend that this
stopping criterion be used as the standard one in the context of the current efforts to
standardize the interface and environment for iterative solvers [3].
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Abstract. This paper describes two methods for computing the invariant subspace of a matrix. The first
method involves using transformations to interchange the eigenvalues. The matrix is assumed to be in Schur
form and transformations are applied to interchange neighboring blocks. The blocks can be either one by one
or two by two. The second method involves the construction of an invariant subspace by a direct computation
ofthe vectors, rather than by applying transformations to move the desired eigenvalues to the top ofthe matrix.

Key words, invariant subspaces, eigenvalues, ill-conditioned eigenvalues
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1. Introduction. In this paper, we consider the computation ofthe invariant subspace
of a matrix corresponding to some given group of eigenvalues. Potentially, the Schur
factorization provides a method for computing such invariant subspaces, with the im-
portant numerical property that it provides an orthonormal basis for such spaces. Let us
denote the Schur factorization of the real matrix A as

A QTQ r,
where Q is orthogonal and Tblock upper triangular, with and 2 2 blocks on the
diagonal, the 2 2 blocks corresponding to complex conjugate pairs of eigenvalues.
Since

AQ=QT,

Q, of course, provides an orthonormal basis for the invariant subspace of the complete
eigenvalue spectrum of A. Numerically, Q is a much more satisfactory basis than the
eigenvectors and principal vectors of A, which may well be almost linearly dependent.
If we partition Q and T as

T11 TI2)Q (QI Q2), T=
0 T22

then

AQ1 =QiTll,

and QI gives an orthonormal basis for the invariant subspace ofA corresponding to the
eigenvalues contained in Tll. It is therefore a common requirement to reorder T so that
Tl has eigenvalues with some desired property. For example, we might require Tll to
contain all the stable eigenvalues.
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Unfortunately, unless we know the required group of eigenvalues in advance and
accordingly modify the standard shift strategy ofthe QR algorithm, Tl will not normally
contain the required eigenvalues on completion of the computation of the Schur facto-
rization. We must therefore perform some further computation to reorder the eigenvalues.
Indeed in most applications we perform an initial Schur factorization in order to compute
the eigenvalues, which then gives us information on the required grouping.

An example of the application is the computation of matrix functions via the block
diagonal form ofa matrix. In computing the block diagonal form, it is essential to include
"close" eigenvalues in the same diagonal block [3].

To this end, Stewart 9 has described an iterative algorithm for interchanging con-
secutive and 2 2 blocks of the block triangular matrix. The first block is used to
determine an implicit QR shift. An arbitrary QR step is performed on both blocks to
eliminate the uncoupling between them. Then a sequence ofQR steps using the previously
determined shift is performed on both blocks. Except in ill-conditioned cases, the two
blocks will interchange their positions.

In this paper, we present two other methods for constructing the invariant subspace.
The first involves applying transformations directly to interchange the eigenvalues. The
second method involves direct computation of the vectors.

2. Interchanging eigenvalues. The reordering of the eigenvalues can be achieved
by successively interchanging neighboring blocks in the Schur factor T.

Suppose, in a given T, we have decided to group Xp, ,q, Xr together. We know that
there exists a unitary matrix such that 0TO/is still upper triangular but has Xp,
q, k in the first three positions. Such a Q can be readily determined as the product of
a finite number of plane rotations. We merely need an algorithm which will enable us
to interchange consecutive blocks on the diagonal by means ofa plane rotation. Repeated
application of this algorithm can then bring any selected set of eigenvalues into the
leading positions.

The algorithm we describe could be used on a complex triangular matrix. However,
since we are interested here in real matrices, and since complex conjugate eigenvalues
will be represented by 2 2 real diagonal blocks, we describe first the algorithm for
interchanging two consecutive real eigenvalues.

2.1. Single past single. Suppose X and # are in positions p and p + 1. A similarity
rotation in planes p and p + will alter only rows and columns p and p + and will
retain the triangular form apart from the possible introduction of a nonzero in position
(p + 1, p). The rotation can be chosen so as to interchange X and # while retaining the
zero in (p + 1, p). Clearly the rotation is determined solely by the 2 2 matrix, which
we denote by

We have

i.e., (a, # ))T is the eigenvector corresponding to #. If Q is chosen so that

(2) Q
t-, O’
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then

and hence, using (2) and dividing by r, we have

o)
, r(1

This states that the first column of the transformed 2 2 is in the required form. Hence
we may write

Q
0 # 0

Since the trace and Frobenius norm are invariant,

giving

A rotation giving (2) is defined by

k 2

__
#2 q_ 012 #2

__
,y2 __/2,

and ___a.

(3) cosO=a/r, sinO=(tt-h)/r, r + [0t2-4- (#-- k)2] 1/2

and it will readily be verified that this gives/3 +a.
If the original T has been determined from a matrix A by means of an orthogonal

transformation, the matrix defining this transformation must be updated by multiplication
with the plane rotations used in the reordering process. Note that in this method, wherever
two eigenvalues that we have decided to place in the same group are interchanged, a
selected eigenvalue is moved up only past eigenvalues with which it is not to be associated.
Moreover, having determined the rotation, we shall apply it to rows and columns p and
p + but not to the 2 2 itself. There we shall merely interchange 3, and # and do no
computation. Moving blocks is discussed in [8].

2.2. Single past double. In bringing a selected real eigenvalue to a leading position,
we shall, in general, need to pass 2 2 blocks on the diagonal corresponding to complex
conjugate pairs. Hence we must be able to interchange a real eigenvalue with a real 2
2 block by means of an orthogonal similarity transformation. Obviously, the trans-
formation is determined by the relevant 3 3 diagonal block which, for simplicity, we
write as

(4) * c c

0 93 0 0

The same principle may be used as in the single past single case. If

(5) 2

denotes the eigenvector corresponding to h3, then we require a Q such that

Q x2 0
0
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and then, as before,

(6) QTQT x x c
x x

Note that the general principle we are using is the one commonly employed to establish
the Schur canonical form by induction. The 2 2 matrix C in the bottom of (6) is not
the same as B in (4), but it will, of course, have the same eigenvalues. However, B and
C will not, in general, be orthogonally similar.

The matrix Q can be determined as one Householder matrix or as the product of
two Givens rotations. Since ,3 is real and B has complex conjugate eigenvalues, B can
have no eigenvalues in common with ,3; hence, a unique eigenvector of the form (5)
will exist. As the two eigenvalues ofB approach the real ,3, their imaginary parts become
small, and the eigenvector (5) will have progressively larger components in the first two
positions, i.e., the normalized version will have a progressively smaller third component.

2.3. Double past single. When a pair ofcomplex conjugate eigenvalues is included
in the selected group, the associated 2 2 diagonal block has to be moved into a leading
position on the diagonal. On the way up it will, in general, pass both single eigenvalues
and 2 2 blocks with which it is not to be associated. We consider first taking a complex
pair past a real eigenvalue. In other words, in terms of the relevant 3 3 matrix, we
require an orthogonal Q such that

QTQr Qr c
B

0 0

Here the selected eigenvalues are those ofB, a complex conjugate pair. The eigenvalues
of C will be the same pair, but in general C and B will be different matrices and will not
be orthogonally similar. If we think in terms of moving to the bottom, we may use
much the same principle as before but now we work in terms of a left-hand eigenvec-
tor. If

yT"T3 )yT with yT 1, Y2, Y3),

we determine a Q such that

yTQ=(O,O,x).

Then QTT3Q has (0, 0, as its last row, and the objective has been achieved.

2.4. Double past double. Finally, we may need to move a selected 2 2 matrix
past an unrelated 2 2. If we denote the relevant 4 4 matrix 7"4 by

bl b2 x x

c]0 C1 C2
C3 C4

then we require an orthogonal Q so that

T4 QT4QT

where B and C have the same eigenvalues as/ and , respectively.
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The same general principle may be used. We compute generators of the invariant
subspace corresponding to C in the form

by solving

(x,y) o

(7) T4(x,y)=(x,y)C (x,Y)(c3Cl caC2)"
This gives us four equations for the four top components in (x, y). If we now determine
a Q such that

Q(x, y)
0 0
0

then QTaQT will be of the required form. Such a Q may be determined as the product
of two Householder matrices or four Givens rotations.

To see how is related to C, we observe that (7) implies that

QTaQTQ(x, y) Q(x, y)C,

giving

QTaQ’( R O) C’

that is,

I

This last equation states that the first two columns of QTQr are

0

and hence ( RCR -1. We shall not, of course, compute d via R!

3. Numerical considerations. In each ofthe four cases discussed above, we determine
either an eigenvector or two independent generators of an invariant subspace.

3.1. Single past single. When taking a single past a single, the formulae giving the
components of the vectors are of a particularly simple form. For consistency with the
other three cases, the eigenvector in should perhaps have been expressed in the form

(a/(#-X),l) r.
This emphasizes the fact that when X is ve small oompared with , the first com-
ponent ofthe eigenveotor is ve large, i.e., in the noalized fo, the second oomponent
is vet small. However, in tis case X ana skoula almost oeaainly kave been assooiatea
together, and we should not be tTing to interohage them!
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This remark has more force than might be imagined when the full n n quasitrian-
gular matrix has been produced from a general matrix A by an orthogonal similarity
transformation. In this case, the elements below the diagonal elements are in no sense
true zeros. They are at best negligible to working accuracy.

As an example, consider the matrix

1-e ) l-e, k2-- +e.(8)
0 l+e

A perturbation -e - in the (2, element gives modified eigenvalues X1 2 1, and
the matrix is defective. Suppose we are working on a ten-digit computer and e 10 -6.
We may not think of + 10 -6 as unduly close, but a perturbation of-10-12 gives
coincident eigenvalues, and this perturbation is well below the negligible level. Ifwe think
in terms of perturbations of order 10- (i.e., computer noise level), all we can say is
that the true eigenvalues are (roughly) in a disk centered on and of radius 10 -5.
Thus a perturbation +10-l in (2, 1) gives eigenvalues + i( .99 )1/210-5, while a per-
turbation of- 10-1 gives eigenvalues + 1.01 1/210 -5. To attempt to distinguish between
+ 10 -6 and 10 -6, and to interchange them, makes no sense. They have no separate

identity, and different rounding errors in the triangularization program giving T might
well have led to complex eigenvalues and have a 2 2 block rather than that in (8).

For several moderately close eigenvalues, the remark has even greater force.
Thus, if

1-e 0 ]T=
l+ej, e, k2 1, ,1 + e, and e 10 -6. A perturbation even as small as 10 -12 in

(3, gives three eigenvalues of the form + O(10-4). This problem is discussed in
considerable detail in [10], [12], [13]. Clearly, deciding which eigenvalues should be
grouped together cannot be done on the superficial basis of "looking at the separations."

The remarkable fact is that in the single past single case, the cos 0 and sin 0 are
always given with very low relative errors on a computer with correct rounding or chop-
ping. On such computers, z h is always computed without rounding errors even when
severe cancellation takes place. Thus, if

.832567 .912863)0 .832569

we have on a six-digit computer X .000002, and this has no error. (This will be
true even when, e.g., , .999999 and u 10(. 100001 ), that is, when close 2 and
have different exponents.) Six-figure floating-point computation using (3) gives

cos 0 101 (. 100000), sin 0 10-5 (.219091 ),

and both of these have relative errors on the order of machine precision 10 -12) in spite
of severe cancellation having taken place. Hence, if we actually do the computation of
the 2 2 matrix (in practice, we would not; we could merely insert u, k, and a in the
appropriate places), we find that the coupled 1, ), 1, 2) and (2, 2 elements are correct
to working accuracy and that the (2, element is well below the negligible level. This
is comforting because we shall be applying the transformation to the rest of the matrix.

This is an impressively good result. In many situations, not dissimilar from this, we
would have to be satisfied with a matrix that is exactly similar to a T with a perturbation
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of order 10 -6 in its elements and such a matrix could have eigenvalues agreeing with
and in only the first three figures, a disaster from the point of view of effecting an
interchange of )‘ and #!

3.2. Single past double or double past single. When we turn to the other three cases,
the situation is not so simple. Let us consider the algorithm for moving a single past a
double. If we denote the eigenvector in (5) by

then T3x )‘3X gives

(9)

X=(X1,X2,1) T,

(/1-)‘3)Xl -[- tl2X2 + t13 =0,

/21Xl + t22 )‘3 )X2 --/23 0.

The matrix of coefficients 7 of this system of equations is

7=(tl--k3 t2 )t2 /22- )‘3

which can be singular only if )‘3 is an eigenvalue of the leading 2 2 matrix of T3. This
possibility is specifically excluded since ),3 is real and the 2 2 has complex eigenvalues
(otherwise we would have triangularized it). When ),3 is very well separated from the
two complex eigenvalues, 7 will be very well conditioned and x and x2 will not be large;
hence, in the normalized version of x the third component will not be small. If we
compute the transformation and apply it to the full 3 3 matrix, the top element will
be ),3 to high accuracy, the two complex eigenvalues will be accurately preserved, and
the 3, and 3, 2) elements will be negligible. The computed results will be very close
to those derived by exact arithmetic.

As ),3 approaches an eigenvalue ofthe 2 2 block, however (notice that this means
that the imaginary parts of the complex eigenvalues must be small since ),3 is real, and
hence we are really moving towards a triple eigenvalue), the matrix 7 will become pro-
gressively more ill conditioned, and in general, Xl and x2 will be larger. In the limiting
situation, the eigenvector will have a zero third component and will be an eigenvector
ofthe leading 2 2 matrix rather than one corresponding to ),3 in the 3 3 matrix. The
matrix Q is merely a plane rotation in the 1, 2) plane and does not affect ),3. It is difficult
to view this in terms of bringing the 3, 3) element into the leading position! Indeed, we
are merely recognizing the fact that the upper 2 2 now has a double real root, and we
are triangularizing it. Since the real roots that it has are the same as ),3, however, the
illusion of having moved ),3 into the leading position is preserved. Thus, if

T -1 2,1 2 3
0 0 0

the only eigenvector is 1, 1, 0)r; there is no eigenvector of the form (x, x, )r. For the
rotation in the 1, 2) plane, 0 7r/4 and the transformed matrix is

0 0 0
C
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The matrix is in the required form, with )‘3 in the leading position, zeros in the first
column, and C given by

(lO) c=
0

which is similar to the original 2 2, but certainly not orthogonally similar since it has
a different Euclidean norm. However, considering how it has come about, it would be
perverse to describe it as "bringing X3 past the 2 2."

Suppose now that we perturb the (2, entry of the matrix by e2 to give

__2 -1 X,X2=+ie, X3=0.
0 0

Then there is an eigenvector x corresponding to X3 of the form

xT=(--1/e2,--1/e 2, 1)=(--1/e2)(1, 1,--e2).

The normalized version of this /ector has a very small third component. If we perform
our algorithm exactly, it gives a (2, 3 rotation with an angle oforder e 2 (the corresponding
matrix is almost the identity matrix) while the (1, 2) rotation has an angle of almost
exactly 7r/4. The resulting matrix has X3 0 in the leading position and the 2 2 matrix
C is almost exactly as in (10), but has small perturbations that make its eigenvalues +e.

The simplicity of this discussion is slightly obscured by the use of plane rotations
and their introduction of irrationals. If we think in terms of nonorthogonal transfor-
mations, then to convert 1, 1, -e2) to 1, 0, 0), we perform a similarity with the unit
lower triangular matrix

11
and obtain as our transformed matrix

0
0 -e 0

The zero eigenvalue is brought to the top and the eigenvalues +ie moved to the bottom
in a transparently obvious way. When e 0, the transformation operates only on row
and column and 2, and )‘3 is not involved. Nonetheless, the transformed matrix is

0
0 0

and our "objective" (inappropriate though it is) has been achieved.
The relevance ofthis discussion to the performance of our algorithm is the following.

When we attempt to bring a single past a double having eigenvalues that are fairly close
to it, we risk placing too much reliance on the effect achieved by the very small third
component in the normalized version of the unique eigenvector corresponding to ),3. In
the analogous single past single case, the solution was determined with considerable
accuracy. Here, however, the solution is not nearly as simple. Moreover, when the trans-
formation has been computed, we shall need to apply it to the 3 3 matrix itself, as well
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as to the remainder of those relevant rows and columns, since the new 2 2 is not
determined in a trivial manner, as were the elements in the single past single case.

Clearly the set of equations must be solved with some care. It is essential that the
normalized version of

(xl,x2, 1), i.e., (1,3,3)

should be such that

(tll- k3) 31 d- t12-2 +/13)3 el,

t21 1 d-/22-2 + t23)3 e2

be true with el and e2, which are at noise level relative to the coefficients on the left-hand
side (e and e2 would be zero with exact computation). The solution of the system by
Gaussian elimination with pivoting ensures just that; it produces x and x2 with errors
that are so correlated that the normalized versions give residuals at noise level.

In place ofGaussian elimination with pivoting, we could use any stable direct method
to solve the system, e.g., Givens triangulation. However, if we were to solve the system
by an unstable method such as Cramer’s rule in standard floating-point arithmetic, we
would obtain a computed Xl and x2 with errors that are uncorrelated, and the residual
corresponding to the normalized vector would not then be at noise level.

Assuming, then, that we have a normalized eigenvector giving negligible residuals,
the process is satisfactory. Indeed, it is merely the method of deflation by orthogonal
similarity transformations that is used after finding an eigenvector of a general matrix
(see, e.g., [11, 20, Chap. 9 ]). This is a stable deflation, provided the eigenvector has
negligible residuals (independent of its absolute accuracy); the deflated matrix is exactly
orthogonally similar to a matrix that differs from the original by a matrix E, which is at
noise level relative to it. This is true even when we insert (without computation) the
computed eigenvalue in the leading position and zero in the rest of the first column.
Such a result is the most we can reasonably expect, though it falls somewhat short ofthe
super-stability of the single past single case.

We have naturally concentrated on the case when we are attempting to move a real
eigenvalue ,3 past a complex conjugate pair, each ofwhich is near X3, because numerical
stability there needs serious investigation. Of course, when k is "too close," we usually
include all three eigenvalues in the same space. However, when we move a single eigen-
value ,3 past a complex conjugate pair iv such that 3 is not small but is
small, that pair will be close, and hence, in general, very sensitive to perturbations. The
2 2 block will itself be subjected to a similarity transformation, and small rounding
errors will make substantial changes in the eigenvalues. Thus, if we have the matrix

.431263 .516325)-.000003 .431937

with the ill-conditioned eigenvalues .431600 +__ i(.001198), and subject it to a plane
rotation with angle 7r/4, the exact transform gives

.689761 .258501)-.257827 .173439

with, of course, precisely the same eigenvalues. If rounding errors produced

.689760 .258501 )-.257827 .173440
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(i.e., changes of- and + in the last figures of the (1, 1) and (2, 2) elements), the
eigenvalues become .431600 i( .001397 ), a substantial change in the imaginary parts.
Yet in this example we have used an orthogonal similarity transformation that is favorable
to numerical stability. In general, the bypassed matrix will be subjected to a nonorthogonal
similarity transformation.

3.3. Double last double. Finally, we turn to the problem of moving a double past
a double. Since two pairs of complex conjugate eigenvalues , and 2 i#2 are
involved, it is not possible for just one eigenvalue in the lower pair to agree with one in
the upper pair. If, for convenience, we denote the relevant 4 4 matrix and the invariant
subspace by

T22) and (XI
respectively, where TI, TI, T, and X are 2 2 matrices, then we have

TX+T XT2.

It is well known that if TI and T have no eigenvalue in common, then this is a
nonsingular system.

For the case when Tll and T2 share an eigenvalue, consider the matrix

-1 0 0

T=Tll[ T12)=. -1 0
=0, i=1 4.

T22, 0 ,’’’,

0 0

If we try to find an invariant subspace of the form (/x), we fail; the elements ofX turn
out to be infinite. There is no invariant subspace of dimension 2 of the required form.
(The particular form chosen for TI2 is not critical, though, of course, if we take T12 to
be null, such an invariant subspace does exist withX 0; Tis then derogatory.) However,

I

and hence we now have an invariant subspace, which we think of as belonging to
T1 l- But

QTIQr=(O -2) when Q= ( 1)0 0 - (a rotation).

Hence

0
Q QTIQ

i.e.,

But

-1/2
M T, i.e., DMD-= T

0 0
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and hence

T D- D-(DMD-) D-T22,
0 0

0 0
T22.

The columns of(-’) are orthogonal, but not orthonormal. It looks as though we have
an orthogonal basis of an invariant subspace "belonging to T22," but we should not
really speak in these terms.

Nevertheless, if we consider

-1 0 0

T(e)= 1 -1100 (Tll]TI2)1,/2=O’3,4=+i&T22(e)
-e2 0

then there is a subspace ofthe form (x’) which we could justifiably describe as "belonging
to T22(e)," provided e 0. The elements of X(e) will tend to as e - 0 so that any
normalized version of this invariant subspace will have very small components in its
lower 2 2 matrix. In fact, since

0 0

we observe that

0 0
T22(e) T

0 0
T22(e)

T(QTD- 7D-

When e is small, this invariant subspace gives negligible residuals "corresponding
to T22 (e)."

Can we expect X(e) to be QrD- apart from a scale factor? Unfortunately we
cannot. In fact, we have

e2( X(e))I t11%2 -e201t0
4. A direct method for eomluting invariant subslmees. In this section, we consider

the construction of an invariant subspace by a direct computation of the vectors, rather
than by applying transformations to move the desired eigenvalues to the top ofthe matrix
T. We assume that the matrix T is derived from some square general matrix A. Suppose, is the kth eigenvalue along the diagonal of T and T is the leading k k minor in
the matrix T.



156 J. J. DONGARRA, S. HAMMARLING, AND J. H. WILKINSON

If ,k is a simple eigenvalue, we just solve

T- ,I)x= O.

This gives xk + 1, x + 2, , xn 0. Next, we take x and solve

T:- )kI)x 0

for x_ 1, x_ 2, , x2, xl, so the vector x will have the form

X’-(Xl,X2, ,xk_l, 1,0, ,0) T.
Now suppose a is a multiple eigenvalue, say a triple, such that

o 3,1,= Xq= Xr, (p < q < r).

In general, there will be only one eigenvector corresponding to a (unless Tis derogatory ).
First, we find the eigenvector x corresponding to X1, by solving

Tpp-Od)x=O.

Next we attempt to find y corresponding to ,q by taking yq and attempting to solve

Tqq- XqI)y 0, i.e., Tqq- od)y O.

All is fine until we reach the determination of yp. We have

Oyp + tp,p + Yp + + + lp,q- Yq-1 -t’- tp,q O.

If we let

then

tp,p + Yp + "]- tp,q- Yq- "It- tp,q d,

0y1,+d=0.

If d happens to be zero, then yp is arbitrary.
It is simplest to take y1, 0. Hence, when d 0, we obtain

X’- (XI,X2, ,Xp-1, 1,0, ,0,0, ,0)T

Y= (Yl,Y2, ,Yv-,0, y1,+ , ,yq-1, 1, ,0) T.
These two vectors are obviously linearly independent. Hence we have two eigenvectors
corresponding to c. Both satisfy (T- aI)x 0 and (T- aI)y O.

If we had taken y1, to be m instead of zero, the solution would have been y + mx.
This is fine since y + mx is also an eigenvector. We could have chosen y +mx orthogonal
to x,

xl-l(y+ mx) O, m=(-xI-Iy/xIx).

That the matrix will be derogatory is much less probable than that it will be defective.
In fact, even if A were exactly derogatory, T would probably not be, even if it still had
exact multiple eigenvalues.

Suppose now d 4: O. To get y1,, we would need to solve

Oy1, -d.

Hence we cannot get a second eigenvector. Note that if Xq were X1, + instead of X1,, we
would be solving

eyp -d
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at this stage, giving an erroneous value ofyp. Obviously, in this case the first p components
of y would be essentially de)x + (vector that is not too large). As e -- 0, the vector
y tends to a multiple ofx with a relatively negligible amount of interference. In the limit
we find that y and x are in exactly the same direction; the last q p components of y
are negligible compared with the rest when q is small, and arbitrarily vanish altogether
in the normalized y.

We cannot find a second eigenvector. We can, however, find a vector y such that

T- XqI)y dx.

Hence the determination ofy proceeds as before, from yq to yp + 1, since x is zero in these
components. We now have

so that

giving

Oyp + lp,p + Yp + + + tp,q- Yq-- -[- tp,q dxp d,

tp,p+ Yp + 1AI- At_ tp,q- Yq- AI- tp,q= d,

Oyp= O.

Again yp is arbitrary, and it is simplest to take yp to be zero. There are no further problems,
and we have

X--(Xl,X2, ,Xp-1, 1,0, ,0,0,0, ,0) T,

Y=(Y,Y2, ,yp_, O, yp+, ,yq_,l,O, ,0) T

with (T- aI)x O, (T- aI)y dx, or

T(x,y)=(x,y)
a

Now for the third vector, we shall ignore the possibility of its being derogatory for
the moment. We attempt to solve

Trr-OtI)z=O

starting with Zr 1. We proceed as usual until we reach Zq. At this stage we have

Ozq + tq,q + 1Zq + + + tq,r- 1Zr- + tq,r 0

so that

tq,q + Zq + Af.

__
tq,r- Zr- + tq,r e.

Hence, we solve

Trr- aI) z ey.

This does not affect the components already computed since Y O, (i > q).
For convenience we then take Zq O. We continue until reaching Zp. We now have

OZp -1- tp,p + Zp + q- tp,r- Zr- q- tp,r eyp,

i.e.,

tp,p + Zp + -[- At- tp,r- 1Zr At- tp,r--f.
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If f4: 0, we would get Zp 0. To avoid this situation, we solve

Trr- aI)z ey +fx.
This does not affect previous components since Xg 0 for > p. The equation for zp
then becomes

Ozp =0.

If we take Zp 0 and determine zp_ 1, zp_ 2, zl, we then have

(T-aI)x=O, (T-aI)y=dx, (T-aI)z=ey+fx,

or

(11) (T-aI)(x,y,z)=(x,y,z) a =(x,y,z)T,.

X=(Xl,X2, ,Xp-1,1,0,0, ,0,0,0, ,0) ,
Y=(Yl,Y2, ,Yv-1,0, yp+ 1,Yp+2, ,Yq-1, 1,0, ,0) ,
Z=(Z1,Z2, ,Zp-1,0, Zp+ 1,Zp+2, ,Zq-1,0, Zq+ 1, ,Zr-1,1,0, ,0) 7".
Clearly, x, y, z are linearly independent, and they span the three-dimensional in-

variant subspace associated with a. They are not orthogonal, in general, but we could
develop an orthogonal basis from this. Specifically, if

/’11 /’12
(x,Y,Z)=(ql,q2,q3) r22

then

or

r23/ Q3R3,
r33/

(T-aI)Q3R3=Q3R3To

T- aI)Q3 Q3[R3To,R Q3M.

Q3 is now an orthogonal basis, and M has a as a triple eigenvalue.
A derogatory matrix will be revealed by zero values among d, e, f. Thus if d

e f 0, we get three independent eigenvectors, and

T(x,y,z)=(x,y,z)

If d f= 0 and e 4: 0, we have

T(x,y,z)=(x,y,z)

Then we have a linear divisor (X a) and one quadratic, (X a)2.
If all computations are exact and Tcomes from exact computation, then we associate

only the eigenvalues that are truly equal, and the vectors obtained in the way we have
described are truly independent. In practice, however, T will rarely be an exact matrix.
Usually it will have been obtained from a matrix A by, say, the QR algorithm. Even if
A had defective eigenvalues, T will usually not have any repeated diagonal elements. A
real problem is to decide which diagonal elements to associate together. We may need
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to associate eigenvalues that are by no means pathologically close. If we have decided
which eigenvalues we wish to associate, then we proceed exactly as described.

So far in this section we have tacitly assumed that T is exactly triangular, but the
QR algorithm may give 2 2’s on the diagonal. If a 2 2 corresponds to a pair of real
eigenvalues, we can get rid of it by an orthogonal transformation. If it corresponds to a
complex conjugate pair, we cannot. We assume then that all 2 2’s correspond to
complex conjugate eigenvalues.

We turn now to the case of 2 2 blocks. If we associate only real eigenvalues in an
invariant subspace, there are no real new points. We merely need to know how to get
the two components of any of our vectors in the position of a 2 2 block in the matrix.
Clearly we solve a 2 2 system of equations for the two components. The technique for
getting the generators and the M is unchanged.

Now, consider obtaining a pair of vectors spanning the two-space associated with
complex conjugate pairs of eigenvalues, assuming for the moment that we are not as-
sociating it with any other eigenvalues. For T, illustrated by

we merely solve the equations

(12)
tp,p

T(xp,Xp+ l)=(xp,Xp+ 1)
tp+ 1,p

tp,p +
tp+lp+l

and take

(xp,x+ )

,

0

0

so that they are certainly independent. The two back substitutions for determining Xp
(p+ 1)and xp/ are done as before. We determine x}p) and x from the pair of equations

obtained by equating row on both sides of (12). This gives a well-separated pair of
vectors even when the two eigenvectors are close, provided the earlier eigenvalues are
well separated from them. Thus, for

Y2 xl Yl
0 0
0 -10-l 0 0 -10-1

the eigenvalues are +_ i10-5; they are close, but well separated from the other eigenvalue
)1 3. The components xl and Yl satisfy

3xl + =xl- 10-1yl, 3yl +2=xl +y.
To eight decimals, xl -1/2 and Yl --45-. The vectors are extremely well separated and

T(x,y)-(x,y)
_10_10 11) O(10-1)"
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If, when computing the two vectors corresponding to a complex pair, we encounter
another 2 2 block, say, in position i, / 1, then components and / of x and y
are determined by solving a set of four linear equations derived by equating rows and
+ of (12). This will be a well-conditioned 4 4 system if )‘i, )‘i +1 are well separated

from
When we wish to associate )‘p, )‘p / with some ofthe earlier eigenvalues (for which

we have already done the back substitution), the solution is quite clear. When we en-
counter a real eigenvalue )‘i that is to be associated with them, we solve from that point
on, namely,

tp,p
T(xp,xp+ )=(xp,xp+ 1)

tp+ ,
tp,p+ )+(xi)(dl,d2)tp+ 1,p+

and we chose dl and d2 so that the th component ofxp and xp + are zero. This gives us
a pair of equations for dl and d2. If )‘p, )‘p / 1, and )‘i were the only three to be associated,
we would have for the invariant three-space

ti,i dl
T(xi xp, xp + 0 tp,p

0 tp+ 1,p

tp,p +
tp+ 1,p+

If during the back substitution for xp, xp+l we encounter a pair )‘i, )‘i+1 that we wish to
associate with them, we solve from that point on

tp,p
T(xp,xp+ 1) (xp,xp+ 1)

tp+ l,p tp+ p+ ,i

dii+ )di +’l ,i+
where the four d’s are chosen so as to make components and + ofxp and xp + equal
to zero.

For example, suppose we group ()‘9,)‘8), )‘6, ()‘4,),3) where ()‘9,)‘8) and ()‘4,)‘3)
are complex pairs. We have

(X3, X4, X6, X8, X9)

0 0 0
0 0 0
0 0 * * *
0 0 0 0.0 0

Oi
*

0 0
0 0 0

and finally

T(x3 x4 x6 x8 x9 x3 x4 x6 x8 x9

/34
t44

d36 d38
d48
d68
t88
t98

 39\
d49
d69|.
/89 ]
/99 /
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The elements named d36 and d46 would have been determined when computing x6 when
we reached rows 3 and 4; the elements d68 and d69 would have been determined when
computing x8 and x9 when we reached element 6; and the elements d48, d49, d38, d39
would have been determined when we reached elements 4 and 3.

If we have made a good decision about our grouping, rows of the vectors will not
be large, though this would not be sufficient to decide that the grouping is complete.
First, there may be some )k which should also be associated with these five. Second, the
vectors x3, x4, x6, x8, and x9 might not be as linearly independent as we would like.

Other approaches have been suggested for computing the invariant subspace directly;
see [4 ]-[ 6]. These are likely to be more stable but more expensive to compute.

5. Conclusions. The methods described in 2 have been improved and generalized
by Ng and Parlett 7 and implemented in LAPACK ]. The LAPACK implementation
includes tolerance checks and scaling to ensure numerical stability 2 ]. This is essentially
achieved by not swapping blocks that are regarded as being too close.

We have discussed numerical issues concerned with the computation of invariant
subspaces and proposed two methods related to their computation. The method discussed
for swapping diagonal blocks can readily by extended to the generalized eigenvalue
problem.
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Abstract. Existing definitions of backward error and condition number for linear systems do not
cater to structure in the coefficient matrix, except possibly for sparsity. The definitions are extended
so that when the coefficient matrix has structure the perturbed matrix has this structure too. It is
shown that when the structure comprises linear dependence on a set of parameters, the structured
componentwise backward error is given by the solution of minimal cx)-norm to an underdetermined
linear system; an explicit expression for the condition number in this linear case is also obtained.
Applications to symmetric matrices, Toeplitz matrices and the least squares problem are discussed
and illustrated through numerical examples.
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1. Introduction. A backward error of an approximate solution y to a square
linear system Ax b is a measure of the smallest perturbations AA and Ab such that

(A + AA)y b + Ab.

Backward error has two distinct uses. First, it can be compared with the size of any
uncertainty in the data A and b to ascertain whether y solves a problem sufficiently
close to the original one. Second, by invoking perturbation results a bound can be
obtained on the forward error y- x in terms of the backward error and an appropriate
condition number.

Two classes of backward error definition are in current use, corresponding to
different ways of measuring the size of the perturbations AA and Ab. The most
familiar is the normwise backward error

(1.1) (y) min{ (A + AA)y b + Ab,

in which I1" denotes any vector norm and the corresponding subordinate matrix
norm, and the matrix E and the vector f are arbitrary. Rigal and Gaches [19] derive
the explicit expression

(1.2)

where r b- Ay; they also show that the minimum in (1.1) is achieved by the
perturbations

(1.3) AAmin [[Eli [lYll + [[f[I ?’ZT’ Abmin --[[E[[ ][Y[I + [Ifl[
r,
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where z is a vector dual to y, that is,

zTY
For the particular choice E A and f b, r(y) is called the normwise relative
backward error. The classic backward error analyses of Wilkinson [24], [25] for lin-
ear equation solvers provide bounds on the normwise relative backward error of
computed solution.

A more stringent measure of backward error results if the components of the
perturbations AA and Ab are measured individually, rather than together in a norm.
This way we obtain the componentwise backward error

(1.4) w(y)

where E _> 0 and f _> 0 contain arbitrary tolerances, and inequalities between matrices
hold componentwise. The current trend of using componentwise error analysis and
perturbation theory began with the 1979 paper of Skeel [20]. However, component-
wise backward error was introduced and studied much earlier in a 1964 paper of Oettli
and Prager [18]. Oettli and Prager obtained the explicit formula

(1.5) w(y) max
in which /0 is interpreted as zero if 0 and infinity otherwise. (A short proof of
(1.5) is given in [15] and [20].) Perturbations that achieve the minimum in (1.4) are

(1.6) /kAmin blED2, /kbmin -Dlf
where 91 diag(ri/(Z[y + f)) and 92 diag(sign(y)).

One reason for the current interest in componentwise backward error is that it
provides a more meaningful measure of stability than the normwise version when the
elements of A and b vary widely in magnitude. The most common choice of tolerances
is E- IAI and f -Ibl, which yields the componentwise relative backward error. For
this definition, zeros in A and b force zeros in the corresponding entries of AA and Ab
in (1.4), and so if w(y) is small, then y solves a problem that is relatively ,close to the
original one and has the same sparsity pattern. Another attractive property of the
componentwise relative backward error is that it is insensitive to the scaling of the
system" if Ax b is scaled to (SIAS2)(Slx) Sb, where S and $2 are diagonal,
and y is scaled to Sly, then w remains unchanged. Recent work that makes use of
componentwise backward error includes [1], [2], [13], [15], [16].

There are situations where even the componentwise backward error is not entirely
appropriate, because it does not respect any structure (other than sparsity) in A or
b. For example, if A is a Woeplitz matrix and (y) and w(y) are small, it does not
necessarily follow that y solves a nearby Toeplitz system, since AA in (1.1) or (1.4)
is not required to be a Toeplitz matrix. Indeed, AAmin in (1.3) or (1.6) is clearly
not Toeplitz in general. Similar remarks can be made about condition numbers: the
standard condition numbers are derived without requiring that perturbations pre-
serve structure, hence they generally exceed the actual condition number for a linear
system subject to structured perturbations. See Bunch [4] or Van Dooren [22] for
more detailed discussion of the desirability of preserving matrix structure in defini-
tions of backward error; Van Dooren also discusses structured condition numbers and
describes various structured linear algebra problems that arise in signal processing.
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In this work, we extend the notions of componentwise backward error and con-
dition number to allow for dependence of the data on a set of parameters. In 2 we
define the structured componentwise backward error and show how to compute it when
the dependence is linear. In 3 we define a structured condition number that measures
the sensitivity of a linear system to structured perturbations measured component-
wise. We derive an explicit expression for the condition number in the case where the
parametrization of the data is linear.

In 4 we examine applications involving symmetric matrices, Toeplitz matrices,
and the least squares (LS) problem. In particular, we explain why, when perturba-
tions to a symmetric matrix are measured using the 2-norm, it makes little difference
to the backward error or condition number whether the perturbations are required
to preserve symmetry or not. For most algorithms for solving structured linear sys-
tems little is known about the size of the structured backward error of the computed
solution. Some insight can be gained by computing the structured backward error
in specific instances, as we illustrate with numerical examples in 5. We give some
suggestions for further work in 6.

2. Structured componentwise backward error. Consider an approximate
solution y to the linear system Ax b, where A E lRnn and b E ]Rn. Suppose A
belongs to a set S c_ IRn whose members depend on t real parameters (t <_ n2);
we write this dependence as A A[p] where p lRt. We assume that b does not
exhibit any such structure, although the analysis below could be modified to allow for
structure in b. (An example of a problem where b has structure is the Yule-Walker
Toeplitz system [9, p. 184] in which b depends on the same parameters as A.)

Given nonnegative vectors of tolerances g ]R and f ]R, we define the
structured componentwise backward error

(2.1) it(y) min{e (A + AA)y b + Ab, A + AA Alp + Ap],
lap[

_
This definition differs from that of the componentwise relative backward error in two
respects: we require A + AA S, so that A + AA has the same structure as A, and
we measure the size of the perturbation to A using Ap rather than AA. If S IR
then it(y) w(y), assuming g and p comprise the elements of E in (1.4) and A,
respectively.

The following transformation removes the absolute values from the constraints in
the definition of it(y) and replaces the inequalities by equalities. Let

(2.2) Ap Dlv, Ab D2w,

where D1 diag(gi), D2 diag(fi). Then the smallest e satisfying IApl _< eg and
IAbl <_ ef is max{llvll Ilwll}, and so

Iv] (A + AA)y b + Ab, A + AA Alp + Ap],

(2.3) Ap Dlv, Ab- D2w}.
In general, this equality constrained nonlinear optimization problem has no closed
form solution (and it will have no solution at all if the constraints cannot be sat-
isfied). We therefore concentrate on the special case where S is a linear subspace
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of IRnxn. Several classes of matrices of interest fall into this category, such as
symmetric, Toeplitz, circulant, and Hankel matrices. Note that linearity implies
AA (A + AA) A E S. Furthermore, if each element of A is equal to a single
element of p, that is, aij Pk, then we have the equivalence

(2.4) lap[ < eg == IAAI <_ eE,

where eij gk; we will use this equivalence below.
Defining r b-Ay, the equation (A+AA)y b/Ab may be written AAy-Ab

r, or more usefully, yTAAT AbT rT, which places the variables AA to the right
of the constant vector y. Applying the vec operator (which stacks the columns of a
matrix into one long vector), we obtain

(2.5) (In (R) yT)vec(AAT) Ab r,

where (R) denotes the Kronecker product (see [17, Chap. 12] for properties of the vec
operator and the Kronecker product).

By linearity we have

(2.6) vec(AAT) SAp

for some B E lRnt which we assume to be of full rank.
Using (2.6) and (2.2)we can rewrite (2.5) as

or, with Y In (R) yT,

(In (R) yT)BDlv D2w r,

(2.7) [YBD1, -D2] [ V r.

This is an underdetermined system of the form Cz r, with C ]Rnx(t+n) and we
seek the solution of minimal cx>norm, the minimal value being #(y).

Note that in the case where t n2 and B I, the rows of C are "structurally
independent," that is, there is at most one nonzero per column. Our minimization
problem breaks into n independent problems of the form: minimize Ilxll subject to
aTx a (which has the solution x (a/llalll)sign(a)). It is easy to see that we
recover the Oettli-Prager formula (1.5).

If C is rank-deficient, then there may be no solution to Cz r, in which case
the structured componentwise backward error #(y) may be regarded as being infinite.
Assume, therefore, that C has full rank. If CT has the QR factorization

then Cz -r may be written

[1 ] RTI"=-

Thus R-Tr is uniquely determined, and
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Choosing 2 to minimize Ilzll is equivalent to solving an overdetermined linear sys-
tem in the oo-norm sense, for which several methods are available [23, Chap. 2], [6].

We can obtain an approximation to the desired cx>norm minimum by minimizing
in the 2-norm, which amounts to setting 2 0 (and which yields z C+Tr, where
C+ is the pseudo-inverse of C). In view of the fact that n-1/211xl12 <_ Ilxll <_ Ilxl12
for x E ]Rn, it follows that

(2.8) ,() < () _= < /t + n u().

How does the structured componentwise backward error It(y) compare with the
standard componentwise backward error w(y)? If we assume that (2.4) is valid and
that E and f are the same for both backward errors then, clearly, It(y) _> w(y). More
interestingly, if there are zeros in E and f, It(y) can be infinite when w(y) is finite.
The reason is that there are more free parameters in the definition of w(y) than in that
of It(y) and zeros in E or f reduce the number of free parameters in both definitions--
potentially by enough for there to exist feasible perturbations AA and Ab for w(y)
but not for It(y). Indeed, note that zeros in E and f introduce zero columns in C,
making C more likely to be rank-deficient.

Two simple examples help to illustrate the points discussed above. Consider the
system with

A= b= Y= l+e

where e > 0, and let E IA[, f 0 in (1.1), (1.4), (2.1) and (2.4). It is easy to check
that

’()
1 + ’ () 1,

and for symmetric structure, It(y) oc. If we alter A, b, and y to

e Y= 1

we find that

() e ma(, )’ () + ’ ’() 1,

which shows that even when the structured backward error is finite it can be arbitrarily
larger than the normwise and componentwise backward errors.

It is of interest to characterize when C has full rank, as this guarantees that It(y)
is finite. C is certainly of full rank if f has no zero elements, because then D2 is
nonsingular, but little more can be said about the rank of C in general.

Finally, we note that if C has full rank, then

,() < ()= IIc+ll
< IIc+rll < IIc+llllll

(Tmin(C)-i IIr[[2,
where (Tmi denotes the smallest singular value. This inequality will often be a reason-
able approximation and so it would be useful to determine the behavior of amin(C)
as B and y vary. Unfortunately, the rectangularity of B and Y makes it difficult to
obtain any results in this direction.
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3. Structured condition number. With the same notation as in 2, we define
the structured condition number

AA)(x Ax) b Ab,condo (A, x) lim sup (A

(3.1) A + AA Alp + Ap], IApl <_ g, IAbl <_ f}.
This definition employs the same class of perturbations as in the definition of the
structured componentwise backward error #(y), and so we have the perturbation
result, for any y,

IlY x]loo _< condoo (A, x)#(y) + O(#(y)2).

(Strictly, this result requires that IIAplloo O(e) = IIAAIIoo O(e); otherwise the
order term has to be weakened to o(#(y)).)

An explicit expression for condoo (A, x) can be derived in the case where A depends
linearly on its parameters. For a given e and perturbed system in the definition of
condoo(A, x), we have

(A + AA)Ax Ab- AAx,

which yields

(3.2)
Ax A-X(Ab- AAx- AAAx)

A-lAb A-1AAx + O(e2).

First, we analyze the term A-AAx. We have

AAx vec((AAx)T)
vec(xTAAT)

---(In xT)vec(AAT)
XBAp,

where we have used (2.6) and defined X In (R) xT. Since IApl < eg, it follows that

IA-1AAxl ]A-IXBAp] <_ elA-1XBIg.

Similarly,

IA-Xmbl < lA-11f.
Taking norms we obtain

(3.3) A-1AAx + A-X/Xbll <- 111A-XBI9 + IA-If I1.
It is easy to see that equality is attainable in (3.3) for suitable choice of Ap and Ab.
It follows from (3.2) and (3.3) that

Ilaxll < A-xXBIg + A-x If I1 +llxll Ilxll
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is a sharp bound, and hence

(3.4) condc,,:,(A, x)
IA- XBIg + IA-11f

Ilxll 
In the special case where no structure is imposed (B I2), this expression can

be written in the form

(3.5) cond’ (A, x) IA- IEIxl + [A- If

where E is defined in (2.4); this is a generalization of a condition number of Skeel
[20], as described in [1], [15]. It is possible for condO(A, x) to exceed condc(A, x) by
an arbitrary factor. However, if IA-11f I1 " IA-11EIxl I1 then the two condition
numbers will be of similar magnitude.

More convenient to work with than condo(A, x) is the quantity

where D1 diag(gi) and D2 diag(f). It is easy to show that

-O(A,x) < cond(A,x) < 0(A,x)2

The quantity O(A,x) can be estimated without explicitly forming the matrices
A-IXBD E ]RTM and A-D2 ]Rnn (assuming a factorization of A is avail-
able) by using the method of Hager [10] and Higham [12], [14]; this method estimates
IIC]lo at the cost of forming a few matrix-vector products Cx and CTy.

We also mention two interesting nonlinear structures, those of Vandermonde ma-
trices Y (a-) and Cauchy matrices g ((hi +/3j)-). In [11], explicit expres-
sions are derived for condo(V, x) and condoc(yT, x) in the case where f 0 and
g (1, 1,..., 1)T. In [8] a structured condition number with respect to the inversion
of H is derived.

4. Applications. In this section, we look in detail at the structured component-
wise backward error and structured condition number for three applications--those
involving symmetric matrices, Toeplitz matrices, and the augmented system for a LS
problem.

 n(n+4.1. Symmetric matrices. For the property of symmetry, there are t
i) parameters in the vector p. It is natural to take these parameters to be the elements
in the upper triangle of A, in which case every row of B contains a single nonzero
entry equal to one. To illustrate the form of the underdetermined system (2.7), we
consider the case n 3. It is easy to derive the system without using B. Also, it
is convenient to work with the independent elements of AA rather than Ap, and a
symmetric matrix of tolerances E rather than g (see (2.4)).

The constraint AAy- Ab-- r, that is,

Aa12 Aa22 Aa23 y2 Ab2 r,
Aa3 Aa23 Aa33 y3 Ab3
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is equivalent to the system

Yl Y2 Y3 0 0 0 --1 0 0 ]
(4.1) 0 Yl 0 Y2 Y3 0 0 --1 0

0 0 Yl 0 Y2 Y3 0 0 -1

Aall
Aal2
Aa13
Aa22
Aa23
Aa33

Ab2
Ab3

On using the transformation (2.2) (where Ap- vec(AA)), we obtain the underdeter-
mined system (2.7),

[Y Y2 Y3 0 0 0 -1 0 0] [D1 0(4.2)
[
0 y 0 y2 Y3 0 0 -1 0

j [ 0 D2 j0 0 y 0 Y2 Y3 0 0 -1

Vl

V2

V3
V4

V5
V6
Wl

W2

W3

where D1 diag(e, e2, el3, e22, e23, e33) and D2 diag(f, f2, f3). Note that the
n (n2/2 + 3n/2) coefficient matrix C is upper trapezoidal. Solutions to (4.2) are
easily obtained by inspection, but in general, none of these solutions will be of near
minimal norm.

The special structure of the matrix C enables computation of the QR factorization
of CT in O(n3) operations, by careful use of Givens rotations.

A structured normwise backward error for symmetric matrices has been consid-
ered by Bunch, Demmel, and Van Loan [5]. They consider (y) (see (1.1)) with f 0
and show that enforcing symmetry of AA when A is symmetric does not increase (y)
for the 2-norm, and it increases it by at most a factor x/ for the Frobenius norm.
No such result holds for componentwise backward errors because, as explained in 2,
it is possible for it(y) to be infinite when w(y) is finite. However, we note that in the
special case where E is diagonal, it(y) w(y), because the inequality IAAI _< E in
(1.4) automatically forces AA to be diagonal and hence symmetric.

The result of [5] can be loosely verified using (2.7). If we set all the elements of
f and g to 1 (thus Di It and D2 In), then it(y) differs from (y) for the 2-norm
by at most a factor x/ when B In.. We will assume that y el; this entails no
loss of generality because an orthogonal transformation

(A + AA)y b + Ab Q(A + AA)QT Qy Q(b + Ab)

does not change the class of admissible perturbations or the 2-norms of the pertur-
bations, although it does require g to be multiplied by a factor x/. Comparing
Y I (R) yT with YB, where B corresponds to the symmetry constraint, we find that
they differ only in that Y has extra zero columns. Thus imposing symmetry does not
affect the norm of the minimum cx>norm solution to the system (2.7) when B, D1,
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and D2 are identity matrices, and this confirms the result of [5], to within a factor n.

(The factor n is a consequence of switching from using components to 2-norms.)
A very similar argument shows that when D1 and D2 are identity matrices the

condition number cond2(A, x) is the same when symmetry is imposed as when there
is no structural constraint (cond2 (A, x) is defined as in (3.4) but with the 2-norm
replacing the x>norm). We note that a condition number that respects symmetry
has been derived in a different context by Fletcher [7]. Making statistical assumptions
about the perturbations to a linear system, Fletcher shows that the expected condition
number of a system is changed little by the imposition of symmetry.

To summarize, when perturbations to a symmetric matrix are measured using the
2-norm it makes little difference to the backward error or to the condition number
whether symmetry is enforced or not.

4.2. Toeplit. matrices. Recall that A E lRnxn is a Toeplitz matrix if there
exist scalars {ak n-1}k=-n such that ay aj_, that is,

ao al

a-1 ao "

al-n a-1

an-1

Toeplitz(al_n,..., co,’", an-l).
al
a0

In computing the "Toeplitz componentwise backward error," we have to distinguish
between unsymmetric and symmetric Toeplitz matrices, for which the number of
parameters in A is t 2n- 1 and t n, respectively. As in the previous section, it
is easy to derive the relevant underdetermined system (2.7).

For illustration we again consider the case n 3. It is straightforward to obtain
the following analogues of (4.1), where AA Toeplitz(Aal_n,-.., Aa0,..., Aan_):

Y3 Y2 Y 0 0 --1 0 0
0 Y3 Y2 Yl 0 0 --1 0
0 0 Y3 Y2 Yl 0 0 --1

(4.3) unsymmetric:

Y3 Y2 Y 1 0
(4.4) symmetric: 0 Y3 + Yl Y2 0 --1

Yl Y2 Y3 0 0

Aal
Aao
Aa_l
Aa_2
Abl
Ab2
Ab3

Aa
0 ] Aa0
-1 Abl

Ab
/kb3

Note that the coefficient matrix in (4.3) loses its Toeplitz structure when we
carry out the column scaling necessary to reach (2.7) (cf. (4.2)). Since the number of
columns of C is t/n O(n) in both cases, the cost of computing the QR factorization
of C is no more than O(n3) operations.

Note that if we set f 0, then in the symmetric case the system Cz r reduces
to a square system, corresponding to the fact that the number of parameters in AA
and Ab is the same as the number of equations.
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4.3. The augmented system for the least squares problem. Let A E
]pmxn have full rank n, let b E ]Rm, and let y be an approximate solution to the LS
problem min IIAx- bl12. Suppose we wish to determine the backward error of y, that
is, TLS(Y) or WLS(Y), defined as r(y)in (1.1) or w(y) in (1.4), respectively, but with
the condition (A+AA)y b replaced by the requirement that (A+AA)y- (b+Ab) ]]2
is minimal. Obtaining an explicit formula for YLS(Y) or WLS(Y), or an effective way
of computing these quantities, is an open problem, discussed in [13] and [21]; here
we make some progress on the problem.

Observe that the LS minimizer x satisfies the augmented system

I A

since this is simply a representation of the normal equations. Because this is a square
system, the work in 2 can be exploited. he augmented system h a great deal of
structure; to reflect this in the structured componentwise backward error (), it is
sucient to impose symmetry and to take E (see (2.4)) and f of the form

E= E 0 f=

Let us denote this backward error by LS(r, Y). The main observation of this section
is that PLS(r, Y) respects the structure of the augmented system (unlike 3(r, y) below)
and can be computed using standard methods (as described for p(y) in 2).

A complicating factor is that r in (4.5) is effectively a vector of free parameters,
so to obtain LS(Y) or WLS(Y) we have to minimize LS(r, Y) over all r. Fortunately,
in the applications of interest the naturally arising r is often a good approximation
to the minimizer [16].

In [3] and [131 a "pseudo-componentwise backward error" (r,y) was defined
for the augmented system in which different perturbations are allowed in the two
occurrences of A. This quantity is simply w(y) of (1.4) applied to the augmented
system with

I rl 0

and so an explicit formula is available for it from (1.g). In [16], is proved to be small
after one step of fixed precision iterative refinement, under suitable assumptions, when
a QR factoriation is used to solve the LS problem. Hence it is of interest to compare
gs(r, ) with (r, ) when E IA and fb Ibl. Clearly we have gs(r, ) (r, )
because of the additional symmetry constraint in the definition of gs. We report
some numerical comparisons in the next section.

inally, we note that it is possible to obtain a first-order approximation to the
backward error gs() by considering the perturbed normal equations

( +(+ (+l(b+ ).
Expanding and dropping the second-order terms AA and Ab, we have

AA+&AA Ab-Ab Ar(b- A).

With manipulation similar to tha in 2, this linearied problem can be reduced to
the computation of a minimum -norm solution to an underdetermined system.
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5. Numerical experiments. In the three applications discussed in 3 it is more
expensive to compute #(y) or (y) than to solve the original linear equation prob-
lem (but it is inexpensive to estimate condo(A, x)). Thus, unlike the normwise and
componentwise backward errors (y) and w(y), #(y) is not a quantity that we would
compute routinely in the course of solving a problem. However, tt(y) is useful as a
computational tool for studying the stability of a numerical algorithm for solving a
structured linear equations problem. We describe some numerical experiments involv-
ing the applications of 3.

Our experiments were done using MATLAB, which has a unit roundoff u
2.2 10-16. Computing # involves finding the minimal cx-norm solution to the under-
determined system (2.7). To do this we used the QR factorization transformation to
an overdetermined system described in 2, and solved this system in the cx>norm sense
using the method of [6]. The cost of the method of [6] when applied to min IIAx- bll
is approximately the cost of solving k weighted LS problems min IIB-lAxi -bl12
where k depends mildly on the problem dimensions (typically k <_ 20), and where Bi
is diagonal except for one full column.

In the first test we solved the system Ax b using Gaussian elimination with par-
tial pivoting (GEPP), where A is the 10 10 Hilbert matrix and b (1, 1,..., 1)T/3.
For several E and f, we evaluated the backward errors 7, w, and # for the computed
vector , and the condition numbers cond(A,x) of (3.4) and cond(A,x) of (3.5);
we imposed the constraint of symmetry for # (symmetry is denoted by S in the first
column of Table 5.1). For this matrix GEPP interchanges rows, and so symmetry is
lost in the solution process. We know from standard error analysis that () will be
of order u for E A (assuming there is no undue element growth in the elimina-
tion), irrespective of f, and the result of Bunch, Demmel, and Van Loan referred to
in 4.1 shows that imposing symmetry of AA in (1.1) cannot significantly increase r.
Comparing #() and w(), and cond and condO, in Table 5.1, we see that requiring
symmetry also has little or no effect on the componentwise backward error or the
componentwise condition number in this example.

The reason why the numbers in the first two rows of Table 5.1 are the same is
that IAIIxl is large compared with Ibl and hence it makes relatively little difference to
the formulas (1.2), (1.5), (3.4), (3.5), and the matrix C, whether we take f 0 or

In Table 5.2, A is the symmetric part of a 10 10 matrix with elements from the
random normal (0,1) distribution and b is the same vector as in the first example.
We see that for the computed solution from GEPP, #() -w() in each case; this
behavior is not uncommon. Our limited experience indicates that for well-conditioned,
full symmetric matrices, #() is usually of similar size to w() for the from GEPP.

The next example involves the symmetric positive definite 10 10 Toeplitz matrix
A (pli-jl), with p 1 3 10-5 and b (1, 2,..., 10)T/3. We solved Ax b using
GEPP and the O(n2) operations Levinson algorithm [9, p. 187]. Tables 5.3 and
5.4 report the # values obtained on imposing symmetry or Toeplitz structure alone
(denoted by S or T in the first column), and both symmetry and Toeplitz structure.
In the tables, IIAIIM denotes max,j lajl. Preserving the symmetric Woeplitz structure
raises the backward errors three orders of magnitude. Note also that there is little
difference in the backward errors between the two methods. This example shows that
even when a method specific to Toeplitz systems is used, the computed solution is
not guaranteed to be the solution to a nearby Toeplitz system.

Note that the second plus should be a minus in the expression for c in [9, Algorithm 4.7.2].



D.J. HIGHAM AND N.J. HIGHAM 173

E f

TABLE 5.1
A- Silbert(lO), 2(A)- 1.60e13, GEPP. (El

0
E1

a2(C) cond cond yo() w() #()
Ibl 2.40e0 3.05e12 3.05e12 1.99e-18 2.15e-17 2.18e-17
0 2.40e0 3.05e12 3.05e12 1.99e-18 2.15e-17 2.18e-17
]b] 1.00e0 1.72e6 1.72e6 4.08e-ll 4.08e-ll 4.08e-ll
0 5.17e4 6.63ell 6.63ell 5.82e-18 3.70e-12 3.70e-12

TABLE 5.2
A symm(rand(10)), 2(A) 6.24el, GEPP. (El Idiag(A)[).

E
IAI
IAI 0
o
E1 0

a2(C) cond cond
3.63e0 5.06el 4.79el
3.81e0 4.77el 4.49el
1.00e0 2.97e0 2.97e0
1.35e2 6.50e0 6.50e0

3.81e-17 1.26e-16 1.26e-16
3.87e-17 1.42e-16 1.42e-16
2.33e-15 2.33e-15 2.33e-15
2.11e-16 4.77e-14 4.77e-14

It is perhaps surprising that the increase in the backward error #() between
rows "S," "T," and "S,T" in Tables 5.3 and 5.4 is not matched by a decrease in
condo(A, x). This means, for example, that a smaller forward error bound (equal to
condition number times backward error) is obtained in this example if we do not utilize
the full structure of the problem. Nevertheless, it is not difficult to find examples
where cond (A, x)/condo(A, x) is large for symmetric Woeplitz structure if we set
f 0, which confines perturbations to the .coefficient matrix.

We mention that in all the examples reported the approximation in (2.8) sat-
isfied _< 2#.

In a further experiment we repeated some of the numerical tests from [16], which
involve fixed precision iterative refinement of the LS problem using a QR factorization.
We extended the testing of [16] by evaluating #LS(?, ) in addition to/(’, ), where
#LS and/ are defined in 4.3 and " and are the computed residual and LS solution
(both after refinement), respectively. For [16, problem PR] (in which A is a 4 3
matrix with widely varying row norms) and problem set H (a parametrized set of
problems involving a 6 5 submatrix of the inverse of the Hilbert matrix of order 6),
we found that #LS(?, ) " /(, ) u in every case. Thus we can conclude that in
these examples WLS() =-- min #LS(r, ) U, that is, the computed solution obtained
after iterative refinement is the exact solution to a small componentwise perturbation
of the original LS problem.

6. Concluding remarks. The contribution of this work is to extend existing
definitions of backward error and condition number in a way appropriate to structured
linear systems and to show how these structure-respecting quantities can be computed
in the important case of linear structure. Thus we have derived new theoretical and
computational tools. Several questions merit further investigation:

(1) Are there any nonlinear structures for which #(y) can be computed more effi-
ciently than if it is treated as a general nonlinear optimization problem (for example,
for Vandermonde matrices)?

(2) Is it possible to obtain further theoretical bounds on #(y) that would help us
to understand its behavior?

(3) Standard backward error analysis results for linear system solvers usually
ignore structure. Are there problems and algorithms for which a structured backward
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S
S

S,T
S,T
S,T

TABLE 5.3
A Toeplitz (10), 2(A) 6.50e5, GEPP. (E2 --IIAIIMeeT, f2 Ilbllooe.)

E f 2(C) cond cond
IAI Ibl 1.73e0 1.33e5 1.33e5
[A 0 1.73e0 1.33e5 1.33e5
IA Ibl 1.73e0 1.33e5 1.33e5

IAA 0 1.73e0 1.33e5 1.33e5
ibl 4.28e3 1.33e5 1.33e5

[A[ 0 6.06e3 1.33e5 1.33e5
E2 f2 2.92e3 1.33e5 1.33e5

2.13e-17 1.07e-16 2.13e-16
2.13e-17 1.07e-16 2.13e-16
2.13e-17 1.07e-16 2.13e-16
2.13e-17 1.07e-16 2.13e-16
2.13e-17 1.07e-16 3.23e-13
2.13e-17 1.07e-16 6.46e-13
2.13e-17 1.07e-16 2.29e-13

TABLE 5.4
A Toeplitz (10), Levinson algorithm. Condition numbers as in Table 5.3.

T
T
S,T
S,T
S,T

E f
4.07e-17 2.04e-16 2.32e-16
4.07e-17 2.04e-16 2.32e-16
4.07e-17 2.04e-16 2.32e-16
4.07e-17 2.04e-16 2.33e-16
4.07e-17 2.04e-16 4.22e-13
4.07e-17 2.04e-16 8.45e-13
4.07e-17 2.03e-16 3.00e-13

error result can be developed? See [22] for further examples of structured problems.
(4) What can be said about the ratio cond(A,x)/cond(A,x) for particular

structures and choices of tolerances, that is, how much can the imposition of structure
change the condition number? We have answered this question in a particular case
involving the property of symmetry.

Acknowledgments. We thank Yuying Li for providing us with MATLAB M-
files that implement the method of [6]. The second author thanks the Numerical
Analysis Group at the University of Toronto, for their hospitality.
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LOSS AND RECAPTURE OF ORTHOGONALITY IN THE
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To our close friend and mentor Gene Golub, on his 60th birthday.
This is but one of the many topics on which Gene has generated so

much interest, and shed so much light.

Abstract. This paper arose from a fascinating observation, apparently by Charles Sheffield, and
relayed to us by Gene Golub, that the QR factorization of an m n matrix A via the modified Gram-
Schmidt algorithm (MGS) is numerically equivalent to that arising from Householder transformations
applied to the matrix A augmented by an n by n zero matrix. This is explained in a clear and simple
way, and then combined with a well-known rounding error result to show that the upper triangular
matrix R from MGS is about as accurate as R from other QR factorizations. The special structure of
the product of the Householder transformations is derived, and then used to explain and bound the
loss of orthogonality in MGS. Finally this numerical equivalence is used to show how orthogonality
in MGS can be regained in general. This is illustrated by deriving a numerically stable algorithm
based on MGS for a class of problems which includes solution of nonsingular linear systems, a
minimum 2-norm solution of underdetermined linear systems, and linear least squares problems. A
brief discussion on the relative merits of such algorithms is included.

Key words, orthogonal matrices, QR factorization, Householder transformations, least squares,
minimum norm solution, numerical stability, Gram-Schmidt, augmented systems

AMS(MOS) subject classifications. 65F25, 65G05, 65F05, 65F20

1. Introduction. We consider a matrix A E Rmn with rank n < m. The
modified Gram-Schmidt algorithm (MGS) in theory produces Q1 and R in the QR
factorization

where Q is orthogonal and R upper triangular. In practice, if the condition number
a(A) =_ al/an is large (O"

_ _
O"n being the singular values of A), then

the columns of Q are not accurately orthogonal [3]. If orthogonality is crucial, then
usually either rotations or Householder transformations have been used to compute
the QR factorization. Here we show how MGS can be used just as stably for many
problems requiring this orthogonality.

We derive some important properties of MGS in the presence of rounding errors.
In particular, we show that the R obtained from MGS is numerically as good as that
obtained from rotations or Householder transformations. We present new insights
on the loss of orthogonality in Q from MGS, and show how this can be effectively
regained in computations that use Q, without altering the MGS algorithm or re-
orthogonalizing the columns of Q1. As a practical example of this, we indicate how
Q and R from MGS may be used to solve an important class of problems reliably,
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despite the loss of orthogonality in Q1. This new approach seems applicable to most
problems for which MGS is in theory relevant.

The class of problems we consider is that of solving the symmetric indefinite linear
system involving A E amxn with rank n

x)_ c.

In general we call (1.2) the augmented system formulation (ASF) of the following two
problems, since it represents the conditions for their solution:

(1.3) min lib xl12 ATx c,

(1.4) min{llb- Ayll2 + 2cTy}.
Y

We examine these problems more fully in [5]. The ASF can be obtained by differenti-
ating the Lagrangian IIb-xll / 2yT(ATx--c) of (1.3), and equating to zero. Here y is
the vector of Lagrange multipliers. The ASF can also be obtained by differentiating
(1.4) to give AT(b- Ay) c, and setting x to be the "residual" x b- Ay.

The ASF covers two important special cases. Setting b 0 in (1.3), and so in (1.2),
gives the problem of finding the minimum 2-norm solution of a linear underdetermined
system (LUS). Setting c- 0 in (1.4) gives the much used linear least squares (LLS)
problem. The ASF also occurs in its full form (1.2) in the iterative refinement of least
squares solutions [2].

Using the Qa factorization (1.1), we can transform (1.2) into

I

(R -0
This gives one method for solving (1.2):

(z)(1.5) z R-Tc, QTb, x Q f y (d- z).

Using x Qlz + Q2f Qz + Q2Qb Qz + (I- QQT )b, we obtain an obvious
variant"

(1.6) z R-Tc, d QTb, x b- Q(d- z), y R-l(d z).

Bjhrck [2] showed that (1.5) is backward stable for (1.2) using the Householder QR
factorization. Since (1.5) uses Q, (1.6) seems preferable if x is required and only Q1
is available. However, as we shall see, it cannot generally be recommended when Q
is obtained by MGS. We will show how to develop more reliable algorithms based on
Q from MGS.

In 2 we illustrate the important but not widely appreciated result that MGS is
numerically equivalent to the Householder QR factorization applied to A augmented
with a block of zeros. From this we show in 3 that the computed R from MGS is
numerically as satisfactory as that obtained using Householder QR on A. The product

OnP of the Householder transformations from the QR factorization of A is crucial
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for a full understanding of MGS. P has a simple and important structure, and this
is derived in the theorem in 4. This structure shows exactly how the computed
from MGS can lose orthogonality. In 5 this structure is used to bound the loss of
orthogonality of Q1, while 6 shows how the lost orthogonality can be compensated
for just by using Q differently without altering Q or MGS. We illustrate this by
producing a new backward stable algorithm for (1.2) using the computed Q and R
from MGS. In 7 we consider when we might use MGS in preference to the Householder
QR factorization of A.

2. Modified Gram-Schmidt as a Householder method. The MGS algo-
rithm computes a sequence of matrices A A() A(2) A(n+) Q E Rmn

where A(k) (q,... ,qk_l,a(kk) a(nk)). Here the first (k- 1) columns are final

columns in Q, and a(kk), a(nk) have been made orthogonal to q,’",qk-. In the
kth step we take

(2.1) qk a Pkk Ilqkll2, qk qk/Pkk,

and orthogonalize .(k) a(nk) against qk using the orthogonal projector I- qkq[k+l

(2.2) aJ-(k+l) (I qkq[)ak) ak)
qkPkj,

pj cla j k + l,...,n.

We see A( A(+I)R where R has the same kth row as upper triangular R =_

but is the unit matrix oherwise. After n steps we have obtained the factoriation

(2.a) A A(1) A()R1 A(a)R2R1 A(n+)Rn R1

where in exact arithmetic the columns of Q are orthonormal by construction. Note
that in MGS, as opposed to the classical version, all the projections qkPkj are sub-
tracted from the a sequentially as soon as q is computed. In practice, a square
root free version is often used, where one computes Q, R, and D diag(71,...
in the scaled factoriation, taking q as above,

(2.4) A QIR’, QI’ (ql," q), 7k (q)Tq, k 1, ..., n,

with R’ (pj) unit upper triangular, and pj Uk) /Tk, j > k.
It was reported in [4] that MGS for the QR factorization can be interpreted as

Householder’s method applied to the matrix A augmented with a square matrix of zero
elements on top. This is not only true in theory, but in the presence of rounding errors
as well. This observation is originally due to Charles Sheffield, and was communicated
to the authors by Gene Golub. Because it is such an important but unexpected result,
we will discuss this relationship in some detail. First we look at the theoretical result.

Let A Rmxn have rank n, and let On Rnxn be a zero matrix. Consider
the two QR hctorizations (here we use Q for m x m and P for (m + n) x (m + n)
orthogonal matrices),
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Since A has rank n, then Pll is zero, P21 is an m x n matrix of orthonormal columns,
and A Q1R P2/. If upper triangular R and/ are both chosen to have positive
diagonal elements in ATA RTR IT, then R =/ by uniqueness, so P21 Q1
can be found from any QR factorization of the augmented matrix. The last m columns
of P are then arbitrary up to an m x m orthogonal multiplier. The important result
is that the Householder QR factorization of the augmented matrix is numerically
equivalent to MGS applied to A.

To see this, remember that with ek the kth column of the unit matrix, the House-
holder transformation Pa elp uses P I- 2vvT/IIvlI, v a- elp, p +/-llal12. If
(2.5) is obtained using Householder transformations, then

(2.6)

where the vectors )k are described below Now from MGS applied to A(1) A,
Pll Ilal)l12 and a) q’ qp, so for the first Householder transformation
applied to the augmented matrix

.(1) ( O
q[ plVl, Vl q

(since there can be no cancellation we take Pkk _> 0). But IIvl122 2, giving

and

pl(il) nil) VlVlT-(I)aj aj(O1) --elq qTail) ai2)
SO

PI P12 P)n
ply(1)

where these values are clearly numerically the same as in the first step of MGS on
A. We see that the next Householder transformation produces the second row of R
and a3), a(n3), just as in MGS. Carrying on this way we see that this Householder
QR is numerically equivalent to MGS applied to A, and that every Pk is effectively
defined by Q1, since

/ \
(2.7) Pk I vkv[, vk |--ek } k=l.., n.

qk\/

P gives us a key to understanding the numerical behavior of MGS. First note
that in theory vvj eej + qT qj 0 if j, so PiPj I- viv -viva, and
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T is symmetric, so using HouseholderpT Pn P1 I vlvT V2V VnVn
transformations in (2.5),

Pll O,

P P21 qleT +’’" + qneTn Q1,

P22 I qlqT qqTn I QIQT Q2QT

This shows that such special orthogonal matrices are fully defined by their (1,2)
blocks,

(2.8) p(On.__ QT)IQ I- QQ

3. Accuracy of R from modified Gram-Schmidt. A rounding error analysis
of MGS was given in [3]. There it was shown that the computed 0,1 and/ satisfy

where are constants depending on m, n and the details of the arithmetic, and u
is the unit roundoff. Hence Q1R accurately represents A and the departure from
orthogonality can be bounded in terms of the condition number a o’l/an.

From the numerical equivalence shown in the previous section, it follows that
the backward error analysis for the Householder QR factorization of the augmented
matrix in (2.5) can also be applied to the MGS on A. Here we will do this, and in
this section and 5 we will rederive (3.1) as well as give some new results. This is a
simple and unified approach, in that the one analysis of orthogonal transformations
can be used to analyse the QR factorization via both Householder transformations
and MGS. It also deepens our understanding of the MGS algorithm and its possible
uses.

Let Q1 (c1,... ,qn) be the matrix of vectors computed by MGS, and for k
1,..., n define

Then/ is the computed version of the Householder matrix applied in the kth step
of the Householder QR factorization of (), and/Sk is its orthonormal equivalent,
so that/5,/5 I. Wilkinson [11, pp. 153-162] has given a general error analysis of
orthogonal transformations of this type. From this it follows that for R computed by
MGS, the equivalent of (2.5) is

A+Ee

(3.3) IIE II2 a ullAII2, i= 1,2, [IE’I{2 c3u,

where again ci are constants depending on m, n and the details of the arithmetic.
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To show that this R from MGS, or the Householder QR factorization of the aug-
mented matrix, is numerically about as good as that from the ordinary Householder
QR factorization of A, we use the following general result.

LEMMA 3.1. For any matrices satis]ying

A + E2 P21

there exist 1 and E such that

PPll + PP21 I,

(3.4)

Proof. Consider the CS decomposition (see, for example, [7, p. 77]) Pll
UICWT, P21 V1SWT, where U (U1, U2), V (V1,V2) are square orthonor-
mal matrices and C and S are nonnegative diagonal matrices with C2 + S2 I.
Define (1 VWT, the closest orthonormal matrix to P21 in any unitarily invariant
norm; then since (I + S)(I- S) C2,

01 P21 VI(I- S)WT VI(I + )-IwTwcuu1cwT

+
Yl( +

from which the first two bounds follow. Next,

E IR- A (1 P21)R + E2,

from which the third bound follows. l

Using these results we see when/ is computed using MGS, so/ satisfies (3.3),
there exists orthonormal 1 such that, writing c cl + c2,

(T^(3.7) A + E 0,1, Q I, IIEII2 <_ cullAII2.
This means if dl _> _> n are the singular values of/, and a >_ >_ an are those
of A,

(3.8) cri I<_ cua, i- 1,..., n.

Thus R from MGS is not only the same as R from the Householder QR factorization
applied to A augmented by a square block of zeros, but (3.7) shows it is compara-
ble in accuracy to the upper triangular matrix from the Householder or Givens QR
factorization applied to A alone. Also (3.8) shows that the singular values of R are
very close to those of A. This means we could use MGS as a first step in finding the
singular values of A, and justifies an algorithm by Longley in [9, Chap. 9]. Since we
have not required A to be full rank as yet in this section, this fact also ensures that
R from MGS can be used in any computation for finding the rank of A. Here we will
just use this knowledge to simplify our bounds below.
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In fact, / is usually even better than (3.7) suggests. We see/ is nonsingular if
CUal < O’n, that is, if cua < 1, so we make the following assumption and definition,

(3.9) cua < 1, =- (1 -cua)-1,
where usually y 1. Then

(3.10)
and E1 =/511/, so

(3.11)
From (3.6),

(3.12)
showing that the first term on the right will be negligible if rlclua << 1, which is
usually true.

We will show how all of/5 and/5 depend crucially on/311 and/311, respectively, so
the bounds in (3.11) are important in understanding the loss of orthogonality in MGS.
Since R is numerically about as good as we can hope for, it is clear that the main
drawback of MGS is this lack of orthogonality in Q1 (ql,’", q,), so we examine
this in the next two sections. (As is mentioned in 7, another less important drawback
is that the operation count is slightly higher for MGS than for the Householder QR
factorization.)

4. Structure of P,/5, and/3 from the Householder QR factorization of
the augmented matrix. It is well known that the orthogonality of the ideal Q1 is
lost in MGS because of cancellation in the subtractions in (2.2), and that this can
give a severely nonorthogonal computed (1. In order to understand this loss fully
and later to bound it, the following theorem provides the detailed structures of P and
/3 in (3.2) as functions of the computed (1 and the normalized (1 (l,’",q-n),
respectively. Note that the theorem is for general Q1 (ql,’", q), and so will apply
to P, /5, and 15. The idea is that any matrix P P1P2"’" Pn with Pk I- VkV[

T T Tand vk (--ek, qk has a very special structure, and the theorem reveals this. In
this structure the whole matrix is seen to depend only on the leading n n block
Pll of P, and on Q1. But we have bounds on our Pll and Pll in (3.11), and so will
be able to understand and bound the loss of orthogonality in (1 or (1 from MGS.
Furthermore, all such Pll have special structure too, being strictly upper triangular.

THEOREM 4.1. Let Q1 (ql,"’, qn) E Rren, and for k 1,..., n, define

()Mk I--qkq, Vk
--ek E Rm+n Pk I--VkVkqk

Then with the partitioning we use throughout this theorem

(4.1) P P1P2 P, =- n Pll P12
g P:

0 qTlq2 qT1 M2q3
0 0 qqa

0 0 0
0 0 0
ql 2Vlq. Mliqa

qT M2M3". Mn_lqn
qT2 M3M4 Mn- qn

T
qn-lqn

0

M1M2 Mn- qn

T "M,qn-1 n
T

MIM2 Mn
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(4.2) QI(I- Pll)
(I P)Q"

I Q1 (I P)Q" J
P is orthonormal if and only if Ilqkll2 1 for k 1,..., n; PI 0 if and only if
QQ is diagonal.

There is a short proof that does not give (4.1), but since (4.1) reveals the detailed
structure of P, we give a longer proof. Note that if qk has length 1, then Mk is a
projector, and from (4.1) the second column of P2 is that part of q2 orthogonal to
q; the third is q3 orthogonalized against q2 and the result orthogonalized against q,
and so on. However, this is not the same as reorthogonalizing the qk.

Proof. To determine the first n columns of P PP2... Pn, note that

Pk I- VkV I-
qk --ek

qkek
T Mk

and let 1 <_ j _< n. If j k then Pkej ej, while

(0)Pe= I. ’
SO

( qM2""Mj-lqj ’qT2 M3 M:i- q.i

qLM-lq
q-lqj

0

0

P21 ej P2j

7rlj
7r2j

7j--2,j
-1,

\ P2j

say, which gives the (1, 1) and (2, 1) blocks of (4.1). For the last m columns we have

(4.4)

P2 p 0 nqn
P22 Im P1P2 Pn--1 M,

PIP2""" Pn-2 ( enqTn+en-lqnT-1MnMn-Mn qn-1Mn

MI Mn

which completes the proof of (4.1). Next, from (4.3),

P (I- qq)M:M...M_q
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so P21 QI(I- Pll), giving the (2, 1) block of (4.2). Next, from (4.4),

so P12 (I- Pll)Q, giving the (1, 2) block of (4.2). We can now use the structure
of P21 in (4.1) to give

P22 MiM2... Mn
MiM2"’" Mn-i MiM2"’" Mn-iq,qTn
MiM2"’" Mn-i P2ienqTn

T P21en TMM2... Mn-2 P2en-lqn- qn

p:l

I- P21(elqT T T-f- e2q2 + + enqn)

completing the proof of (4.2).
Clearly Pk is orthonormal if qqk 1, so if Ilqkll2 1 for k 1,..., n, then P

is orthonormal. Now suppose P is orthonormal; then Pe Pel (0, qlT)T must
have length 1, so IIql12 1 and P1 and so P2P3 "Pn is orthonormal. But then
P2P3"" Pne2 P2e2 (0, qT2)T must have length 1, and so on. Finally we see from
(4.1) that the ith row ofP is zero if and only if T

qi qj 0 for j / 1,’", n, proving
PI 0 if and only if QTQ is diagonal.

Since each of P (see (2.6) and (2.7)),/5 and/5 (see (3.2)) has the structure of P,
in the theorem, P has the form (2.8), and

(4.5) /5
l(I -/51)

for some strictly upper triangular Ply, with P having a similar form. This shows
how loses orthogonality when/5 is nonzero. Clearly, P and/5 are orthogonal
matrices, so their first n columns form orthonormal sets. Since Pll is zero, Q is
clearly an m n matrix of orthonormal columns, but all we can say about the size
of/5 is 11/511112 < ciult, from(3.11). If is not very much greater than 1, then
/51 is small, and from (4.5), Q1 has nearly orthonormal columns. For larger ,
(4.5) shows how the columns of can become less and less orthogonal, losing all
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likelihood of orthogonality when clurn - 1. Clearly column pivoting would be useful
in maintaining orthogonality as long as possible, and in revealing the rank of rank
deficient A. Since Q1 is just Q with normalized columns, the same comments on
orthogonality apply to Q1. We will bound these losses of orthogonality in the next
section, and show how to avoid them after that.

5. Loss of orthogonality in Q1 and (1 from MGS. Each column of ( is
just the correctly normalized column of the computed (1 from MGS, whose columns_
already have norm almost 1, so what we prove for Q1 effectively holds for Q1. We
saw from Theorem 4.1 that the first n columns/5(n) of/5 are orthonormal and

/

so an easy result is obtained by applying Lemma 3.1 with R I, A (1, E1 =/511,
and E2 -(1/511, showing that there exist (1 and E such that (1 + E (1 with

01T01--" I and

But then IIQII2 _< 1 + IIEII2, giving

and a bound on the distance of 1 from an orthogonal matrix when clua < 1,

(5.1)
1 + ClU/a

1 C lt?g

which for clurla << 1 is effectively cluria.
In order to bound the departure of (TQ1 from the unit matrix, we could use

(5.1) directly, but a more revealing result follows by noting in (3.3) that E1 =/511/
is strictly upper triangular, since Pll is so from Theorem 4.1. Thus

so that

(- E1)T(2T (I(- El) T_ ET E
(- E1)T([:I- El) + (- El)TEl + ETI(- El).

Since R is nonsingular upper triangular, and E1 is strictly upper triangular, R- E1
is nonsingular upper triangular, and

0T011 I + EI(/ El) -1 + (/ El, 1,

with EI(/- E1)-1 the strictly upper triangular part of 0T01" This gives a clear
picture of exactly how the loss of orthogonality depends on the computed R. Thus
from (3.3) and (3.8)-(3.10), if (c + cl)ua < 1, we obtain the bound

1-(c+cl)ua’
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and a loss of orthogonality of this magnitude can often be observed in practice.
The bound (5.3) is of similar form to the bound (3.1) given in [3], but here we also

derived the relation of (1 to the orthonormal matrix P, and described the relation
between the loss of orthogonality in (1 and the deviation of/5 from the ideal form
of P. We also note here that if the first k columns of A in (3.3) have a small a, then
the first k columns of/11 will be small, and the first k columns of ( will be nearly
orthonormal.

Our main purpose is not to show how ( or ( may be improved. Instead, the
key point of this work is that although the computed/5 is very close to the exactly
orthogonal/5 in (3.3), the columns of ( need not be particularly orthonormal. Our
thesis here is that as a result of this, it is usually inadvisable to use (1 as our set of
orthonormal vectors, but we can use P (as the theoretical product of the computed

-T which is extremely close to ), to make use of the desired orthogonality,P I-v
since we have all the necessary information in Q, that is, vk-T (_ek,T qk=T)" Thus we
can solve problems as accurately using MGS as we can using Householder or Givens
QR factorizations if, instead of using the computed Q directly, we formulate the
problems in terms of (2.5) (see (3.3)) and use the k to define P. Of course, in most
cases no block of P need actually be formed. We illustrate an important use of this
idea in the next section, and discuss the efficiency of such an approach in 7.

6. Backward stable solution of the ASF using MGS. BjSrck [2] showed
that (1.5) is backward stable for the ASF (1.2) using the Householder QR factoriza-
tion, but the same is not true when we use (1.6) with and 1 computed by MGS;
see [5]. Here we use our new knowledge of MGS to produce a backward stable algo-
rithm for the ASF based on Q and from MGS. This new approach can be used to
design good algorithms using MGS in general.

Our original ASF (1.2) is equivalent to the augmented system

(6.1) 0 I A
0 AT 0 y c

so applying Householder transformations as in (2.5) gives the augmented version of
the method (1.5) as

x h y=R- (d-z).

But as we saw in 2, we can use the qk from MGS to produce Pk I--vkv’,
T T pTvk (--ek, q[), and use Pn"" P2P1 in (6.2). We show in [5] that this algorithm

is strongly stable (see [6]) for (6.1), and also strongly stable for (1.2).
We now show how to take advantage of the structure of the Pk; then we will

summarize this numerically stable use of MGS for the ASF. To compute d and h in
(6.2) note that pT Pn"" P1, and define

Now using induction we see d(k) has all but its first k- 1 elements zero, and

d(k+) Thk+l))-- (d(k) h(k))qk h(k) qk(qh(k))
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giving the computation starting with h(1) b,

for k 1,..., n do{hk := q[h(k); h(k+l) := h(k) qkhk},

so h h(n+l),d d(n+l) ((l,"’,(n)T. This costs 2mn flops (1 flop one
multiplication and one addition in floating point arithmetic), compared with the mn
flops required to form d QTb in (1.6). The computation for d and h is exactly the
same as the one that would arise if the n MGS steps in (2.1)-(2.3) had been applied
to (A, b) instead of just A, so that h is theoretically the component of b orthogonal
to the columns of A. Note that now d has elements q[h(k) instead of T

qk b, as would
be the case in (1.6).

To compute x in (6.2), define

w() z (z)x(k-l) --Pk"’P h Pk x(k)

so that

X(k-l) X(k) qk --’k + uk

Twhich shows that in this step only the kth element of w(k) is changed from k ek z
to 0.)k ’tkr’T’(k)’’ This gives the computation starting with x(n) := h h(n+l)

,T,.(k) 1) x(k)for k n,..., 1 dO{wk :-- /k x(k- qk(Wk k)},

SO X X(0), W ()1,’’’, O)n)T. This costs 2mn flops compared with mn flops for
x b- Ql(d- z) in (1.6). From (2.8) we see in theory (6.2) gives x QlZ + Q2QT2h
where h Q2QT2 b, so x h + Qlz. Note that w (wl,... ,Wn)T is ideally zero (see
(6.1)), but can be significant when a(A) is large. The computation of x here can be
seen to reorthogonalize each x() against the corresponding qk before adding on qkk
to give x(k-l). The complete algorithm is then as follows.

ALGORITHM 6.1. Backward Stable Algorithm for the ASF based on MGS.
1. Carry out MGS on A to give Q1 (ql,’", qn) and R;

2. Solve RTz c for z (1,’", n)T;
3. for k 1,..., n do{hk :-- q’b; b b qkhk};

T4. for k-n,...,1 do{wk:=qkb; b:=b--qk(wk--k)}; x’=b;

5. Solve Ry d- z for y, where d- (51,..’, 5,)T.
A weakness in some other MGS-based algorithms is that the reorthogonalization

in step 4 is not done. This is the case for the two algorithms denoted (3.4) and (3.6)
in [1]. The first is equivalent to (1.6) and the second is the Huang algorithm [8] which,
instead of steps 3 and 4, does (using our notation)

for k 1 ,n do{hk T (hk--k)); Xqk b; b := b qk b.

The following implementation issues and specializations of the algorithm are fairly
obvious. Steps 1, 2, and 3 can be combined, and there is a lot of parallelism inherent
in these. When these are complete, steps 4 and 5 can be carried out independently.
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For (1.3), step 5 can be omitted if the vector of Lagrange multipliers y is not needed,
while for (1.4), step 4 can be omitted if the residual x is not needed.

If b 0, corresponding to LUS, then d 0 and step 3 will be omitted, as will
step 5 if the Lagrange multipliers are not needed. If c 0, corresponding to LLS,
then z 0 and step 2 will be omitted, and as will step 4 if the LLS residual x is not
needed. Then the algorithm is equivalent to the following variant of MGS:

where d is computed as part of MGS. This is the approach recommended for LLS in [3].
The work here is another way of proving the backward stability of this approach, and
adds insight into why it works. For LUS, however, the numerically stable algorithm
made of steps 1, 2, and 4 constitutes a new algorithm which is superior to the usual
approach that omits the wk in step 4.

If A is square and nonsingular, (1.3) becomes the solution of ATx , and x is
independent of b, so if y is not wanted, then b can be taken as zero in the algorithm,
and steps 3 and 5 dropped. Similarly, if A is square and nonsingular and c 0, then
(1.4) becomes Ay b and steps 2 and 4 can be dropped. This gives two different
backward stable algorithms for solving nonsingular systems using MGS. Note that the
first algorithm applies MGS to the rows of the matrix (here AT) and is numerically
invariant under row scalings. The second algorithm applies MGS to the columns of
A, and is invariant under column scalings. Hence the first algorithm is to be preferred
if the matrix is badly row scaled, the second if A is badly column scaled.

A square root free version of Algorithm 6.1 is obtained if we instead use the
factorization (2.4) A QR, where R is unit upper triangular.

ALGORITHM 6.2.

R’ and D diag(’l, "n),1. Carry out MGS on A to give Qi (ql,"’, q’), "",

where ")’i ]lq II 22"
2. Solve (R’)TDz’= c for z’= (,..., )T.
3. for k 1,..., n do{5 (q)Tb//k; b := b

4. for k=n,...,1 do{w:=(qk)Tb/k; b:=b-q(w-)}; x:=b;

5. Solve R’y d- z for y, where d’ (51,... 5n)T.

This section has not only shown how MGS can be used in a numerically stable
way to solve the very useful linear system (1.2), along with its many specializations,
but it has hopefully shown how MGS can be used more effectively in general.

7. Comparison of MGS and Householder factorizations. There are four
main approaches we need to compare:

(1) MGS on A producing computed/ and (1, and using these.
(2) MGS on A producing computed/ and (1, and using/ and/5,...,
(3) Householder transformations on

(oo
producing/ and/51,...,/sn and using these.
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(4) Householder transformations on A producing/ and/51,...,/hn, say, and using
these.

We call these approaches rather than algorithms, since each includes a reduction
algorithm, plus a choice of tools to use in problems that use the reduction. We only
consider the case of a single processor computer, a0nd a dense matrix A.

Approaches (2) and (3) are numerically equivalent, but it is clearly more efficient
for computer storage to use approach (2) via (2.1) and (2.2) than to use (3), even
though we may think in terms of (3) to design algorithms which use the/51,...,/5n
(these, of course, being "stored" as ,..., n). Thus we would use the new approach
(2) rather than (3) computationally, while being aware of both their properties theo-
retically.

The most usual case is where we wish to use the orthogonality computationally,
but cannot rely on a(A) being small. Then the choice is between (2) and (4). For
the initial QR factorization MGS requires mn2 flops compared to mn2 -n3/3 for
Householder. MGS also needs n(n- 1)/2 more storage locations. Hence approach
(4) has an advantage with respect to both storage and operation count for the initial
factorization, although this is small when m >> n.

If accurately orthogonal, Q or Q in (1.1) is required as an entity in itself; then
since such orthogonal matrices are not immediately produced by (2) when ,(A) is
large, the obvious choice is (4), where Q (or Q) is available as the product (or part
of it) of the k. To produce Q doubles the cost using (4). To produce an accurately
orthogonal Q1 with MGS in general, we apparently need to reorthogonalize. This also
approximately doubles the factorization cost, and again the operation count is higher
than for Householder.

For both approaches (2) and (4) we have shown backward stability in the usual
normwise sense. In agreement with this, both these approaches tend to give similar
accuracy, although experience shows that MGS has a small edge here, in particular if
the square root free version is used.

If the matrix A is not well row-scaled, then row interchanges may be needed in (4)
to give accurate solutions for problem LLS; see [10]. In this context it is interesting
to note that MGS is numerically invariant under row permutations of A as long as
inner products are unaltered by the order of accumulation of terms. That is, if Q1
and/ are the computed factors for A, then H( and/ are the computed factors of
HA. This shows that (2) is more stable than (4) without row interchanges. However,
if row interchanges are included in (4), this approach is more accurate for problems
where the row norms of A vary widely. In approach (2) a second-order error term

O((wu)2) appears, where w is the maximum ratio of row norms. This error term
can be eliminated by reorthogonalization, which, however, increases the cost of MGS.

We finally mention that sometimes R is used alone to solve our problems, and
then approaches (1) and (2) are identical. We will discuss this case in [5].
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Abstract. Stable and efficient updates to the basis matrix factors are vital to the simplex
method. The "best" updating method depends on the machine in use and how the update is imple-
mented. For example, the classical product-form update can take advantage of the vector hardware
on current supercomputers, and this helps compensate for its well-known drawbacks. Conversely, the
method of Bartels and Golub performs well on conventional machines, but is difficult to vectorize.

With vectorization in mind, we examine a method based on the block-LU factors of an ex-
panding basis. The partitioned matrix involved was introduced by Bisschop and Meeraus [Math.
Programming, 13 (1977), pp. 241-254], [Math. Programming, 18 (1980), pp. 7-15]. The update itself
was proposed by Gill, Murray, Saunders, and Wright [SIAM J. Sci. Statist. Comput., 5 (1984),
pp. 562-589].

The main advantages of the block-LU update are that it is stable, it vectorizes well, and compared
to the product-form update, the nonzeros increase at about two-thirds the rate. The update has
been incorporated into MINOS and tested on 30 large, sparse linear programming problems. Results
are given from runs on a Cray Y-MP.

Key words, matrix factorization, updating, simplex method, linear programming
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1. Introduction. We wish to use the simplex method [Dan63] to solve the stan-
dard linear programming (LP) problem,

minimize cTx
subject to Ax b

l<_x <_u,

where A is an m by n matrix and c, x, l, u, and b are of appropriate dimension.
The simplex method is an active-set method for optimization. At each iteration a

rank-one modification (in the form of a column update) is made to a basis matrix B
associated with constraints active at the current point. After k updates, the columns
of A may be permuted to the form (Bk Nk). The next update replaces the pth
column ar of Bk by a column aq from Nk. It can be written

(1) Bk+l Bk / (aq a.)epT,

where ep is the pth column of the identity matrix. The basis is used to solve for the
search direction y and the dual variables r in the following linear systems:

(2) Bky aq,
(3) B’ Ck,

where ck contains the objective coefficients corresponding to the columns of Bk.
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Stable and efficient basis updates are vital to the computational success of the
simplex method. The "best" updating method depends on the machine in use and
how the update is implemented. For example, the classical product-form (PF) update,

(4) Bk BoT1T2 Tk,

can take advantage of the vector hardware on current supercomputers such as the
Cray X-MP and Y-MP. This helps compensate for its potential instability and for
the typically high rate of growth of nonzeros in the "eta" vectors representing the
elementary triangular factors Tk.

Conversely, the Bartels-Golub (BG) update lear71],

(5) B LkUk, Lk LOT1"" T,

performs well on conventional machines [Rei82], [GMSW87] but is difficult to vectorize
fully because each Tk may be a product of triangular factors involving short vectors,
and U is altered in an unpredictable manner. The Forrest-Tomlin (FT) update
[FT72], also described by (5), makes simpler changes to Lk and Uk and is probably
more amenable to vectorization.

With vector machines in mind, we examine two further updates in 2 and 3. We
then discuss implementation details for the second method and present computational
results comparing a block-LU method to the BG update.

2. The Schur-complement update. As an alternative to (2), Bisschop and
Meeraus IBM77], IBM80] drew attention to an augmented system Bk 5q of the
form

(6) ( uOUk uk ) ( Yly2 ) ( aqo )
where

(7) Vk (aq aq) Uk (ep, ep

Initially, B0 is defined as a basis matrix at the start of the first iteration. After a
number of iterations it may be necessary to factorize the current basis Bk and redefine
it to be B0. Each aq (j 1,..., k) corresponds to a basic column from A that has
become basic since the last refactorization of Bo.

System (6) is equivalent to (2). To see this, note that the equation Ukyl 0 sets
k elements of yl to zero, so that the remaining elements of y when combined with
y2 give the solution y E m. Specifically, y may be formed by setting y *-- yl and
overwriting y(j) y2(i) for 1,..., k, where j is defined as the unit-vector index
of the ith row of Uk.

The solution to (6) can be found by solving in order

(8) Bow aq,
(9) CkY2 Ukw,
(10) Boy aq VkY2,

where Ck UkBIVk is the Schur-complement matrix. In general, this method
requires two solves with Bo as well as a single solve with the matrix Ck, which will
have a maximal dimension of k. If aq happens to be a column originally from Bo, we
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have aq Boes for some s. In this case w e8 and (9) reduces to Cky2 e{, where
the ith row of Uk is es.T In addition, (10) can be written as B0(Yl es) --VkY2, so
that aq itself need not be known.

Likewise, the solution to (3) can be found by solving the equivalent system

and taking r r. That is, by solving in order

BD
(13) C[2 V[z dk

During Phase 1 of the simplex method, c0 in (11) and (12) may change for each k, but
in Phase 2, system (12) need be solved only once each time the basis is refactorized. In
addition, from (14) we see that U[r2 c0 B. This implies that r2 corresponds
to the set of reduced costs for columns of Bo that are currently nonbasic.

Note that for most updates, a new column is added to V} to obtain V}+. However,
the updates occasionally involve replacing or deleting columns of Vk. From now on, k
refers to the number of columns in Vk, not the simplex iteration number. The matrices
involved then have the following dimensions: Bk is m x m, N} is m x (n- m), Vk is
m x k, Uk is k x m, and Ck is k x k.

2.1. Advantages. The Schur-complement (SC) update for linear programming
was first described by Bisschop and Meeraus IBM77], IBM80], one of whose aims was
o provide an updating technique with storage requirements that are independent of
the problem size m. This is a unique feature.

The SC update shares an important advantage with the PF update, in that the
factors L0 and U0 are used many times without modification. On a vector machine,
the triangular solves with these factors can therefore be reorganized to take advantage
of the vector hardware, as recently shown in [ER90]. The greater stability of the SC
update allows the overhead associated with this reorganization to be spread over 100
iterations (say), whereas the PF update may fail a stability test at any stage (in the
worst case after only one or two iterations).

A further advantage of the SC and PF updates is that it is only necessary to solve
systems with B0 and B; we do not need to access the columns of B0 for pricing. This
may be important for specially structured problems. See [GMSW84, pp. 578-580] for
further discussion.

2.2. Stability. The matrix in (6) has the following block-triangular factoriza-
tion:

(lg) k- Uk UkB I -Ok

Recalling that Uk is composed of unit vectors, we see that if B0 is "reasonably well
conditioned," then the first triangular factor is also reasonably well conditioned. In
such cases, the Schur complement Ck tends to reflect the condition of k, which is
essentially the same as the condition of the true basis Bk.

This means that when C is updated, ill-conditioning need not persist (because
certain rows and columns of Ck are explicitly added or deleted). or example, suppose
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bases B0, B1, ..., Bk are all well conditioned except for Bj. Then all of the Schur
complements will be well conditioned except Cj, and hence all of the basis factoriza-
tions will be well conditioned except for the jth. This property, shared by the BG
update, defines our meaning of stability.

In short, the SC update is essentially as stable as the BG update, provided Bo is
well conditioned. This cannot be said of the PF or FT updates. (Of course, the BG
update remains superior in being stable regardless of the condition of B0.)

2.3. Comments. A discussion of the Schur complement may be found in [Cot74].
Implementations of a Schur-complement method for general LP problems are de-
scribed in [Pro85], and for specially structured linear programs in [Eld88].

The original descriptions of Bisschop and Meeraus IBM77], IBM80] involved up-
dating C-1 explicitly (not a stable process). Proctor [Pro85] presented two imple-
mentations, one updating C-1 as a dense matrix, the other maintaining sparse LU
factors of Ck. The latter is to be preferred for stability reasons. Since k can be limited
to 100 (say), we believe it is more efficient to maintain dense factors of Ck; see 4.1.

Our original aim was to investigate the performance of the SC update on general
LP problems. The method was implemented, but it soon became evident that the
additional solves with B0 and BoT were excessively expensive compared to the BG
update. The following variation was therefore chosen as a means of trading workspace
for time.

3. A block-LU update. Rather than using (15) we may factorize /k in the
following manner:

(10, (o0 (o0
where

(7) BoY Y C UY.
We see that the solution to (6) and hence Bky aq may be obtained from

(18) Bow Ca,

(19) CkY2 Ukw,
(20) Yl w YkY2.

Likewise, the solution to Br ck may be obtained from

(21) C[2 Y[co dk

(22) BoTrl Co U[r2.
The block-LU update was first discussed in [GMSW84]. All updating informa-

tion is carried along via the Schur-complement matrix Ck and the matrix of trans-
formed columns Yk. The updates to these matrices will be discussed in the next
section. Note that Ca is composed of some of the rows of Yk. It may be described as
"some of the rows and columns of the simplex tableau associated with the starting
basis B0."

It was termed a stabilized product-form update because the columns of Yk are handled similarly
to the "eta" vectors in the classical product-form update, and because the factors of B0 are not
altered. Note, however, that (16) is an explicit block-triangular factorization. Nothing is held in
product form.
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3.1. Advantages. The block-LU update has most of the advantages of the SC
update, in terms of using Bo as a "black box." The storage for C remains independent
of m. By storing Yk we reduce the work per iteration of the simplex method by a
solve with B0 and (in Phase 1) a solve with B0T. For many iterations when a row of
Yk is needed to update Ck, we avoid a further solve with BoT.

Comparing the right-hand sides of (10) and (20), we see that the term Vky2 has
become YkY2, which is usually somewhat more expensive. The analogous term Y[co
in (21) costs little because most of it does not require updating.

3.2. Stability. The block-LU update possesses the same stability properties as
the SC update. The main requirement again is that B0 be reasonably well conditioned.

In practice we can prevent excessive ill-conditioning in Bo by replacing certain
columns with the unit vectors associated with slack variables, according to the size of
the diagonal elements in the initial LU factors. A rather lax tolerance is needed to
prevent altering the basis after every factorization and thereby impeding convergence
of the simplex method. In the computational tests reported here, provision was made
to altered B0 if its condition appeared to be greater than --2/3 101o (where the
machine precision was e , 10-15). However, no such alterations occurred. Thus, after
every 100 iterations the current Bk was always accepted as Bo, and no numerical
difficulties were encountered.

4. Implementation issues. For the block-LU update to be efficient, we must
be able to update Ck and Yk efficiently at each iteration. The updates to these
matrices consist of four cases:

1. Add a row and column to Ck, and add a column to Yk.
2. Replace a column of Ck and Yk.
3. Replace a row of Ck, leaving Yk unchanged.
4. Delete a row and column of Ck, and delete a column from Yk.

Each of these cases depends on the type of column entering or leaving the basis and
whether or not the columns were in the initial Bo. A description of each case follows.

Case 1. The entering column is from No, and the leaving column is from B0. A
row and column are added to Ck:

(23) Uk+l-- T and Yk+l-( Yk w ),ep

C Uw)(24) Ck+l Vk+l B Yk+l- TYkep

where Bow aq and 5 eTpw. Note that w is already available from (8) in the
simplex algorithm. It becomes a new column of Yk.

Case 2. The entering column is from No and the leaving column is from Vk (not
from B0). A column of Ck is again replaced by Ukw, which is already available from
the simplex algorithm. The dimension of Ck stays the same. A column in Yk is
replaced by the new transformed column w.

Case 3. The entering column is from Bo and the leaving column is from Bo. A
row of Ck is replaced with the pth row of Yk. The dimension of Ck stays the same.

Yk is not altered.
Case 4. The entering column is from B0 and the leaving column is from V (and

not from Bo). We delete a row and column from Ck and we delete the corresponding
column from Yk.
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4.1. Storage of Ck. The size of Ck will never be larger than the refactorization
frequency. Since this is relatively small for most large-scale LP problems (we used
100), it is efficient to treat Ck as a dense matrix.

For maximum reliability, we maintain a dense orthogonal factorization QkCk
Rk, where Qk is orthogonal and Rk is upper triangular. The techniques for updating
the QR factors of Ck involve sweeps of plane rotations as discussed in [GGMS74].
A set of routines called QRMOD were used for this purpose. For slightly greater
efficiency, Qk and/k may be updated using sweeps of stabilized elimination matrices;
see [Cli77].

4.2. Storage of Yk. As Yk has a row dimension of m, the method of dealing with
this matrix is important. Yk consists of transformed columns that have entered the
basis since the last refactorization. We must be able to do matrix-vector multiplies
with Yk (20) and YkT (21) as well as fetch rows of Yk (24). The sparsity of each column
of Yk depends on the sparsity of the basis itself as well as the sparsity of each of the
entering basic columns.

Since the use of indirect addressing reduces performance on most vector comput-
ers, indirect adressing should be avoided for all except very sparse vectors. On the
other hand, performing computations with vectors containing a very large proportion
of zero elements is also inefficient. With this in mind, each column of Yk is stored
in one of two ways depending on its density. We have used the following dynamic
storage scheme for Yk:

1. A column ofY that has a density of at least NTHISH is considered to be dense.
Such columns are stored "as is" and not packed. In the computational tests,
a value of ITHRSH 0.40 was used.

2. Columns with density less than ITHISH are considered sparse and are packed
in a conventional column list. For each column, the nonzero elements of these
vectors are stored contiguously, along with a parallel array of row indices, the
number of nonzeros, and a pointer to the first nonzero.

The average sparsity for Yk’s columns for each of the test problems is given in Table 4.
A row of Yk can be extracted trivially from columns in dense form. Packed columns
require a search for the desired row index, which can usually be vectorized.

Dense columns of Yk are stored separately from the sparse columns in order to
make operations with the dense columns vectorizable. Thus, the storage array for
Yk consists of a dense part and a sparse part. The updates to Yk consist of adding,
deleting and replacing columns. Each case is described below.

1. When a new column is added to Yk, the column is simply appended to the
end of the "dense" or "sparse" arrays for Yk. Dense columns are stored "as
is" and sparse columns are packed in a conventional column list.

2. For simplicity, column deletion was implemented by moving all later columns
one place to the left (thereby overwriting the deleted column and recovering
its storage). The operations are essentially the same whether the deleted
column is dense or sparse. Half of Yk must be moved on average, but the
copy operation is vectorizable and cheap. Also, less than half of the updates
require deletion.

3. Column replacement occurs in one of two ways. When both new and old
columns are dense, the new column simply overwrites the old column. In all
other cases, the old column is deleted from Y (2 above) and the new column
is appended to Y (1 above).
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TABLE 1
Problem specifications.

1
2
3
4
5
6
7
8
9 grow22 441 444
10 nesm 663 666
11 perold 626 629
12 pilot.ja 941 944
13 pilot.we 723 726
14 pilot4 411 414
15 pilotnov 976 979
16 pilots 1442 3652
17 scfxm2 661 664
18 scfxm3 991 994
19 scrs8 491 494
20 scsd6 148 151
21 scsd8 398 401
22 sctap3 1491 1494
23 ship081 779 782
24 shipl21 1152 1155
25 shipl2s 1152 1155
26 stair 357 360
27 stocfor2 2158 2161
28 tdesgl 3500 4050
29 tdesg5 4215 22613
30 woodw 1099 1102

Problem Rows Cols Elem

80bau3b 2263 2266
bp822 822 825
cycle 1904 1907
czprob 930 933
etamacro 401 404
fffff800 525 528
ganges 1310 1313
greenbea 2393 2396

Objective value 11
29063
11127
21322
14173
2489
6235
7021

31499
8318
13988
6026
14706
9218
5145

9.8722822814E/05
5.5018458595E/03
-5.2263930249E/00
2.1851966988E/06
-7.5571519542E/02
5.5567961167E/05
-1.0958627396E/05
-7.2462397960E/07
-1.6083433648E/08
1.4076079892E/07
-9.3807558690E/03
-6.1131579663E/03
-2.7201045880E/06
-2.5811392641E/03

13129
43220
5229
7846
4029
5666
11334
17554
17085
21597
10941
3857
9492
18041

105002
37478

-4.4972761882E/03
-5.5760732709E/02
3.6660261565E/04
5.4901254550E/04
9.0429998619E/02
5.0500000078E/01
9.0499999993E/02
1.4240000000E/03
1.9090552114E/06
1.4701879193E/06
1.4892361344E/06
-2.5126695119E/02
-3.9024408538E/04
4.3560773922E/04
4.3407357993E/04
1.3044763331E/00

5. Computational results. In this section we compare numerical results ob-
tained from an implementation of the algorithm described in 3. The standard basis
update in MINOS 5.3 [MS87] is the Bartels-Golub update. For a complete discussion
of LUSOL, the package of basis routines in MINOS 5.3, see [GMSW87].

The implementation of the block-LU update has been included as an option in a
specially modified version of MINOS 5.3. The new version, MINOS/SC 5.3, includes
other options including a special pricing routine designed especially for vector com-
puters described in [FT88], and a vectorization algorithm for the solution of triangular
systems of equations described in [ER90]. These options were disabled for the present
computational tests.

The purpose of the tests is to demonstrate the efficiency of the new update and
show that for vector machines the method is more efficient than the Bartels-Golub
update on a representative set of large, sparse problems. The two algorithms are
labeled BG for the Bartels-Golub update and BLU for the block-LU update. The
tests consist of comparing timings of BG and BLU by solving 30 linear programming
test problems. Many of these problems are available from the netlib collection [Gay85].
The test problem specifications are given in Table 1. The smallest netlib test problems
were omitted from the results, as some timing categories for these problems were less
than 1/100th of a second on the machine used.
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TABLE 2
Update results.

Method BG" OBG BLU: OBLU

Problem
name

Total
update
time
(sec)

Mean
update
time
(#sec)

Total
update
time

Mean Mean Update
update size speed-
time Ck up
(#sec)

1 80bau3b
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3O

bp822
cycle
czprob
etamacro
fffff800
ganges
greenbea
grow22
nesm
perold
pilot.ja
pilot.we
pilot4
pilotnov
pilots
scfxm2
scfxm3
scrs8
scsd6
scsd8
scrap3
ship081
shipl21
shipl2s
stair
stocfor2
tdesgl
tdesg5
woodw
MEAN

13.50
11.60
2.49
0.39
0.97
1.22

118.99
1.28
3.64
6.64

14.98
7.55
1.76
6.78

117.55
0.88
1.97
0.64
0.40
2.83
2.61
0.71
2.10
0.93
0.67
7.29

24.98
271.51

7.67
22.34

30137.88
20079.65
36633.00
16289.44
7130.00

10281.49
17342.51
46059.83

3.87
3.83
2.91
0.67
0.50
0.79
0.44

18.87

3385.i7 33.99 8.90
5471.75 25.66 3.67
9745.26 37.74 3.76
4228.94 37.20 3.85
8427.22 34.73 0.85
7898.30 36.01 1.30
6180. 7 4o.44  .81
7391.08 31.06 6.23

11 08.06 40. 0 1.61
5621.24 30.99 2.14

5134.65 24.27 4.64
4737.04 24.65 3.35
4567.76 23.23 2.69
5679.31 26.80 4.39
5388.31 24.12 13.54
8299.71 39.82 1.38
8236.08 40.40 2.03
6497.42 29.36 1.54
7396.47 33.84 0.49

10152.39 40.66 0.83
5952.07 41.13 4.41
2673.06 42.42 5.09
2747.94 40.92 6.84
3632.95 42.79 4.78
5270.27 24.60 2.34
9562.93 39.75 3.82
5950.65 39.59 10.15
7774.24 40.12 10.32
6807.28 37.37 2.98
6370.17 34.26 4.14

18483.14
12021.19
17083.67
23820.10
15853.32
12291.56
24923.93
72976.57
11478.61
16756.42
9984.7O
3611.14
8415.58

26277.24
13613.07
18806.31
17370.72
12352.67
36568.73
60392.59
80266.15
20271.52
23919.09

0.81
1.57
1.82
3.31
2.18
0.66
1.57
8.89
0.64
0.98
0.34
0.85
3.58
0.64
0.14
0.31
0.20
0.29
2.19
2.31

27.61
2.63
3.18

5.1. Test environment. The computational tests were performed on an 8-
processor Cray Y-MP supercomputer. Only one processor was used. The operating
system was UNICOS version 5.1, and the MINOS code was compiled using the CFT77
compiler with full optimization. Each run was made as a batch job.

For each test the number of iterations and total solution time are recorded in
Table 4. The solution time was measured by timing the MINOS subroutine MSSOLV.
The options used for MINOS were the standard MINOS/SC options, namely PhRTIhL
PRICE I0, SCALE OPTION 2, FACTORIZATION FREQUENCY I00. The set of problems
was then run with (BLU) and without (BG) the SCHUR-COMPLEMENT option.

For purposes of evaluating the block-LU update, the following items were deemed
to be of interest for each method:

1. Total and average time spent updating the basis.
2. Total time spent solving for dual variables and the search direction y using

the basis factors.
3. Average solve times with the basis factors.
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TABLE 3
Solve results.

Method BG" BLU:

No. Problem
name

Mean
solve

Mean Mean Mean
solve solve solve
y y

(#see) (#see) (#sea)
1 80bau3b
2 bp822
3 cycle
4 czprob
5 etamacro
6 fffff800
7 ganges
8 greenbea
9 grow22

10 nesm
11 perold
12 pilot.ja
13 pilot.we
14 pilot4
15 pilotnov
16 pilots
17 scfxm2
18 scfxm3
19 scrs8
20 scsd6
21 scsd8
22 sctap3
23 ship081
24 shipl21
25 shipl2s
26 stair
27 stocfor2
28 tdesgl
29 tdesg5
30 woodw

MEAN

40568.12
28050.47
34750.42
17566.18
8594.14
10509.23
14002.71
67136.65
21071.95
14057.41
22935.79
30307.37
24727.20
18750.67
29968.91
66454.81
13580.72
19622.53
12217.33
6011.64
16193.41
14512.53
14065.56
16048.90
16948.28
17300.74
30451.35
52146.37
80847.35
27375.91
26225.82

32337.06
27790.85
44877.62
12823.63
8356.12
12726.54
17897.94
54699.46
22581.79
14433.41
23822.10
32987.48
25234.13
18488.82
32639.40
65155.80
13348.56
19358.95
11776.33
4875.61
12426.66
20346.93
9978.80
12260.41
12683.65
17629.60
40716.96
50159.20
69401.81
24530.58
25544.87

41853.63
26730.54
37200.98
19565.78
10980.39
12594.22
17465.92
70031.12
19877.60
14532.32
20340.22
26348.98
22966.24
13718.79
26490.74
48638.38
16225.99
22415.36
12735.71
8348.29
18668.06
18591.30
17703.06
18865.25
20275.87
12552.57
34382.52
54627.08
85958.77
28535.34
26640.70

27891.02
22025.21
39155.63
10986.37
6787.33
11379.08
16229.53
47843.61
16715.92
10878.63
16273.83
23197.10
18282.15
10770.45
23707.26
44065.14
11929.60
17280.10
7971.36
4777.12
11411.83
19643.66
10714.05
12051.95
12718.61
9661.55

36011.83
46676.17
67876.06
20750.70
21188.76

5.2. Updates. Time spent updating the basis was measured by timing the ap-
propriate portion of the MINOS subroutine ISSOLV. The total and average updating
times are recorded in Table 2. These results dramatize the efficiency of the block-
LU update for the Cray Y-MP. In 27 of the 30 test problems the BLU method gave
faster mean and total updating times than BG. The average update speedup was
4.14. A point of interest is that while update times grew for the larger problems using
method BG, the average update time remained fairly constant for method BLU. The
average BG update time ranged from 3611-80266 microseconds, while the range was
2673-11508 microseconds for the BLU update.

5.3. Solves. The average solve times for the two methods are quite similar, as
exhibited in Table 3. It is important to note that although it was not performed here,
the solves with Lo and Uo can be vectorized with method BLU. The solves with L0
may be vectorized for method BG but as Uk is updated explicitly with this method,
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TABLE 4
Overall Problem Results.

Method BG: BLU:
No. Problem Itns Itns

name

1 80bau3b
2 bp822
3 cycle
4 czprob
5 etamacro
6 fffff800
7 ganges
8 greenbea

11963
6792
3198
1544
55O
953
708

26094

Soln.
time

206.22
71.70
51.92
11.97
2.00
4.85
5.78

622.14

6999
2987
1595
594
996
718

25527
9

10
11
12
13
14
15

grow22
nesm
perold
pilot.ja
pilot.we
pilot4
pilotnov

704
3058
3923
6350
4805
1446
2747

6.39
21.96
35.74
80.46
48.17
9.98

35.04

703
2792
3801
6445
4611
1446
2773

16 pilots
17 scfxm2
18 scfxm3
19 scrs8
20 scsd6
21 scsd8
22 sctap3
23 ship081
24 shipl21
25 shipl2s
26 stair
27 stocfor2
28 tdesgl
29 tdesg5
30 woodw

MEAN

16267
772
1184
647
1127
3400
1003
526
1125
538
551

2014
4177
34177
3822

4872.16

577.24
4.33
9.61
3.30
3.12

22.17
9.72
4.02

12.10
4.60
3.62

31.50
95.50

1334.49
65.17

113.16

16494
772

1184
521
1153
3531
1070
523

1113
544
551

2292
3878

35518
3860

4880.53

Soln. Mean
time dens.
(seas)

.oe 
58.64 .621
39.63 NA
10.48 .016
2.25 .159
4.95 .277
5.34 .051

493.56 .223
4.99 .691

17.66 .121
25.71 NA
58.94 .640
37.24 .719
6.90 .577

26.65 .568
347.56 .736

4.24 .094
8.83 .104
2.33 .155
3.76 .343

24.45 .338
8.80 .024
3.66 .011

10.58 .007
4.12 .006
2.45 .655

30.28 .088
69.27 NA

1144.78 .070
58.56 NA
89.45 .291

U0 is not constant between refactorizations. This means that it is possible to decrease
solution times with the factors of B0 using method BLU even further.

5.4. Comparison with the product-form update. On average, the density
of the columns of Yk will be similar to that of the eta vectors in the classical product-
form update. Note, however, that over a period of 100 iterations the average number
of columns in Yk is only 25 to 40, with a mean of 34. This means that the number
of transformed vectors used in solving systems of equations is lower for the block-LU
method than for the PF update, where the average would be 50 if stability require-
ments allow 100 updates. Since the size of the additional matrix Ck is small on average
(25 to 40), this suggests that the block-LU update requires fewer floating-point op-
erations per solve as well as lower storage requirments than the PF update on large
problems. The ratio is 34/50 2/3.

6. Conclusions. 1. A block-LU update technique is a viable alternative to a
standard (Bartels-Golub) updating technique when vectorization is available.
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2. Numerical experiments running a modified version of MINOS 5.3 on a Cray
Y-MP showed the block-LU update to be superior to Bartels-Golub updating on 27
of 30 test problems.

3. Average solve times with basis factors using the block-LU update were com-
parable to the solve times using the standard method.

4. Use of the block-LU update reduced CPU times by approximately 21 percent
on these test problems. Vectorization of all the solves with L0, U0, Lc, U" as in [ER90]
would give a further marked improvement.
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Abstract. This paper shows how to exploit structural symmetry in determining the nonzero
structures of the lower and upper triangular factors L and U of an unsymmetric sparse matrix A.
Two symmetric reductions of the graphs of L and U are introduced and used to formulate symbolic
factorization algorithms. Experimental results demonstrate the effectiveness of these algorithms
versus other schemes in the literature.

Key words, sparse symbolic factorization, structural symmetry
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1. introduction. Let A be a sparse n n matrix that can be decomposed
(without pivoting) into LU, where L is lower triangular and U is upper triangular.
Symbolic factorization is the process of determining the nonzero structures of the
factor matrices L and U from the nonzero structure of A.

When A is symmetric, the elimination tree [8], [10] is an important structure
in studying symbolic factorization. When A is unsymmetric, the elimination dag (di-
rected acyclic graph) [6] was introduced as a natural generalization of the elimination
tree.

Elimination dags are obtained from the underlying graphs of the factor matrices
by a process called transitive reduction [1]. Edges are removed if they are redundant
in preserving the set of paths. In other words, if there is a path of length greater than
one from to j in the graph, then the edge (i, j) is removed. But while transitive
reduction produces the minimum representation of the set of paths required for use in
symbolic factorization, computing it can be a significant overhead.

In this paper we consider partial transitive reductions of the graphs of L and U
that exploit structural symmetry in the filled matrix F L + U. We have therefore
called them symmetric reductions. The goal is a more efficient method that prunes
enough of the redundant edges to retain most of the practical advantages of elimination
dags in determining the nonzero structures of the factors.

An outline of this paper follows. In 2 we review two characterizations of the
structures of L and U, one based on the underlying graphs, the other on elimination
dags. In 3 we define the symmetric reductions of the graphs of L and U. The set of
edges removed is determined by the first symmetric nonzero in each row and column
of the filled matrix F. In 4 we present an unsymmetric sparse symbolic factorization
algorithm that is based on these symmetric reductions. In 5 we consider additional
ways to exploit structural symmetry using paths in the factor graphs. The resulting
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Throughout the paper symmetry always means structural symmetry and not numeric symmetry.
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partial path-symmetric reductions are the basis for a second symbolic factorization
algorithm. In 6 we provide experimental results that compare these algorithms with
the methods of Rose and Tarjan [9] and Gilbert and Liu [6]. In 7 we conclude with
some remarks on the use of symmetric reduction in unsymmetric sparse numerical
factorization with pivoting [7].

2. Structural characterizations of L and U. In this section we present char-
acterizations of the row and column structures of L. Dual results hold for the column
and row structures of U.

Let G(L) denote the directed graph associated with the lower triangular matrix
L. Here (i, j) is an edge of G(L) if and only if j is nonzero, so that the orientation
of the edge is from column to row in L as in [6]. The directed graph G(Ut) is defined
similarly.

Symbolic factorization can be implemented by simulating the numeric factoriza-
tion using nonzero structures rather than numerical values. Since the structure of
the jth column U,j of U gives the set of all numerical column updates to A,j from
preceding columns of L needed to form L,i, we can use the same set for structural
column updates to form the structure of L,j. We have therefore the following result.

OBSERVATION 2.1 ([9]). The structure of L, is given by the union of the struc-
ture of the lower triangular portion of A,j and the structures of those L,i with (i, j)
an edge in G(Ut) (that is, uij 0).

Gilbert [5] observed that Lj, is the solution of a linear system with a sparse lower
triangular coefficient matrix and a sparse right-hand side, and derived the following
result.

OBSERVATION 2.2 ([5]). The structure of Ly, is given by the subset of nodes in
{1,-..,j} reachable in the graph G(Ut) from nodes associated with the structure of

The characterizations of the column and row structures of L in Observations 2.1
and 2.2 are based on the graph G(Ut). But often not all of the edges in G(Ut) are
needed. Elimination dags were introduced in [6] to capture the minimum structural
information required for unsymmetric sparse symbolic factorization.

The lower elimination dag D(L) of the matrix A is the transitive reduction [1]
of the directed graph G(L). In other words, (i, j) is an edge in D(L) if and only if
it is an edge in G(L) and there is no path of length greater than one from to j in
G(L). The upper elimination dag D(Ut) is defined similarly. The following results
characterize the structure of L using the elimination dag D(Ut).

OBSERVATION 2.3 ([6]). The structure of L,j is given by the union of the struc-
ture of the lower triangular portion of A,j and the structures of those L,i with (i, j)
an edge in D(Ut).

OBSERVATION 2.4 ([6]). The structure of Lj, i8 given by the subset of nodes in
{1,...,j} reachable in the graph D(Ut) from nodes associated with the structure of
Aj,

3. Symmetric reductions. The directed graph G(Ut) and the elimination dag
D(Ut) represent the maximum and minimum subgraphs of G(Ut), respectively, for
determining the row and column structures of L. Using G(Ut) directly may result
in redundant structural column updates (in Observation 2.1) or redundant graph
traversals (in Observation 2.2). But while there is no such redundancy when using
the elimination dag D(Ut), there is an added cost in transitively reducing G(Ut) to
obtain D(Ut). As a practical compromise we would like to determine a subgraph of
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G(U) that is easier to generate but that offers comparable speed-ups in symbolic
factorization. We first establish the validity of this approach.

Let D(Ut) be any subgraph of G(U) that is also a supergraph of D(V) (that is,
it includes all of the edges in D(Ut)).

OBSERVATION 3.1. The structure o.f L, is given by the union of the structure of
the lower triangular portion of A,j and the structures of those L,i with (i, j) an edge

OBSERVATION 3.2. The structure of L, is given by the subset of nodes in

(1,... ,j} reachable in the graph )(U) from nodes associated with the structure of

In order to exploit structural symmetry in F L + U, we need the following
result.

THEOREM 3.3. Assume that us 0 for some s > j. Then, for all k > s,
(j,k) cannot be an edge in the elimination dags D(U) and D(L).

Proof. We first show that (j,k) cannot be an edge in D(Ut). Let (j, k) be an
edge in G(U); that is, ujk 0. In Gaussian elimination,/j : 0 and Uk 0 implies
that Uk O. Therefore there is a path

j----, s---- k

in G(Ut). Since D(U) is the transitive reduction of G(US), the edge (j, k) cannot be
in D(US). By a similar argument, the edge (j, k) cannot be in D(L).

For each symmetric nonzero gsj * uj8 - 0 in F, Theorem 3.3 says that all nonzero
entries after location s in row j of U and column j of L are pruned in D(U) and
D(L), respectively. This provides a simple condition to define S(US), a subgraph of
G(Us) and supergraph of D(US), to which we can apply Observations 3.1 and 3.2.

For each j, define

FSNZ(j) min(k > j" k n + 1 or ikj * Ujk

where FSNZ is an acronym for First Symmetric NonZero. The symmetric reduction of
the graph G(Us) is the subgraph S(Us) on n nodes such that (j, k) is an edge in S(Us)
if and only if (j, k) is an edge in G(Us) and k _< FSNZ(j). The symmetric reduction
S(L) of G(L) is defined similarly. Note that even though the two symmetrically re-
duced structures are generally different, they are determined using the same quantities
FSNZ($). In effect, the pruning mechanisms are symmetric.

The next result follows directly from the definitions of S(L) and S(Us) and Theo-
rem 3.3. It implies that these symmetric reductions can be used to find the structures
of L and U using Observations 3.1 and 3.2.

COROLLARY 3.4. The transitive reduction D(U) (respectively, D(L)) is a sub-
graph of the symmetric reduction S(Us) (respectively, S(L)).

In Fig. 1 we present three filled matrix structures and their corresponding sym-
metrically reduced filled matrix structures. For the jth row and column of F L+ U,
nonzero entries are set to zero except for those up to and including the nonzeros in
location FSNZ(j). The lower and upper triangular portions of the resulting matrix give
the structures of S(L) and S(Us), respectively. For comparison we have also displayed
the transitively reduced filled matrix structures.

We conclude this section with an interesting interpretation of the quantities
FSNZ(*) from the point of view of elimination trees. In general, the filled matrix
F is unsymmetric. However, the matrix/ defined by

fiJ 0 otherwise
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Symmetrically ansitively
Filledmatrix reduced reduced
lo 1,

o2o o2o o2o
oo3o o3o o3o
oo.4o o4o o4o
oooo5o o5o o5o
ooooo6 o6 o6

1 1
2oooo 2ooo
3ooo 3oo
4oo 4o

oooo5o oeoo5o
ooooo6 o6

1 1
o2oooo o2o
oo3ooo oo3o
,,4o* , o4.
oo5o o5o
o06 , o6

1
2 .

3
4 .

5
6

1
2

3
4o

5
6

FIG. 1. Filled matrices and their symmetrically reduced and transitively reduced structures

retains all of the structurally symmetric entries, and obviously has symmetric struc-
ture.

THEOREM 3.5. F i8 a perfect elimination matrix.

Proof. Assume that fji 0 and fki 0 for some i < j < k. We need to show
that fkj is also nonzero. By assumption, gk fk O. Since the structure of F is
symmetric, f 0 implies that uj fi# O. It follows from Gaussian elimination
that kj O. By a dual argument, we have Ujk O, so that fkj fkj kj O. 0

Since the nonzero structure of P is symmetric, it is meaningful to consider the
elimination tree T(/) associated with/, and it is easy to verify that FSNZ(j) is the
parent of node j in T(F) if FSNZ(j) < n. Therefore, if A is symmetric to start with,
then the symmetric reduction S(Ut) will be the same as the elimination tree of A.
In this sense we can view the symmetric reduction as another generalization of the
elimination tree to the unsymmetric case.

4. Unsymmetric symbolic factorization using symmetric reductions.
In this section we describe an unsymmetric symbolic factorization scheme based on
symmetric reduction.2 The algorithm computes the structures of both L and U by
rows so as to be compatible with other algorithms described in the literature [9], [6].
However, any of the four {L/U}-{rows/columns} combinations can be formulated
using symmetric reduction.

In Algorithm 1 (see Fig. 2), we use a working vector CUR_FSNZ($) of size n to
record the current "first symmetric nonzero" information. It is easy to see that at the

2 This algorithm first appeared (without explanation) in the Yale Sparse Matrix Package [4].



206 S. C. EISENSTAT AND J. W. H. LIU

ALGORITHM 1. Symbolic LU using symmetric reduction.
for row j :-- 1 to n do

CUR_FSNZ(j) n - 1
for row j:-- ltondo

LPOWJ :- (i < j" ai 0}
Uow .= {k > j. a 0}
while there exists an unprocessed i LROWJ do

for each h with Uih 0 and h _< CUR_FSNZ(i) do
if h < j then

add h to LRowJ
else

add h to URowJ
if h j then CUR_FSNZ(i) j end if

end if
end for

end while
Structure of Lj, :-- LROWJ
Structure of Uj, :- UROWJ

end for

FIG. 2. Symbolic LU using symmetric reduction.

beginning of step j,

FSNZ(i) ifFSNZ(i) <jCUR_FSNZ(i) n + 1 otherwise

so that CUR_FSNZ(i) is never smaller than FSNZ(i). The correctness of the algorithm
depends on this observation.

By adapting Observation 3.2 to the symmetric reduction S(U*), we note that the
row structure of Lj, is given by the node subset of {1,... ,j} reachable in the graph
S(U) from nodes associated with the structure of the lower triangular portion of
Aj,. Since the symmetric reduction includes only those edges (i, h) with h _< FSNZ(i),
by the property of CUR_FSNZ(*) noted above, the then-clause in the inner for-loop
computes the structure of Lj,.

On the other hand, to determine the row structure of Uj, we use the dual of
Observation 3.1. That is, the row structure of Uj, is given by the union of the
structure of the upper triangular portion of Aj, and the structure of those Ui, with

gji 0 and j _< FSNZ(i). Since CUR_FSNZ(i) n + 1 for such i, the else-clause in the
inner for-loop computes the structure of Uj,. It follows that the for-loop in Algorithm
1 is indeed computing the structures of Lj, and Uj, simultaneously.

We now address an important implementational detail. In the inner for-loop
we need to access those entries in the structure of Ui, that are less than or equal to
CUR_FSNZ(i). In order to avoid processing the remaining entries, we rearrange the
entries of Ui, into two partitions: one with those subscripts less than or equal to
CUR_FSNZ(i), the other with the remaining subscripts. In this way the innermost for-
loop only needs to examine the subscripts in the first partition. The rearrangement
takes place whenever the value of CUR_FSNZ(i) changes from n -t- 1 to j in Algorithm
1. This partitioning step is similar to that used by the quicksort algorithm [2, p. 264]
with j the pivot value defining the partitions.
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Path-
Symmetrically symmetrically Transitively

Filled matrix reduced reduced reduced
lo * 1. lo 1.
2oo , 2oo 2oo 2*
3oo, 3oo 3** 3o
4o. 4o 4o 4*

oooo5o oooo5o oooo5o oooo5o
oo o6 o ,6 o6 o6

FIG. 3. A filled matrix and its reduced structures

5. Path-symmetric reductions. The elimination dags D(L) and D(Ut) are
minimum subgraphs of G(L) and G(Ut), respectively, that preserve the set of paths.
They are minimum structures for the purpose of unsymmetric sparse symbolic factor-
ization. The symmetric reductions S(L) and S(Ut) are one of many structures in the
spectrum:

G(L)/G(U) ---, S(L)/S(U) ---, D(L)/D(U).
In this section we explore additional ways to exploit symmetry to obtain structures
that lie between S(L)/S(U) and D(L)/D(Ut).

We first consider a generalization of Theorem 3.3.
THEOREM 5.1. Assume that j < s. If there is a path from j to s in the graph

G(U) and a path from j to s in the graph G(L), then for all k > s, (j, k) cannot be
an edge in the elimination dags D(Ut) and D(L).

Proof. We first show that (j,k) cannot be an edge in D(Ut). Let (j,k) be an
edge in G(Ut). Since there is a path from j to s in G(L), (s, k) must also be an edge
in G(Ut). Therefore there is a path

j--,... -- s--- k

from j to k in G(Ut). By the definition of transitive reduction, the edge (j, k) cannot
be in D(Ut). Similarly, the edge (j, k) cannot be in D(L). D

Theorem 5.1 implies an additional form of symmetric pruning: even though/sj
and uj8 are zero, the path condition allows us to prune nonzero entries symmetrically
after location s in the jth row of U and the jth column of L. Thus, letting

FPNZ(/) min{k > j" k n + 1 or paths in G(Ut) and G(L) from j to k},

we define the path-symmetric reduction of G(Ut) to be the subgraph P(Ut) on n
nodes such that (i, j) is an edge in P(Ut) if and only if (i, j) is an edge in G(Ut) and
i _< FPNZ(j). The path-symmetric reduction P(L) of G(L) is defined similarly.

To illustrate these notions, we display the filled matrix and the symmetrically
reduced, path-symmetrically reduced, and transitively reduced structures for a 6 x 6
matrix in Fig. 3. Note that there is a path 1 -- 2 3 4 5 in the graph G(Ut)
and paths 1 -- 5 and 2 5 in the graph G(L). Therefore we have

FPNZ(1) FPNZ(2) 5 < 6 FSNZ(1) FSNZ(2),

SO that there is more pruning in path-symmetric reduction than in symmetric reduc-
tion.
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ALGORITHM 2. Symbolic LU using partial path-symmetric reduction.
for row j :- 1 to n do

CUR_FPNZ(j) n + 1
ON_PATH(j) j

end for
for row j := l to n do

AttowJ :-- (i < j :aji 0}
LROWJ :-----
UROWJ :-- (k > j :aj 0}
for each i E AlowJ do

if i is not in LtowJ then
perform a depth-first traversal from i of-P(Ut) and

update LlowJ, UPOWJ, CUR_FPNZ(*), ON_PATH(*)
end if

end for
Structure of Lj. :- LRowJ
Structure of U. :- UPOWJ

end for

FIG. 4. Symbolic LU using partial path-symmetric reduction

Although the result of Theorem 5.1 implies that P(Ut) and P(L) could be used
for symbolic factorization as in Observations 3.1 and 3.2, there does not appear to be
any efficient way to compute them. But, by restricting one of the paths to be an edge,
we obtain the following results, which do lead to an effective algorithm.

COROLLARY 5.2. Assume that 8 0 for some j <_ s. If there is a path from j
to s in the graph G(Ut), then for all k > s, (j, k) cannot be an edge in the elimination
dags D(Ut) and D(L).

COROLLARY 5.3. Assume that uj8 0 for some j <_ s. If there is a path from j
to s in the graph G(L), then for all k > s, (j, k) cannot be an edge in the elimination
dags D(U) and D(L).

For each j, define

FPNZ(j) min{k > j" k n + 1 or gkj 0 and 3 a path in G(Ut) from j to k}.

The partial path-symmetric reduction of G(Ut) is the subgraph -(Ut) on n nodes such
that (i, j) is an edge in -(Ut) if and only if (i, j) is an edge in G(Ut) and _< ez(j).
The partial path-symmetric reduction P(L) of G(L) is defined similarly. It is clear
from the definition that

so that

FPNZ(j) _< FPNZ(j) _< FSNZ(j)

D(L) C_ P(L) C_ P(L) C_ S(L) C_ G(L),
D(U) C_ P(U) C_ -P(Ut) C_ S(U) C_ G(U*).

In Algorithm 2 (see Fig. 4), we perform unsymmetric sparse symbolic factorization
by rows using the quantities FPNZ($). We use a working vector CUR_FPNZ($) of size n
to keep track of the current "first partial path-symmetric nonzero," and another vector
ON_PATH($) of size n to implement the path condition in Corollary 5.2 (if < j, then
ON_PATH(i) j only if we have found a path in G(U) from node to node j).
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for each h with Uih 0 and h <_ CUR_FPNZ(i) do
if h has not been included in LROWJ or UtowJ then

if h _> j then
add h to UtowJ

else
add h to LlowJ
perform recursively depth-first traversal from vertex h in (U)

end if
end if
if ON_PATH(h) j then

ON_PATH(i) :-- j
if j < CUR_FPNZ(i) then CUR_FPNZ(i) --j end if

end if
end for

FIG. 5. Depth-first search from vertex

Within the loop for each row j, the depth-first traversals determine the row struc-
tures of Lj, and Uj, and update the affected values of CUR_FPNZ(8) and ON_PATH(8)
(for s < j). We can formulate the depth-first search starting at the node recursively
as in Fig. 5. As in Algorithm 1, if the value of CUR_FPNZ(i) is changed to j, then
the entries of Ui, are rearranged into two partitions: one with those subscripts less
than or equal to j, the other with the remaining subscripts. In this way subsequent
depth-first searches will only process subscripts in the first partition.

6. Experimental results. In this section we provide experimental results com-
paring the performance of Algorithm 1 (using symmetric reductions) and Algorithm
2 (using partial path-symmetric reductions) with that of the FILL1 and FILL2 algo-
rithms of Rose and Tarjan [9] and the EDAGS algorithm of Gilbert and Liu [6].

The FILL1 algorithm determines the row structures of Lj, and U, by simulating
numerical row elimination using the row structure of Aj, and the computed row struc-
tures of Ui,, for 1 <_ _< j 1. The FILL2 algorithm determines the row structures
of Lj, and Uj, using path information from the row structures of the first j rows of
A. The EDAGS algorithm computes the row structures using the elimination dags and
the characterizations in Observations 2.3 and 2.4. See references [9] and [6] for details.

The programs were written in Fortran, and the experiments were performed on a
Sun 3/80. The test problems are from the Harwell-Boeing Sparse Matrix Collection
[3] and are described in Table 1.3 The time in seconds for each of the five algorithms is
presented in Table 2. Note that the factor structures are determined using the original
ordering; no row/column preordering is used.

In Table 3 we give the sizes of the factor matrices and their corresponding re-
duced structures. The difference between IG(L)[ and [D(L)[ (or between [G(Ut)[ and
ID(Ut)I) can be quite substantial; e.g., in problem "FS 541 1" there is a hundred-
fold reduction. By comparison, the difference between IS(L)I and IP(L)I (or between
IS(Ut)I and I-fi(Ut)l)is relatively insignificant.

3 For each of these methods there exists a worst-case example on which it is not the fastest.
We have chosen to present results only for "real" problems because we believe that they are more
representative.
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Problem
ARC 130
FS 541 1
BP 1600
SHL 40O
WES 989

TABLE 1
Description of the test problems.

n Description
130
541
822
663
989

Laser problem from Curtis
Facsimile convergence matrix
Unsymmetric basis from LP problem BP
Unsymmetric basis from LP problem Shell
7 stage column section

TABLE 2
Time for symbolic factorization.

SYMMETRIC
Problem FILL1 FILL2 EDAGS REDUCTION
ARC 130 1.90 0.44 0.36 0.16
FS 541 1 27.28 4.04 2.72 1.12
BP 1600 27.96 5.42 3.72 1.70
SHL 400 1.28 1.18 0.94 0.20
WEST 989 11.14 6.42 3.60 1.46

PARTIAL
PATH-SYMM
REDUCTION

0.18
1.42
2.12
0.28
1.86

TABLE 3
Structural statistics.

Problem IG(L)I
ARC 130 7525
FS 541 1 59102
BP 1600 66688
SHL 400 9191
WEST 989 47567

JS(L)J ](L)] ]P(L)J ]D(L)] IG(U*)I
232 232 232 124 7501
539 539 539 539 56672

9522 7817 7747 1459 68078
3272 2349 2160 892 8181
12670 9324 9231 2814 55145

JS(Ut)J I(U)l IP(U)J [D(U)I
229 229 229 129
540 540 540 540

14038 11785 11034 1431
1938 1856 1800 1355

23430 22378 14696 2616

These differences partially explain the times in Table 2. FILL1 uses the graph
structures G(L)/G(U) and is by far the slowest. The scheme based on the symmetric
reductions is the fastest, which can be attributed to the very modest sizes of
and IS(U)I and to the efficient scheme for identifying structural symmetry. Although
the sizes of the elimination dags and the partial path-symmetric reductions are often
smaller, they are more expensive to generate and the savings in symbolic factorization
cannot compensate for this extra overhead.

7. Concluding remarks. We have shown how to exploit structural symmetry
in devising effective unsymmetric sparse symbolic factorization algorithms. The sym-
metric and partial path-symmetric reductions can be viewed as a practical compromise
between the graphs of the factor matrices and their corresponding elimination dags.
An important application will be in improving the symbolic phase of the sparse partial
pivoting scheme of Gilbert and Peierls [7].

The experimental results in 6 show that the partial path-symmetric reductions
can lead to smaller structures than the corresponding symmetric reductions, but that
the overhead involved in performing depth-first search more than offsets the gain.
Thus, in the context of symbolic factorization, the use of the simpler symmetric re-
ductions is preferred. However, in the symbolic phase of the Gilbert and Peierls sparse
partial pivoting scheme, depth-first traversals are used to topologically order the factor
structures. In such a situation partial path-symmetric reductions may be of practical
importance since no additional depth-first searches are required, yet potentially more
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structural pruning can be achieved.
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Abstract. The interface probing technique, which was developed and used by Chan and Resasco
and Keyes and Gropp, is an algebraic technique for constructing interface preconditioners in domain
decomposition algorithms. The basic technique is to approximate interface matrices by matrices
having a specified sparsity pattern. The construction involves only matrix-vector products, and thus
the interface matrix need not be known explicitly. A special feature is that the approximations
adapt to the variations in the coefficients of the equations and the aspect ratios of the subdomains.
This preconditioner can then be used in conjunction with many standard iterative methods, such as
conjugate gradient methods.

In this paper, some old results are summarized and new ones are presented, both algebraic and
analytic, about the interface probing technique and its applications to interface operators. Compar-
isons are made with some optimal preconditioners.

Key words, interface probe, domain decomposition, elliptic equations, preconditioners
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1. Introduction. Many domain decomposition methods can be viewed as tech-
niques for constructing preconditioners for solving linear systems arising from the dis-
cretization of elliptic partial differential equations. These preconditioners are based
on the solution of smaller problems on subregions of the domain, together with a

preconditioner for the reduced problem on the interface separating the subregions.
Many algorithms have been developed having optimal or almost optimal rates of con-
vergence with respect to mesh parameters, such as those of Bramble, Pasciak, and
Schatz [4], [6], [7], [8]; Dryja and Widlund [20], [21]; and Smith [32].

An important component in these methods is the preconditioner for the reduced
problem on the interface of a two-subdomain problem. For such problems, various
interface preconditioners have been developed having rates of convergence indepen-
dent of the mesh size h; see Bjorstad and Widlund [3]; Bramble, Pasciak, and Schatz
[5]; Dryja [19]; and Golub and Mayers [24]. However, most of these interface precon-
ditioners do not account for the coefficients of the problem or the geometry of the
subdomains and hence, their performance can be sensitive to variations in these other
parameters.

Versions of the interface probe were proposed by Chan and Resasco [15] and
Eisenstat [22], and further extended and used by Keyes and Gropp [28], [29], as a
technique for constructing preconditioners for interface problems. It differs from the
other preconditioners mentioned, however, in that it is an algebraic technique, and
as it turns out, one of its advantages is that the technique results in preconditioners
which adapt to large variations in the coefficients and to most variations in the aspect
ratios of the subdomains, though it does not adapt optimally to changes in mesh
size. The basic idea behind this technique is to approximate the interface matrix by
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a matrix having a specified sparsity pattern chosen to capture the strongest coupling
of the interface operator, using a few matrix-vector products of the interface matrix

(which is usually not known explicitly) with carefully chosen probe vectors.
Since the probing method is an algebraic method, it can easily be applied to any

operator having decay properties, and is not necessarily restricted to second-order
problems. It has been used successfully to construct preconditioners to fourth-order
problems, to the Navier-Stokes equations (see Chan [10], Wsui [33]), to convection-
diffusion problems (see Chan and Keyes [13]), and to problems where inexact solvers
are used in the subdomain solves (see Chan and goovaerts [11]). Preconditioners
having other sparsity patterns (nonbanded) have been constructed in applications to
domain decomposition algorithms involving many subdomains; see Chan and Mathew

Our purpose in this paper is to survey various algebraic and analytic properties
of the interface probing technique (including many new results). Most of our results
deal with the specific case of tridiagonal approximations. In 2, we describe properties
of the reduced interface matrix of an elliptic problem for a two-subdomain decompo-
sition. A brief survey of standard interface preconditioners is presented in 3, and a
version of the interface probing technique is described in 4. In 5, we discuss vari-
ous purely algebraic properties of the probe approximation together with conditions
under which the approximations preserve symmetry and nonsingularity. In addition,
we discuss other versions of the probing technique. Section 6 concerns applications of
the probing technique to the interface operator in domain decomposition. There we
show for a model elliptic problem that the rate of convergence of a tridiagonal probe
preconditioner is O(h-1/2). The results thus indicate that the tridiagonal probe pre-
conditioner performs as well asymptotically as the optimal tridiagonal preconditioner
for the interface matrix, which has been conjectured by Greenbaum and Rodrigue [25]
to have a rate of convergence bounded below by 0(h-1/2). We also present results
concerning dependence of the probe preconditioned system on the aspect ratios of
the subdomains, and on the scaling of the coefficients. Some numerical and theoret-
ical comparisons are made with the Golub-Mayers preconditioner. Finally, in 7 we
summarize the main properties of the probing technique.

2. A model elliptic problem and properties of the interface system.
We consider the following second-order self-adjoint elliptic operator L on a polygonal
domain in R2, with Dirichlet boundary conditions:

(1) Lu
Ox f(z, y) in,

with u 0 on 0, where a(x, y) and b(x, y) are sumed to be uniformly positive
functions on the domain .

We discretize (1) using the standard five-point difference approximation on a
uniform mesh of width h, with nodes (xi,yj) lying in , where Xi+l xi + h and
yj+ yj + h; see Varga [34]:

h(2) + + +
.uh uh h h2

--ai-1/2,3 i-l,j bi,j+l/2 i,j+l bi,j-1/2ui,j-1

where u uh(xi, yj) u(xi, yj) is the discrete solution and ail/2,j a(xi , yj),
etc. This results in a symmetric positive definite linear system Lhuh f.
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Let the domain g be partitioned into two nonoverlapping subregions fll and 2
with interface F denoting the intersection of their boundaries:

F -= 0g 0.

If we group the unknowns in the interior of 1 in Ul, and those in the interior of 2 in
u, and finally those on the interface F in u3, then in this new ordering of unknowns,
Lh has the following block structure:

0 L La u f(3)
L1T3 L2T3 L33 U3 f3

where Lll and L22 denote discretizations corresponding to local problems on 1 and
D2, respectively, etc. If we eliminate the interior unknowns, we obtain the following
reduced system for u3:

Su3 f3 T --iL3Li fi LT23Lf2, where
T --I LT L-itq --= L33 Li3Lii LI3 23 22 23.

The matrix S is the reduced interface operator, and is also referred to as a Schur
complement or a capacitance matrix. It is expensive to compute, requiring n solves
on each subdomain, where n is the number of unknowns on the interface F. Therefore
most domain decomposition methods are based on the solution of the reduced interface
system (4) by means of a preconditioned conjugate gradient method. This requires
only matrix-vector products with S, which can be computed at a cost of one solve on
each subdomain without computing S. Then, it is possible to solve problem (4) in
less than n iterations, if the new system is well conditioned, and much research has
gone into the construction of efficient preconditioners for S. Once U3 is determined
by solving system (4), the solution in the interior of the subdomains, Ul and u2 can
be obtained at the cost of one solve in each subdomain, using the first two block rows
of equation (3). Alternatively, once a preconditioner for S is available, it is easy to
construct a preconditioner for the global matrix Lh, involving approximate solves on
the subdomains; rather than exact solves on the subdomains; see, for instance, [5].

Much is known about the properties of the interface matrix S, which is eas-
ily seen to be symmetric and positive definite. S is a discrete approximation to a
Steklov-Poincar6 operator coupling the subdomain problems through a transmission
boundary condition; see [I], [31]. This Steklov-Poincar6 operator can be shown to be
spectra]ly equivalent to the pseudodifferential operator given by the square root of
the Laplacian on the interface. Hence, it can be shown that S is spectrally equiva-
lent to the square root of the discrete Laplacian on the interface F, and its condition
number can be shown to grow at a rate O(h-l), as h --+ 0; see [3]. Some details of
this will be given in 3 on preconditioners. S is a dense matrix, however, its entries
can be shown to decay away from the diagonal at a rate ]S{jl O(li- jl-2); see [24].
Other properties of S will be described following the definition of discrete harmonic

functions below, and in Theorem 2.2.
DEFINITION. A grid function wh satisfying (Lhwh)ij O, for nodes ij lying in the

interior of D1 and D2, will be referred to as a piecewise discrete harmonic function.
Piecewise discrete harmonic functions wh for discretization (2) can easily be shown

to satisfy the following discrete strong maximum principle.
LEMMA 2.1. If wh is a nonconstant, piecewise discrete harmonic function, then

its nodal values on the interior of the subdomains is strictly bounded above and below
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by the maximum and minimum, respectively, of the nodal values ofWh on the boundary
of the subdomains, i.e., if Wmin _< w <_ Wmax, for all ij E 01 t2 02, and if wh

is piecewise discrete harmonic, then, either w =_ Wmax Wmin, or Wmin < w/ <
Wmax, for all ij interior of .

Proof. See [26]. [:]

Remark. The maximum principle is valid only on the computational domain,
i.e., on the nodes that are connected to other nodes by the stencil. For instance, if
the five-point discretization is used on a rectangular domain, the four corner nodes
are not coupled to the other nodes, and they are not considered to be part of the
computational domain.

The Schur complement is related to piecewise discrete harmonic functions as
follows. Given a grid function w defined on the interface F, if we let Ew denote the
piecewise discrete harmonic extension of w into the two subdomains, i.e.,

Ew (-LL13w, -L2 L23w, w)T,
then Sw is obtained from (3) by applying the stencil Lh to Ew on the nodes lying on
F:

(5) LhEw (0, 0, (L33 LT13L-llL13 LT23L21L23)w)T (0, O, Sw).

The above properties can be used to prove strict diagonal dominance and other
properties of S, stated in Theorem 2.2. We recall that a matrix C is said to be
diagonally dominant if

(6) ICil >_ ICjl for i- 1,...,n.

C is said to be strictly diagonally dominant, if a strict inequality holds in (6) for all
rows i. We also recall that a matrix C is said to be an M-matrix, if Cij _< 0, for i j,
and if C/ _> 0, for all i, j.

THEOREM 2.2. The Schur complement S, defined in equation (4) for discretiza-
tion (2), is an M-matrix and satisfies:

1. Skm < O for k m,
2. Skk > 0 for all k,
3. Skk mk ISkml > 0 for k 1,..., n (i.e., S is strictly diagonally domi-

nant).
Proof. All of the above statements are easily proved using the strong maximum

principle and the relation between the Schur complement and discrete harmonic func-
tions. Let (ik, jk) be the index of the kth node on F and let ik denote the Kronecker
delta function on F, which is 1 on the kth node on F, and zero on all other nodes of
F. Then, applying the stencil of Lh to ESk at the ruth node on F, we obtain:

(7)
Sink (LhESk)i,,jm (ai+l/2,jk + aik-i/2,y + bi,+/2 + bi,i_/2)(ESk)im,j.

-aik+/2,j (ESk)i,+,j. ai-i/2,j(ESk)i-,j,
-bi,y+l/2(ESk)i,,.+l bi,_l/2(ESk)i,y,-.

Since Eti} 5k on F we have that (Ek),,j, O, for nodes m k on F. And so (7)
becomes: for m k,

Smk (ai+l/2,j -t- ai-/2,y + bik,j+/2 + bi,j_l/2)0
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--ai,+l/2,j, (Ebk)i,+,j, ai-/2,i(Ebk)i,-,y,
-bi,j+l/2(Ebk)i,,j,+l bi,j-1/2(Ebk)i,,j,-l,

which is negative since the coefficients ai+l/2,j, ai-l/2,j, bi,j+l/2, bi,j-l/2 are
positive, and 0 _< (Ebk)ij

_
1 by the maximum principle, with strict inequality

holding for the nodes (i, j) lying in the interior of the subdomains (because Ebk is

nonconstant). Thus, we have proved (1).
To prove (2), we apply the stencil to Ebk at the kth node on F:

Skk (aik.-bl/2,j "- aic-1/2,ju ’ bi,j+l/2 / bi,j_/2)l
-ai+/2,j (Ebk)i+l,i
-b,j+l/2(Ek)i,j+ b,j-/2(Ek),j-i

>0,

since by the strong version of the maximum principle 0 _< (Ebk)ij

_
1 at all nodes,

with strict inequality at the nodes (i, j) lying in the interior of the subdomains.
We now show that S is strictly diagonally dominant. Let 1 (1, 1,..-, 1)T on F.

Then, since Skm

__
0 for k m, by (5):

Skk y ISkl Sak + 2 Sk, (S1)k (LhE1)ij.
mk mk

By the discrete maximum principle, 0 < (E1)i < 1, for all nodes ij lying in the
interior of the subdomains, so we obtain"

This proves (3).
Since S is symmetric and positive definite, and since Si _< 0 for j, it follows

that S is an M-matrix; see Varga [34].
3. Some well-known preconditioners for S. The rate of convergence and

the efficiency of most domain decomposition algorithms depend on the choice of pre-
conditioners M for S, both in the case of two subdomains and in the case of many
subdomains. (Though our studies in this paper are restricted to the case of two sub-
domains, we mention here that in the case of many subdomains, a preconditioner for
S can be built in terms of preconditioners for the reduced interface operator of two
subdomain problems; see [4], [20].) In this section, we mention some of the precondi-
tioners that have been proposed for S in the case of two subdomains. They include
preconditioners by Axelsson and Polman [2]; Bj0rstad and Widlund [3]; Bramble,
Pasciak, and Schatz [5]; Chan [9]; Chan and Hou [12]; Chan and Keyes [13]; Dryja
[19]; Golub and Mayers [24]; Keyes and Gropp [28], [29]; and Funaro, quarteroni, and
Zanolli [17].

The rate of convergence of these preconditioned systems are determined by the
quotient of the maximum and minimum eigenvalues of M-S. We use the term con-
dition number and use a(M-1S) to denote this ratio. Many of the above-mentioned
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preconditioners M are known to have optimal convergence rates with respect to mesh
size variation, i.e.,

(M-1S) O(1) independent of h.

Of these, several are based on the property that the Steklov-Poincar operator cou-
pling the subproblems is spectrally equivalent to the pseudodifferential operator given
by the square root of the Laplacian on the interface, i.e., the operator obtained when
in the eigenfunction expansion of the Laplace operator, the eigenvalues are replaced
by its square roots. In the discrete case, this can be implemented efficiently using dis-
crete sine transforms, as they form the eigenfunctions of the discrete one-dimensional
Laplacian:

--Ah tridiag(-1, 2,-1) WA1W,

where W W-1 WT is the n x n sine transform matrix with entries

n + 1
sin

n + 1

where hi diag(4sin2(ir/2(n + 1))). Such preconditioners for S have the form

M WAW-1,

where W is the same as above, but where A is a diagonal matrix which approximates
Such preconditioners can be inverted in O(n log(n)) operations, if the fast sine

transform is used.
We list two such commonly used preconditioners, which differ in their choice of

eigenvalues:
1. TheDryja preconditioner [19] is MD WAI1/2W-1. Equivalently, MD

(--Ah) 1/2.
2. The Golub-Mayers preconditioner [24], MVM =_ W(A1 + (A/4))1/2W-I, for

the same A used in MD. We note that there is a close connection between the
Golub-Mayers preconditioner and "Dirichlet-Neumann" preconditioners; see [3], [9].

A similar idea using properties of the boundary trace operator to construct ef-
fective preconditioners has been used by Glowinski and Pironneau [23] to solve the
biharmonic problem.

Both MD and MVM have been shown to be optimal with respect to mesh refine-
ment; see [3]. However, their performance could be sensitive to variations in the aspect
ratios of the subdomains gt and -2, and variations in the coefficients of L. Numerical
results are presented in Tables 1, 2, and 3 of 6, which illustrate the dependence on
the mesh size h, aspect ratios of the subdomains, and coefficients, respectively. Some
theory for model problems is also presented in 6.

4. The interface probing preconditioner. The probing technique was intro-
duced in Chan and Resasco [15], Keyes and Gropp [28], and Eisenstat [22], as an
algebraic technique for constructing sparse approximation to the interface operator S
in the two-subdomain case. One of its advantages is to account for the deterioration
in the performance of some of the previously mentioned preconditioners, with respect
to coefficients and aspect ratios. The main idea is to approximate S by a matrix hav-
ing a specified sparsity pattern using matrix-vector products of S with a few carefully
chosen probe vectors. The sparsity pattern is chosen to capture the strongest coupling
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of the interface operator S, and is usually banded. The motivation for using a sparse
approximation to the interface operator S is the observation that it has weak global
coupling, i.e., the entries of S decay rapidly away from the diagonal. For instance, for
model problems and geometries, it has been shown that

for i, j away from the diagonal; see Golub and Mayers [24]. Thus, if M is a banded
approximation to S, we would hope or expect that M be an effective preconditioner.
However, since S is seldom known explicitly, it is not possible to choose the exact
band of S, and so we construct a banded approximation M to S using matrix-vector
products of S (which is computable even if S is not explicitly known) with a few
carefully chosen probe vectors. It turns out that the banded approximation to S
obtained by probing often leads to a better preconditioner than using the exact band
of S, even if these were known, because the row sums of the probed approximation
tend to approximate the row sums of S, unlike the row sums of the bands of S. Note
that the name internee probing originates from the fact that the approximation to S
is constructed using matrix-vector products of S with a few test vectors defined on

the internee F, to probe the "large" entries of S. Each such matrix-vector product
of S involves the inversion of Lh on each fh, with a few probin9 boundary conditions
on r, given by the probe vectors. Once the matrix-vector products are found, the
construction of the preconditioner M from the vector outputs is done at very little
expense, with the number of operations being linearly proportional to the number of
nonzero elements in M.

Consider then the problem of constructing a banded approximation Ma of upper
and lower bandwidth d, to an arbitrary square matrix (7 R’x’ (C may be nonsym-
metric in general, and may not be known explicitly). We introduce the notation

Md PROBE(C, d),
to denote that Md is constructed from C using the PROBE procedure. We make
the following two observations. First, as noted by Curtiss, Powell, and Reid [16], if C
were a banded matrix having upper and lower bandwidth d, and C were not explicitly
known, then the entries of C can be reconstructed from its action on 2d + 1 carefully
chosen test vectors (instead of the standard choice of the n unit vectors ei, forming
the columns of the identity matrix). Second, if the matrix C is close to banded, i.e.,
its entries are small away from a band, we can compute its action on the same test
vectors mentioned above and use these just as in the case where C is exactly banded,
to construct a banded approximation to C (which we hope is good).

We illustrate the PROBE procedure for the case d 1, in which case M1 is a

tridiagonal matrix, and the following three probe vectors are commonly used: vl

(1, 0, 0, 1, 0, 0,-..)T, V2 (0, 1, 0, 0, 1, 0,...)T, and v3 (0, 0, 1, 0, 0, 1,...)T. Since M1
is tridiagonal, it can easily be checked that all its nonzero entries appear in the vectors
MlVi, 1, 2, 3, as illustrated below:

(s)
mll m12 1 0 0 mll m12 0
m21 m22 m23 0 1 0 m21 m22 m23

m32 m33 m34 0 0 1 m34 m32 m33
m43 m44 m45 1 0 0 m44 m45 m43

0 1 0 m54 m55 m56m5a m55 ".
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The probe algorithm reconstructs the nonzero entries of M1 by equating the right-
hand side of (8) to the corresponding entries in the vectors [Cvl, Cv2, Cv3].

By construction of M1, we would obtain M C, if C is indeed tridiagonal.
Note that the product Cvi is the sum of columns 1, 4, 7, etc. of C, while Cv2 is the
sum of columns 2, 5, 8, etc., of C, and Cv3 is the sum of columns 3, 6, 9, etc., of
C. Therefore, if C were not tridiagonal but close to being tridiagonal, then the sum
of every third column of C would contain contributions from other nonzero entries

in other columns. If these off-band entries of C are small, then their effects may be
ignored if we only wish to construct an approximation to the tridiagonal band of C.

Also note that the procedure for constructing M =PROBE(C, 1) can be viewed
as an attempt to determine a tridiagonal matrix M1, which has the same action on

the set of vectors vi as C, i.e.,

(9) Mvi Cvi, 1, 2, 3.

Though (9) is satisfied if C is tridiagonal, it may not be satisfied for arbitrary C, since

a simple count gives 3n equations (one equation from each component of the three test
vectors) for the 3n- 2 unknowns on the tridiagonal band of MI E Rnn. However,
as illustrated in (8), a unique tridiagonal matrix M can always be determined by
choosing 3n- 2 appropriate equations in (9), which pick out the nonzero entries of
M1. The remaining two equations in (9) may not be satisfied for arbitrary C. In
addition, the tridiagonal matrix M1 may not be symmetric, even if C is symmetric.
We present an example of a 4 4 symmetric matrix C for which (9) is not satisfied,
and for which M1 is nonsymmetric.

m21 m22 m23 0 0 1 0 0 10 0 2 0 1 0
0 m32 m33 m34 0 0 1 0 0 10 0 0 0 1
0 0 m43 m44 1 0 0 5 2 0 10 1 0 0

(10) m21 m22 m23 2 10 0
m34 m32 m33 0 0 10
mac 0 m43 15 2 0

Therefore,

0 10 0 2 2 10 0 0
0 0 10 0 PROBE(C, 1)- 0 0 10 0
5 2 0 10 0 0 0 15

From (10) we obtain that m2 0 and that m21 2, and thus M1 is not symmetric.
Moreover, equating the entries in row 4 column 2, we obtain the inconsistent equation
that 0 2, etc. However, if the matrix C is close to being tridiagonal, then M and
C will have almost the same action on vi.
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The procedure in equation (8) for constructing the tridiagonal PROBE(C, 1) can
easily be generalized to the case of banded matrices of upper and lower bandwidth
d. We denote the general banded approximation by PROBE(C,d) (which can be
nonsymmetric in general; see 5.3). As mentioned earlier, this requires 2d + 1 probe
vectors. Rather than describe this procedure, which is a straightforward general-
ization, we provide a Matlab code for constructing PROBE(A, d). Given a matrix
A, the following procedure returns the probed preconditioner M =PROBE(A, d) of
upper and lower bandwidth d.

MATLAB CODE FOR PROBE(A, d).
function M=probe(A,d)
n=length(A); k-min([2*d+l,n]);
if k== 1
M-diag(A’ones(n,1));

else
v= rem([l:n]’*ones(1,k),k) ones(n,1)*[l:(k-1), 0];
av=A*v;
M=zeros(A);
for c-l:k,

for i=c:k:n,
M(max([i-d 1]):min([i+d n]),i) av(max([i-d 1]):min([i+d n]),c);

end
end

end

It is also possible to extend the probing technique to construct approximations
having a specified structure, which is not necessarily sparse. For instance, probe
approximations which are Toeplitz or circulant matrices have been constructed; see
Keyes [27] and Li [30]. Probing has also been used to compute the eigenvalues of a
matrix Ms approximating the interface operator S; see Chan and Keyes [13]. For
instance, in [13], Ms is assumed to have the following form: Ms WDW-1, where
W is the discrete sine transform matrix, and D is a diagonal matrix consisting of the
eigenvalues of Ms. There are several ways to choose D. In [13], they let

(11) D PROBE(W-1SW, 0).

If D is chosen suitably, we obtain preconditioners Ms, which are spectrally equivalent
to S [13], [14]. This is called the spectral probe method.

5. Algebraic properties of banded probes. Although there have been many
experimental studies and successful applications of the probing technique, there has
not been much focus on the algebraic and analytical properties of these methods. In
this section, we summarize some new as well as old results on the algebraic properties
of the tridiagonal (d- 1) probe preconditioners.

5.1. Linearity. We note that by construction, the probe preconditioner is lin-
early dependent on the matrix C, i.e.,

PROBE(aC1 + C2, d) aPROBE(C1, d) + PROBE(C2, d).

T -1 T --1This property implies that probing S in (4) or the two terms L13L11 L13 and L23L22 L23
separately produce the same results (since L33 can be obtained from L).
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5.2. Nonsingularity. The PROBE approximation can sometimes be singular
even if the original matrix is nonsingular. However, under certain conditions, non-
singularity of the preconditioner can be proved. The following result concerns the
preservation of diagonal dominance.

THEOREM 5.1. If the ith row of C is (strictly) diagonally dominant, then the
ith row of the PROBE approximation M PROBE(C,d) is also (strictly) diago-
nally dominant. From this it follows that PROBE(C, d) will be nonsingular if ei-
ther C is strictly diagonally dominant or if C is irreducibly diagonally dominant and
PROBE(C, d) is irreducible.

Proof. We consider only the case d 1. (The proof for general d is similar.)
Recall that the entries Mij, for li- Jl -< 1, are defined by:

k:(k-j)mod3--O

Using the definition of Mij we obtain that

ki:
(k-i) mod 3-0

E
(k-i) mod 3- 1

C/k E
(k-i) mod 3-2

Applying the triangle inequality to all three terms, we obtain that

which is nonnegative due to the diagonal dominance of C. Since M is tridiagonal,
this is the same as

(12)

which proves that M is diagonally dominant. Note that the inequalities can be re-
placed by strict inequalities, if S is strictly diagonally dominant. D

Unfortunately, PROBE(C, d) can result in singular approximations if the given
matrix is not strictly diagonally dominant, as the following example illustrates.

0 1 0 0 0 1 0
0 0 1 0 PROBE(C, 1)= 0 1 0
0 0 0 1 0 1

The next example illustrates that even if C is symmetric positive definite, PROBE(C, 0)
need not be.

(1 -2) (-1 0)C -2 10 =: PROBE(C, 0) 0 8

However, in our applications to the interface matrices S in elliptic problems, we are
able to prove the following result.

THEOREM 5.2. If S is the interface operator (Schur complement) corresponding
to the discrete elliptic operator Lh defined in equation (2), then
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1. PROBE(S, 0) is a diagonal matrix with positive diagonal entries;
2. PROBE(S, d) is nonsingular and strictly diagonally dominant. Hence, it will

be symmetric positive definite if PROBE(S, d) is symmetric.
Proof. The proof follows trivially from Theorem 2.2 and Theorem 5.1.

5.3. Symmetry. Recall from example (10) that PROBE(C, 1) can be nonsym-
metric even if C is symmetric. In some preconditioned conjugate gradient methods,
it is desirable to have preconditioners which preserve the symmetry of the coefficient
matrix. One possible remedy which preserves the bandwidth of PROBE is to take
the symmetric part of the resulting PROBE(., .) matrix, i.e., define:

symmetrized-PROBE(C, 1) (PROBE(C, 1) + PROBE(C, 1)T)/2.
Unfortunately, symmetrized-PROBE(., .) does not preserve diagonal dominance of
even strictly diagonally dominant matrices, as the following example illustrates:

(13)

100 0 0 0 50 100 50 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 PROBE(C, 1)= 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0
50 0 0 0 100 0 0 0 50 100

100 25 0 0 0
25 1 0 0 0

= symmetrized-PROBE(C, 1) 0 0 1 0 0
0 0 0 1 25
0 0 0 25 100

However, such problems occur very rarely in applications to interface matrices, where
there is a decay in the entries of the matrix we probe. As an alternative to the
symmetrized-PROBE, the following minmodsym-PROBE can also be used to obtain
a symmetric banded approximation, preserving diagonal dominance. The off-diagonal
entries (i, j) and (j, i) of minmodsym-PROBE(C, d) are chosen to be the (i, j) or (j, i)
entry of PROBE(C, d) having smaller modulus, i.e., if we let M =PROBE(C, d), then:

minmodsym-PROBE(C, d)ij { MM if IMijl min{IMjl IMjI},
if IM[ min{IM ,I IMjI}

However, the minmodsym procedure is no longer linear. As the next theorem indi-
cates, this procedure preserves symmetry and strict diagonal dominance.

THEOREM 5.3. If C is symmetric and strictly diagonally dominant, and Cii > 0
then

M minmodsym-PROBE(C, d)

is symmetric positive definite and strictly diagonally dominant.

Proof. Symmetry follows by construction. Diagonal dominance is preserved since

PROBE(C,d) preserves diagonal dominance, and since the off-diagonal entries of
minmodsym-PROBE(C, d) are chosen to decrease the modulus of the off-diagonal
terms of PROBE(C, d). V]

There is an alternative procedure to compute symmetric approximations, due to
Keyes and Gropp [28], [29], in which a banded, symmetric approximation having upper
and lower bandwidth d is constructed based on using d + 1 probe vectors. We will
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refer to this as the symmetric-PROBE and denote it by symmetric-PROBE(., .). The
procedure is linear, and it is computationally less expensive than PROBE(., d). We
illustrate the procedure by an example for the case d 1, i.e., to construct a symmetric
tridiagonal approximation. In this case the probe vectors are vl (1, 0, 1, 0,-..)T and
v2 (0, 1, 0, 1,...)T, and we have:

(14)

al b2
b2 a2 b3

b3 a3 b4

ba a4 "’.

1
al b2

b2 + b3 a2

1
a3 b3 + b4

ba + b5 a4

[CVl, Cv].

The symmetric tridiagonal approximation symmetric-PROBE(C, 1)
tridiag(b, a, b+) is obtained from the probed output vectors Cv, Cv2, as indicated
in the following algorithm.

SYMMETRIC-PROBE ALGORITHM.

For/= 1,...,n
f (Cvl)i if is odd,a (Cv2) if/is even,

b2 (Cv2)I.
For 3,...,n,

(Cvl)i_l bi-1 if is odd,bi (Cv2)i_ bi-1 if i is even

System (14) consists of 2n equations for 2n- 1 unknowns, and is therefore an over-
determined system. However, if the matrix C we probe is symmetric, it can be shown
that the resulting system is consistent (see [28], [29]) and from this it then follows
that Cvi symmetric-PROBE(C, 1)vi for 1, 2. The general banded symmetric-
PROBE follows easily by using d + 1 probe vectors, with ls every (d + 1)th column.
Note that symmetric-PROBE(., d) requires d less probe vectors than PROBE(., d)
and hence less subdomain solves.

Unfortunately, the symmetric-PROBE(., .) does not preserve diagonal dominance
or positive definiteness in general, as the following example illustrates:

If C -1 2 -1 0 -1 2 -1
0 -1 2 -1 then PROBE(C, 1) 1 -2 1
-2 0 -1 4 -1 2

which preserves diagonal dominance, but

symmetric-PROBE(C, 1)
3 -3
-3 2 1

1 2 -2
-2 4

which is not diagonally dominant. However, such difficulties are encountered only
rarely in applications for matrices having decay properties.

An idea similar to probing has been used by Axelsson and Polman [2] to con-
struct a tridiagonal symmetric approximation M.p to a symmetric matrix C, based
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on the test vectors vl (1,..-,1)T and v2 (1,2,3,...,n)T. They have shown
that their resulting approximation MAp satisfies MApvi Cvi, for 1,2. The
Axelsson-Polman PROBE preserves diagonal dominance. In addition, under certain
assumptions, they have been able to obtain lower bounds for the spectrum of MAe in
terms of C.

6. Probe preconditioners in domain decomposition. The preceding sec-
tion dealt with purely algebraic properties of the probing technique, valid for arbitrary
matrices. In this section we study convergence properties of the tridiagonal probing
technique applied to the interface matrix S in (4) for a model elliptic problem known
to have a condition number growing at a rate h-1, as h --, 0. Our studies focus on
how the mesh size, aspect ratios of the subdomains, and variations in the coefficients
affect the rate of convergence of the probe preconditioned system for the interface
matrix S.

In particular, we show that an application of a version of the tridiagonal probe
preconditioner results in a condition number that grows at a rate h-I/2 as h O. We
also show that this condition number is generally insensitive to variations in the aspect
ratios of the subdomains. Finally, we consider how this condition number depends
on the coefficients of the elliptic problem. There we present theoretical bounds for
the condition number of the preconditioned system when the coefficients are scaled
by positive scalar constants on each subdomain. In all these cases, we present both
theoretical and numerical comparisons of the convergence rates of the Golub-Mayers
preconditioner with the probed preconditioner.

6.1. Eigendecomposition of the $chur complement S and the probe
preconditioner for a model elliptic problem. The model problem we consider
is the Laplacian on the rectangle f [0,/1 +/2] )< [0, 1], as illustrated in Fig. 1,
with Dirichlet boundary conditions on the vertical boundaries and periodic boundary
conditions on the horizontal boundaries:

-Au f in
u(x,y) 0 forye[0,1]andx=0,(15) u(x,y) 0 forye[0,1]andx=ll+12,
u(x, O) u(x, 1) for x e (0, ll +/2).

is partitioned into two subdomains fll [0, ll] [0, 1] and 22 Ill, li + 12] x [0, 1],
with the interface F {/1} x [0,1]. Problem (15) is discretized by the five-point
Laplacian on an (ml + m2 -4- 3) (n + 2) grid, which includes the boundary nodes,
with mesh size h 1/(n + 1), l (ml -4- 1)h, and 12 (m2 + 1)h. Note that there
are n + 1 distinct unknowns on each vertical line, due to periodicity, and there are

rrtl A- m2 A- 1 unknowns in the interior of each horizontal line.
For this model problem, the eigendecomposition of the Schur complement S, as

well as the eigendecomposition of a suitable tridiagonal PROBE of the Schur comple-
ment, can be computed exactly. The eigendecomposition of S can be found using the
discrete eigenfunctions of the five-point Laplacian (see Chan [9] and Donato [18]) and
is given below:

S Fdiag(A0,..., An)F-1,

where

A0= +m1+1 m2+1
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for j 1,..., n with aj and 7j defined by

aj 4 sin2 (jrh),

1 + (ajl2) I + (a/4)
1 + (aj/2)+ V/o-j + (a]/4)

F If0,""", f] is a unitary matrix (F-1 FH), with fj v/(1, e2jh, e2rnjh)T.
Note that if 11, 12 --+ (x), then Ao 0, and the interface matrix becomes singular.

Therefore, we restrict to the case where either 11 or 12 is O(1) independent of h.
For this model problem, S E R(n+l)(n+l) is symmetric and circulant (due to

periodicity), and so rather than defining M -symmetrized-PROBE(S, 1) discussed in

4 (which would result in a tridiagonal but not circulant approximation), we construct
a tridiagonal, circulant approximation Mcv R(n+l)x(n+l) by using a variant of the
tridiagonal-PROBE which we denote Mop circulant-PROBE(S, 1). We describe
it for the case n + 1 being even, in which case we need just one probe vector _=

(I,0, 1,0,. , I, o)T:

(16)

". ". 0 -2
Mop with Mcv 1 a S

The values a and are easily found. The following lemma contains estimates for
a- 2 and .

LEMMA 6.1. The row sum a- 2 of Mcv circulant-PROBE (S, 1) satisfies:

c- 2 ES Ao +/=0

for j O, n,

and 1 <_ <_ 2.

Proof. Our proof will be based on the fact that S and Mcv have the same row
sums. We use two probe vectors Vl (1, 0, 1, 0,..., 1, 0)T and v2 (0, 1, 0, 1,.-.,
0, 1)T. First, it can be easily verified that if Svl McvVl (which holds by con-
struction of Mop), then Sv2 Mcvv2. Since Vl + v2 (1,1,...,1)T, we obtain

Mcv (1,..., 1)T S(1,..., 1)T, i.e., the row sums must be equal. Using the fact that
the row sum of Mcv is a- 23, we obtain that-

a-2Z=ESji-(S1 )j=A0- + >0
i=0

for j 0,...,n,

since (1,..., 1)T is an eigenvector of S corresponding to eigenvalue A0.
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To prove that 1 </ < 2, we use the expression for -2/ given in (16), and use the
alternative expression for the entries of Siy in terms of discrete harmonic extensions,
as described in (5) of 2, to obtain that:

-2/ (LhEvl)iy

where (i, j) is any node on F with 0 nodal value for the probe vector vl, and E
denotes the discrete harmonic extension and Lh denotes the discretization of the
elliptic operator. Applying the five-point Laplacian at node (i, j) on F results in:

-2 -2 (EVl )i,j+I (Evl )i,j-1.

By the maximum principle the entries of Ev lie between 0 and 1 at all other nodes;
thus it follows that -2 _> -2/ _> -4 and the result follows. [:]

The eigendecomposition of Mop can be explicitly found for the model problem.
LEMMA 6.2. The circulant-PROBE matrix Mop is diagonalized by the discrete

Fourier transform F and has eigendecomposition:

(17) Me, F diag (A0 +/ay) F-.
Proof. Since Me, is circulant, it is diagonalized by the discrete Fourier transform

F. Its eigenvalues can be determined by applying Mc, to each column of F, for
j-0,...,n:

for j O,...,n,

where cry 4sin2(jTrh). Thus, Mop F diag(A0 + flay) F-1

Since Mce and S are diagonalized by F, we obtain that:

Mc-lp S F diag
Ao +/3ay

For convenience, we define Oy Ay/(A0 + flay) for j 0,.--, n. Then the condition
number of Me- S is determined by the quotient of the maximum and minimum of Oy
for j 0,---, n. This quotient is 1 when j 0, since a0 0. To determine bounds
for the extrema when j 1,..., n, we replace the discrete optimization problem by
the optimization problem for its natural continuous extension, (cr), where

/h
O(a)

1 + "(cr) tl

1 -()/

with -),(a) defined by

(18) "() _--

V/a 21++ - 4
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and where the discrete values of aj for j varying from 1 to n were replaced by the
continuous variable a e [4sin2(rh), 4], and the eigenvalues Cj /(0 + a) were
replaced by its continuous counterparts (a) A(a)/(Ao +/a).

An upper bound for the condition number of the preconditioned system can thus
be expressed in terms of (a) as follows:

max{max,, (a), 1}(19) (MS) <_
min{min (a), 1}

for a E [4sin2(rh), 4],

and so the bounds for (a) determine the rate of convergence of the preconditioned
system.

6.2. Dependence on mesh size h. We now consider bounds for the eigenvalues
(a), for a e [4sin2(rh), 4]. Because there should be at least one line of unknowns

in the interior of each subdomain, 2h _< 11 and 2h <_ 12. The eigenvalues (a) can be
rewritten as: (a) #(a)H(a), where

1 + "(a)l/h(e0)
1 -(a)i/h + 1 V(a)12/h

and
4

In the following lemma, we list some properties of (a), #(a), H(a), and /(a)L/h.
LEMMA 6.3. The following hold:
1. There exist positive constants Cl and c2 independent of h, 11, and 12 such that

[(7)li/h satisfies:

0 <_ e-(L/h)c*v 7(a)’/h e-(’/h)u 1 for a [4sin2(rh), 4].

2. For the constants c and c2 given in (1) above, the function (a) satisfies:
2 2e_(l/h)c 2 2e_(l/h)cu

i=1 i=1

3. H(a) has a unique critical point at

h h

where the maximum of the function is attained. H(a) is a monotonically
decreasing function for a > a* and is monotonically increasing for a < a*.

4. p’(a) 0 for a e [4 sin2(h), 4], and is thus a decreasing function.
5. o a

Proof. To prove (1), we first write

(a),/ e(,/) og(n()),

and expand log((a)) in a Taylor series in , with remainder term and evaluate the
remainder term to obtain uniform error bounds. We outline the steps. Substituting
the expression for (a) into log((a)), we obtain:

log(7()) log(1 z()), where z()



228 TONY F. C. CHAN AND TAREK P. MATHEW

where, for a e [0, 4], the function z(a) e [0, 4//3 + 4x/]. Expanding log(1- z) in
a Taylor series with remainder, about z 0, it can be easily shown that:

-z 59+1824/ <_ log(l z) _< -z forze 0,3+4x/].
Expanding z(a) in a series in , we obtain:

e [0, a].

Combining the preceding results, we obtain that log((a)) is uniformly equivalent to
for a I1. Substituting this argument for the exponential function, which

is monotone increing, we obtain the uniform upper and lower bounds given in (i),
with specific values for the constants Cl and c2. We omit the details.

The proof of (2) follows eily from (i) by using the definition of
Here we prove (3). The derivative of H(a) is eily verified to be:

h h --a + -(h/21)-(h/212)

om this, we see that the only critical point of H(a) occurs at

h

That this critical point corresponds to a mimum is eily shown by observing that
H’ (a) is positive to the left of the critical point and that it is negative to the right of
the critical point.

Part (4) is eily proved using the expression for the derivative of (a):

(ff)l/h) 2

which is nonpositive since

7’(a)
-1

W/a+(--l+g+ W/a+-h-)
2-<0"

To prove (5), we consider the expression for (I)’ (a) #’(a)H(a) + #(a)H’(a). We
note that #(a) and H(a) are nonnegative, and that #’(a) _< 0 from part (4) of the
proof. Using the expression for U’(a) given in part (3), we see that U’(a) _< 0 for
a _> a*. Combining these results, we obtain that (I)’(a) _< 0 for a

The following theorem contains the main result of this section.
THEOREM 6.4. /fmin{/1,/2} is O(1) independent of h, then for small enough h,

the eigenvalues () of Mc-S satisfy:

l12C1 (I)((T) C2 (/1 -[-/2)
h-1/2



PROBING PRECONDITIONERS 229

for positive constants C1, C2 independent of h,/1, and 12.
Proof. Essentially, the bounds for (I)(a) will be shown to be determined by bounds

for the maximum and minimum of H(a), though there are some difficulties due to
the presence of the It(a) term, which can become large for small values of 11 and 12.
H(a) is the quotient of a square root function representing the eigenvalues of S and
a linear function representing the eigenvalues of the PROBE approximation, and its
maximum and minimum can be computed explicitly. The details are now described.

We consider two cases separately. In Case 1, we assume that the aspect ratios
and 12 are both strictly greater than 1. In this case, the function It(a) will be shown
to be uniformly bounded and the bounds for (I)(a) are obtained by finding bounds for
the maximum and minimum of H(a). This can be done using results in Lemma 6.3.
In Case 2, we assume that at least one of the aspect ratios l or 12 is smaller than or
equal to 1. In this case, the function It(a) is not uniformly bounded, and the proof
used in Case 1 has to be modified. We prove the bounds for (I)(a) by considering two
subintervals separately. The details are outlined below. For convenience, throughout
the proof we let C and C2 denote some generic positive constants independent of h,
l and 12.

Case 1. In this case, and 12 are both assumed greater than 1. Then, since

vf5 > 2 sin(rh) _> C,
h h

it follows that lix/-/h >_ C1. Substituting this into the expression for the bounds for
It(a), given in part 2 of Lemma 6.3, we obtain uniform upper and lower bounds:

C1

_
It((7)

_
62 for (:r e [4sin2(rh), 4].

Since (I)(a) It(a)H(a), we can obtain bounds for (I)(a) by considering bounds for
H(a). Since by assumption min{/1,/2} is O(1) independent of h, it follows that
for small enough h, we have a* O(h), and therefore a* > 4sin2(rh). Thus the
maximum of H(a) occurs in the interior of the interval [4sin2(rh), 4], by part 3 of
Lemma 6.3. In this case, H(a) is monotone increasing to the left of a*, and monotone
decreasing to the right of a*. Thus, we obtain that:

min{H(4sin2(rh)),H(4)} G H(a) G H(a*) for a e [4sin2(rh),4].

Substituting the expression for a* into H(a), it can be easily shown that"

l12 hl/2H(a*) <_ 62 ll + 12

At a 4sin2(rh), it can be shown that:

H(4 sin2 (rh))_>
((l + 12)/1112) + h’

which becomes large if both l and 12 become large. At a 4, it can easily be shown
that:

_< H(4).
9



230 TONY F. C. CHAN AND TAREK P. MATHEW

Thus the minimum of H(a) is always O(1). Combining these bounds with the uniform
bounds for #(a), we obtain that"

1112 h_i/2C1 <_ (a) <_ C2
l + 12

Case 2. Here we assume that either l or 12 is smaller than or equal to 1. For
definiteness, let us suppose that l _< 1 and 11 _< 12. In this case, #(a) may no longer
be uniformly bounded. Indeed, #(4sin2(rh)) can be of size 0(1/11). Consequently, we
do not consider bounds for H(a) and It(a) separately, as they lead to bounds which
are larger than is the case. Instead, we find uniform bounds for O(a) on the two
subintervals I1 [4sin2(rh), a*] and I2 [a*, 4], separately (as mentioned before,
when either 11 or 12 is O(1), for small enough h we have a* > 4sin2(rh)). In Case
2a, we obtain bounds for O(a) on the interval I1 using uniformly valid expansions for
O(a). In Case 25, we obtain bounds for O(a) on the interval I2, using the fact that
O(a) is monotone decreasing on I2, by Lemma 6.3. The details of both subcases are
given below.

Case 2a. On interval I1, we will first show that O(a) satisfies:

(21) C1 ll 1 -}- 1 +h 1 e-(clll/h)v/

_
(0)

_
C2 h 1 e-(c211/h)x/

To show this, we note that:

h < a*- h/ll + h/12 < 4h
h ll2/1 Z-- 2- + 2---

since 2h _<

_
12, and 1 _< _< 2. From this it follows that:

h h
flry flr* 43= 8- for ff I1.

tl

This result can be Used to obtain bounds for the denominator of H(a)"

h<h h h
(22)

ll ll
t- + fla <_ 10 for a C I1,

which in turn gives bounds for H(a)"

(23) ClllV/- < H(a) < C211/- for a e I1.h h

Next, we obtain bounds for It(a) by modifying part 2 of Lemma 6.3, in which the
sums are replaced with bounds for each term. We easily obtain:

e,-(cl l/h)v/K 4e- (c.t
(24) 1 +

1 e-(ct/h)v <- It(a) <_ 4 +
1 e-(./h)vr5

for a e [4sin2(rh), 4].

Combining (23) and (24), we obtain the bounds for O(a) It(a)H(a) given in (21).
Note that the upper and lower bounds for O(a) in (21) can be expressed in terms

of a single function T(z)"

C1Tcl ( cllv/-) < (I) (ry)<- C2Tc2 (c211VrIh whereT(z)_=z 1+ 1Z--z
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for z cill V//h varying in the interval

[2/i sin(Trh),

which is a subset of the interval

It is easily verified that

llCi

T’(z)
eZ (ez 1 z)

>0 for z > 0.
(ez 1) 2

Thus, T(z) is a monotone increasing function satisfying:

c2/1V7 ].
We note that the lower bound is T(0) 1. It is easily shown for sufficiently large z,
say z > 1, that T(z) < C2z, for some positive constant C2. Since

we obtain that

h h

c2vf/ _> c2 - _> 1

for sufficiently small h, 8 and that

Substituting this in the expression for (a), we obtain that

C1 < O(a) < C2/h-1/2 for

Since

A < 1112
2 11+12’

it follows that this is our desired result.
Case 2b. Finally, we consider bounds for (I)(a), when a E I2. Since a _> a*, we

obtain by part 5 of Lemma 6.3 that (I)’(a) < 0 and thus

O(a*) > O(a) > 0(4) for a e I2.

Since q)(a*) 5 C2vlh-1/2 and q)(4) > C2, we obtain the same bounds for q)(a) on
the interval 12 as on the interval 11. Since
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al [0,/11 [0, 1] a2 --[/1,11 -/21 [0, 1]

FIG. 1. A model domain.

TABLE 1
h dependence for 01 2, 02 -2, and ll 12 5"

(M-Is) Iters (MglM Iters (Msa S) Itersn

10 1.22 6 1.80 7
20 1.62 8 1.85 7 2.29 9
30 1.97 9 1.87 7 2.34 10
40 2.28 10 1.88 7 2.38 9

it follows that this is our desired result.
Next we present some sample numerical results that compare the symmetrized

tridiagonal probe preconditioner M1 symmetrized-PROBE(S, 1) with the Golub-
Mayers preconditioner MaM for the following elliptic problem on the domain f of
Fig. 1"

(25) Lu=
Ox N -y exY f inf,, u=0 on Off.

The five-point centered scheme (2) was used on an n x n grid, with subdomains of size
m x n and m2 x n, where m + m2 n. The condition number and the iterations
required to reduce the residual by a factor of 10-7 (in the Euclidean norm) are listed
for varying choices of h, 11, 12, 01 and 02.

Table 1 lists the condition numbers and the number of iterations required for both
preconditioners as the mesh width h is varied, with the values of 11, 12, 01 and 02 fixed
as indicated. Since the Golub-Mayers preconditioner is independent of possibly highly
varying coefficients, we also used a scaled Golub-Mayers preconditioner MsaM =_

D1/2MaM D1/2, where D is the diagonal of the matrix L33. As expected, (MIMS)
is uniformly bounded for varying h, whereas (MIS) depends mildly on h (about
0(h-1/2), consistent with Theorem 6.4), even though the boundary conditions are
different. The cross-over is about n 20 or 30. For this case, MsaM performs slightly
worse than MaM.

Based on studies of optimal preconditioners of a given sparsity pattern, Green-
baum and Rodrigue [25] had conjectured that the optimal symmetric positive definite
tridiagonal preconditioner for the interface matrix S has condition number bounded
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TABLE 2
Aspect ratio dependence for h 1/40, ml 10, m2 given, 01 2, and 02 -2.

m2 (M- S) Iters ,(MIM S) Iters (MGMS Iters

8 1.87 9 1.79 8 2.91 12
6 1.76 9 1.97 9 3.57 14
4 1.60 8 2.37 10 4.62 16
2 1.37 7 3.81 12 6.4q 18

below by O(h-1/2). Our numerical results indicate that the tridiagonal probe pre-
conditioner performs as well asymptotically as the optimal tridiagonal preconditioner
(which of course cannot be computed easily, in general) for S.

6.3. Dependence on aspect ratios. We shall next discuss the dependence of
(Mc-S on the aspect ratios 11 and 12. The result from Theorem 6.4 for the model
problem indicates that the condition number of the probe preconditioned system does
depend on the aspect ratios of the two subdomains:

/ l12 h_l/2 < Cv/min{l,12}h_/2.(26) +
For instance, if l /2, then n Ch-/2, and this can grow if l becomes large,
and thus the performance of the probe preconditioner can deteriorate if both pect
ratios become large. However, we note that in this ce S itself becomes close to
singular. On the other hand, if l O(1), and 12 is allowed to vary independent of
l, then n(MS) can be bounded independent of 12.

In comparison, for the Dirichlet ce, the Golub-Mayers preconditioned system
h been shown (see Bjorstad and Widlund [3] and Chan [9]) to have a condition
number

(MgS)C 1++
This bound can become large if either of the pect ratios l or 12 becomes small.
However, the performance is good when both the pect ratios are O(1) or larger.

Table 2 illustrates the varying performance of MaM MSaM, and M with respect
to pect ratios of the subdomains, for test problem (25) on a unit square with a (10+
m2) x 40 grid, partitioned into two subdomains of size 10 x 40 and m2 x 40, with 0 2
and 02 -2 and using Dirichlet boundary conditions. Note that (M( S) appears to
decree like O() m2 0, predicted by (26), where n(MS) deteriorates
mildly. Again, MsaM performed slightly worse than MaM for this problem.

Unlike the theoretical bounds presented in Theorem 6.4 for the model periodic
ce, which showed that the condition number of the probe preconditioned system
grows min{/1,/2} for fixed h, the numerical results for the Dirichlet case indicate
that the condition number of MIs are bounded independent of or 12, and for
small behaves like O(). This will be illustrated in Fig. 2, in 6.4.

6.4. Dependence on scalings of the coefficients. In this subsection, we focus
on the performance of the preconditioners for various scalings of the coefficients.
Here, some of the results are not restricted to the model problem. First, we consider
the operator L of problem (1) with coefficients a(x, y) and b(x,y). As before, D is
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partitioned into two subdomains 1 and 2. We note that the Schur complement S
can be written as

S S<I)
__

S<2) (i(3) LT13L-llL13)
__

(L23) rT i-lr-23 22 -23)

where r-() denotes the contribution to L33 from subdomain i and L33 L +L33
The coefficients of the original operator L are modified to obtain a scaled operator

L(p) follows: a(x, y) and b(x, y) are multiplied by a positive constant scaling p
in subdomain , thereby making the coefficients possibly discontinuous across the
interface F. The Schur complement for the scaled operator L(p) will be denoted by
S(p), and it is eily seen that: S(p) pS(1) + S(2). If M denotes any preconditioner
for S S(1), then the following theorem gives an upper bound for the condition
number of the preconditioned system M-S(p).

THEOREM 6.5. The condition number of the preconditioned system M-S(p) is
bounded by m{a(M-1 S(1)), a(/-1S(2))}.

Proof. Let in and Aax denote the lower and upper bounds for the following
Rayleigh quotients:

xTs(i)x
in xTMx ax.

From this it follows that

omin ),min
"41 - ’2 xTMx

max< px + ,:

Thus the condition number of the preconditioned system is bounded by

(p)nax ._ )nax)/(p,nin _. nin),
which is easily shown to be a monotone function of p with the asymptotes given by
)nax/)nin and max min

This theorem indicates that the scaling p could possibly affect the conditioning
of M-1S(p) adversely only if a(M-S()) and a(M-S()) are significantly different.
The upper bounds on the worst possible conditioning, however, depends only on M,
S(), and S() and these are independent of p. Though in the case of two subdomains,
a simple scaling of the interface preconditioner will not affect the preconditioning in
the case of more than two subdomains, however, proper scaling of the preconditioner
on each of the edges constituting the interface is required for efficient preconditioning
(see for instance [4]). This can also be done by suitable use of probing; see [14].

Applying Theorem 6.5 to the case of the scaled version of a model Dirichlet
problem preconditioned by the Golub-Mayers preconditioner, we obtain the following
corollary.

COROLLARY 6.6. If M MM is used to precondition S(p), then a(MMS(P))
can vary between 0(1 + V) and 0(1 + V), depending on p.

The preceding case corresponded to preconditioners that did not adapt to the
scale of each term in the Schur complement S(p). In case the preconditioner M
adapts to the scaling p, as in the case of probe preconditioners that are linearly
dependent on the matrices they approximate, then we obtain different upper bounds
for the preconditioned system, as given in the following theorem.

THEOREM 6.7. If the preconditioner for S(p) =_ pS(1) + S(2) is of the form:
M(p) pM() + M(2), and if

xTs(i)x
fori=l 2A/min xTM(i)X -- Area



PROBING PRECONDITIONERS 235

then,

t(M(p)-S(p)) <_
2max{Amx, }

min{Almin, 2Amin}

Proof. The proof follows trivially from the assumptions. D
Thus, if the bounds for the subdomain problems are independent of the aspect

ratios, then the scaled version will also be independent of the aspect ratios. For the
scaled version of the model operator L of (15), with S(p) pS(1) + S(2), we easily
obtain that Mop (p)= pM(1) -+- M(2), where S(i) F diag(Ai)) F-1 and

1 (),/h + and /(aj)
1+ V

/- aj+ 4

with A h/li, and where

(hM(i) F diag +/3iaj F-1, for j 0,...,n,

where 1 _> i _> 1/2. In this case, we obtain the following bounds for the condition
number of the preconditioned system (MCv (P)-I S(p)).

COROLLARY 6.8. IfMcv (p) circulant-PROBE (S(p), 1) is used to precondition
S(p) for the scaled version of the model problem, then

(Mv (p)S(p)) <_ Cv/max{ll,12}h-1/2,

for a constant C independent of p, h, and the aspect ratios 11 and 12.
Proof. By using linearity of the probing procedure, it is easy to verify that

(M(i))-1S(i) is the same as the preconditioned system Me-ivS when both subdomains
CP

have the same aspect ratio li. Thus, it follows that:

C1

_
((M(i))-ls(i))

_
Cih-1/2,

for i 1, 2, where A(.) denotes the eigenvalues of the matrix argument. Applying
Theorem 6.7, the desired result follows. D

This theoretical result indicates that the probe preconditioner in the model prob-
lem can be sensitive to scalings of the coefficients only if the aspect ratios of the
two subdomains are significantly different, in which case the condition number can
vary from O(v/in{/1,12}h-1/2) to O(v/max{/1,12}h-1/2). However, in the case that
max{/1,/2} is large, then a(S(p)) O(max{/1,/2}), which is also large. If both 11 and
12 are O(1), then the scalings do not affect the convergence of the preconditioner.

In the Dirichlet case, however, numerical results seem to indicate that the probe
preconditioned system performs better than as suggested in Corollary 6.8. In Fig. 2,
we illustrate the results for the model scaled Poisson problem with Dirichlet boundary
conditions with varying 11, 12, and p. The results indicate that the condition number
of the probe preconditioned system can be bounded independently of 11, 12, and p.
Based on Fig. 2, we conjecture that the condition number of the probe preconditioned
system satisfies:

g(M-lq)
_

Cv/min{ll,12, 1}h-1/2,



236 TONY F. C. CHAN AND TAREK P. MATHEW

1.7

0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

Aspec ratio

FIG. 2. Probing for model Dirichlet problem with varying ll, 12, and p, and n 20.

TABLE 3
Dependence on coefficients for 01 02, n 20, and ll 12 1/2.

O1 (M-Is)
0 1.68
2 1.67
4 1.66
6 1.63

Iters (MIM S) Iters -1(MGMS Iters
7 1.09 3 1.09 3
8 2.48 12 1.11 4
8 6.17 17 1.18 4
8 15.37 21 1.28 5

for the Dirichlet case. This is similar to the bound obtained for the model periodic
case in Theorem 6.4, except that min{ll,/2} is replaced by min{/1, /2,1}, which is
uniformly bounded for large and 12.

We now present numerical results on the rate of convergence of the probe pre-
conditioned system and both the regular and scaled version of the Golub-Mayers
preconditioned system, in the case of continuous, but highly varying coefficients. The
tests were carried out on problem (25) with Dirichlet boundary conditions, with the
parameters as shown. The results are presented in Table 3. The probing precondition-
ers seem to adapt well to such variations in the coefficients of L, while the performance
of other preconditioners that are independent of the coefficients, like MGM, deterio-
rate. However, unlike the results in Tables 1 and 2, the scaled version MsGM improves
over the performance of MaM significantly. This may be due to the isotropy of the
coefficients in Table 3. More tests seem to be needed to study the effect of scaling on
optimal preconditioners such as MaM.

7’. Summary. Unlike various interface preconditioners in domain decomposi-
tion, the probing preconditioners are constructed as algebraic approximations to the
interface operator. They have the disadvantage of being nonspectrally equivalent
with respect to mesh size variation. However, since the techniques are algebraic in
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nature, they can and have been applied to construct preconditioners to more general
differential operators for which optimal preconditioners are not known.

We have shown that under certain conditions that are often valid in applications,
the probing technique leads to nonsingular approximations. In addition, the pre-
conditioners are linearly dependent on the matrices they approximate and preserve
diagonal dominance. However, not all the probing techniques preserve symmetry of
the matrices they approximate, and symmetric positive definiteness is generally not
preserved.

For a model elliptic problem we have shown that the probing technique has some
desirable properties: it reduces the condition number of the interface operator from
O(h-1) to O(h-i/2). Moreover, the probing technique is also fairly robust with re-
spect to aspect ratios and coefficient variations, though there could be some mild
dependence for large aspect ratios. However, for the Dirichlet problem, our numerical
results indicate that the rates are bounded independent of the aspect ratios l, 12 and
the scaling p, but retains the O(h-/2) dependence.

In summary, if h is not very small, and the aspect ratios and coefficients are
highly varying, then probing can provide a competitive alternative to other available
interface preconditioners.
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Abstract. Interlacing results for eigenvalues due to Cauchy, Golub, and Kahan are extended
and related to the last component of eigenvectors.
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1. Background and definitions. As far back as 1821, in the Cours d’Analyze
of the lcole Polytechnique, Cauchy published a proof of the following remarkable
result, which we now call Cauchy’s Interlace Theorem. If any row, together with
its matching column, is deleted from a real symmetric matrix, then the eigenvalues
of the new matrix interlace the eigenvalues of the old one. In the presence of more
information, much more can be said about the interlacing of eigenvalues and the
relationship between the spacing and the corresponding eigenvectors.

An example of such results can be found in a 1972 paper by Golub [2], which
discusses aspects of the Lanczos algorithm. Golub, seeking bounds for eigenvalues,
constructs a special rank-one update H to an n n symmetric, tridiagonal matrix Tn.
Letting Tk be the leading principal (k + 1) (k + 1) submatrix of H, Golub shows
that each interval determined by the eigenvalues of Tk contains an eigenvalue of T.
Our Theorem 1 extends this by replacing H with Tn itself.

In order to pursue these lines of investigation, some notational conventions will
prove helpful. Let Ak denote the leading principal k k submatrix of a real symmetric
matrix An A. The ordered eigenvalues of Ak are denoted by

For each k we assume we have k orthonormal eigenvectors zk) associated with the

)k) (where, of course, we are using the usual inner product on ]I(n). When necessary,
the jth entry of zk) is denoted by zk) (j). Frequently, we shall be concerned only
with the magnitude of the last entry zk) (k) and, for simplicity, we shall denote this
by the last letter of the Greek alphabet

Denote by pk(x) det(xI- Ak) the characteristic polynomial of Ak and let
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2. We now consider properties of the whole triangular set {/k)}

By Cauchy’s Interlace Theorem, we know Ak) < Ak-1) < (k)
"’i+1, as indicated by

the spacing in the table. The first question likely to arise after looking at this table
is"

Does [A2), )2)] contain an eigenvalue of A47

An affirmative answer does not follow from Cauchy’s theorem, and, in fact, the
answer is no in general. However, the answer is yes when A is tridiagonal. Fur-
thermore, the open interval (A2),/2)) must contain an eigenvalue of A4 if A4 is an
unreduced tridiagonal matrix. (Recall, a tridiagonal matrix

bl a2

ak-1 bk-1
bk-1 ak

is called unreduced if all the b’s are nonzero.) Furthermore, this little-known result
can be proved by elementary means eminently suitable for introductory courses in
linear algebra. We give brief, introductory proofs now, because we shall establish a
more general result by other means later. Here is the general statement, which is

simplified by letting/(ok) -oc and (k)
"’k+l OO.

THEOREM 1. Let T be an n n real symmetric unreduced tridiagonal matrix with

Tk its leading principal k k submatrix. Then, for 0, 1,..., k, each open interval

(Ak) x(k) contains a distinct eigenvalue of T."’i+
Note. The word "distinct," although unnecessary since the intervals are disjoint,

is included for emphasis.
Note. Theorem 1 is true even if T is reduced, provided that we replace the open

intervals by closed intervals. This follows by using just a little care after breaking
T up into tridiagonal blocks at each zero b. When n k + 1, this is just Cauchy’s
theorem; we shall need later the fact that Cauchy’s theorem yields strict inequalities
for unreduced tridiagonal matrices.

Note. Suppose A is an n x n symmetric matrix and Tk is a partial tridiago-
nalization of A (obtained, perhaps, by the Lanczos algorithm). Then each interval
determined by the eigenvalues of Tk contains an eigenvalue of A, since if we complete
the tridiagonalization we obtain a Tn similar to A.

Before proving Theorem 1 we consider the special case n k+2 given in Theorem
2, below. For this case, the proof is very apparent, it illustrates the general case, and
more detailed information is obtained that not only has other interesting implications,
but also hints at the results to follow in the next section. In the statement of Theorem
2 we use the convention (a, b) {a} if a b. Also, from before, ak+2 is the lowest
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FIG. 1. A possible graph of y Pk+2(x).

(k) :), ak/2diagonal entry of Tk+2. Because of our convention that A(ok) -c,

must lie in some subinterval [)k)
THEOREM 2. Let Tk+2 be unreduced and assume ak+2 lies in the subinterval

(k+) then each of the k + 2 intervals(a) g)<+ < ..+

(_, +)), ()(+)
(k+)contains one of the k + 2 eigenvalues of Tk+2, and (ak+2,-.i+ contains none.

(b) If "’i+(k+) <_ ak+2 _< -,i+(), then (a) holds when the middle two intervals are

replaced by (Ak) (k+) (k) ), and (k+)i+ ), (ak+2,.,i+ (i+ ,ak+2) contains none.
These relationships are illustrated in Fig. 1.

(k+) (and the proof of the caseProof of Theorem 2. Assume that ak+2
(k+) is similar). By Cauchy’s interlace theorem, we know Pk+2 has zeros inak+2

(+) ). We shall prove one of the three remainingthe intervals (-, Ak+)) and ("k+
cases and leave the others as an exercise.

Pick an arbitrary j, 1 < j < and consider (Ak) (k+)
.,j+ ). The usual expansion

of det(xI- Tk+2) along its bottom row gives the well-known recurrence relationship

() +:() ( +:)+() i+().
(k+)We know pk(Ak)) 0 and Pk+(-,j+ 0. Using interlacing and thefactorizations

(x) (x- i))... (- ))(x- ,,+)...(() )),
p+(x) (x- (+) (+) (+) (+,, )...(x-

(k+)we see ugH Pk(j+ (-1)k-j and sgn pk+(A.
Ak) ak+2, A.k) --ak+2 < 0. Putting this all together we have

(k+) (k+)sn++ n[0- +(,,+ )] -(-)- (-1)-+

sgn p+:()) sgn[() a+)p+()) 0] -(-1)-+ (-1)-.
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Thus, the polynomial Pk+2 has a zero in (Ak) (k+l)
"’j+l )" [’]

Before proving Theorem 1, there are two comments to make. First, Theorem 2
(k+2)shows that not only is .,j+l in the interval (A k+) (k+)

,,j+ ), it is in whichever of the

subintervals (Ak+) Ak))or (Ak) (k+l) (+2)
,..j+ is further from ak+2. Hence, .,+ will

tend to be closer to whichever endpoint of (k+) (k+)
.,j+l is further from ak+2; how

close will be discussed further in 3. Second, Theorem 2 shows that each interval

() ().,j+) contains a unique eigenvalue of Tk+2 except for the interval that contains

ak+2. From this, if we knew suitable bounds for all the aj, j _> k / 2, then we

would know that intervals (A) (k).,i+) outside those bounds still contained unique
eigenvalues of T.

Proof of Theorem 1. Let n _> k + 3. Let Tin# be the trailing principal (n- m +
1) (n m + 1) submatrix of T, which is given by

am bm
bm am+

an-1 bn-1
bn-1 an

and let P#m be its characteristic polynomial. Then

bk
bk
ak+l
b+

bk+l
ak+2
bk+.

bk+2
ak+3
bk+3

bk+3

Now expand p(x) det(xI- T) along the (k / 2)nd row to obtain

xI-Tt:

--(--bk+l) det --bk --bk+. 0
--bk+2

+(x

xI Tk+
--bk+l

(-bk+2) det 0 -bk+2
0

--bk+3

xI Tkk+4
b+lpk # (x ak+2)Pk+ #(x)Pk+3(X) -I- bk+2Pk+l(x)Pk+3 (X) (x)pk+4 (X)

a # 2 #+ bk+2Pk+4 (X) (X)
#--b2k+lPk(X)Pk+3(X + Pk+2(X)Pk+l (X).
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The last step follows by expanding # Tk#+2) along Thus,Pk+2(x) det(xI- the top row.
the analogue of (1) is

The proof now proceeds in a manner very similar to the proof of Theorem 2. In
each interval (Ak) (k),"j+l) there is at least one zero of p in either "’j-bl or

(k) depending on the relative position of (Ak)"’j+l "’j+l] "’j+l) to the zeros of #
Pk+2

and Pk+3"# In this, you must use the fact that the zeros of Pk+2# and Pk+3# interlace
each other also (again by Cauchy’s Interlace Theorem). The details are left as an
exercise. []

3 If all that we wanted to show was that each closed interval [Ak) (k)
"’j+l] con-

tains a distinct eigenvalue of A, then the tridiagonal assumption in Theorem 1 is not
necessary, as we shall show in 4. However, it is necessary for our next result, which
concerns what we call crowded interlacing, i.e., when the next eigenvalue along is very
close to one of the eigenvalues between which it is interlaced,

l(k) ,}k-1) ii(k)

In the context of the Lanczos algorithm it is important to understand when an
eigenvalue of Tk+l is almost on top of an eigenvalue of Tk. This phenomenon is con-
trolled by the numbers wik introduced earlier. This is surprising but not without
precedent. In studies of the inverse eigenvalue problem it was discovered indepen-
dently by most researchers that an unreduced tridiagonal Tk is completely determined

(to within + signs) by the eigenvalues {A})} and the "weights" {wi2}. There are
2 1. Among physicists the parametersonly 2n- 1 free parameters here, since E

{A), Win} are called action-angle variables.
The following result implies, among other things, that

Consequently, the smaller Wn is, the closer .,n--1) and A") are.
THEOREM 3. If Tn is ar unreduced n x n tridiagonal matrix and I <_ k <_ n, then

2 A}k) Ai_l(k-1)A}k-1) A}k)
"’i+i

’(kk) "(kk-)

i=1

i#l,k

Proof. It is known that the tridiagonal Tk can be reconstructed from the 2k- 1

values {Ak)}k, {Ak-1)}k-1. The expression for wik is remarkably simple. As before,
let pk(x) det(xI- Tk) be the characteristic polynomial of Tk. Then

coik --Pk-1 ).
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A proof of this may be found in [4, p. 129].
expression above as a product of quotients:

It remains only to reorganize the

- 1, k,

(k)Since Tk is unreduced, Cauchy’s theorem yields A k) < A k-l) < "’j+l, J 1,..., k-l,
so each factor in the above products is positive and less than one. To obtain the second
inequality in the theorem, simply discard all factors in each 1-I term except for the
smallest one.

In order to obtain the first inequality in the theorem, the products given above
must be rearranged as follows:

(k) A(k) 1 Ak)_ Ak) A(k) A[k)’j--1 "’j+l \j=2

i--1 A}k)_ Ak-l) ( (k) (k--l)) A}k)_A)
A}k) @k) A}k)

1 Ai Ai

j "’j+ kj=i+ Ai

lk) _k-1) 1 (2k) _k-l)) k)_(k+l).,k_l
j=l P)-- k) Ik)__ Ak) Aik) :"- 1

kj=l

Cauchy’s theorem shows that every quotient in the four products in parentheses
shown above exceeds one. Deleting them yields the first inequality, as claimed.

Next we return to full symmetric matrices.

4. We now extend the results of Theorem 1 beyond the tridiagonal case. The

eigenvalues of the k x k matrix Ak define k + 1 intervals (-, Ak)], [Ak), Ak)], .,
[Ak), ), and we want to know when every principal supermatrix of Ak has at least
one eigenvalue in each of these intervals. We do not demand that these intervals be
distinct. (Note that Ak need not be tridiagonal, so it may have multiple eigenvalues.)
Recall our earlier convention that Ak) -- and (k)

THEOaEM 4. Let

A,= C U

be a symmetric partition 4An g rank(C) 1 then each interval [A}k) (k)] i="’i+1
O, 1,..., k, contains at least one eigenvalue of A,.
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Proof. Let C wvt, w E Rn-k, v Rk. The case of the external intervals
follows from Cauchy’s Interlace Theorem, so pick an 1,..., k- 1.

If Ak) (k) find a unit eigenvector z of Ak associated with Ak) and satisfying
vtz 0. Now let x [o] and it is trivial to verify that x is an eigenvector of An
corresponding to Ak).

(k) Let z zk) _(k) sin where will be determinedSuppose Ak)
-’i+1. cos + -’i+1

later, let x [o], and let " A k)
-t-.,i+1

(A [ ((k) _(k) ]COS + "i+1 7)"i+1 sin

(k) sin)wvt(z) cos + -i+

_(k) sin) 0. For suchNow take any such that vt(zk) cos + .i+

II(A I)xll
()

(X(k) 2-7)2 cs2 / "+ -") sin2
2

It is a standard result (see [3, Thm. 4-5-1]) that if Ilxll 1 and IIAx- xll
then there is an eigenvalue of A in [7 5, 7 / 5]. If we apply this to the above, where
5_ /’(k)\.,i+l k)) /2, we easily see that there is an eigenvalue of A in

"’i+], and we are done.
In general it can be shown that if rank(C) r, then each union of r abutting

subintervals defined by the Ak)’s holds at least one eigenvalue of An. As soon as r
exceeds k, the result becomes vacuous.

It is worth pointing out that Theorems 1 and 3 can both be obtained as special
cases of Lehmann’s optimal intervals. Lehmann’s results [3] were published in the
1960s in German and are complicated by the use of an additional parameter. He
assumes that Ak and C are known, but U is not, and then finds, for each , the
smallest interval centered at that contains exactly j eigenvalues of An. The answer
turns out to be that the radius 5j of the smallest interval is the jth smallest singular
value of

(k) /2, thenIt is not hard to see that if C has rank one and

(Tmin
,Ik ] ))C ((k)"’i-l- ) /2,

as expected.

5. An alternative approach to Lehmann’s work was taken by Kahan. He proved
the following refined interlace theorem. See [4, pp. 194-197].

Assume A An has the form

H C O ]C V Z
O Z W
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where H is m m and V is k k (and O is the zero matrix). In applications, H and
C are known but V, Z, and W probably are not. Being ignorant of V, we replace it
with a k k X, which we are free to choose, and define an auxiliary matrix

M M(X)= C X

Denote the eigenvalues of M by #i #i(X) and assume #1 _< <_ #m+k.
THEOREM 5 (Kahan). Assume A, M, and X are given as above, where X is any

k k matrix satisfying

V- X is invertible.

Then for each index j 1,... ,m, the interval [#j,#j+k] contains a different eigen-
value j of A. In addition, for each index 1,..., k, there is a different eigenvalue
7z of A outside of the open interval (#, #+m).

The only blemish in this result is the unverifiable assumption that V- X is
invertible. Our final contribution is to remove this hypothesis by looking carefully at
the general case when V X is singular.

THEOREM 6. Kahan’s interlacing theorem (Theorem 5) remains true if the hy-
pothesis ’V- X is invertible" is removed.

Proof. Let A, X, and M be as above, except assume that V- X is singular. Let
N Null Space (V- X), so that N @ N+/- k. Picking orthonormal bases for N
and N+/- we can change A and M so that V- X [0 00 y] where Y is invertible. Thus,

V-- V21 V22 O Y so X V21 222

1 Z1Z$1Break up Z [Z1 Z2], compatibly. Then for each > 0, let W# Z2Y-1Z + -and obtain

H C 0

C

0 Z Z2 W

H C

C

0 0

0 0 0 0
o

0 + 0
0 Y Z

W-We# 0 Zx Z2 W:#:

T+U’T= [ M W
Hence if we let

V21 X22
we can now easily see that V-X is invertible, so that Kahan’s Interlacing Theorem
applies to A, M, and X. If we carefully let O, then M --, M (although
We -/ W), so that the eigenvalues of Me go to the eigenvalues of M. Hence the
conclusion follows, since A has only a finite number of eigenvalues. D
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Note added in proof. In [5], Z. Strakog reports that he and A. Greenbaum,
in an unpublished work, have an alternative proof of Theorem 1 using orthogonal
polynomials.
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A PARALLEL ITERATION METHOD AND THE
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Abstract. A pair of parallel sequences (uk } u, (Vk } 0 (1.3) is generated to solve the n x n
linear system Au (In B)u f. Convergence depends only on the geometry or shape of a(B),
the set of eigenvalues of B. The parallel method is applied to the singularly perturbed convection-
diffusion equation (6.1), when the Reynolds number in the direction of flow is large. Numerical
comparisons with known results are given.

Our theory also applies to the class of possibly nonsymmetric A with real spectrum (cf. Theorem
5.1) and to several other classes of systems as well. Computations to generate the sequences are
relatively straightforward, as is indicated in our main result, Theorem 4.1. In fact, the parameters
of the embracing ellipse for a(B)2 (4.6) completely determine (i) the coefficients for the parallel
sequences {u/} u and {v} 0 and (ii) the spectral radius (4.4), which characterizes their
asymptotic convergence rate (2.4).

Figure 5.1 illustrates some geometries for a(B) that are accommodated by our theory and Figure
7.1 shows the eigenvalue bowtie region arising from the convection-diffusion equation with large
Reynolds number.

Key words, convection-diffusion, Reynolds cell number, SOR iteration, parMlel algorithm

AMS(MOS) subject classifications. 35J99, 65M06, 15A18

1. Introduction. Notation. The set of eigenvalues (or the spectrum) of matrix
A will be denoted by a(A) and the spectral radius, the largest modulus of all the
eigenvalues, will be written as p(A).

The problem. Although our techniques extend to a wide range of linear opera-
tors, in 6, we will focus on the solution to the finite difference representation of the
singularly perturbed convection-diffusion equation

(1.1) u + (x, u) u + (x, u) + (x, u)u ,
which was studied recently by Chin and Manteuffel [3]. Equation (1.1) is defined on
a bounded domain with Dirichlet boundary conditions where functions a, b, c, and
f are in C2, c >_ 0, and constant e > 0.

In [3], a block (BSOR) method is developed that involves extensive case analysis
for computing best-fitting ellipses for bowtie-shaped eigenvalue sets. In this paper,
we are able to avoid these cases.

The parallel iterative method. To solve the invertible n x n linear system

(1.2) Au (In -B)u f,

we construct the two-step parallel stationary iterative process { vk }, { Uk }

(1.3)
vk (Coin + alB + a2B2 In)vk- q(In B)uk_i + qf,

1
u -(aI + a(I + B))v_ + u_,

q
k 1,2,3,...,
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where fixed scalar q 0. (We may therefore take q 1.) Now if the vector iterates
(1.3) converge for any and all initial vectors v0, u0, then necessarily [7, Thin. 10.1]

As we shall see in (4.6), scalars a2, 31, a0 of (1.3) are well defined by the geometry of
the eigenvalue set of matrix B.

Related work. The objective is to repJace a given linear system (In B)u-- f
with an equivalent system (In-/)u f, where iteration matrix B has a more
favorable (i.e., smaller) spectrum a(B) than does B.

In [13], Niethammer obtained an SOR result without assuming Property A. In [9],
Eiermann and Niethammer studied systems (2.1) with arbitrary compact spectrum,
which they transformed into equivalent systems with circular or disk-like spectra.
Generalizations of these Euler methods were further developed with k-step methods
and semi-iterative methods (SIMS) by Niethammer and Varga [15] and by Nietham-
met, Eiermann, and Varga in [10].

One difficulty is in the estimation of bounds for the eigenvalues a(B). But Man-
teuffel in [12] got around this problem with an adaptive technique that computes
parameters for the best-fitting ellipse during the computations.

In 1989, plus-shaped spectra were considered in [8] by Eiermann, Li, and Varga.
A recent work by Kellog [11] focuses on the convection-diffusion equation but no

numerical results are given.
This paper proceeds in the spirit of Chin and Manteuffel [3], whose block SOR

method was applied to obtain the solution of the singularly perturbed convection-
diffusion equation (1.1). We will refer to this work often throughout the remainder of
this paper.

Outline of this paper.
Section 2. Iterative strategies. This section describes standard stationary

iterative acceleration and splitting strategies. This is a prelude to presenting the
SOR and BSOR method in exactly the form used by Chin and Manteuffel [3], an
understanding of which is of prime importance in this paper.

Section 3. Parallel sequences. We present some basics related to the par-
allel sequences (1.3) that solve (I- B)u f. In particular, we need to know how
the geometry of a(B) determines both the coefficients of (1.3) and the asymptotic
convergence rate (2.4). This is the content of Theorem 3.1.

Section 4. The main theorem. An acceleration of a stationary method often
takes the original spectrum a(B) to a circular spectrum (cf. the remark following
(3.8)). Consistent with this idea, Theorem 4.1, our main theorem, transforms a(B)
to a "generalized circle," i.e., an annulus with outside (maximum) radius given by
(4.4). Also, the geometry of a(B) provides both (i) the coefficients (4.6) for sequences
{uk} and {vk} of (1.3), along with (ii) their asymptotic convergence rate (4.8).

Section 5. Some applications. Theorem 4.1 is applied to systems (I-B)u f
when the spectrum of B is (i) real (Theorem 5.1), (ii) plus-shaped (Theorem 5.2), and
(iii) positive (Theorem 5.3). Figure 5.1 illustrates some other spectral geometries that
can be handled by this theory.

Section 6. Discretization of the convection-diffusion equation. We
present details for the finite difference discretization of the singularly perturbed con-
vection-diffusion equation (6.1). Splitting strategies (6.3) and eigenvalue estimates
for relevant band matrices (6.17) are also provided.
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Section 7’. A special case. We apply Theorem 4.1 to show that for a large
Reynolds number in the direction of flow, the parallel method is about twice as fast
as BSOR; cf. Theorem 7.1 and Fig. 7.2. Other cases of this equation (for various
Reynolds numbers), which are studied in [3], we leave to a later paper.

Section 8. Ellipses and cardioids. Our main theorem, Theorem 4.1, depends
on knowing the best embracing ellipse for a(B)2. At the same time, a(B) of Chin
and Manteuffel is often a bowtie whose square is a cardioid. Thus, we need to know
the best embracing ellipse for a cardioid and this section establishes these facts in
Theorem 8.1.

2. Iterative strategies. The basic stationary iterative strategy. Given
the invertible n n linear system Au b, let A0 be any matrix for which A is easy
to invert, i.e., the system Aoy b is "easy" to solve. Then A0 induces the splitting
A (A0 A1), which defines the sequence {Yk } by the following two-step procedure:
(1) Find matrix B and right-hand side f by writing

(2.1)
Au (Ao A)u b iff Ao(In AA)u b

iff (In AA1)u Alb.
B f

(2) Use B and f above to define the iterative sequence {Yk}"

(2.2a) Yk Byk-1 + f, k 1, 2, 3,...

for any initial vector Y0. Then

(2.2b) yk u iff p(B) < l.

Acce_leration/preconditioning. Suppose we are given a pair of easy-to-invert
A0 and A0 that induce the splittings

Au (Ao A)u (rio )u b,

which, from (2.1), implies

(2.3b)
B AIA1, f Alb,

If, moreover, we have

p(/) < 1 and p(/) < p(B),

then splitting (_A0 A) ~is called a preconditioning for (0 ) and the induced
sequence k Byk-1 + f is called an acceleration of sequence Yk BYk-1 + f (see
(2.2a)).

Spectral radius as a measure of convergence. For iteration matrix B
AIA1 of (2.1), the spectral radius p(B) provides an asymptotic measure of how fast
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sequence Yk of (2.2a) converges to the solution vector x of (2.1). In fact, logl0(p(B))
gives us the measures

step_count
-1

loglo(p(B))
R Rate of Convergence -log0(p(B)),

where step_count represents (asymptotically) the number of iterations that suffice to
produce one decimal place of accuracy: the reciprocal, R, is called the asymptotic
convergence rate. Hence, convergence occurs for any initial y0 (2.2a) if and only if
p(B) < 1. Moreover, we see from (2.4) that smaller p(B) implies faster convergence
(cf. [17]).

The SOR acceleration. Chin and Manteuffel [3] employ block successive over-
relaxation (BSOR) in their solution of the convection-diffusion equation (6.1). For
this reason, we now present the salient points of this theory.

Suppose A D-(L+U) where D is block diagonal and matrices -L and -U are,
respectively, the lower and upper block triangular parts of matrix A. (Of course, if the
blocks are 1 x 1, then D is a diagonal of scalars.) The Jacobi splitting (2.1) is defined
by taking A0 D, which induces the Jacobi iteration matrix Bj D-(L + U).

The SOR acceleration, a second class of splittings (2.1), is defined for each
w e (0, 2) by setting Ao(w) ()D L. The SOR iteration matrices take the form

Ao(w)-A(w). We summarize these observations in (2.5).

(Ao A1)u (D (L + U))u f

Splitting A0 Iteration Matrix A1A RHS

Jacobi

SOR

Bj D-(L + U)

,w (D wL)- ([1 w] D + wU)

If Bj has Property A (or is block 2-cyclic, or is consistently ordered, cf. [17],
[18]) then there exists a linking (2.6) between each eigenvalue # e a(Bj) with (a pair
of) A E a(), according to the formula

(2.6) a(w)={A (A+w-1)2-A#2w2=0, #ea(Bj)}.

If, moreover, all the eigenvalues # of Bj are contained in the real straight line

a(Bj) C [--P.,PB], 0 <_ PBs < 1,

then, from (2.6), it follows that optimal w a2b, which minimizes the "new" spectral
radius p(), has value

2
(2.7) Wb > 1 in which case P(gwb) Wb- 1.

(1 + /1 O)
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3. Parallel sequences. This section sketches some of the essentials introduced
in [6] and [7].

In matrix language, the sequence solution (1.3) to system (1.2) is rephrased as
follows (see [7]): Solution vector u for the n x n invertible linear system

Au (In- B)u f
is obtained by

(i) computing the scalars 32, al and a0 from the geometry of a(B) as specified
in [7]; (the algorithm is generalized in (4.6));

(ii) constructing the vector iterates k col[vk, Uk] as described by

(3.2) vk (ao -1)In + aB + a2B2 -q(In B) vk- + qf

uk (1/q)((al + a2)In + a2S) In uk-1 0

k B k-1
where q # 0 is fixed. Then for arbitrary initial vectors vo, u0, we always have conver-
gence"

(3.3) and equivalently, Uk U
Uk---?jt

with asymptotic convergence rate (2.4)"

R loglo p(B)

(see (2.2a)). It is easy to check that u satisfies the n n system (In B)u f of
(3.1) if and only if of (3.3) satisfies the 2n 2n system (3.2), i.e.,

Spectral radius of/). How do we compute the spectral radius p(/)) of (3.2),
(3.4)? In [7] we answered the more general question: What is the linking between
each "old" eigenvalue # of matrix B (3.1) and "new" eigenvalues A e a(/)) (3.2),
(3.4).

THEOREM 3.1 (de Pillis [7]). Given the second- and third-degree polynomials

(3.5)
P(#) a22 + a1# + ao,

q(#) b3#3 + b2#2 + b# + bo

subject to the single constraint that p(1) and q(1) are real and

(3.6) 1-p(1) + q(1) O.

Then from the seven coefficients ai, bj of (3.5), we construct (by a constructive al-
gorithm in [7]) the 2n 2n iteration matrix (3.2), (3.4)whose eigenvalues ) are
characterized by

(3.7) {a -p(.)a + e
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Remark. (Scalars ai of (1.3) supplied by (3.5).) It is shown in Theorem 7.1 of [7]
that if polynomial q(#) in (3.5) is constant, then the coefficients ai, which define p(#)
in (3.5), are exactly those that appear in (1.3). Throughout this paper, we always
assume that polynomial q(#) is constant.

Example. The SOR linkage (2.6) can be obtained as a special case of (3.7) once
we write p and q of (3.5), (3.6) as follows:

p(#) #2w2 + 2(1- w),

q(#) (1- w)2 constant.

Remark. Although (3.7), a generalization of (2.6), links "old" eigenvalues # with
"new" eigenvalues A, the difficulty in practice lies in the proper choice of polynomials
p(#) and q(#) ((3.5), (3.6))--SOR makes the correct choice in (3.8). In general, the
polynomials are dependent on the geometry of the given spectrum a(B) and that of
the "new" eigenvalues a(/). For example, the SOR theory assumes a straight-line
spectrum a(B) to begin with and produces a circular spectrum a(wb ).

4. The main theorem. Notation. The symbol $(X, Y) denotes the zero-
centered ellipse in C whose horizontal and vertical semi-axes have dimensions X and
Y, respectively. The symbol (X, Y) represents the set-theoretic union of the region
enclosed by t;(X, Y) and its boundary (see also (8.1)).

Preview of the main theorem. Theorem 4.1 below uses the dimensions X
and Y of the best-fitting ellipse t;(X, Y) that embraces a(B)2; cf. (4.2) and (4.3).
Using these dimensions, we automatically produce the coefficients (4.6) necessary in
the construction of the parallel sequences (Uk} u and (vk} 0 of (1.3). The
asymptotic convergence rate is also obtained in (4.8). We present our theorem now.

THEOREM 4.1. Given the invertible n n linear system

(4.1) Au (Is B)u f

where, for complex (shift) constants c, d and ellipse (X,Y), we have for every
# E a(B), that (# + d)2 c + (X, Y). Symbolically,

} {c t;(X, Y)(4.2) {a(B) + d + }.
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For the complex shift scalars c, d and semi-axis lengths X and Y, we have the in-
equality

Then all eigenvalues A of induced iteration matrix B (3.2), (3.4) lie within an annulus
which has outside (maximum) circle of radius

where real of (4.4) is given by

The scalars { a2, al, ao }, which define the parallel sequences { Vk }, { Uk ) of (1.3),
are given by

2(4.6) a2 al 2da2, ao (d2 -c)a2.
v/IX2 y2 I’

Convergence of parallel sequences { Vk }, { uk } of (1.3) obtains if and only if
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in which case p(B) < 1 is given by (4.4) and

(4.8) uk -- 0
with asymptotic convergence rate n -loglo(p(/))

Vk--+U

where u is the desired solution vector for (4.1).
Proof of (4.4). We appeal to (3.5) of Theorem 3.1 to define polynomials p(#) and

q(#) as follows"

(4.9)
(4.10)

p(#) a2/z
2 + alz + ao, a2, ai, ao real,

q(#) (+2), constant 2 > O.

From Theorem 3.1, polynomials p(#) and q(#) do two things. They
(a) provide the coefficients {hi} for construction of the iteration matrix/ (3.2),

(3.4) and
(b) characterize the eigenvalues a(B) as follows (see (3.7))"

(4.11) a(/)- {" A2- p(#) + (+/-t52) --0, where

As (4.11) indicates, every eigenvalue # of B induces a pair of complex eigenvalues
At‘, A of/. Now the constant real term +/-(t52) of (4.11) is necessarily the product of
these complex roots A and At‘, so that

(4.12) $t‘ and e a(B) implies

(At‘A) +/-(t52) real (1)-iG
for some angle E R, at‘ > 1, where t > 0 is fixed. Define

(4.13) aM max at‘ > 1.
t‘ea(B)

Then, from (4.12) and (4.13), it follows that the spectral radius of B is

(4.14) p(/) max

Similarly, p(#), the A-coefficient in (4.11), is necessarily the sum of the complex roots
Using the form for At‘, At‘ given in (4.12), we obtainAt‘ and At‘.

( )(4.15) p(#) At‘ + At‘ / at‘eis" +/-
1 e_iG for all # E a(B),

a point on g{,t‘} (8.2)
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which says that p(it) lies on the ellipse t(X,, Yu) t{th, ct,}, within the family of
confocal ellipses (8.2).

Finally, equate p(#) in (4.10) and (4.15) to obtain the statement" # E a(B)
implies

a2it2+al#+ao=[ (attei,q- 1---e-i,’)
which, in factored form, gives us the equivalent statement" # E a(B) implies

(4.16)

Now equation (4.16) defines the three scalars r /a2, c d2- cola2 and d
ai/2a2. In other words, we obtain another equivalent statement" it q a(B) implies

(#+d)2-c= r(a.ei"-I--1e-i") C{r, aM},

a point in g’r, c.} (8.2)

where

r a2 3,

(4.18) (2d) a2 al 0,

(d2-c) a2-aO =0.

(In (4.17), we use the fact that $(r, a,) c $(r, aM) since a, <_ aM (see (8.1), (4.13)).)
Another way to state (4.17) is as follows:

e implies (it + d)2

c + (X, Y),

equivalently,

c + t{r, aM}

where (8.3c, d) provide the following relations among semi-axes X and Y and con-
stants r, OM of the maximal ellipse:

(4.19a)
(4.195)

r= v/ X2 Y2 /2,
OIM V/[ (X 3

t- Y)/(X Y) >- 1.

Substituting aM of (4.19b) into (4.14) proves (4.4).
Proof of (4.5). Before we validate (4.5), we must first compute polynomial co-

efficients {a2, a, a0} (3.5) with the given constants c, d, X, and Y in hand (4.2).
Combining earlier observations, we obtain the following 4 3 linear system in the
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three unknowns {a2, al, a0 }.

a -a
from (3.6), (4.10) --- { 1

0
-1

c 0
1

A

0 a2 0
-1 al 0

1 ao 1 + t52

Consistency of (4.20) is easily established as follows: Multiply both sides of (4.20)
by the 4 4 nonsingular diagonal matrix D=diag [[(c- (d + 1))2J/r, 1, 1, 1]. Since
the left-hand vector D(A if) 0, consistency of (4.20) demands that the right-hand
vector Df -0 as well. But to require Df --0 is to require

0=52- (d+l)2-cf5 +1
r

-t52-2 v/IX2_ y2
/1

2 2Q+ 1

from (4.19a)

from (4.3),
whose real solutions t5 and (tb)’ are both positive or both negative. The constant term
of the last equation equals one, which says that exactly one of the roots, , say, has
absolute value strictly less than one, if and only if

(4.21a) Q is real and IQI > 1

(4.21b) tb=signq (IqI-v/q2 1),
4-1

(4.21c) tb’=signQ (IQI+v/Q2 1),
4-1

< i,

IP’I >

which reconfirms (4.4). Also, the .last term above (the product of the square root and
tb), has absolute value less than one if and only if

X+Y 1
< from (4.19b),

P
(iS)’ from (4.21c),
q + v/q2_ 1 from (4.21c).

This proves (4.7). The fact that p(/) < 1, coupled with (2.4), validates (4.8). This
ends the proof of the main theorem.

/5(B) CM’/ from (4.14),

X+Y
X- YI" p from (4.19b),

The inequalities in (4.21) are guaranteed since Iql > 1 in (4.3). It is (4.21b) that
proves (4.5).

Proof of (4.6). Substitute the value of r from (4.19a) into (4.20). Since the
equations (4.20) are consistent (thanks to (4.21)), we may select any three of the four
equations to find the solution scalars { a2, al, a0 }. Choosing the first three, then, the
proof of (4.6) is done.

Proof of (4.7) and (4.8). Finally, we note
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FG. 5.1.

5. Some applications. It is relatively easy to apply our main theorem, Theorem
4.1, to any of several geometric configurations for a(B) where A In- B. Basically,
we need only substitute parameters into the hypotheses (4.2) and (4.3). For example,
in this section, we consider the system

(5.1) Au (In B) u f

and we characterize the coefficients and convergence rates for the sequences vk 0
and uk u (1.3) when

A has real eigenvalues (Theorem 5.1). This class includes all invertible sym-
metric matrices A A*.
A has a plus-shaped set of eigenvalues (Theorem 5.2). This class includes all
matrices with horizontal and/or vertical straight-line spectra.
A has positive eigenvalues (Theorem 5.3). This class includes all positive
definite matrices.

Remark. (Fig. 5.1: Other spectral configurations.) Our theory accommodates
other interesting a(A) or a(B) geometries that could occur and be handled by our
theory. Figure 5.1 illustrates a "top-shaped" and a "peanut shell" region that might
cover our a(B)--in both cases, the squares, a(B)2, are ellipses c + (X, Y), as re-
quired by Theorem 4.1.

An interesting geometry for a(A) (or a(B)) that has already gained some atten-
tion in the literature is the "bowtie" introduced by Chin and Manteuffel [3] in their
application of the block SOR method for solving the perturbed convection-diffusion
equation. (More about this in 6 and 7 (see also Fig. 7.1).)

THEOREM 5.1. (A has real eigenvalues.) Given the invertible system (5.1) where
(by scaling A if necessary), we may assume the spectrum of A lies within the real
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interval [--1, 1]. That is,

a(A) C [-1,-e] U

a(B) C [0, 1-el U

e, 1 ], or

[1 +e, 2] for some e > O.

Then for spectral radius

we have convergence for the sequence pair uk, vk of (1.3),

tk--+t }vk 0 with rate Rreal lOgl0(/real),

where u is the solution vector of (5.1). The coefficients a2, a, and co, which generate
the discretization sequences Uk, Vk (1.3), are given by

4 -8 2(1 + e)(5.4) a2
1 e2

reaZ, a
1 2

rat, ao
1 2 Preal.

Proof. In (4.2), choose d -1 so that we obtain from (5.2) the set-theoretic
inclusion

a(B +d) C [-1,-e] U [e, 11,

which, in turn, implies

a(B + d)2 C [e2, 1]
c + (X, 0) a degenerate ellipse.

The (degenerate) ellipse, [e2, 1] c + (X, 0) above, allows us to specify all the
parameters c d and semiaxes X and Y 0 that are required for the computational
test of hypotheses (4.2) of Theorem 4.1. In fact,

1 + 2 1 e2
(5.5) d=-l, c=

2
X=

2
Y=O,

so that substitution into (4.3) yields

(d + 1) 2 c 1 + e2
Q-

V/I X2 YI 1 "
We see that Q is real and IQI > 1, which means that the computational test of
(4.3) is satisfied. A straightforward substitution of values (5.5) into (4.5) produces
intermediate value t, which, when substituted into (4.4), gives us convergence rate
(4.8), which reduces to (5.3). Finally, substitution of intermediate t (4.5) into (4.6)
produces the form (5.4) for the sequence coefficients and the theorem is proved. D

Remark. The following theorem recaptures Theorem 10.1 of [7] which solves
Au f when a(A) is plus-shaped ("plus-shaped" is described by (5.6)). This case
was also studied by Eiermann, Li, and Varga in [8], where they achieved a convergence
rate equal to one half that of R+ given by (5.7) and (5.8).
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THEOREM 5.2. (A has plus-shaped spectrum.) Given the invertible system (5.1)
where matrix B has top-shaped spectrum centered at z O, i.e.,

0_<r<l,

(5.6) a(B) C {# # e [-r, r] tJ [-it, it]} O <_ t,
2 --1.

Then for spectral radius

2 t2 r2

(5.7) t+ t2 +r2
we have convergence for the sequence pair uk, vk of (1.3),

(5.8) u --, u }vk 0 with rate R+ logl0(tb+),

where u is the solution vector of (5.1). The coe]:ficients a2, al, and co, which generate
the sequences Uk Vk (1.3), are given by

4 2(t2 r2)(5.9) a2 t2 + r2 tb+, al 0, ao t2 + r2
p+.

Proof. The proof proceeds by substituting values derived from hypothesis (5.6)
and substituting into (4.4) and (4.6). In fact, from (5.6), we have

(B) c [-t, ],
where the interval [-t2, r2 above is the degenerate ellipse with center c (r2-t2)/2,
horizontal semiaxis X (t2 + r2)/2, and vertical semiaxis Y 0. Once we observe
that d 0 in (4.2), we establish all the necessary parameters for substitution into

(4.3). Thus,

2 +t2 -r2

Q=
t2+r2 > 1 for all0_<r<l and0_<t.

Further substitution of Q into (4.5) yields , which, when substituted into (4.4), gives
us the effective spectral radius + of (5.7) which, from (4.8), proves (5.8). Finally,
substitution of intermediate t5 (4.4) into (4.6) gives us the coefficients (5.9) for the
parallel sequence (1.3) and the theorem is done.

If a(A) is positive, then, as our next theorem shows, our method produces spectral
radius po8 (5.10), which agrees with the SOR spectral radius P(b) of (2.7).

THEOREM 5.3. (A has positive eigenvalues.) Given the invertible system (5.1)
where (by scaling A if necessary), we may assume that for some positive p < 1, the
spectrum of A lies within the positive interval[1 p, 1 + p ]. That is,

a(A) c[1-p,l+p], 0_<p<l,

(B) C [-, ] o o, > 0.

or

Then for spectral radius

2
(5.10) pos -1,

1+ V/1-p2

oI (2.7)
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we have convergence for the sequence pair uk, vk of (1.3),

(5.11) u - u 1vk 0 with rate Rpos---- logl0(tSpos),

where u is the solution vector of (5.1). The coefficients a2, al, and co, which generate
the sequences uk Vk (1.3), are given by

4o(5.12) a2 p2 a O, ao -2pos.

Proof. In Theorem 5.2, take r p and t 0 so that (5.7), (5.8), and (5.9) reduce
to (5.10), (5.11), and (5.12), respectively.

Remark. In 6, we apply our methods to a discretization model for the singularly
perturbed convection-diffusion equation.

6. Discretization of the convection-diffusion equation. Writing the con-
vection-diffusion equation (1.1) over a rectangular grid, in the form

(6.1) (uxx + Uyy) + ux + cu 0, c constant,

we will establish the following:
If h is the grid mesh size in the x direction (see also (6.11)), then -eu /

ux + cu is represented in discrete form by the matrix equation (6.12).
If hy is the mesh size in the y direction, then (6.13) is the matrix discretization
for the term Uyy.
Therefore, (6.15) describes the discretization matrices H, V and (6.14) char-
acterizes the right-hand n-vector f for the matrix discretization

(6.2) A[u] (H + V)[u] ]
where [u] is the approximation to the solution u of (6.1).
Eigenvalue estimates (6.17) are given for appropriate matrices.

Remark. Equation (6.1) is only slightly more general than the example studied
in [3].

Assume that the flow is modeled over a rectangular grid where the grid points are
ordered lexicographically. We use the usual five-point finite difference discretization
for approximating the second-order derivatives--central differences will represent the
first-order derivative(s). The resulting discretizing matrix A-H + V has the familiar
pentadiagonal (or block tridiagonal) form diagrammed in Fig. 6.1. (The same form
would result from the discretization of virtually any second-order partial differential
equation in two variables over a rectangular grid.)

As is seen in Fig. 6.1, there are two choices for H in the splitting A H+V. That
is, we may assign H to be the "inside" tridiagonal matrix diag{ L0, U0, D } (which
includes half the main diagonal), and then set V equal to the "outside" tridiagonal
matrix, diag( L, Ut, D }. Or, we may reverse the rSles of H and V. That is, either

(6.3a) A .D + L0 + U0+D + L + U flow II x
H V

or

(6.3b) A p + L1 + U+._D + L0 + U0 flow _1_ x,

H V
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L1 Lo 2D

A=H+V

H=D+L+U, V D+ Lj +Uj

{0,1}, j=l-i.

FIG. 6.1.

which is to say,

(6.3c) A D + L + Ui + D + L_i + Ul-i, {0, 1}.
H V

Remark. (Common main diagonal.) As (6.3) indicates, A H+ V is split so that
H and V have a common diagonal D. This is useful since, if necessary, we can exploit
the fact that both H- D and V- D are block two-cyclic (or consistently ordered).

In point of fact, Chin and Manteuffel [3] split A H+V (6.3a, b) as per (2.3a) so
that all the diagonal part of A, namely 2D, is assigned to Ao 2D Li Ui leaving
A1 with a zero block diagonal. That is,

(6.4) A 2D + Li + Vi-’Ll-i "q- Vl-, ( {0, 1},
H+D V-D

Ao -A1

so that A1, with zero block diagonal, is block two-cyclic (or consistently ordered).
Moreover, the matrix product

(6.5) Bj (H + D)-1 (V- D)

A A1

remains block two-cyclic (and consistently ordered); cf. [17] where A0 and A1 are
given by (6.4).

Eigenvalue structure when diagonals are constant. Tridiagonal matrices
H and V (Fig. 6.1) with constant diagonals have eigenvalue bounds that are especially



A PARALLEL ITERATION METHOD 263

easy to estimate. In fact, the tridiagonal matrix

(6.6)
d b 0 0
a d b 0

0 a ". ". implies a(M) C d +

horizontal/vertical
line-interval in C

Since ab can be either positive or negative, in (6.6) is either real or imaginary.
Also, the interval end-points, +2v, become tighter for a(M) as matrix dimension
n increases. (This is easily seen by choosing diagonal D so that D-1MD is either
Hermitian or skew-Hermitian according to whether ab is positive or negative.)

Applying the eigenvalue estimates (6.6) to matrices H and V of (6.3) where
the non-main diagonals a, b take on the values Ui, Li, 0, 1, we obtain

(6.7)

Spectral Bounds for H and V.

a(H) C d +

a(V) C d +

Remark. (H, V have straight-line spectra.) As (6.6) indicates, eigenvalues a(M)
lie on a horizontal line centered at d when ab > 0 and or(M) lies on the vertical line
centered at d when ab < 0. This carries over to the shifted matrices (H + D) and
(Y- D) (6.7), which, likewise, have straight-line (horizontal or vertical) spectra.

Remark. (H and V commute.) Constant diagonals imply that H and V of Fig. 6.1
and displays (6.4), (6.5) will commute. Commutivity of H and Y is somewhat special
and holds only on rectangular regions, as was shown by Birkhoff and Varga [1]. In
Birkhoff, Varga, and Young [2], we find characterizations for commutivity for H and
V. See also [17] and [18].

Commutivity of H and V means that

#y ca(V) #y d
(6.8)

#H E a(H)
implies

#H + d
e a (H + din)- (V ..-din), ).

Bj

Remark. (Bj has straight-line or boTtle spectrum.) As Chin and Manteuffel
observed in [3], a(Bj) either lies on a straight line or is contained in a "boTtle"
region (see (6.8)). These observations on the geometry of or(H), a(Y), and a(Bj) are
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summarized in (6.9) (cf. Fig. 7.1 for an illustration of the third case of (6.9)).

(6.9)

real real

real imag

imag real

imag imag

A=H+V,

(see Fig. 6.1)

diag(A) 2D 2din,

EMBRACING SET for
(V-din)a(H) a(V) a(Bj) a
(H +din)

d+ a[-1, 1]

d + c[-1, 11

d+ a[-1, 1]

d-t- a[-1, 11

d +/[-1, 1]

d + ,0[-1, 1]

d + ,0[-1,1]

d + ,0[-1, 1]

2d- a

+4{1 +}

:1:4 {1 +}

horiz
line

vert
line

horiz
bowtie

vert
bowtie

where L/denotes the closed unit disk in C.
Note that (6.1) describes flow in the x direction only (there is no uy term) and

therefore, decomposition (6.3a) is indicated for the approximating matrices. In other
words matrices H and V are defined in terms of their common diagonal D and the
(non-main) diagonal matrices L0, U0, L1, U1, by

(6.10) H D + Uo + Lo, V D + U1 -I- L1.

The perturbation constant e << 1 of (6.1) and the mesh-dependent dimensions hx
and hy define the half-grid Reynolds numbers R and Ry as follows:

(6.11) R- hz Ry hy
Y’

To determine H and V of (6.10), first represent the x derivatives of (6.1), with matrix
H

(6.12)
2(l+cRxhz) (Rz 1) 0

-(Rx + 1) 2(l+cRzhx) "’.
[U] -- Uxx W Ux C U
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and represent the y derivatives with V given by

2 0 1

1
0 .. ..

2hxR -1

o

Adding (6.12) and (6.13) and multiplying through by 2hxRx, we obtain the matrix
discretization of (6.1)

(6.14) A[u] H’ + V’ [u] 2hxRxf f

We finally construct matrices H and V (6.2) by shifting H’ and V’ of (6.12), (6.13)
in a way that guarantees a shared or common diagonal. That is, choose scalar s such
that H H + sin and V V- Sin so that

(6.15)
diag(H) diag(V) D dI,,

off-diagonal(H) off-diagonal (H’) L0, U0,
off-diagonal(V) off-diagonal (V’) L1, U1,

where, in the convention of Fig. 6.1, the exact values for the five constant diagonals
D, Lo, Uo, L, U of H and V described in (6.15) are given by

(6.16)

D d. In ((hx/hy) + 1 + cRxh). In

L0 -(R + 1)

U0 (R )

Eigenvalues structure of H and V. From (6.16), we see that the signs of
the non-main diagonals Uo, Lo of Fig. 6.1 will be positive or negative according as
the Reynolds number R is greater than or less than one. Substitution of the values
Uo,Lo, U,L (6.16)into (6.7)or (6.9) yields

(6.17)

Spectral Bounds for H and V.

a(H) C d + [-2V/1 R2, + 2V/1 R],

a(V) C d + [-2(hx/hy)2, + 2(hx/hy)2].

From (6.16), we see that Ry (6.11) plays no rSle in the sign of the non-main diagonals
L1, U1 of V.
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7. A special case. We analyze the third case of (6.9), that is, we find the
solution to (6.1) when Rx > 1.

THEOREM 7.1. Given the convection-diffusion equation (6.1) defined over a rect-
angular region where e 1 and c is constant, suppose mesh sizes hx and hy are such
that

(7.1a)

(7.1b)

(7.1c)

hx1 < -2-- Rx,

2e
0 < -x + c,

<
h
--:+c <

4

Then the scalar r defined by

(h/hy)2

(h/hy)2 + (ch2/(2)) + 1

induces the spectral radius Do(r) and intermediate parameter defined by

Ya45-
7.2098

[ 8 3r2 x/7r4 48r2 + 64

vr: for all r < 0.988...,

which, for the parallel sequence uk, vk Of (1.3), implies

(7.4) Uk’--tt }vk -- 0 with rate Ro(r) -logl0(tb0(r)),

where u is the solution vector of (6.2). The coefficients a2, hi, and co, which generate
the parallel sequences uk, Vk (1.3), are given by

(7.5) s a O, ao 3 x
where is defined in (7.3).

Proof. We proceed in four steps, the first three of which establish geometric
equivalents to the three hypotheses (7.1a, b, c), which is diagrammed in Fig. 7.1. The
fourth step of the proof applies the main theorem, Theorem 4.1, to this geoemtry.

Step I. (Equivalent to hypothesis (7.1a).) The spectral bounds a and/ are given
in (6.17), which implies that hypothesis (7.1a) is equivalent to

a 2 V/1 R2 is imaginary,

/=2 is real.

But if a is imaginary and/ is real, then we are placed in the third case of (6.9): thus,
a(Bg) is embraced by the horizontal bowtie +//(4d) {1 + L/} illustrated in Fig. 7.1.
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Step II. (Equivalent to hypothesis (7.1b).)
confirm that r of (7.2) has the form

For and d given by (6.17), we

r =/3/(2d).

Geometrically, the values r +/(2d) mark the outermost intersections on the real
axis of the bowtie containing a(Bj) (see Fig. 7.1). In other words, hypothesis (7.1b)
says that the embracing bowtie (Fig. 7.1) lies within the vertical strip -1 < real(z) <
1.

STEP III. (Equivalent to hypothesis (7.1c).) As Fig. 7.1 indicates, the angle of
the bowtie depends on aid. In fact, we claim that hypotheses (7.1c) says that the arc
of Fig. 7.1 is a semicircle or larger, and this is equivalent to the inequality

I-/>
2d

where c and d are given in (6.17).
To see this, use (6.9) to characterize H e if(H) and #y E a(V) as follows:

(7.7) H d + ilals #v d + t for some 1 _< s, t _< 1.

Then for any s, t of (7.7), eigenvalue As,t E a(Bj) has the form

As,t #v d
from (6.8) (6.9)

#HWd

(7.8)

1 ) from (7.7)
d 2 + (Jal/d)s

-d- 4 / 2
s2

[*]

)+/- .{1/} since -l _< t _< l.

See (6.9), where b/is the closed unit disc.
Note. In (7.8)[,], the quotient inside parentheses describes an arc of a circle

As the real parameter ]al/d increases, the arccentered at z with radius .
which begins at the right-hand end-point of the circle, increases as well. In the fourth
line of (7.8), we note that the circle in (7.8)[,] is multiplied through or scaled by
+/-fl/(4d). This accounts for the bowtie shape indicated in Fig. 7.1.

We conclude that each As,t a(Bj) is captured by a region that is enclosed by a
pair of discs with radius /(4d) and centered at z +/-/3/(4d), respectively. (Hence,
they are each tangent to the imaginary axis.) Since the real and imaginary parts
of (7.8)[,] represent cosine and sine of A,t, we see that the "bowtie arc" (Fig. 7.1)
is at least 180 when the line from the origin is at least 45 This says the angle
described by the Cartesian form of (7.8)[,] is at least 45 which means the modulus
of the real part of (7.8)[,] is less than or equal to that of the imaginary part. That
is, [al/(2d >_ 1 and (7.6)is thus confirmed.

Step IV. (Applying Theorem 4.1.) Application of our main theorem, Theorem
4.1, depends on parameters of a(Bj)2. From (7.2), the bowtie that embraces a(Bg)
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Embracing Regions for

FzG. 7.1.

has right and left end-points +r +/3/(2d), so that its square, a(Bj)2

covered by the cardioid with respective left and right end-points
must be

z=0 and r2=(13/(2d)) 2.

What is the best-covering ellipse for the cardioid D o’(Bj)2.7 Theorem 8.1 gives
the dimensions of the best-fitting ellipse for the cardioid that has left and right real-
axis intersections at z 0 and z 8 (cf. Fig. 8.1). Our cardioid (Fig. 7.1) has
corresponding real-axis intersections z 0 and z r2. Multiplying or scaling the
cardioid of Fig. 8.1 by r2/8 produces the cardioid of Fig. 7.1, which embraces a(Bj)2.
Thus, the best-fitting ellipse for Fig. 7.1 is described by the following parameters, as
required by (4.3)"

(7.9a) Real Intersections z 0, z r2

(7.9b) Semi Axes X 5r2/8, Y 3 r2/8
(7.9c) Shift Scalar c 3r2/8, d 0,

which, when substituted into (4.3), says that for r of (7.2),

8- 3r2
Qr= > 1

r/
for 0 < r < 1.346....

Now from (4.5), we have t5-- Qr v/Qr2 1, or

( 8 3rz v/7r4 48r + 64
2

<1 for 0 < r < 1.346....

Substituting this intermediate variable t5 with values of X and Y from (7.9) into (4.4)
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and (4.8), respectively, we obtain (i) spectral radius

7.2098

8 3r2 x/7r4 48r2 4- 64)r2
( 1 for 0 < r < 0.988...,

proving (7.3) and (ii) convergence rate (7.4), which is a restatement of (4.8). Finally,
the coefficients (7.5) are obtained by substituting above and X and Y values of (7.9)
into (4.6). This ends the proof of Theorem 4.1. D

Remark. (Convergence fails for r near 1.) Testing (4.7), we see that/50(r) > 1 of
(7.3) when r of (7.2) has the property r > 0.98796. Thus, when the bowtie of Fig. 7.1
strays too close to z 1, (i.e., when r /3/(2d) 1), then we lose convergence
altogether. This explains why the BSOR method of Chin and Manteuffel is superior
to the parallel method when r > 0.967. See Fig. 7.2 for a comparison of the parallel
method and BSOR.

Chin and Manteuffel’s application of BSOR. Here is an overview of how
Chin and Manteuffel apply the SOR theory toward the solution of (6.1). From the
SOR theory (2.5), two-cyclic matrices (6.5) induce an w-dependent family of iteration
matrices

with a smaller or more favorable spectrum.
Matrix L: of (7.10) is a special case of (2.5) wherein D is replaced with H + D

from (6.4) and L of (2.5) is replaced with Ll-i of (6.4).
Eigenvalues A of L: (7.10) are linked with the eigenvalues # of Jacobi iteration

matrix Bj of (6.5), as described by (2.6).
Note. Matrix L: of (7.10) is denoted by G in [3].
The Chin-Manteuffel spectral radius SSOn of (2.4) is computed from tCM, the

best-fitting ellipse for the bowtie (NOT for the cardioid!). In particular [3, (3.17c)],
if X > Y represent the semi-axis dimensions of the CM (so that F v/X2 y2 is
the focal dimension), then the optimal spectral radius PBSOn is given by

PBSOR
1 + v/l- F2

In our theory, the spectral radius/0(r) of (7.3) (and (4.4)) depends on the best-fitting
ellipse for the cardioid shown in Fig. 7.1. Chin and Manteuffel consider solution of
(6.1) when h hy and c 0.

Comparison of parallel and BSOR methods (Fig. 7.2). We diagram a
comparison of the spectral radii produced by the two methods in Fig. 7.2 which
shows that our method produces a little more than twice the BSOR convergence rate
unti Z/(d) 0..

In case the mesh sizes h and h are equal, and if constant c 0 in (6.1), then
r 0.5. With these parameters, we see from Fig. 7.2 that the parallel method exhibits
a bit more than twice the convergence rate of BSOR.
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1.5 ,peai Rad, for Se,mi-CirarHoontal B,owde Region

(.967,".0.954

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0,. (Z/2d)

Iog(po( ,. /og(,so,

o. 0.2 o.3 o. o. 0.6 o. o. 0.9 .o
(/a)

Comparison of Iterative Methods for the
Convection Diffusion Equation

Block SOR vs Parallel Method

FIG. 7.2.

Remark. In a personal communication, Bruce Kellog observed the following:
When modelling very high cell Reynolds numbers with central differences, we inher-
ently induce unreliable results. This is not a matter of physics so much as mathemat-
ics, or even matrix theory. Consider, for example, the central difference approximation
to

-eu" + u’ f, u(0) u(1) 0

on a uniform mesh, which induces the linear system as A(e)U F. For an odd number
of interior mesh points, matrix A(0) is singular. One would hope that A(0) would
give an approximation to the reduced problem

u’-- f, u(0) 0.

We would also expect that A(0) is at least nonsingular, and that for some constant
C independent of e and n, we have

(7.11) IIA(e)-ll= < C.

This is the "stability problem." There are other issues, relating to accuracy, mesh
refinements near the boundary, etc., but these other issues are common to all dis-
cretizations. The stability criterion, as exemplified by (7.11), is not satisfied by the
central difference approximation.
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These comments pertain to very large cell Reynolds numbers. If e is moderate,
the central difference approximation is a good one.

8. Ellipses and cardioids. Notation for Cartesian form of the ellipse.
For x, y real, we define the Cartesian form for the ellipse and its closure (in the
complex plane) by

(8.1)

X2 y2 }x+i 

closure $(X, Y) {
Notation for exponential form of the ellipse.

>_ 1, we define the exponential ]orm of the ellipse

x2 y2 }
For real p 0 and fixed

Relating the Cartesian and exponential forms. There is a direct connection
between the semi-axes X, Y of (8.1) and the parameters p, a of (8.2), namely,

Note that +(l/a) (respectively, -(l/a)) is chosen in (8.3a) if and only if horizontal
semi-axis length X is greater than (respectively, less than) vertical semi-axis length
Y.

A cardioid and its covering ellipse. We use the symbols $ and C as a short-
hand to denote the particular cardioid and shifted ellipse

(s.4)
t _= (3,0)+t(5,3v/-)

t: 4(l+cos(O))=p0, O<_O<_r polar form(8.2).

Cartesian form (8.1),

We use barred notation to denote the closures of the indicated curve, e.g., $ is the
set-theoretic union of the curve and all its interior points.

THEOREM 8.1. For the ellipse $ and cardiod C of (8.4), we have the inclusion
D C. (See Fig. 8.1.)

Proof. We show that if ellipse is to cover cardioid (:(if D C), then it is enough
to show that and its derivatives agree with (: at the two "obvious" axes points
A A(3, 3vf) and B 8(8, 0). (We use the term "obvious" since the tangent lines

ellipse ${p,a}= {p (aei +/- l_a e-i) } O E R,

{ ( 1e-i) } OER,(8.2) closure ,g{p, a} p ei +/- --1 1
for all/ where < 3, < a.
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at A and B are, respectively, horizontal and vertical.) The horizontal cardioid tangent
at A and vertical tangent at B then define the semi-axes [B-C] and [A-C] of ellipse
(indicated by double lines in Fig. 8.1) with lengths

IB-CI-5,

Using 3 to denote the closure of the shifted ellipse (8.1), (8.4), we have

(8.5) x+iy e- iff
(x-3)2 (y)2

<1+

Of course, equality obtains in (8.5) if and only if x + iy lies on the boundary curve
From Fig. 8.1, we see that for all angles , point P(0) x + iy lies on the cardioid
if and only if P(O) has Cartesian coordinate form

P(O) 4[1 + cos(0)] (cos(0) +/sin(0))

Po
4 (1 + cos(0))cos(0) + 4 (1 + cos(0))sin(0),

x y

defining the values of x and y, which, when substituted into (8.5), tells us that for all
angles ,

P(0) e iff 27[(4(1 + cos(0))) 2 24(1 + cos(t?))+ 9]
+25[(4(1 + cos(0)))2sin(0) 2] <_ 25.27.

A

4(1 / cos(0)
coveting!

ellipse/ ."......0...’ 11 C(3,0) s __B(8,0)

Cardioid Spectrum and Coveting Ellipse

FIG. 8.1.
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Now substitute u for cos(0) in the last equation. After a bit of algebraic manipulation,
we finally obtain the simplified inequality

P(0) E iff (u)=4u4+8u3-27u2+19u-4_<0,

for all real u where -1 < u < 1. It is now an exercise in calculus to show that
has only one local maximum for u E (-1,1) (i.e., ’(u) 0 and "(u) < 0 for

lul < 1) and this occurs only at the point u 1/2. Since this maximum () 0, we
are assured that _< 0 over the open interval (-1, 1). Calculation at the end-points
{- 1 }, {+1} shows that (-1) 54 and (1) 0, which guarantees _< 0 over the
closed interval [-1, 1]. The theorem is proved. D
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Abstract. Recursive condition number estimates of matrices are useful in many areas of scientific
computing, including recursive least squares computations, optimization, eigenanalysis, and general
nonlinear problems solved by linearization methods where matrix modification techniques are used.
The purpose of this paper is to propose a fast adaptive condition estimator, called ACE, for tracking
the condition number of a modified matrix over time, in terms of its triangular factors. Symmetric
rank-one modifications are considered, and it is noted how the schemes generalize to higher rank
modifications and thus to nonsymmetric rank-one updates. ACE is fast in the sense that only O(n)
operations are required for n parameter problems, and is adaptive over time, i.e., estimates at time
are used to produce estimates at time + 1. Traditional condition estimators for triangular factors,
such as the LINPACK and LAPACK type schemes, generally require O(n2) operations and are not
adaptive. The only situation where ACE can break down is characterized, and a remedy is provided.
ACE is based upon min-max principles where a small generalized eigenvalue problem is solved at
each recursive step. Numerical experiments are reported here and elsewhere, indicating that the
method yields an accurate and robust, yet inexpensive, adaptive condition estimator for recursive
matrix modifications.

Key words, adaptive methods, condition estimation, downdating, eigenvalues, matrix modifi-
cations, optimization, recursive least squares, singular values, updating
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1. Introduction. Repeated estimates for the condition number of a matrix are
required in many application areas of scientific computing, including: optimization,
least squares computations, eigenanalysis, and general nonlinear problems solved it-
eratively by linearization techniques, e.g., [1], [3], [4], [13], [28]. For instance, it is
often desired to solve a sequence of n by n systems of linear equations

(1) Atxt bt, t 1,2,...,

where

(2) At+l At + Ut, t 1,2,.-.,

with the update matrices Ut having low rank.
Our interest is primarily in the case where the matrices At are symmetric pos-

itive definite, and where the symmetric updates (2) are performed by updating the
Cholesky factor Rt (or its inverse R-1) of At, and where the rank of Ut is small rel-
ative to the dimension of At. (In particular, rank(Ut) _< 2 is quite common, e.g., [4],
[131, [16], [18].)

We wish to monitor the spectral condition number

Amax(At)- [rmax(Rt) J 2

a2(At)
Amin(At) (min(Rt)

Received by the editors September 19, 1990; accepted for publication (in revised form) July 29,
1991.

Boeing Computer Services, P.O. Box 24346, MS 7L-21, Seattle, Washington 98124-0346
(dpierce@atc. boeing, com).

Department of Mathematics and Computer Science, Wake Forest University, P.O. Box 7388,
Winston-Salem, North Carolina 27109 (plemmons(C)mthcsc. wfu.edu). This research was supported by
United States Air Force grants AFOSR-88-0285 and AFOSR-91-0163.

274



ADAPTIVE CONDITION ESTIMATION 275

over time t, where ,k(At) denotes an eigenvalue of At and r(Rt) a singular value of Rt.
Since the updates can be performed in O(n2) operations, one would like to estimate
the condition number in fewer than O(n2) operations.

Our purpose in this paper is to develop an O(n) adaptive condition estimator, in
the spirit of the incremental condition estimator, ICE, developed by Bischof [6]. As in
[6], the key computation is the estimation of extreme singular values for a triangular
factor by optimization techniques. Higham [21] has surveyed.condition estimation
techniques for triangular factors, and all the methods he surveys are O(n2), where
n is the dimension of the triangular factor. The condition estimator ICE is applied
incrementally as the Cholesky factor is constructed by rows or columns and, in total,
would also require O(n2) operations for each update in our application.

The scheme ACE (for adaptive condition estimator), that we are proposing here is
fast in the sense that only O(n) operations are required for each update of Rt, or R-1.
It is helpful to clarify the use of the words incremental versus adaptive. Incremental
ICE obtains condition estimates of a triangular factor that grows, whereas adaptive
ACE obtains condition estimates when information is added to or extracted from an
already existing factorization. Both ICE and ACE use the estimates generated at the
previous step in constructing new estimates. A preliminary version of ACE, in the
context of exponential weighting for recursive least squares methods for signal pro-
cessing, has been given in [26]. An alternative adaptive condition estimation scheme,
which is O(n2) and is based on Lanczos methods, is considered in [15]. The scheme
in [15] is called ALE for adaptive Lanczos estimator.

We point out that ICE has also been applied to updating computations in signal
processing by Bischof and Shroff [7]. Their scheme is applied in a different matrix mod-
ification context inappropriate for ACE. The application of ICE in [7] is to maintain
a rank-revealing triangular factorization through condition estimates of intermediate
leading triangular factors, which then allows for easy computation of an approximate
basis for the nullspace. In our context ICE would not be adaptive between updates.
Shroff and Bischof [29] have also proposed a sheme, GRACE, which can be used to
track the condition number for rank-one updates of QR factorizations, where both
Q and R are updated. Their scheme uses ACE as part of the computations. We
will have additional comments concerning some heuristic methods associated with
GRACE later in this paper.

In 2 we examine the method of updating the Cholesky factor or its inverse, after
a symmetric rank-one modification of the matrix At. We describe the ACE algorithm
in detail in 3. The only situation where ACE can break down is characterized, and a
remedy is provided in 4. Section 5 reports experimental results on the effectiveness of
the condition number estimator on a variety and volume of problems. Similar results
for ACE on different condition estimation problems have been reported elsewhere
[14], [15], [26], [29]. Some conclusions, comparisons, and observations on our work are
contained in 6.

2. Symmetric rank-one modifications. In this section we describe the typical
methods used for the symmetric update problems under consideration. For the sake
of exposition we will consider here only the rank-one update problem. (We will return
to the low rank updates in 6 and discuss the applicability of ACE.) For now let us
assume that A is a symmetric positive definite matrix to which we apply the symmetric
rank-one modification determined by a vector y. That is,

(3) A + pyyT p -4-1
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Note that we take p +1 without loss of generality. If p 1, the process (3) is called
updating; while if p -1, the process is called downdating. For simplicity we will use
the general term update to refer to (3).

As was mentioned, the update is accomplished by_appropriately modifying the
Cholesky factor R of A to produce the Cholesky factor R of A; or as is also common,
modifying R-1 to produce R-1. Such modifications arise, for example, in recursive
least squares methods in control and signal processing [1], [3], [5], [19], [26], [27], [28],
and in optimization methods [4], [13], [16]. Below we consider the modification of R,
and later we show that the modification of R-1 is similar. We first rewrite (3) in the
form

(4) T RTR + pyyT

(5) --[RT y H yT

where

Then, typically, a series of transformations, Q, are computed, which simultaneously
preserve the property

QTHQ H

and for which

(7) QQ$-...QI yT 0T

If p 1 then the Qp’s are simply Givens rotations. If p -1 then the Qp’s correspond
to hyperbolic rotations (see, e.g., [18, 12.6.4], for a discussion of hyperbolic rotations
in the context of matrix reduction). Both Givens and hyperbolic rotations can be
written in the common form

Qi; cs(pl/2i)
In-i-1

-1/2p sin(pl/2i)

_pl/2 sin(pl/2i)

cos(p/:)

for scalars i. Our interest is in recursively updating (p 1) and/or downdating
(p -1) the Cholesky factor of the modified problem over time.

The modification of the inverse proceeds in a similar manner as the modification
of R, in that a sequence of transformations is applied to a matrix. The modification
of R-1 is accomplished by computing transformations Qp so that

"’P"’P "Qp 1

where

a R-Ty and (2 1 + paTh
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and

HQp= H.

Then one computes

Q,Q’ ’"Q 0 vT

where

V
_R-Ta

It has been shown by Pan and Plemmons [25] that the transformations Q/p in (8) are
identical to those in (7). Moreover,

where

a R-Ty, v/l + paTa,

and C is the upper triangular Cholesky factor of the matrix I + paaT, that is,

cTc I + paaT.

These results from [25] are exploited in the application of ACE in the matrix updating
problem.

In the next section we show how one can adaptively monitor the condition of the
factor R (or R-1) in only O(n) operations for the updating procedures that we have
described in this section.

3. ACE. The Cholesky factor modification methods described in the previous
section require O(n2) operations. The ability to monitor the condition of the com-
puted factors provides insight into the accuracy of the computed solution as well as
providing information on the behavior of the underlying iterative process. However, if
the cost of monitoring the condition is of the same order of magnitude as that required
to update the factor, then this may reduce the applicability of the estimator, or sim-
ply make it infeasible. In this section we describe a condition estimator, A CE, which
requires only O(n) operations per modification. The estimator has proven quite accu-
rate on a wide range of problems. There are rare occurrences of numerical difficulties,
but a heuristic "fix" has already been proposed by Shroff and Bischof in [29].

The fundamental relationship that ACE exploits is, for A RTR,

:= O’min(R)< IIb[12 F]|xTRRTx|
1/2

RTx- b

_
ffmax(R).

Here

n2(A) n22(R)= -.
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ACE, following the example of ICE, will seek to maximize (minimize) the ratio

so as to estimate amax (rmin) with a constraint on how we construct x and b so as to
only require O(n) operations.

In the next section we show in detail how to apply ACE to modifications of R.
In the following section we comment on how to apply ACE to the modification of
R-1. It is important to note that we are restricting ourselves to those methods of
modification described in 2.

3.1. ACE and the modification of R. We begin by deriving the adaptive
condition estimator ACE for the particular situation of monitoring the condition of
the modified factor R.

Suppose that at time t we have available the pairs of vectors Xmax, bmax and
Xmin, bmin such that

(0) Rxx mx, IlXmxll , RTxmin-bmin, IIXminll2 1.

Here IIbmaxll2 is a lower bound for amax(R) and IIbminll2 is an upper bound for

amin(R). When the factor R is updated to R, we wish to update the pairs Xmax, bmax
and Xmin, bmin to the pairs max, bmax and Xmin, bmin such that

(11) mx , IImxll 1, ’m gmn, IIm-II- ,
and so that the values Ilbmaxll2, Ilbminll2 now estimate amax(R) and amin(R), respec-
tively.

In theory, we choose the pairs max, bnax and Xmin, bmin in (11) so that

is maximized and

is minimized, and such that the construction of the ’s and b’s use the previously
constructed x’s and b’s. The approach, given Qp in (9) and an x, b pair, is to compute
scalars c and such that, if

where 0 is a scalar, then IIll 1 and the corresponding IIbll will be large (small) so

as to approximate m(R) (min(R)).
More specifically, for the maximization case, we seek and , which solve the

problem

(12) max [R, ] H a max [R, ] OHQo
Zmax
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for computing the pair max, bmax (where bmax is defined as RTmax). Recall that the
matrix H from (6) is, along with Qp, a function of p. The pair }min, bmin is computed
by solving the above optimization problem with max replaced by min throughout.

Note that once the values a and have been computed, which solve (12), then

(13) b-max Tmax aRTxmax + pY obma + py.

Thus we see from (13) that the computation of bmax (bmin) requires only O(n) oper-
ations. Moreover, since the matrix Qp given in (9) is made of a product of Givens or
hyperbolic rotations, the computation

is only an O(n) operation. Thus given c and/, max (min) can be constructed in
O(n) operations. We show next that the computation of a and/3 only requires O(n)
computations, thus establishing that ACE requires only O(n) operations.

We proceed now to solving the optimization problem in (12). We will write and
b without the subscripts max and min for ease of exposition.

Observe that

Moreover, note that

where

Q21 and Q22 are, respectively, the row vector and scalar given in (9).
algebraic simplifications, I111 can be rewritten as

(15) o]

Through
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Thus we can rewrite the optimization problem in (12) as

the solution of which can be found by solving the generalized eigenvalue problem

(16) K0

where

M 1 p(Q21x)2 -pQ21xQ22 K yT and (I)
-pQ2xQ22 p- pQ2 pbTy Y

Hence, we solve two generalized eigenvalue problems of the form (16). We use the
Xmax, bmax (Xmin, brain) pair and seek the largest (smallest) generalized eigenvalue Amax
(Amin). The corresponding a’s and ’s are simply the components of the corresponding
generalized eigenvectors.

Note that the solution of a generalized eigenvalue problem of size two is only of
O(1) operations, and that the matrices K and M require only inner products for their
formation. Moreover, the last row of Qp, given in (9) and consisting of the row vector
Q21 and the scalar Q22, can be generated in O(n) operations by computing

QT

Thus the computation of the scalars a and is an O(n) operation. The condition
number of R is thus estimated by

Ilbm xll  ,max
Ilbm  ll ,min

If the matrices M and K in (16) are both positive definite then the generalized
eigenvalues are positive. For now we assume that this is the case. We will consider
the other cases after presenting the ACE algorithms for the modification of R and

Algorithm ACE for modifying R with condition estimation. Given the
current factor R, update vector y, p :t=l, the (Xmax, bmax) and (Xmin, bmin) pairs with
]lbmaxll2 amax (R) and Ilbminll2 amin (R), the algorithm computes the updated
factor R, the pairs (mx, bmax) and (min, bmin), and the estimates Ilbmal[2, Ilbminl[2
for amax(R) and amin(R).

1. Choose orthogonal (p 1) or hyperbolic (p -1) plane rotations Qp, rotat-
ing the ith row into the (n + 1)st row, to form

by reducing y_T to 0T from the left to right preserving the upper triangular
form of R in R.
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2. If y "ybmax or y "ybmin, for some 7, then proceed as described in 4,
otherwise proceed to the next step.

3. Compute Q21 Q22 ], given by (9), by forming

4. Compute the generalized eigenvalues ,max, ,min and corresponding general-
ized eigenvectors of (16),

and

by solving the two corresponding generalized eigenvalue problems. Scale the
generalized eigenvectors so that the expression in (15) is equal to 1 (this
avoids having to normalize the ’s).

5. Form max and min by computing

Xmax Xmin n n-- OmaxXmax OminXmin
0max 0min Qp p Qp ]max min

6. Compute

Omaxbmax + PmaxY, bmin aminbmin + PminY.

7. Take as estimates

O’min
2

2 (2) --22 () ,max
min

8. Replace

II m II2 )maxO’max ax
2

JR, Xmax, Xmin, bmax, bmin] == max, min, bmax, bmin

input the new update vector yT and p, and return to Step 1.

3.2. ACE and the modification of R-1. In order to track the condition of the
matrix R-1, it is important to make use of the fact that the transformation matrices
used in modifying R-1 (actually the transformations are applied to R-T, but only to
conform to the convention of multiplying on the left by transformation matrices) are
the same as those used in modifying R. Thus, ACE can be applied by using the same
information as was available for the application of ACE in modifying R.

Algorithm ACE for modifying R- with condition estimation. Given
the current factor R-1, update vector y, p 1, the (Xmax, bmax) and (Xmin, bmin)
pairs with Ilbmaxll2 ,- amax (R) and Ilbminll2 7min (R), the algorithm computes
the updated factor R-, the pairs (max, bmax) and (Stain, brain), and the estimates

Ilbmaxll2, Ilbminll2 for amax(R) and amin(R).
1. Compute the vector a below by the indicated matrix-vector multiplication

a-- R-Ty.
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2. If y "b, for some , then proceed as described in 4, otherwise proceed to
the next step.

3. Choose orthogonal or hyperbolic plane rotations Q/, rotating the ith row into
the (n / 1)st row, to form

4. Apply these transformations to compute j-T as follows:

-T n n--1 1, QQ ...Q 0T

5. Perform steps 4 through 7 of the ACE algorithm for modifying R.
6. Replace

[R- Xmax, Xmin, bmax, bmin] :: [-1"Xmax, Xmin, bmax, min

input the new update vector yT and p, and return to Step 1.

Thus in summary, we see that the condition of the factor R or R-1 can be
monitored during the modification process for only O(n) additional operations. In
Table 1 we make a minor comparison between the condition estimators ACE, ALE
[15], and ICE [6] in terms of operation counts (we have only counted multiplications,
divisions, and square roots), so as to aid the reader in discerning the differences
between these condition estimators.

TABLE 1
Operation counts for three condition estimators.

Method Operations Mode
ACE
ALE
ICE

21n for R, 19n for R-1

4n + O(n)
n + O(n)

Adaptive
Adaptive
Inc{eraenal

Note that in the application of ACEwe test for the occurrence of the update vector
y being a scalar multiple of either vector bmax or bmin. Such an instance will result
in a singular generalized eigenvalue problem. This situation can be quite effectively
handled and the procedure for doing this is described in the next section.

4. Breakdown of ACE and how to fix it. In this section we examine the
particular instance when the ACE method can theoretically break down. That is
when the generalized eigenvalue problem

Kx AMx

has a noninterpretable solution, such as complex A’s, infinite A’s, or when the gener-
alized eigenvalue problem is singular (i.e., there exists an x 0 such that Kx AMx
for all A’s). In this section we show that the only real possibility is that K and M can
be of rank one and share a null vector. This is remedied by deflating the generalized
eigenvalue problem by restricting K and M to those subspaces complementary to the
shared nullspace. Shroff and Bischof in [29] may have unknowingly proposed using
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the solution of the deflated generalized eigenvalue problem. Our analysis sheds light
on the effectiveness of their heuristics as well as indicating the impossibility of infinite
generalized eigenvalues and clarifies their characterization of "bad" eigenvalues. We
will present these results as a series of lemmas, in all of which we assume that

Recall the definitions of the matrices K and M from (14) and (15), respectively:

pbTy yTy -pQ21xQ22 p- pQ2

LEMMA 4.1. The following are equivalent:
1. K is singular.
2. K is a rank-one matrix.

Proof. If K is singular, then since b 0, the matrix K must be of rank one. If K
is of rank one, we observe that since

K= [b py]pyT

it follows that there exists a " such that

y b.

However,

a R-Ty /R-Tb "x,

thus, since Ilxl12 1,

aT

To conclude the proof, note that if y +/-llall2b, then K must be singular.
LEMMA 4.2. K is singular if and only if M is singular.
Proof.

K is singular = y = +llall2b
a +llall2x

=v QT :F Ilall2----T-x
Qr21x-

iiQ rxll 2

Now note that M is singular if and only if

(1 p(Q21x):)(p- pQ2) (Q2x)2(Q22) o,

which is equivalent to

2(Q:x):= IIQII.
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Thus, by the Cauchy-Schwarz inequality, and the fact that Ilxl12 1, we have estab-
lished the lemma. E]

LEMMA 4.3. The null space of K, Af(K), is the same as the null space of M,
Af(M).

Proof. We have already established that M is singular if and only if K is singular.
Thus when either K or M is nonsingular the other is as well, and their common null
space is {0}.

Assume now that K and M are singular. Since

QQ + pQ. p,

Q21 and Q22 cannot both be zero, hence M - 0. (Note that M 0 =v Q2 1 =
Q21 0 = the (1,1) entry of M is 1--a contradiction.) Therefore M is of rank one
and the nullities of K and M agree. Furthermore,

where in the matrix K the vector y is given by y +llall2b. The rightmost relation
is seen by noting that Q21x llal12/5. Hence

Af(K)=Af(M)=span {I PI’2 ]}
completing the proof. B

Then since ACE can only break down if the generalized eigenvalue problem has
infinite eigenvalues or is singular, and since K and M are either both positive definite
or share a common null space, we have the following result.

THEOREM 4.4. ACE can break down if and only if the update vector y satisfies

y  [[R-Tyll2b.

We now examine the heuristic "fixes" proposed by Shroff and Bischof in light of
the understanding now gained on when ACE can break down. There are two heuristics
proposed in [29]. The first recommends discarding those eigenvalue, eigenvector pairs
(A,O) for which (TMd2 is smaller than some threshold and using the remaining
eigenvalue, eigenvector pair (i.e., the pair in the deflated problem). It should be
noted though that from our analysis, only those pairs for which both OTMffP and
OTKO are small should be discarded. We propose using the value of the cosine of the
angle between the vectors y and b (i.e., cos() (yTb)2/(bTbyTy)) as an indicator
of when a singular (or nearly singular by using a threshold) generalized eigenvalue
problem will arise. (Note that the quantities necessary for this test are also required to
form K.) Thus one can solve the deflated problem immediately, thereby avoiding the
cost of forming and solving the generalized eigenvalue problem, the results of which
can be contaminated in the singular case. Note that by simultaneously diagonalizing
K and M in (16) by the matrix

pllall +1 ]:1 pllall

one finds the finite generalized eigenvalue of the deflated problem is given by

,,x IIZ, ll (1 + ,o11 11, ) z, z,5
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and the corresponding generalized eigenvector is

where # I1 11 + 1.

One can also show that

Hence this choice will always increase or decrease (depending on the value of p) the
estimates ,max and min. We call the use of this heuristic the first "fix."

The other heuristic "fix" suggested by Shroff and Bischof requires the use of
the condition estimator ICE and results in the modification of the b vector, which
removes the scalar dependency between b and y. It is possible, however, that ICE
will not remove this dependency, and will only reproduce the same vector b. We
think that this would be an extremely rare occurence and if it did occur one could
always use an alternative condition estimator for the single step, which requires O(n2)
operations such as the Cline, Conn, and Van Loan estimator described in [11]. In
our computations, we have found that the first "fix" described above works quite
adequately. These numerical experiments and others describing the reliability and
accuracy of the estimator are contained in the following section.

5. Numerical experiments. In this section we report on some selected exper-
iments designed to examine the performance of the adaptive condition estimation
scheme ACE. We give only a few examples to illustrate the effectiveness of ACE,
since similar results on different condition estimation problems have been reported
elsewhere [14], [15], [26], [29] that indicate the reliability of ACE. It should be noted,
though, that the O(n2) scheme ALE in [15] does track the condition number better
than both ICE and ACE. It was also displayed in [15] that ACE reacted a bit slower
to large changes in the condition number than either ICE or ALE, but still responded
and tracked well, never off by more than a factor of three. Moreover, for most signal
processing data computations, ACE tracked better than ICE.

In the experiments presented here, we update the Cholesky factor R in the com-
putations and track the condition number of R over time; consideration of the inverse
factor R-1 produces similar results. Reports on our experiments are given in Figs. 1-
5. Here we report on the performance of experiments using random updates, with
well- and ill-conditioned data, random updates with jumps in the condition number,
and the effectiveness of our "fix" for handling the singular generalized eigenvalue prob-
lem. The last figure presented is a histogram summarizing the results of performing
50 random updates on 70 random matrices, for a total of 3500 updates or downdates.

All experiments were performed using the PRO-MATLAB system [22] on our Sun
and Mac II workstations. The machine epsilon for PRO-MATLAB on these systems
is approximately 2.2204 x 10-16.

For each of the first four experiments we used 20 x 20 matrices with 100 down-
dates/updates. Except for the experiment with a widely varying condition number
and the summary, the initial factor R was taken to be the identity. This choice, or a
scalar multiple of the identity, is a quite common starting factor for many applications.
For example, in secant update methods for unconstrained optimization problems, the
initial Hessian approximation H0 is most often chosen to be either the identity matrix
I, or a scalar multiple of I [13]. It should also be noted that in general one can not use
any downdate. That is, some downdates would cause the matrix to become indefinite.
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In such circumstances we simply skip the downdate (this is a common practice in
optimization where downdating the Hessian H0 in, for example, the Symmetric Rank
One (SR1)secant method, can force the H0 to become indefinite [13], [30]). ACE has
been shown by Ferng [14] to be useful in determining when the Hessian is about to
become indefinite in some unconstrained optimization problems.

We note that in general ACE is somewhat sensitive to the choice ofthe initial
starting vectors for Xmax and Xmin. In fact, if a very poor starting vector for Xmax or

Xmin is used it may take many update iterations before ACE produces estimates that
have a ratio less than two. In any case, we recommend care in choosing the initial
vectors.

In the first tests we choose a probability vector to initialize ACE (each component
of the starting vectors for Xmax and Xmin is 1/v/-). We see from Fig. 1 that ACE is
quite successful in tracking the condition of the random problem. Note that the ratio
of the true condition number to the estimated condition number never exceeds two.
One might assume that if the problem were more ill conditioned, then ACE would not
track the condition numbers as well; however, from Fig. 2 we see that this is not the
case at all. Again, ACE is quite successful in tracking the condition numbers within
a factor of two.

In the next set of tests, illustrated in Fig. 3, we used update vectors that cause
large changes in the condition number. In order to have a more ill conditioned matrix
to start off with, the matrix R was chosen to be the diagonal matrix having the
diagonal entries 10n, 10(n- 1),... ,20, 2, so that the initial condition number is 100.
The initial vectors Xmax and Xmin, in this case, were chosen to be near the extreme
singular vectors of R. One can see, even as changes in the condition number that
exceed an order of magnitude are performed, that ACE effectively tracks the condition
number resulting in an accuracy ratio always less than two.

The fourth test illustrates how effective the estimate is even when K and M are
singular. Here, at every fifth update or downdate, the update vector y is chosen to
be a multiple of the vector b. Poor initial vectors for Xmax and Xmin are used to
force the initial singular value estimates away from the actual singular values. Again,
as presented in Fig. 4, ACE performs undauntingly as it continues to estimate the
condition numbers effectively.

For the last test we performed 50 updates/downdates to 70 random upper tri-
angular matrices of orders 10 through 70. Figure 5 indicates the frequency of ratios
Actual/Estimate, as well as the distribution of the actual condition numbers for the
matrices associated with each of the 3500 updates. ICE was run on the initial trian-
gular matrix to generate the starting vectors. Note that there are a few instances of
the ratio exceeding 10. All of these instances occurred at the first of the 50 updates
and can be attributed to a poor starting vector.

The results reported here are typical of the performance of the adaptive condition
estimation scheme ACE on a variety of symmetric rank-one recursive matrix mod-
ification problems. Other numerical experiments with ACE have been reported in
[15], [26] for problems arising in signal processing and recursive least squares, and ex-
periments involving unconstrained optimization problems have been reported in [14].
These experiments also show ACE to be quite effective.

6. Concluding remarks. We have introduced a technique, ACE, that provides
a fast, i.e., O(n), adaptive condition estimator for recursive symmetric rank-one up-
dates. Our numerical tests indicate that ACE is accurate and, with the modification
scheme suggested in [29], very robust. Similar results for ACE on different condition
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estimation problems have been reported elsewhere [14], [15], [26], [29]. A preliminary
discussion of ACE along with some applications to recursive least squares methods
in signal processing has been given in [26]. Comparisons of ACE with other recent
condition estimation schemes for recursive least squares are given in [15].

Several extentions of this work are possible. For instance, rank k > 1 updates
can also be handled by replacing the vector y with an n x k matrix of updates. In
particular, if two vectors y and z are to be updates to the least squares process, the
n-vector y is replaced by the n x 2 matrix y z and a is replaced by R-T[ y z
in 3. The 2 x 2 matrices involved in the optimization formulas thus become 3 x 3. The
algorithms are modified accordingly. Thus ACEmay find applications in Hessian rank-
two updating schemes such as BFGS in optimization [13], [14]. More generally, ACE
can easily be incorporated into the rank-two matrix modification schemes described
by Barrels and Kaufman [4]. Nonsymmetric rank-one updates as discussed in [29]
can also be handled by our schemes. This is accomplished by first transforming the
nonsymmetric update into a symmetric rank-two update problem (see, e.g., [13]) for
the implicit normal equations. ACE is then applied to monitor the condition numbers
of the recursive rank-two modifications. In fact, it can be shown that this approach
has a smaller operation count than that of the scheme GRACE in [29], although the
matrix modification schemes themselves may be less stable due to the squaring of the
condition number in implicitly forming the normal equations.

It may also be possible to effectively utilize ACE as a type of incremental condi-
tion estimator for orthogonal factorization schemes. After an initial triangular factor
candidate R for an observation matrix X is determined and appropriate singular vec-
tors Xmin, Xma computed (say, by using ICE [6]), then ACE could be used to monitor
the conditioning as the remaining rows are reduced to zero by Givens rotations in or-
der to obtain the Cholesky factor R. The use of ACE may be practical, for instance,
when parallel pipelined Givens rotations are employed in orthogonM factorization.

Another important application of ACE is in sparse matrix least squares problems,
where dense rows are held out to the end of the computation and incorporated into the
solution process by applying the Sherman-Morrison formula. By use of this technique
for handling dense rows, ACE fits naturally into updating the condition estimate that
may have been determined initially in the sparse orthogonal decomposition phase by
the use of the sparse incremental condition estimator, SPICE, due to Bischof, Lewis,
and Pierce [8].
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Abstract. Methods are discussed for the solution of sparse linear equations Ky z, where K is

symmetric and indefinite. Since exact solutions are not always required, direct and iterative methods
are both of interest. An important direct method is the Bunch-Parlett factorization K UTDU,
where U is triangular and D is block-diagonal. A sparse implementation exists in the form of
the Harwell code MA27. An appropriate iterative method is the conjugate-gradient-like algorithm
SYMMLQ, which solves indefinite systems with the aid of a positive-definite preconditioner.

For any indefinite matrix K, it is shown that the UTDU factorization can be modified at nominal
cost to provide an "exact" preconditioner for SYMMLQ. Code is given for overwriting the block-
diagonal matrix D produced by MA27.

The KKT systems arising in barrier methods for linear and nonlinear programming are studied,
and preconditioners for use with SYMMLQ are derived.

For nonlinear programs a preconditioner is derived from the "smaller" KKT system associated
with variables that are not near a bound. For linear programs several preconditioners are proposed,
based on a square nonsingular matrix B that is analogous to the basis matrix in the simplex method.
The aim is to facilitate solution of full KKT systems rather than equations of the form AD2ATAr r
when the latter become excessively ill conditioned.

Key words, indefinite systems, preconditioners, linear programming, nonlinear programming,
numerical optimization, barrier methods, interior-point methods
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1. Introduction. Symmetric indefinite systems of linear equations arise in many
areas of scientific computation. We will discuss the solution of sparse indefinite sys-
tems Ky z by direct and iterative means.

The direct method we have in mind is the Bunch-Parlett factorization K
UTDU, where U is triangular and D is block-diagonal with blocks of dimension 1 or
2 that may be indefinite. Such a factorization exists for any symmetric matrix K
[BPT1]. (We shall refer to it as the Bunch-Parlett factorization, while noting that
the Bunch-Kaufman pivoting strategy is preferred in practice [BK77]. The principal
sparse implementation to date is due to Duff and Reid [DR82], [DR83] in the Harwell
code MA27. See also [DGRST89].)

The iterative method to be discussed is the Paige-Saunders algorithm SYMMLQ
[PS75]. This is a conjugate-gradient-like method for indefinite systems that can make
use of a positive-definite preconditioner.

1.1. Preconditioning indefinite systems. One of our aims is to present a
new and simple result that shows how to use the Bunch-Parlett factorization of an
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indefinite matrix to construct an exact preconditioner for an iterative method such as
SYMMLQ. The intended use is as follows.

Given an indefinite system Ky z and a related indefinite matrix K, we expect
that the Bunch-Parlett factorization I UTDU will be computed, or will already
be available. We show that D can be changed cheaply to provide a positive-definite
matrix M uTDu, such that SYMMLQ (with preconditioner M) will solve/y z
in at most two iterations. Hence, M should be a good preconditioner for the original
system involving K.

1.2. Optimization. As a source of indefinite systems, we are interested in bar-
rier methods or interior-point methods for solving linear and nonlinear programs in
the following standard form:

minimize cTx
(1)

subject to Ax=b, < x < u,

where A E mxn and

minimize F(x)
(2)

subject to c(x) O, <_ x <_ u,

where F(x) and c(x) have continuous first and second derivatives. We assume that
an optimal solution (x*, r*) exists, where r* is a set of Lagrange multipliers for the
constraints Ax b or c(x) O.

1.3. KKT systems. When barrier or interior-point methods are applied to
these optimization problems, the Karush-Kuhn-Tucker optimality conditions lead
to a set of equations of the form

H AT Ax -g K =_(3) A -Ar r A

whose solution usually dominates the total computation. The vectors Ax and Ar are
used to update the estimates of x* and r*.

For quadratic programs or general nonlinear programs, H is typically a general
sparse matrix like A, and it is natural to solve the KKT system as it stands. The
Harwell code MA27 has been used in this context by several authors, including Gill et
al. [GMSTW86] and Turner [Tur87], [Tur90] for sparse linear programs, by Poncele6n
[Pon90] for sparse linear and quadratic programs, and by Burchett [Bur88] for some
large nonlinear programs arising in the electric power industry.

1.4. Avoiding AD2AT. If H is known to be nonsingular, it is common practice
to use it as a block pivot and solve (3) according to the range-space equations of
optimization:

AH-1ATAr AH-Ig + r, HAx ATAr g.

For linear programs this is particularly attractive, since H is then a positive diagonal
matrix. For example, in a typical primal barrier method, H #0-2 where D is
diagonal and / is the barrier parameter (# > 0) [GMSTW86]. The range-space
equations reduce to

(4) AD2ATAvr AD2g + #r, Ax 1D2(ATATr g),



294 P. GILL, W. MURRAY, D. PONCELEN, AND M. SAUNDERS

and most of the work lies in solving the system involving AD2AT. When r 0, the
numerical properties may be improved by noting that the equation for Ar reduces to
the least-squares problem

(5) min IIDg DATArlI2.

However, it is important to observe that the range-space equations may not give a
stable method for solving the KKT system if H is ill conditioned.

1.5. Example. Let

1 1 /
1

A= 1 1 H= 1

1 1 #
x-

#

where # << 1, and consider the KKT system (3). This would arise when a primal
barrier method is applied to a 3 4 LP problem (1) having 0, u c, when x is
the current estimate of x* and # is the current barrier parameter. Thus H #D-2,
where D diag(xj).

The condition numbers of interest are cond(K) ,, 6 (independent of #) and
cond(AH-1AT) cond(AD2AT) ,, 0.5/#. The latter becomes increasingly large
as a solution is approached (# 0), even though K and the original linear program
are very well conditioned.

Similar examples are easily constructed. (Indeed, K can be well conditioned even
if H is singular.) Thus, we advocate direct or iterative solution of the full KKT system
(3) even for linear programs, rather than (4) or (5) according to current practice.

Gay [Gay89, pp. 16-17] has already drawn attention to the lurking numerical
difficulties and suggests a middle ground of working with AD2AT as long as possible,
then switching to a more robust alternative such as direct solves with K.

1.6. Iterative methods and preconditioning. The KKT systems we are con-
cerned with arise when Newton’s method is applied to the nonlinear equations defining
optimality conditions for barrier subproblems; see 3. In this context, there are not
many KKT systems to be solved (compared to those in active-set methods), the sys-
tems need not be solved exactly IDES82], and the KKT matrix eventually does not
change significantly. It is therefore appropriate to consider iterative methods and
preconditioners for the indefinite matrix K.

Previous work on preconditioning for interior-point methods has focused on the
LP case and the Schur-complement matrix AD2AT. Most authors have used approx-
imate Cholesky factors of AD2AT; see, for example, [GMSTW86], [Kar87], [KR88],
[Meh89a]. Exact LU factors of DAT have also been investigated [GMS89].

The success of preconditioned conjugate-gradient methods in this context lends
added promise to our proposed use of the much better conditioned KKT systems,
now that it is known how to precondition indefinite systems.

1.7. Summary. In 2 we consider general indefinite systems and derive a pre-
conditioner from the Bunch-Parlett factorization. In 3 we consider barrier methods
for nonlinear programs, and propose factorizing just part of the KKT system to obtain
a preconditioner for the whole system.

We use the spectral condition number, cond(K) -IIK-III211KII2.
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Sections 4 to 6 deal with the LP case. In 4 we propose three preconditioners
based on LU factors of a square nonsingular matrix B (analogous to the basis in
the simplex method). Section 5 discusses some practical difficulties. Section 6 gives
numerical results on the condition numbers of K and AD2AT in a typical sequence of
barrier subproblems, and compares the preconditioned systems C-1KC-T for several
preconditioners CCT.

2. Preconditioning indefinite systems. Let K be any symmetric nonsingular
matrix, and let M be a given positive-definite matrix. Also, let "products with K"
mean matrix-vector products of the form u Kv, and "solves with M" mean solution
of linear systems of the form Mx y.

The Paige-Saunders algorithm as implemented in SYMMLQ [PS75] may be used
to solve Ky z even if K is indefinite. As with other conjugate-gradient-like al-
gorithms, the matrix is represented by a procedure for computing products with K
(those generated by the symmetric Lanczos process).

The first steps towards accelerating the convergence of this algorithm were taken
by Szyld and Widlund [SW78], [SW79]. Given a positive-definite matrix M as pre-
conditioner, their algorithm used solves with M in the normal way, but was uncon-
ventional in also requiring products with M.

Subsequently, a variant of SYMMLQ was developed that requires only solves with
M [Sau79]. To solve Ky z, this variant regards the preconditioner as having the
form M CCT and implicitly applies the Paige-Saunders algorithm to the system

C-1KC-Tw C-lz,
accumulating approximations to the solution y C-Tw (without approximating w,
which isn’t needed). An implementation is available from the misc chapter of netlib
[DG85].

2.1. Use of the Bunch-Parlett factorization. Given any symmetric nonsin-
gular matrix K, there exists a factorization of the form

K- pTUTDUP,
where P is a permutation, U is upper triangular, and D is block-diagonal with blocks
of dimension 1 or 2 [BP71]. If K is indefinite, some of the blocks of D will have
negative eigenvalues. Let the eigensystem of D be

D QAQT, A diag(j),
and let

D=QfilQT, A

be a closely related positive-definite matrix that can be obtained at minimal cost. If
we define C pTuTDI/2, it is easily verified that

I C-KC-T diag(Aj/IAjl) diag(+l).

This means that the "perfect" preconditioner for K is the matrix

i ccT= pTuT[guP,

since the "preconditioned" matrix K has at most two distinct eigenvalues and the
Paige-Saunders algorithm converges in at most two iterations.

In practice, M will be computed from the Bunch-Parlett factorization of an ap-
proximation to K.
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2.2. Modification of D from MA27. The block-diagonal matrix D is packed
in the MA27 data structure as a sequence of matrices of the form

(a) and
fl

In the 1 1 case, we do nothing if a > 0; otherwise we reverse its sign. In the 2 2
case, we do nothing if a > f12; otherwise we compute the eigensystem in the form

(o - s -c . s -c

where c2 / 82 1. We then form the positive-definite matrix

and overwrite the appropriate three locations of MA27’s storage.
The techniques for computing the 2 2 eigensystem are central to Jacobi’s method

for the symmetric eigenvalue problem. They were developed by Rutishauser [Rut66].
We have followed the description in Golub and Van Loan [GV89, p. 446] with minor
changes to work with symmetric plane rotations.

A subroutine for modifying the D computed by MA27 is given in the Appendix.

2.3. Aasen’s method. In general, Aasen’s tridiagonalization method [Aas71] is
considered competitive with the Bunch-Kaufman approach [BK77] for solving dense
indefinite systems. Aasen’s method computes a factorization of the form K UTTU
where T is tridiagonal.

We do not know of a sparse implementation, but in any event we note that it
would not be ideal for producing a preconditioner in the manner described above,
since the eigensystem for T would involve far more work than for the block-diagonal
D of the Bunch-Parlett factorization.

On the other hand, we could compute a (very special) Bunch-Parlett factorization
of T and modify the associated D as described above.

3. Barrier subproblems. We return now to the optimization problems (1)-(2).
In barrier methods, the bounds _< x _< u are absorbed into the objective function
and we solve a sequence of perturbed subproblems, typically of the form

(6)
minimize

subject to

n

Fu(x F(x) #(ln(x/-lj) + ln(uj
j--1

C(X) O,

where the barrier parameter # takes decreasing positive values that are eventually
very small. If lj - or uj c for some j, the corresponding terms ln(xj lj) or

ln(uj xj) are omitted. If xj has no bounds, both terms may be omitted.
The following quantities are needed:

the Lagrangian function,
the gradient of the barrier function,

the gradient of the Lagrangian,

the Hessian of the Lagrangian, and

the Jacobian of the constraints.
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For convenience we assume that A(x) E mxn has full row rank m, and that the
scaling of the problem is reasonable, so that IIA(x)ll ,.,m 1.

3.1. Newton’s method and the KKT system. The optimality conditions
for (6) are the nonlinear equations

(7) =0,

(8) 0.

Newton’s method may be applied directly, or to some equivalent system. Given
suitable initial values for the primal and dual variables (x, r), the key set of equations
for generating a search direction is the KKT system

(9) A -Ar c

where the KKT matrix and right-hand side are evaluated at the current point (x, r).
A positive steplength is then chosen to reduce some measure of the size of the
right-hand side (gL,c), and the variables are updated according to x - x / Ax,
r r / hair. (Sometimes a different c may be used for x and r.)

3.2. A preconditioner for K. In general, some of the variables converge to
values near their upper or lower bounds. For such variables xj, the Hessian HL
includes on its diagonal a term that becomes very large: #/(xj-/j)2 or #/(ui -xj)2,
which are O(1/#). Let the KKT matrix be partitioned accordingly:

(10) K= Ka K.

where K is the part of H associated with variables near a bound, and K looks like
a smaller KKT system associated with the remaining variables. This partitioning is
crucial to the sensitivity analysis in [Pon90]. Of course, the partition depends on the
measure of closeness to a bound, but it is not critical here except that the dimension
of K should not exceed n- m.

One possible approximation to K is

(11) (De )K2

where D1 is a diagonal matrix containing the diagonals of K, which by construction
are large and positive. Applying the method of 2, we can now obtain a positive-
definite preconditioner for K as follows:

(12) K2-UT2D2U2, M= ( D1
u2T2u2 I

where D2 is obtained from D2 at nominal cost.

3.3. Discussion. In broad terms, we need to estimate which variables are going
to be "free" (away from their bounds) at a solution. If m << n, the KKT system K2
associated with the free variables may be much smaller than the whole of K, and the
cost of the Bunch-Parlett factorization of K2 may be acceptably low.
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For the early iterations of Newton’s method, the estimate of K2 will usually be
poor, and the diagonal term D1 will not be particularly large. However, following the
inexact Newton approach IDES82], only approximate solutions to the KKT system
are needed, and the iterative solver need not perform many iterations.

As the Newton iterations converge and the partition (10) becomes more sharply
defined, the preconditioner should become increasingly powerful and produce the
increasingly accurate solutions required at an acceptable cost.

3.4. Performance of SYMMLQ with the MA27 preconditioner. The ap-
proach of 2 and 3 has been tested by Burchett [Bur89] within a barrier algorithm
for solving some large nonlinear problems in optimal power flow.

Normally, MA27 is used to factorize K at each iteration of the barrier algorithm,
with HL and A in (9) changing each time. For experimental purposes, the factors
of K at iteration k were used to construct a preconditioner for iteration k / 1 (via
subroutine syprec in the Appendix). The dimension of K was 6000 for one problem
and 16,000 for another.

Initially, SYMMLQ required about 30 iterations to solve the KKT systems to mod-
erate accuracy. As the barrier algorithm (and A) converged, the number of iterations
required by SYMMLQ fell to about 10. This performance seems very promising.

4. Preconditioners for linear programming. For linear programs the struc-
ture of the partitioned KKT system (10) can be investigated more closely, given that
optimal solutions are often associated with a vertex of the feasible region. We partition
the constraint matrix into the form A N B ), where B is square and nonsingular,
and N in some sense corresponds to the n- m variables that are closest to a bound.

The Hessian for the barrier function is a diagonal matrix H, which we partition
as H diag(HN, HB). The KKT system is then

K= HB BT
N B

As convergence occurs, the diagonals of H c (and in general cond(K) c). In
degenerate cases, some diagonals of H, may also become very large.

In various primal, dual, and primal-dual interior-point algorithms for LP, similar
matrices g arise with varying definitions of H (e.g., [Meg86], [KMY88], [LMS89],
[Meh89a], [Meh90]). The discussion hereafter applies to all such methods.

In the following sections we introduce a series of preconditioners of the form
M CCT. To improve the convergence of SYMMLQ, the transformed matrices/
C-1KC-T should have a better condition than K or a more favorable distribution of
eigenvalues (clustered near 1). We make use of the quantities

V B-TH,B- W NH/2

and are motivated by the fact that V - 0 and W 0 in nondegenerate cases. The
effects of degeneracy are discussed later.

4.1. The preconditioner M1. The first preconditioner is diagonal and is in-
tended to eliminate the large diagonals of K:

(13) M c1cT I
I
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(4)
I

I CIKCT HB
w B

With diagonal preconditioning, there is no loss of precision in recovering solutions
for the original system. Thus as HN becomes large, the preconditioned matrix/1
tends to represent the true sensitivity of the KKT system with regard to solving linear
equations.

We will use K later for comparing condition numbers.

4.2. The preconditioner M2. The second preconditioner is block diagonal:

H

M, BrB

I wT I(16) /2 CIKCT V I
W I

Since V and W tend to become small, M2 tends towards being an exact preconditioner
for K. We see that a Bunch-Parlett factorization is no longer needed. In order to
solve systems involving M2, we may use any sparse factorization of B or BT.

4.3. The preconditioner M3. The third preconditioner is designed to eliminate
the submatrix V in (16), for degenerate cases where V is not adequately small:

( )(17) M3 C:cT3, C: BT 1/2HBB-I

(18) I3 CKCT
W I

The off-diagonal term in (17) can be derived by observing that for a KKT matrix of
the form

B B square,

we would like M CCT to satisfy

C_IKC_T( I)I =-J’

or equivalently, CJCT-- K. Letting C be of the form

BT E)C= I

we find that E should satisfy EB + BTET-- H. The simplest choice is then to set
E= -HB-

Though V has been eliminated, we have now introduced the term --VW, and
solves with Ma cost twice as much as solves with M.. The expected benefit is that
I_VW should be smaller than V itself.2
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4.4. The preconditioner M4. The fourth preconditioner also eliminates V,
using the factorization BT- LU, where we intend that L be well conditioned:

(19) r
a, Ca= L 1/2HsL-T

UT

(20) I4 CIKCT

where

L-1H,L-T, ]/ U-TNH/2.

As before, letting C be of the form

C=( L

1HL-Tand requiring CJCT-- K, we find that ELT+ LET- H, and we take E 5
Solves with M4 are cheaper than with M3. Comparing (18) and (20), a further

advantage is that VW UVW tends to be smaller than VW, although I/ u-Tw
is probably larger than W.

4.5. The preconditioner MD. We mention one further diagonal preconditioner
that has appeared implicitly in the literature for the case H #D-2 with D diagonal.
It does not depend on the N-B partitioning, and gives a transformed system that does
not involve #:

(22) ID C;1KC;T (I DAT )AD

The matrix KD is associated with weighted least-squares problems of the form (5), as
discussed in [GMSTW86]. Turner [Tur87], [Tur90] has investigated the use of MA27
to obtain exact factors of both K and /D" An important practical observation was
that MA27 produced much sparser factors for KD than for K.

Unfortunately, the numerical examples in 6 show that KD has essentially the
same condition as AD2AT, which tends to be much more ill conditioned than/1 (14).
We therefore cannot recommend the use of/D"

Indeed, when [[AD[[ ,, 1 as we have here, it can be shown that cond(/D)
cond(AD)2. To improve the condition of/ we should use

(23) a#-ll

(24) ID._C;1KC;T (alAD DAT)
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for some a e (0, IIADIII, since it is known that cond(K)) cond(AD) can be
achieved if a .. amin, the smallest singular value of AD (Sjhrck [Sjo67], [Bjo91]). Ex-
periments in this direction have been performed by Arioli, Duff, and De Rijk [ADR89]
(who also give error analyses) and by Fourer and Mehrotra [FM91].

For the sake of both direct and iterative methods for solving KKT systems, it is
hoped that further development of MA27 will result in greatly improved sparsity in
the factors of K and/or K1. At the time of writing, a new code MA47 holds much
promise (see Duff et al. [DGRST89]), as does an analogous code described in [FM91].

4.6. Regularizing K and AD2AT. Since A often does not have full row rank,
it is important to include a regularization parameter 5 > 0 in the KKT system. Thus
(3) becomes

A -51 -At r

Systems of this type have been studied in the context of sequential quadratic pro-
gramming by Murray [Mur69], Biggs [Big75], and Gould [Gou86].

In practice, a wide range of values of 5 may be used without inhibiting conver-
gence, particularly with methods that do not maintain primal feasibility (AAx 0).
For example, we would recommend values in the range 10-s < 5 < 10-4 on a machine
with about 16 digits of precision, assuming IIAII 1.

Note that the corresponding system (4) becomes

(26) (AD2AT+ #5I)Ar AD2g + #r.

When # is as small as 10-1 (say), one would have to choose a rather large 5 (say,
5 >_ 10-2) to achieve any degree of regularization of AD2AT. This constitutes a large
perturbation to the underlying KKT system (25).

In other words, a much smaller 5 is sufficient to regularize (25) than (26). Thus,
KKT systems again show an advantage over AD2AT.

With regard to the preconditioners, 5 introduces terms -51, -51, --su-Tu-1
into the bottom corner of/2,/3,/4, respectively. For/4 it appears that 5 must
be chosen quite small and that the choice of B must be flexible enough to prevent U
from being excessively ill conditioned (see 5.3).

5. Use of LU factors. For linear programs, the "small" KKT matrix in (10) is
of the form

HB BT )K2= B

As in the general nonlinear case we could obtain a preconditioner from a Bunch-
Parlett factorization of K2, and in practice this may prove to be a good approach.

The preconditioners M2, M3, and M4 were derived on the assumption that it
should be cheaper to compute sparse factors of just the matrix B. We propose to
use the package LUSOL [GMSW87] to obtain BT LU, where L is a permuted
lower triangle with unit diagonals. A user-defined tolerance limits the size of the
off-diagonals of L (typically to 5, 10, or 100), thereby limiting the condition of L as
required.
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5.1. Choice of B. One of the main practical difficulties will be in choosing a
"good" square matrix B at each stage. The current values of x and/or the estimated
reduced costs z c- ATr should provide some guidance. For example, the diagonal
matrix H is defined in terms of these quantities, and the smallest m + s diagonals of
H could be used to pinpoint a submatrix of A (for some moderate s _> 0). LUSOL
could then be used to obtain a rectangular factorization T_ LU. The first m pivot
rows and columns may suggest a suitable B.

Alternative approaches to choosing B have been suggested by Gay [Gay89], Tapia
and Zhang [TZ89], Mehrotra [Meh89b], and others. These remain to be explored.

5.2. The effects of degeneracy on V and W. In general, primal degeneracy
will mean that certain elements of HB do not tend to zero, so that not all of V or V
will become small. Similarly, dual degeneracy will mean that certain elements of HN
will not become large, and not all of W or I will become small.

The main effect is that the preconditioners will be less "exact." Either form of
degeneracy is likely to increase the number of SYMMLQ iterations required.

5.3. Singular systems. Whatever the method for choosing a square B, it is
probable that B will be singular (since in many practical cases, A does not have full
row rank). At present we propose to rely on the fact that LUSOL will compute a
stable singular factorization of the form

L2 (VlV2),

and the solve procedures will treat this as if it were the factorization of a nonsingular
matrix

L2 I I

User-defined tolerances determine how ill conditioned U1 is allowed to be (and hence
determine its dimension).

Alternatively, we may use the factorization BT LIU to transform most of K
as already described. Certain rows of A will not be transformed in the preferred way,
and again the effect will be to increase the number of SYMMLQ iterations required.

6. Numerical examples for the LP case. Here we investigate the effect of the
preconditioners described in 4. For test purposes we have used MATLABTM [MLB87]
to implement a primal-dual interior-point algorithm for the standard LP problem min
cTx subject to Ax b, x >_ O. The linear system to be solved each iteration is

-51 -At r

where H X-Z, X diag(xj), Z diag(zj), r b- Ax, g c- ATr #X-e,
and e is the vector of ones. The search direction for z is Az X-(#e- ZAx) z.

The rows and columns of A were scaled to give IIAII .. 1. The starting values
were x e, z e, r 0 (so that H I initially), and 5 was fixed at 10-s, with the
machine precision on a DEC VAX system being around 16 digits. The parameter
was reduced every iteration according to the steplengths for x and z:
where a min(ax, az, 0.99), and ax, az were limited in the usual way to be at most
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TABLE 1
Condition numbers ]or problem expl.

k # AD2AT RD K R I2 R3 I4 B rank-def

1 1.9e-2 1.2el 1.1el 1.1el 1.1el 3.1el 2.6el 1.1el
2 4.5e-3 6.5el 3.1el 6.8e2 1.9el 5.5el 2.7el 2.7el
3 4.8e-4 1.2e3 2.2e3 4.4e4 6.9el 4.6e2 5.7el 1.6el
4 1.3e-4 1.7e5 3.1e5 1.0e6 4.2e3 4.4e3 1.5e3 1.6e3
5 3.2e-5 2.9e5 5.3e5 1.3e6 7.7e2 2.3e3 5.4e2 5.6e2
6 1.5e-5 4.0e5 5.8e5 3.1e5 6.3e2 2.8e3 7.4e2 7.5e2
7 4.6e-6 4.0e5 5.8e5 1.6e5 1.2e2 3.0e2 1.1e2 1.1e2
8 1.6e-6 4.7e5 6.3e5 3.0e5 3.9el 1.4e2 1.9el 8.4e0
9 1.4e-7 9.1e5 1.1e6 4.9e5 2.0el 4.7e0 1.3e0 1.5e0
10 7.8e-9 8.4e5 1.0e6 3.5e6 1.7el 1.1e0 1.1e0 1.3e0

1 or 0.99 times the step to the boundaries x > 0, z > 0, respectively. See [KMY88],
[MMS89], [LMS89], and [Meh90] for related details.

Condition numbers of various matrices were obtained using MATLAB’s function
rcond. The square matrices B for the preconditioners of 4 were obtained from the
columns of A for which Hjj <_ 20. The diagonals Hjj were first sorted and up to 1.2m
of the smallest were used to select a rectangular matrix A from A. In practice, a sparse
LU factorization of or 2T would extract a full-rank submatrix, but here we used
MATLAB’s function qr(A) to elicit a full-rank set of columns (via a QR factorization
with column interchanges), and a second QR factorization of part of 2T to pinpoint
a full-rank set of rows. The dimension of the resulting matrix B is generally less
than m. The "rank" was determined from the first QR factorization by requiring the
diagonals of R to be greater than 10-4.

6.1. A nondegenerate example. To illustrate ideal behavior of the precon-
ditioners, we chose a nondegenerate problem expl [Bla82] in which A is 10 by 17
(including 10 unit columns associated with slack variables). The lack of primal or
dual degeneracy means that near a solution, m 10 diagonals of H are substantially
less than 1, and n- m 7 diagonals are significantly greater than 1. The choice of
B is ultimately clear cut.

Table 1 lists various condition numbers for each iteration of the primal-dual al-
gorithm. For interest, we include AD2AT and/D, which were defined in terms of
D Z diag(x) (see 4.5) and incorporated the same regularization (4.6). It
may be seen that both AD2AT/ #SI and/ become increasingly ill conditioned in
step with K, in contrast to the "meaningful" condition of K reflected by K1 (in which
the large diagonals of H have been scaled to 1).

The preconditioned systems/2,/3, and/4 show an increasing, though appar-
ently mild, improvement over/1. Their effectiveness depends on the choice of B and
whether or not it has dimension m. The column labeled "B rank-deft’ records the
corresponding rank-deficiency. The conditions of B, L, and U were less than 25, 7,
and 40, respectively, for all iterations.

Low conditions are always a good sign, but high ones tell an incomplete story.
Figure 1 shows more clearly the increasing improvement of the preconditioners M2,
M3, M4 in terms of the clustering of the eigenvalues of/2, /3, /4 around +1. The
KKT systems have dimension m+n 27. Eigenvalues in the range (-5, 5) are plotted
exactly; the remainder are compressed into the ranges (-6,-5) and (5, 6). Thus,/2
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3O

25

2O

15

10

has one or two eigenvalues greater than 5 for the first eight iterations, whereas /3
has its eigenvalues inside (-5, 5) at all times. (The vertical axis is "iteration number"
shifted by 1 for/2, 14 for/3, and 27 for/4. Each horizontal line gives the spectrum
of one of these matrices at the corresponding iteration.)

It is evident from Fig. 1 that /3 and/4 have more favorable eigenvalue distri-
butions than/2, and that/4 is marginally better than/3, the main benefit being
that it is more cheaply obtained. There is a striking absence of eigenvalues in the
range (-1 //,-) for some small/, though we have no immediate explanation. This
range broadens to (-1 //, 1 ) for all systems at the final iteration, as we may
expect.

6.2. A more typical example. Table 2 and Fig. 2 give similar results for the
well-known problem afiro [Gay85]. The matrix A is 27 by 51, including 19 slack
columns. We see that AD2AT+ #5I and/D again become extremely ill conditioned
in step with K.

The KKT systems have dimension 78. As before there is a clear division between
large and small diagonals of H near a solution, but in this case only m- 5 are
substantially smaller than one. The rank of the corresponding columns of A is m- 7,
consistent with B’s final rank-deficiency of 7. The conditions of B, L, and U were
again low: less than 35, 13, and 34, respectively.

It is encouraging to observe that Fig. 2 is qualitatively similar to Fig. 1 in spite
of the rank-deficiency in B. The main difference is two eigenvalues close to zero on
the last iteration, in keeping with the difference between m- 5 and m- 7. Results
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TABLE 2
Condition numbers for problem afiro.

k # AD2AT RD K R I2 R3 R4 B rank-def

1 2.6e-2 6.0el 2.2el 3.3el 2.3el 1.3e2 1.8e2 9.8el 1
2 9.9e-3 3.1e2 2.0e2 1.8e3 1.2e2 7.0e2 1.1e2 4.4el 1
3 1.8e-3 2.5e3 3.6e3 3.0e4 4.7e2 9.4e3 3.1e3 4.9e2 1
4 5.4e-4 1.7e4 3.4e4 1.1e6 2.2e3 4.1e4 1.1e4 7.0e3 1
5 2.9e-4 8.2e3 1.7e4 3.0e5 6.9e2 2.4e4 1.2e3 3.1e2 3
6 3.3e-5 8.5e3 1.8e4 4.5e4 1.0e2 1.1e3 4.6e2 2.9e2
7 2.4e-5 2.0e4 3.9e4 1.4e6 3.8e2 3.0e3 6.5e2 4.8e2 1
8 8.5e-6 2.6e5 4.3e5 1.8e7 9.0e3 1.6e4 2.5e3 2.9e3 3
9 3.1e-6 1.7e7 2.7e7 1.1e8 7.8e4 5.3e3 2.5e3 2.2e3 6

10 4.3e-7 2.0e8 3.1e8 2.0e9 1.7e6 9.6e4 2.3e4 1.6e4 6
11 4.3e-9 2.el0 4.el0 4.ell 5.7e8 3.7e5 3.9e5 2.6e5 7

4O
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2O
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10
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+
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FIG. 2. Eigenvalues for I2, I3, I4 for problem afiro.

are similar for the second to last iteration. We can expect a low number of SYMMLQ
iterations will be required as the barrier algorithm converges, as in the ideal nonde-
generate case.

6.3. Performance of SYMMLQ with the LP preconditioners. As a fur-
ther experiment we modified the barrier LP algorithm to solve (27) using SYMMLQ
with the first four preconditioners M1-M4 of 4. We applied the LP algorithm to prob-
lem expl with and without scaling of the data. The iterations required by SYMMLQ
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TABLE 3
SYMMLQ iterations with various preconditioners on problem expl.

Scaled Unscaled
k M M2 M3 M4 M1 M2 M3 M4
1 17 21 24 17 44 21 25 82
2 28 25 21 21 72 80 68 98
3 29 27 19 19 95 76 72 91
4 31 29 17 21 88 73 69 83
5 31 23 18 22 55 51 52 57
6 27 19 14 16 51 36 29 42
7 25 14 12 14 42 27 25 31
8 24 12 9 11 37 20 20 26
9 23 8 8 9 35 12 12 18
10 23 6 6 7 32 9 9 13
11 21 4 4 4 29 6 6 7
12 19 3 3 3 28 4 4 6
13 18 3 3 3
14 12 3 3 3

are shown in Table 3 for each iteration k of the barrier algorithm. For simplicity
the partition A (N B was chosen to be the same for all k, with B being the
optimal nondegenerate basis determined by the simplex method. As expected, the
preconditioners M2-M4 improve markedly as the LP solution is approached.

Iterative solution of each KKT system is easier for the scaled problem because
BT- LU is better conditioned:

Scaled Unscaled
cond(B) 14 443
cond(L) 4 4
cond(U) 17 235

For the scaled problem the stopping tolerance for SYMMLQ was taken to be
rtol 10-6 (a loose value since the KKT systems need not be solved accurately).
However, rtol terminates solution of the preconditioned system. For the unscaled
problem it was necessary to set rtol 10-1 to obtain sufficient accuracy in the search
direction for the first few values of k. In general it seems that high precision would
be needed for safety: rtol . 10-15. (This appears to be a general difficulty. If the
original system is Kx b and the preconditioner is CCT, SYMMLQ terminates when
IIC-l(b gx)[

_
IIc-1gc-T[[l[CTx[Irtol, since the terms involved can be estimated.

There is no certainty that lib- gx[[ <_ I[Kl[[Ix[Irtol, although [Ib- gx[I <_ [[bl[rtol
could be tested after the fact.)

On nondegenerate problems such as this, preconditioners M2-M4 can be expected
to perform similarly, at least in the scaled case. We expected M4 to show an advantage
in the unscaled case, but this did not eventuate. Greater variation can be expected on
degenerate problems when V does not become suitably small. Further experiments
in this direction remain for the future.

7. Conclusions. For symmetric indefinite systems of linear equations, we have
shown that the Bunch-Parlett factorization can be used to provide a preconditioner
for the Paige-Saunders algorithm SYMMLQ (2). This general result led us to con-
sider iterative methods for the KKT systems arising in barrier methods for QP and
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nonlinear programming. The preconditioner (12) should play an important role in
future interior-point implementations for large-scale constrained optimization.

For linear programs, the sensitivity analysis associated with the partitioned KKT
system (10) led us to consider the true sensitivity of K, as reflected by the pre-
conditioner M and the transformed system/1 (13), (14). In turn, the fact that
cond(/) is typically much smaller than cond(AD2AT) motivated development of the
preconditioners M2, M3, M4 (15), (17), (19).

Subject to effective methods for choosing B, we expect these KKT precondition-
ers to bring improved reliability to interior-point LP algorithms. Implementations
based on direct or iterative solves with AD2AT are often remarkably effective, but
the extreme ill-conditioning of the AD2AT systems as solutions are approached makes
their use tantamount to walking the razor’s edge.

A switch to the full KKT system should be beneficial as Gay [Gay89] suggests, par-
ticularly when A contains some relatively dense columns that prevent exact Cholesky
factorization of AD2AT. Fortunately, since B becomes more sharply defined near a
solution, the KKT preconditioners will become most effective when they are most
needed.

Appendix: A preconditioner from the Bunch-Parlett factorization.
The following Fortran 77 routine illustrates the construction of a positive-definite
matrix M uT[gu from the Bunch-Parlett factorization A UTDU produced by
the Harwell MA27 package of Duff and Reid [DR82], [DR83].

Subroutine syprec overwrites the representation of D in the MA27 data structure.
A typical application would contain calls of the form

call ma2?ad( n, nz,
call ma2?bd( n, nz,
call syprec( n, la,

to factorize A and compute f), followed by multiple calls of the form
call ma2?cd( n, a

to solve systems involving M.

subroutine syprec( n, la, liw, a, iw, negl, neg2

implicit double precision a-h, o-z
double precision a(la)
integer.2 iw(liw)
integer negl, neg2

syprec (SYmmetric PREConditioner) takes the factors
A U’ D U

from Duff and Reid’s Harwell subroutine MA27BD and changes the

block-diagonal matrix D to be a positive-definite matrix Dbar with
the same Ixl and 2x2 block-diagonal structure.

The eigensystem D Q E Q’ is used to define Dbar Q IEI Q’,
where IE[ contains the absolute values of the eigenvalues of D.
The matrix

Abar U’ Dbar U
is then an exact preconditioner for A, in the sense that SYMMLQ
would take only 2 iterations to solve Ax b (or 1 iteration if
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D Dbar is already positive definite).

If the original matrix A is close to some other matrix K,
Abar should be a good preconditioner for solving K x b.

Note that MA27 stores the elements of D(inverse) and U
within A and IW. However, modifying a 2x2 block of D(inverse)
looks the same as modifying the 2x2 block itself.

I0 Mar 1989: First version.

Systems Optimization Laboratory, Stanford University.

intrinsic

integer
logical
parameter

abs sqrt
alen, apos
single
zero O.Od+O, one 1.0d+O, two 2.0d+O

negl 0
neg2 0
nblk abs(iw(1)
ipos 2
apos 1

do I00, iblk I, nblk
ncols iw(ipos)

if (ncols .it. O)then
nrows 1
ncols ncols

else

ipos ipos + 1
nrows iw(ipos)

end if

Process the diagonals in this block.

alen ncols

single true.

do 50, k ipos + 1, ipos + nrows

if single then

alpha a(apos)
j iw(k)
single j .gt. 0

if single then
if alpha .lt. zero then

The ixl diagonal is negative.

negl negl + 1
a(apos) alpha

end if
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else
beta a(apos+l
gamma a(apos+alen)

if alpha * gamma .lt. beta**2 then

The 2x2 diagonal is indefinite.

Find its eigensystem in the form

alpha beta c s el c s
beta gamma s -c e2 s -c

tau gamma- alpha / two beta
t abs( tau + sqrt( tau**2 + one
t one / t

if tau .lt. zero t t
c one / sqrt( t**2 + one
S t * C

el alpha + beta * t
e2 gamma beta * t

Change el and e2 to their absolute values
and then multiply the three 2x2 matrices

to get the modified alpha, beta and gamma.

if el .lt. zero then

neE2 neg2 + 1
el el

end if
if e2 .It. zero then

neg2 neg2 + 1
e2 e2

end if

alpha c*,2 * el + s**2 * e2
beta c,s ,(el e2)
gamma s**2 * el + c*,2 e2
a(apos alpha
a(apos+l beta

a(apos+alen) gamma
end if

end if
else

single .true.
end if

apos apos + alen
alen alen 1

50 continue

ipos ipos + ncols + 1
I00 continue
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end of syprec
end
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Abstract. This paper considers the problem of algorithm-based fault tolerance, and makes
two major contributions. First, it shows how very general sequences of polynomials can be used to
generate the checksums, so as to reduce the chance of numerical overflows. Second, it shows how
the Lanczos process can be applied in the error location and correction steps, so as to save on the
amount of work and to facilitate actual hardware implementation.
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1. Background. Many important signal processing and control problems re-
quire computational solution in real time. Much research has gone into the develop-
ment of special purpose algorithms and associated hardware. The latter are usually
called systolic arrays in academia, and application-specific integrated circuits (ASICs)
in industry. In many critical situations, so much depends on the ability of the com-
bined software/hardware system to deliver reliable and accurate numerical results
that fault tolerance is indispensable. Often, weight constraints forbid the use of mul-
tiple modular redundancy and one must resort to a software technique to handle
errors. A top choice is Algorithm-Based Fault Tolerance (ABFT), originally devel-
oped by Abraham and students [9], [10], to provide a low-cost error protection for
basic matrix operations. Their work was extended by Luk and others [11], [13], [14]
to applications that include matrix equation solvers, triangular decompositions, and
recursive least squares. A theoretical framework for error correction was developed
for the cases of one error [10], two errors [1], and multiple errors [7]. Interestingly,
the model in [7] turns out to be the Reed-Solomon code [17]. However, the procedure
proposed in [7], and implicit in [17], is cumbersome in work and quite suspect in its
numerical stability.

A lot has already appeared in the literature on fault tolerant matrix algorithms,
e.g., [9], [10], [11], [13], [14], [16]. A simple example is matrix multiplication. Let A
and B be given square matrices of order n + 1, and C be the desired matrix product
AB. A way to achieve fault tolerance is to append the matrix B with, say, m + 1
checksum columns, with m _< n, and to calculate a checksum matrix product. Details
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can be found in [1] and [10]. Briefly, define

Br=-(B SB) and Cr=_(C So),

where SB and Sc denote (n 4-1) (m4-1) checksum matrices on B and C, respectively.
Then

and so

C. ABe,,

CoC ASB.

The matrix Sc is used to detect, locate, and correct errors in C. Fault tolerant matrix
multiplication is simple in that the rows of Cr can be examined independently. Indeed,
denote the ith row of Cr by

where the (j’s represent data and the }k’s represent checksums. In [9] it is explained
how, even if only one processor in the parallel system malfunctions temporarily, mul-
tiple errors will be present in the computed matrix product. In [1] it is shown that,
with a judicious choice of checksum coefficients, the use of }0, r/l,..., }m can detect
up to m + 1 errors in (0,(1,"" ,(n, and correct up to [(m + 1)/21 errors therein. A
method for handling these errors is presented in [7]. Unfortunately, the procedure
is quite complex, for it includes determining the rank of a matrix (to calculate the
number of errors) and solving a Hankel matrix equation (to locate the errors).

A major contribution of this paper is to show how a clever use of just the Lanczos
algorithm suffices for fault tolerance. The Lanczos algorithm was originally devised
by Lanczos as a procedure for reducing an arbitrary matrix to a tridiagonal form
having the same eigenvalues as the original matrix. The method has been found
to be particularly useful for large sparse matrices and has a number of optimality
properties with respect to convergence in the symmetric case. For nonsymmetric
matrices the algorithm has been less well understood, but in recent years there has
been major progress in the development and understanding of the algorithm (see,
e.g., [3] and references therein). Our work in this paper is important in at least two
aspects: (1) only simple additional hardware is necessary to implement the Lanczos
scheme; (2) through the use of orthogonal polynomials, our error correction problem
is numerically well conditioned. As first pointed out in [11], exponential growth in
the checksum coefficients leads directly to ill-conditioning of the associated checksum
matrices, which in turn leads to loss of accuracy in the computations. It is well
known (see, e.g., [8]) that in solving, for example, a set of linear equations in the
presence of round-off errors, a condition number of 10x leads to a loss of about x
digits of accuracy in the solutions. Ways to alleviate this difficulty were attempted
in [6], [11], and [16], albeit without the success here to achieve essentially "optimal
conditioning" (see 1.3). Examples illustrating the importance of matrix conditioning
in fault tolerant computing can be found in [12]. We stress here once more that
our signal processing applications mandate the use of floating-point data types and
operations.

This paper is organized as follows. The error correction problem is described
in the next two subsections. Section 2 presents the recurrence relationships for the
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polynomials that generate the checksum coefficients. Sections 3 and 4 introduce the
notions of Krylov matrices and error locator polynomial, respectively. The application
of the Lanczos procedure to the error correction problem is discussed in 5. The
Lanczos process is further simplified to a column elimination scheme in 6, and two
numerical examples illustrating our ideas are given in 7.

1.1. Problem description. The data (j} and the checksums (i} are related
via

n

(1.2) ?i Z //ijj,
j=O

where 0, 1,...,m, and the coefficients {vii} are prechosen. Suppose now that
faulty computation has given us possibly corrupted data { }, but that the checksum
values {ri} stay intact. The general case that includes errors in checksums will be
discussed in 1.3. Hence the errors wj can be defined by

for j 0, 1,..., n. Define another set of checksums {)i} from the faulty data:

n

(1.4) )i Z //ijj,
j=O

where 0, 1,..., m. We note here that a major difficulty in ABFT is the proper
choice of the coefficients {vij}. Taking the difference of (1.2) and (1.4), we get

n

j=O

Defining a set of syndromes {ai} by

air,i-r/i, for i=0,1,...,m,

we get

n

(1.5) o’i //ijwj, for
j=O

0, 1,...,m.

Furthermore, define an (m + 1)-element syndrome vector s, an (m + 1) x (n + 1)
"generator" matrix G, and an (n + 1)-element error vector w by

if0 //00 //01 //On d0
(T1 /210 /211 //ln 0.)1

s- G-- .. and w=_

O’m //m //ran O.)n

We can write out (1.5) in matrix form:

(1.6)
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Given s and G, our problem is to solve for w. Analogously, we also define the data
vectors

In this paper, we choose G as a generalized Vandermonde matrix:

where pi(x) denotes a polynomial of exact degree i, for 0, 1,...,m, and
denotes a set of distinct points that we call the knots. Hence

(1.8) ’i. pi (x./).
We will also scale the zero-degree polynomial to unity:

po(x)---- 1.

In most previous work, e.g., [6], [7], [9], [10], [11], the polynomials {p(x)} were chosen
to be the monomials, viz.,

(1.9) pi(x)=_x, for i=0,1,...,m.

Then G is the ordinary Vandermonde matrix:

0
x0

(1.10) G= xg x21 x xn

"..
xr xp xp xr

Jou and Abraham [10] chose the knots as

xj 2j, for j 0, 1,...,n.

Recognizing that such a choice could easily lead to numerical overflow of the coeffi-
cients {ij}, Luk [11] proposed that

(1.11) xj=j+l, for j=0,1,...,n,

which would grow at a somewhat slower pace. Brent, Luk, and Anfinson [6] showed
how one could keep ij from exceeding a prime number that is only a little bigger
than n. However, their scheme is usable only for error detection, and not for error
correction. Nair and Abraham [16] explored how standard codes over a finite field
may be converted to corresponding codes over the reals with various properties. In
this paper, we show how other sequences of polynomials {p(x)} of exact degree
can be chosen that would yield coefficients {j} that are better scaled than those
arising from the monomials. In this way an efficient Lanczos method can be used for
error correction. Numerical issues, however, will not be discussed, even though the
sensitivity of ABFT techniques to roundoff errors is well recognized; see, e.g., [5] and
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1.2. Error location and correction. In [1], [9], and [10] a linear algebraic
model of the weighted checksum scheme is developed, allowing parallels to be drawn
between algorithm-based fault tolerance and coding theory. An assumption that we
must make for our correction procedure is that no errors occur in the checksums. We
now show that (1.6) with G of the form (1.7) always has at least one solution.

THEOREM 1.1. For any n, let the knots xo, xl,..., xn be distinct. Choose m

_
n.

For each i, where O, 1,..., m, let the polynomial pi(x) have exact degree i. Then
the matrix G of (1.7) has full row rank, and so any m + 1 columns of G form an

(m + 1) x (m + 1) nonsingular matrix.

Proof. We show that vTG 0 implies v 0. For any (m / 1)-vector v, define
the polynomial q(x) of degree at most m as

q(x) =_ vT

po(x)
p (x)

There is a one-to-one correspondence between vectors v and such polynomials q(x).
Then vTG is an (n + 1)-vector whose entries are the values that q(x) takes on at all
the knots xi:

(q(xo),...,q(xn)) --vTG.

If q(x) 0 for all i, then q(x) must be the zero polynomial. Hence v 0. The
submatrix formed by extracting any m + 1 columns of G also has the form (1.7) with
rn + 1 distinct knots, so this submatrix is square and has full rank. [:l

We say that a coding scheme has detected the presence of errors if the syndrome
vector s is nonzero, and that it can correct the errors if x can be recovered from .
From Theorem 1.1 it follows that s is guaranteed to be nonzero as long as the number
of nonzero wi’s (or errors) is between one and m / 1. Hence our coding scheme can
detect up to m + 1 errors. The problem of error correction is harder. If m n, then

w G-is.

But when m < n, the solution to (1.6) is no longer unique, for we can find w by
inverting any (m + 1) (m + 1) submatrix of G. A usual choice (cf. [1]) is to restrict
the number of errors so that there is only one solution. Let

m+ 1 if m=n,(1.12) = [(m+l)/2J if m<n,

and assume that at most " errors have occurred. We claim that this w is unique.
Assume that there is a different vector @ with at most - nonzero entries, that also
satisfies (1.6). So,

Gw s and G@ s.

But then

e(w- =o,

and the difference vector (w @) will have between one and m / 1 nonzero elements,
contradicting Theorem 1.1. From here on, we will assume that at most errors are
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present in the data, and in 6, a Lanczos method will be presented for finding the w
that contains at most 7 nonzero elements. We summarize our results as follows.

FACT 1.1. With G defined as in Theorem 1.1, our coding scheme can detect up
to m + 1 errors, for m + 1 given checksums, or syndromes. This coding scheme can
also correct up to 7 errors, in the sense that for a given set of m + 1 syndromes, there
is at most one solution to (1.6) with between 1 and 7 nonzero wj’s.

1.3. Errors in checksums and matrix conditioning. Let us illustrate some
of the numerical advantages of the extra flexibility we gain from using general sets
of polynomials and knots. To account for errors also in the checksums, we append
an equal number of "parity" values to each of the data rows of the matrix, where
the parity values are set just so the checksums are zero. Specifically, we append an
equal number of parity values {r0, 7rl,..., rm} to the data vector and then compute
the checksums from the (n / m / 2)-element vector of data and parity values. To do
this, we need m + 1 extra knots Xn+l,Xn+2,’’’,Xn+m+l corresponding to the parity
values. Thus, the checksums are computed by the formula

]o o 71"o

(1.13) vii. G 1. +F rl.
rm ’n 7rm

where F is an (m + 1) (m + 1) matrix whose (i,j)th entry is Fij pi(xn+j). The
simplest choice is to set the /k’s to zero, in which case the parity values are computed
from the data values by

(1.14)

o o
r _F_IG

Since the parity values are related to the data in the same way as the original check-
sums via the new coefficient matrix F-G, they may be carried along with the data
row during all the floating-point operations in the same way as the original check-
sums can. With this choice for the parity values, the checksums are identically zero
and hence need not be computed at all. Thus the amount of data that must be car-
ried during the computation using this set of parity values is the same as that using
the former checksum scheme with no parity values, but we gain tolerance for errors
among the error check (parity) values as well as among the original data. This scheme
corresponds to a systematic linear code in the parlance of algebraic coding theory.

When using the monomials as in [10] and [11], the condition number of F can be
high. As an example, with m 5 and the knots of [11]: xj j / 1, the condition
number of the corresponding 6 6 matrix F will be at least 7 105, meaning that
the computed parity values will have at least five fewer digits of accuracy than the
original data. This would make it impossible to detect any errors occurring in the
low-order five digits of any data item. For larger values of m, this effect is even more
marked: the condition number of the 8 8 undermonde matrix using knots 1, 2,..., 8
is almost 109

On the other hand, if we choose the polynomials to be the Chebyshev polynomials
of the first kind, we can choose the knots to substantially reduce the condition number
of F. This is illustrated in the first numerical example in 7.
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The accuracy of the computed parity values will make a big difference in the
ability to detect and correct errors that occur in the lower part of the mantissa part
of the floating-point words. When errors approach the lower part, they begin to
become indistinguishable from rounding errors, and if a severe loss of accuracy occurs
during the computation of parity values, hardware errors in the corresponding last
digits of the floating-point word will be undetectable or uncorrectable, as they will be
indistinguishable from rounding errors.

2. Recurrence relations. Define Pn+I (x) to be the monic polynomial of degree
n + 1 whose zeros are the given knots, viz.,

n n

(2.1) pn+(x) H (x- xj) xn+ + jx,
j=o j=o

for some coefficients j. The two vectors s and w are related via

(2.2) s Gw GDe,

where D is an (n / 1) (n / 1) diagonal matrix given by

(2.3) D diag(w0,w,... ,w,),

and e is an (n / 1)-vector of all ones, viz., e (1, 1,..., 1)T.
The polynomials {pi(x)} satisfy a set of recurrence relations that can be grouped

into the matrix expression:

x z +
where ffn+l equals some unspecified scalar, and Z denotes an (n+ 1) (n/ 1) irreducible
upper Hessenberg matrix, i.e., a matrix whose immediate subdiagonal elements are all
nonzero. If all the polynomials are monic then the subdiagonals of Z are all ones.
Formula (2.4) expresses each polynomial pk+(x) as a linear combination of x pk(x)
and all the previous polynomials po(x), pl(x), ,pk(x). For example, if we choose
the {pi(x)} as the monomials, then Z is the companion matrix for the polynomial
pn+(x):

0
1 0

1 0
(.) Z 1

0
1

In the procedure that we will describe, these scalars i will play no role in the actual
computation, and so the matrix Z functions essentially as the "shift-down" matrix
for the case of the monomials.

From here until the middle of 5, we will assume that

m n.

In 5.1 we will show how the algorithms will still work when m < n. If we evaluate
(2.4) at each of the knots, we obtain a relation for G:

(2.6) DxGT GTZ,
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where

(2.7) Dx --diag (xo, xl,...,x,),

because p+l(xi) 0 for 0, 1,..., n. Note that we have just used our assumption
that m n; the matrix G is now square in computing the product ZTs. Equation
(2.6) yields the relations

(2.8) DGT GTZy for any j,

and

(2.9) q(Dx)GT GTq(Z) for any polynomial q(x).

Furthermore, from (2.2) and (2.6), we derive the relation:

(2.10) ZTs ZTGD,oe GDxDoe GDoDe,

which yields the two equations:

(2.11) (zT)Ys GDoDJe GDo x

and

for any j,

(2.12) q(ZT)s GD q(D)e for any polynomial q(x).

3. Krylov matrices. We define two sequences of Krylov matrices {Bi} and
{Ci }, to be generated by the two matrices Z and ZT. Let e denote the (n+ 1)-element
first coordinate unit vector, viz., (1, 0,.-., 0)T. The matrix By is (n + 1) x (j + 1),
and given by

(3.1) By (e, Zel, Z2el, ..., ZYe ).
Since Z is an irreducible upper Hessenberg matrix, the matrix By has full column rank
and is upper triangular. The column space of By is the same as the column space of
the first j / 1 columns of the identity matrix. The other matrix Cy has dimensions
(n + 1) x (j / 1), and is defined by

...,
Note again how we have used our assumption that m n. Utilizing (2.11) we may
write Cy as

(3.3) Cy GDVT,
where



320 D. BOLEY, R. BRENT, G. GOLUB, AND F. LUK

So, Vj consists of the first (j / 1) rows of an ordinary (n / 1) (n / 1) Vandermonde
matrix.

Now, how do we determine how many errors have occurred? Suppose that the
number is k. Recall our assumption that

(3.4)

In (3.3), the matrixD has rank k, and from Theorem 1.1, the matrix G is nonsingular
and VjT has full column rank, which equals (j + 1). Hence the rank of the matrix
is given by

rank(Cy)=[ j +1 if j+l<k,
k if j+l>_k.

It also follows from Theorem 1.1 and (3.3) that the first rows of Cy have maximal
rank given by min{j + 1, k}, for any _> k. In particular, we have the following result.

LEMMA 3.1. Let k be the number of errors (nonzero wj ’s). Denote the first k

rows of By and Cy by BJk) and C), respectively. Then

rank (Bk(l) rank (Bk-1)- k,

and

T (C(kk)_T(k) is a k k nonsingular matrixHence Ck_1Bk- k-
Again, for the special case where {pi(x)} are the monomials, we get that

(3.6) By

(1 0 0 O
0 1 0 0
0 0 1 0

0 0 0 1

0 0 0 0J

and

fro ffl if2
ffl 2 3
2 if3 if4

Gn--y n--j+l n--j+2
n--j+l n--j+2 n--j+3

n--2 n--1 n
n--1 n X

n X X

rj+
O’j+2

x

x
x

where denotes elements that may not interest us.
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4. Error locator polynomial. We have just seen how the number of errors can
be calculated from the rank of (Cj }. A more difficult task is to find out which k of
the wj’s are nonzero. Labelling the errors as Wjl, wj., ...,wj, we will show how to
find the indices jl, j2,"", jk by determining the corresponding knots Xjl xj2,. x.

DEFINITION 4.1. The error locator polynomial is a polynomial whose zeros are
precisely the knots corresponding to the nonzero wj’s.

Consider the k (k + 1) homogeneous system

Denote the elements of a by

(4.2)

C[_IBa O.

a (Co, c1,..., ok)T.
From Lemma 3.1, a nonzero solution with ak 0 to (4.1) exists, and is unique up to
scaling. For example, if the (pi(x)} were the monomials, then

(4.3)

ao al a2 ak-2 ak-1 ak

0"2 0"3 04 00k O’k+l 00k+2

00k-2 00k-1 00k 002k-4 002k-3 002k-2
00k- 00k 00k+ 002k-3 002k-2 002k-

is a Hankel matrix of syndrome values, and thus (4.1) can be regarded as permuted
Yule-Walker equations [8, p. 184], obtained by reversing the order of the rows. With
other choices for the polynomials {pi(x)}, we can consider (4.1) as a generalization of
the permuted Yule-Walker equations.

Now, in association with (4.2), define a kth-degree polynomial q(x) by

(4.4) q(x) =_ ao + alx +... + ak-lX
k-1 + xk.

We will show that the k zeros of q(x) are precisely the knots xjl xj.,..., xj,, corre-
sponding to the nonzero w-values. That is, we will show that the polynomial q(x) is
the error locator polynomial. Using the identity

(4.5)
GT Bka

we expand (4.1) as follows:

GT (el, Zel, Z2el, Zkel) a

(e, De,D2e,. .,Dke) a
q(D,)e,

0 C[_1Bk a Vk-1 D GT Bk a Vk-1D q(Dx) e Vk-

Wnq(Xn)

If we extract only those entries involving the nonzero w-values, we obtain a k x k
nonsingular, homogeneous system:

(4.6) 0

1 1 1 1 O.)jlq(Xjl
xl x x x wjq(x
2 2 2 2

Xjl Xj2 Xj3 Xj waq(xya)

xk.’--I Xk.’-I xk.’-i Xk’-i
1 Wq(xj
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Hence

q(xj)=O for i--1,2,...,k,

as we desired.
We can also express the error locator polynomial as a linear combination of the

original set of polynomials {pi(x)}, which may be useful in the computational proce-
dure. We define a polynomial r(x) by

(4.7) r(x) =_ (po(x),pl(x)," ,pn(X)) Bka.

From the upper triangular structure of the matrix Bk, we see that r(x) is a polynomial
of degree at most k. If we evaluate r(x) at each knot, we see from (4.5) that it agrees
with q(x) at every knot:

rlxo qlxol
(4.8)

rxl qxl)
GTBka q(Dx)e

r(n q(n)

q(x).

We summarize our results as follows.
FACT 4.1. Suppose that there are exactly k errors, and that the syndrome vector

s has been computed using G, which is generated via the recurrence matrix Z. Let
Bk and Ck- be the two Krylov matrices generated by Z, el, and s. Then the error
locator polynomial q(x) is defined by (4.4), where the vector of coefficients a is the
unique (up to scaling) nonzero solution to (4.1). Furthermore, we may express q(x) as
a linear combination of the original polynomials {pi(x)}, in which case the coefficients
are simply the entries of the vector Bka, as proved in (4.7) and (4.9).

5. Lanczos process. The nonsymmetric Lanczos algorithm, described in detail
in [3], is a recursive process that starts with the matrix A and two vectors r0 and lo,
and generates two sequences of matrices {Rj } and {L}, given by

and

(5.2) Lj (lo, 11,..., lj),

for j 0,1,..., n. Hence Rj and Lj are both (n + 1) x (j + 1) matrices. Let Sp(M)
denote the column space of a matrix M. Then, for every j, the following four relations
will be satisfied:

(5.3) Sp(Rj) Sp (ro, A ro, A2r0, Ar0 ),

(5.4) Sp(Lj) Sp (1o, ATI0, (AT)21o, (AT)Jlo),
and, if TLj Rj is nonsingular, then

r 0j+l
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(5.6) rT Lj 0j+l

Property (5.4) implies that lj+l is a linear combination of ATlj and 10,11,...,lj. If
the matrix Ly.Rj is nonsingular, then the particular linear combination is chosen to
satisfy (5.5). Otherwise, we have some freedom in choosing lj+l, and we may pick
lj+l ATlj. Other choices satisfying (5.3)-(5.4) are possible, but this particular one
will lead to a computational simplification, as will be seen in the next section. We
can derive similar results for the {ri} vectors. The process terminates when either

l 0 or rj 0, for some j.
For our situation, we propose to use the Lanczos process with the matrix A Z,

and the starting vectors r0 el and l0 s. With this choice, we get

(5.7) Sp(Rj) Sp(Bj)

and

(5.8) Sp(Lj) Sp(Cj)

for j 0, 1,..., n. Since the matrix Z is irreducible upper Hessenberg, the matrix Rj
will be upper triangular and will have full column rank j + 1 for every j < k. Hence
the Lanczos process will terminate at the kth step with lk 0, by (3.4). Since the

T is nonsingular, we get from (5.6) that rk will be the vector in thematrix Ck_1Bk_
column space of Rk that is orthogonal to Lk-1, or equivalently in the column space
of Bk that is orthogonal to Ck-. But this means that the vector rk equals the vector
Bka defined by (4.1), up to a scaling constant. Hence the Lanczos algorithm may
be used to generate the error locator polynomial q(x) as a linear combination of the
original set of polynomials {pi(x)}.

FACT 5.1. Suppose that we have run the nonsymmetric Lanczos process with
the matrix Z, and the starting vectors e and s. The process will terminate at the
kth step with lk 0, and the vector rk will equal the vector Bka, except possibly for
a scaling factor. Hence the entries of rk give us the coefficients of the error locator
polynomial q(x) in terms of the original set of polynomials {pi(x)}, as shown in (4.7)
and (4.9).

5.1. Case where m < n. We now examine the case where there are fewer
syndromes than data values, i.e., m < n. Indeed in practice, usually m << n. As
noted just below (3.4), we may check the rank of C for every j by just checking the
first rows, as long as k k. If , the maximum number of errors, is known, then
it suffices to examine the first rows of Cj, or equivalently of Lj, and the Lanczos
process is guaranteed to terminate in at most steps. Note that each lj+l in the
Lanczos process is a linear combination of zTIj and of lo, l,..., lj. Since ZT is lower
Hessenberg and lj has j leading zero elements, to find the top p elements of ZTlj, we
need to know only the top p + 1 elements of lj. It follows that the first ’ + 1 values of
the generated vectors 10,’", 1-1 depend only upon the first 2 values of the initial
vector l0 s. Therefore, it suffices to compute only 2, syndrome values in order to
generate the coefficients in (4.1) that are needed to solve for a. Recall from (1.12) our
assumption that

[(, + 1)/J,

and so, given /, one should choose m so that

m+1=2.
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FACT 5.2. If the number of errors is at most /, then 2- syndrome values are
necessary and sufficient to determine the error locator polynomial and its zeros by
means of (4.1).

6. Column elimination scheme. The Lanczos process as described somewhat
simplifies, for the particular purpose we are using it here, that of computing the
error locator polynomial. With our particular starting data, the right Lanczos matrix

Rj will be upper triangular and will have full column rank for every j. The left
Lanczos matrix Lj may assume several forms. We first examine the "generic" case
that LRj is nonsingular for every j. Then the condition (5.5) is equivalent to forcing
Lj+I to be lower triangular. In the Lanczos algorithm, this structure is obtained
by subtracting multiples of previous columns {li} from the one that has just been
generated as zTIj. That is, we perform "column operations" akin to "row operations"
in ordinary Gaussian elimination. (Note that using another elimination scheme, such
as an orthogonal decomposition, would destroy the properties (5.3) and (5.4) as well
as the triangular structure of the generated matrices.) Thus, at stage j of the process,
we generate lj+l from lj-1 and 1 as follows. The vector lj-1 has (j- 1) leading zero

entries, the vector 1 has j leading zero entries, and the vector zTIj (---- 1-j+l) has
(j- 1) zero entries:

0 0 0

0 0 0

lj,j--1 lj,j ...lj,j+l
/j+l,j--1 lj+l,j /j+l,j+l

We must eliminate the two elements lj-l,j+l and /j,j+l to obtain an lj+l that has
j + 1 leading zero entries. These two eliminations are done by subtracting from [j+l
suitable multiples of 1-1 and lj, respectively.

We now examine the "nongeneric" case. Suppose that for some particular value
of j, the matrix LRj is singular and L._IRj_I is nonsingular. (The following also

applies for the case where j 0, i.e., 10Tr0 0. This means that lj must have more
than j leading zero entries. Suppose there are extra leading zero entries, for a total
of j + leading zero entries:

(6.1)

Then the next (i + 1) vectors 1+1, ii+:, ,ij+i+l are defined simply by

1-j+t zTij+l-1 (zT)lij

for 1, 2,..., + 1. Due to the lower Hessenberg form of ZT, these vectors have a
lower antitriangular form, as illustrated below for 3:
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We wish to "exhibit" the rank of this matrix by reducing it to a column permutation
of a lower triangular matrix. To preserve the Krylov sequence property (5.4), we set

Then to form lj+i+l we must eliminate the leading (i + 2) nonzero entries of lj+i+l,
namely, lj-l,j+i+, lj,j+i+l, ..., lj+,j++l, by means of column operations. Note that
(5.4) is still preserved for all the index values j, j + 1, ,j + / 1, and that this
column elimination scheme is essentially the eerlekamp-Massey algorithm [2], [15] for
solving the permuted Yule-Walker problem (4.1) when the coefficient matrix is given
by (4.3). The scheme requires + 2 column operations, less than the 2(i + 1) that
would have been required for the generic case.

Whether the generic or nongeneric elimination scheme is used, the result after k
steps is a full rank matrix Lk-1, which is either lower triangular or a column permuta-
tion of a lower triangular matrix. Therefore, to solve for a in (4.1), it suffices to choose
an arbitrary nonzero value for 5k and solve the following system for 00,.’., &k-:

(6.3) L_i (nk) O.

TAs Sp(Ck_l) Sp(Lk-1), and hence Null (ckT_I) Null (Lk_) the right annihi-
lating vector Bka of CkT_ in (4.1) is the same as the right annihilating vector Rkg of

LkT-1 in (6.3). That is,

(6.4)

except for a scaling constant. The matrix Rk is upper triangular, so it suffices to
extract only the first (k / 1) rows of Lk-. The (k / 1)st row of Lk-1 enters only
into the part depending on Ok, so (6.3) is a k k system for the remaining 0-values.
Since Lk-1 is lower triangular (at least within a column permutation), solving (6.3)
for Rk Bka requires a back-substitution step, and to obtain a itself requires
another back-substitution step. If we are interested only in the locations of the zeros
of the error locator polynomial, as opposed to the coefficients of the polynomial itself,
it suffices to solve (6.3) for the right annihilating vector Bka and substitute this
result directly into (4.8), yielding directly the values of the error locator polynomial
evaluated at every knot.

We summarize the steps to obtain a as follows:
0. Start with l0 s.
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1. For 0, 1,..., compute li+1 by forming i+1 ZTli, and annihilating the
first two nonzero entries by two "column operations." (In the nongeneric
case described above, we form the vectors as illustrated in (6.2) and follow
the prescription described thereafter.)

2. The process in step 1 continues until lk 0 for some value k. This value is
the number of errors in the data.

3. Solve system (6.3) for Bka using (6.4).
4. If the error locator polynomial itself is desired, as opposed to its zeros, then

generate the Krylov matrix Bk, and back-solve to obtain a.
Step 1 is guaranteed to terminate in at most ’7 steps. This requires that only the

first m + 1, which equals 2’7, syndromes be retained, and that only the first m + 1 j
entries in each cj vector be computed. Therefore, to carry out step 1 requires at most

"7 applications of the matrix ZT and 2’7 "column operations."
If the bandwidth of Z equals b, then each application of Z or ZT to the leading

m / 1 entries of a vector costs (m / 1)b operations. Since only the leading principal
submatrix of Z participates in the computations, the bandwidth of (2.5) is b 1.
Indeed, that particular choice would incur only shifting and no arithmetic costs. If
the original set of polynomials {p(x) } were the Chebyshev polynomials, or some other
sequence of orthogonal polynomials, then Z would be tridiagonal and the bandwidth
would be b- 3, as in the numerical example in the next section.

Only steps 1 and 3 require computation for the specific syndrome values: we
approximate their costs using k _< "7 and m 2’7- 1.

Cost of step 1 k(mb / 2m) _< 2’72(b + 2).
Cost of step 3 Cost of back-substitutions k2/2 <_ ’72/2.
Total cost <_ ’72(2b + 4.5).

To summarize, we have described a method that computes a lower triangular basis
for the Krylov space, Sp (Ck_). By recursively carrying out column eliminations as
each new column is generated, we are able to exhibit the maximal rank of Rj and Ly
at each stage j. We then use the lower triangular basis Lk-1 to solve for the vector
Bka representing the error locator polynomial. In principle, we could use any basis for
Sp (Ck-). If we used instead an orthonormal basis, we would enhance the numerical
stability of the method at a cost of more arithmetic. Such an orthonormal basis can
be generated recursively by an Arnoldi process (see, e.g., [4]), and the rank would be
exhibited in the same way as in the above process. But in this paper we focus on the
lower triangular basis because it is simple to compute and because it is closely related
to the nonsymmetric Lanczos and Berlekamp-Massey algorithms.

7. Numerical examples. Except for the possible goal of reducing the condition
number of the relevant matrices, the choice of polynomials and knots is arbitrary as
long as the polynomials are of increasing degree and the knots are distinct. These are
the only conditions required to apply the Lanczos-based paradigm. Different choices
lead to a wide variety of different schemes, including many of the standard ones.
In this section we illustrate our method with two particular numerical examples in
which we use the Chebyshev polynomials and the monomials to generate the checksum
coefficients and the knots. In printing the numbers, we have rounded them to the digits
shown, even though the computations were carried out in Lisp on a Sun workstation
with IEEE arithmetic using a precision of about 16 decimal digits. The first two
Chebyshev polynomials are

 0(x) 1, x,
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and it is well known that the subsequent polynomials are generated by the recurrence

Pi+l(X) 2xpi(x)--p_:(x), for i= 1,2,....

The Chebyshev polynomials po(x),p:(x),.., are related via the recurrence (2.4) and
the recurrence matrix

0 1 0 0

2 0 1 0 ".

0 1 0 1 ".

0 0 1 0 .
0 0 0 1 ".

0 0 0 0 ".

and it is well known that the zeros of the polynomial Pk are all real, simple, and are
the same as the eigenvalues of the leading k x k principal submatrix of (7.1).

Example 1. We illustrate the process of determining the errors that might be
present in a given row (0, :,’", n) of an (n + 1) (n + 1) matrix A. In order to
compute the checksums, we need n + 1 knots xo,x:,’",Xn, from which we determine
the matrix G of checksum coefficients (1.7) using the Chebyshev polynomials.

In order to illustrate the process for also handling errors in the checksums, we
suppose that m + 1 6 parity values r0, r,.. , r5 have been appended to the matrix
row, and that an extra six knots have been chosen. Corresponding to the parity
values are six extra knots x,+,x,+2,...,x,+6. Define the 6 6 matrix F by FO
p_(x,+j) for i,j 1,2,...,6. We then define the parity values by (1.14) so that
the checksums (1.13) computed on the entire "data seqtience"

are zero
We may choose the knots to be any set of distinct numbers, so we make the

following arbitrary choice. The last eight knots are chosen as the zeros of Ps"

Xn-: cos 15r/16 -0.980785
Xn+o cos 13r/16 -0.831470
xn+: cos llr/16 -0.555570
xn+2 cos 9r/16 -0.195090
Xn+3 cos 7r/16 +0.195090
Xn+4 cos 5r/16 +0.555570
Xn+5 cos 3r/16 +0.831470
Xn+6 cos r/16 +0.980785

and the n- 1 remaining knots are chosen as the zeros of Pn-1, which are all distinct
from those of Ps for any n- 1 relatively prime to 8. All n + 7 knots are guaranteed
to be distinct. This is a modification of a periodic code in the sense of [16]. We have
that m 5 and 9’ 3. The combined matrix (G IF) of checksum coefficients is given
by

1.0000 1.0000
-0.9808 -0.8315
0.9238 0.3827

-0.8315 0.1951
0.7071 -0.7071
0.5556 0.9808
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1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
--0.5556 --0.1951 0.1951 0.5556 0.8315 0.9808
--0.3827 --0.9238 --0.9238 --0.3827 0.3827 0.9238
0.9808 0.5556 --0.5556 --0.9808 --0.1951 0.8315

--0.7071 0.7071 0.7071 --0.7071 --0.7071 0.7071
--0.1951 --0.8315 0.8315 0.1951 --0.9808 0.5556

We note that the condition number of F is 89. If instead we use the polynomials
(1.9) and knots (1.11), then G and F would both be ordinary Vandermonde matrices,
and the condition number of F would be in excess of 7 105. This means that by
using the Chebyshev polynomials, we may compute the parity values (1.14) to almost
full machine accuracy, whereas when using (1.9) and (1.11), the last five digits of the
computed parity values are guaranteed to be in error from the ill-conditioning of F.
In the latter case, we would not be able to detect any errors that might occur in the
last five digits of any data item. We note that if we choose the last six knots as the
zeros of p6 and the remaining n / 1 knots as the zeros of Pn+l then it can be shown
that the rows of F would be mutually orthogonal and the condition number of F
would be reduced to only 2. We use the choice of Ps and Pn-1 to illustrate that many
different choices can lead to much improvement in the condition number.

Given the n + 7 knots, the checksum coefficients are generated by the first six
Chebyshev polynomials, which satisfy the recurrence (2.4) where the recurrence ma-
trix Z is just the leading 6 6 principal submatrix of (7.1). The Krylov sequence
{Bj } depends only on the recurrence matrix Z. In particular, B5 is given by

1.0 0 0.5 0 0.375 0
0 1.0 0 0.75 0 0.6250
0 0 0.5 0 0.500 0
0 0 0 0.25 0 0.3125
0 0 0 0 0.125 0
0 0 0 0 0 0.0625

Since the parity values were chosen just to make the checksums zero, the syndrome
values are obtained by applying the checksum coefficient matrix (G IF to the aug-
mented data (7.2). We suppose that the resulting six (= 2) syndromes are

S

-2.000000
-2.443301
4.460885
2.612462

-4.242641
-1.364308

The other Krylov sequence (Cj } is calculated as

-2.0000 -2.4433 1.2304
-2.4433 1.2304 -1.1794
4.4609 0.0845 0.6698
2.6125 0.1091 0.3543

-4.2426 0.6241
-1.3643

where j _> 2, and the symbol "" stands for entries depending on the further syndrome
values that we do not have available, and do not need under the assumption that no
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more than three errors have occurred. If we carry out column eliminations to reduce
Cj to a lower triangular form, we obtain

-2.0000 0 0
-2.4433 4.2153 0
4.4609 -5.3651 0
2.6125 -3.0824 0

-4.2426 5.8071
-1.3643

where j >_ 2. Note that the third column is all zero, so number k of errors equals 2.
We then use the top left 3 3 part of B5 and the top left 3 2 part of L2 to solve
(6.3)"

0- (-2.0000-2.443304.2153 -5.36514"4609) (1"000"5) (c)001.00 0.50
for the 3-vector B2a. This is a 2 2 system of equations for s0, c1, but we can solve
directly for B2a. The results are

0.3378
B3)a 0.6364

0.5000
and a

-0.1622
0.6364
1.0000

Thus the error locator polynomial is

q(x) x2 + 0.6364x 0.1622.

We can find the zeros of q(x) directly, or substitute B2(3)a directly into (4.8) to obtain
the vector of evaluations of the error locator polynomial at all the knots:

(GIF)TB2a

1.0 -0.9808 0.9238
1.0 -0.8315 0.3827
1.0 -0.5556 -0.3827
1.0 -0.1951 -0.9238
1.0 0.1951 -0.9238
1.0 0.5556 -0.3827
1.0 0.8315 0.3827
1.0 0.9808 0.9238

0.3378
0.6364
0.5000

0.1756
O(10-16)
-0.2071
-0.2483
0(10-16)

0.5000
1.0583
1.4238

The locations of the O(10-16) entries indicate that the zeros of the error locator
polynomial are -0.8315 and -0.1951, which are the knots corresponding to the loca-
tions of the nonzero w-values, wn and Wn+3, which in turn are the errors in the last
data item n and the third parity value 2, respectively. We can then extract the
corresponding columns from (1.6) to obtain the 2 2 system to solve for the w-values:

(-2.0000) ( 1.0000
-2.4433=-0.8315  .0000) ( )0.1951 Wn+3

yielding the result

( .0000)Wn+3 --4.0000
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Example 2. We consider a second numerical example illustrating the nongeneric
procedure and the permuted lower triangular structure (6.2). To simplify the exposi-
tion, we do not use any parity values and ignore conditioning issues. We suppose we
have knots xj j + 1, j 0, 1, 2,..., and polynomials p(x) x, 0, 1, 2,.... The
matrix G is the ordinary Vandermonde matrix

1 1 1 1
1 2 3 4

G- 1 4 9 16
1 8 27 64

Suppose that we start with the syndrome vector

s (1, 0, 0, 0,-24,-240,-1560,-8400,...)T.
We have eight syndrome values, allowing up to four errors. Then the Krylov sequence
would be generated by a "shift-down" matrix yielding

1 0 0 0
0 0 0 -24
0 0 -24 -240
0 -24 -240 -1560

-24 -240 -1560 -8400
-240 -1560 -8400
-1560 -8400
-8400 x x x

-24
-240
-1560
-8400

The Krylov matrix B4 of (3.6) is just the first five columns of an identity matrix. When
we attempt to reduce C4 to the lower triangular form L4 by column operations, we
find that the second column c has three leading zeros. Hence, we get

11 Cl

without any elimination at all, and furthermore we have two additional leading zero
elements. So we generate the next two vectors by

12 C2 and 13 C3.

The next vector 14 is obtained by eliminating the first four elements of 4 (in this case
the same as c4) by means of column operations. The result is

(7.4) L4 (10,11,12,13,14)

1 0 0 0
0 0 0 -24
0 0 -24 -240
0 -24 -240 -1560

-24 -240 -1560 -8400
-240 -1560 -8400
-1560 -8400 x x
-8400 x x x

0
0
0
0

Since the last column is zero, the maximal rank k equals 4, so we have four errors.
We then solve (4.1) for the coefficients a of the error locator polynomial q(x). That
is, we solve

0 0 0 -24 -240
0 0 -24 -240 -1560 a 0,
0 -24 -240 -1560 -8400
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obtaining the error locator polynomial

q(x) x4 lOx3 + 35x2 50x + 24.

The zeros of q are 1, 2, 3, and 4, indicating that the errors occur in the first four
positions. To find the actual errors, we extract the top left 4 x 4 part of (1.6):

1 2 3 4 o
0 1 4 9 16 w2

1 8 27 64 w3

and solve this to obtain the errors
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Abstract. The matrix computation language and environment MATLAB is extended to include
sparse matrix storage and operations. The only change to the outward appearance of the MATLAB
language is a pair of commands to create full or sparse matrices. Nearly all the operations of MATLAB
now apply equally to full or sparse matrices, without any explicit action by the user. The sparse
data structure represents a matrix in space proportional to the number of nonzero entries, and most
of the operations compute sparse results in time proportional to the number of arithmetic operations
on nonzeros.
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1. Introduction. MATLAB is an interactive environment and programming lan-
guage for numeric scientific computation [18]. One of its distinguishing features is the
use of matrices as the only data type. In MATLAB, a matrix is a rectangular array
of real or complex numbers. All quantities, even loop variables and character strings,
are represented as matrices, although matrices with only one row, or one column, or
one element are sometimes treated specially.

The part of MATLAB that involves computational linear algebra on dense matrices
is based on direct adaptations of subroutines from LINPACK and EISPACK [5], [23].
An m n real matrix is stored as a full array of mn floating point numbers. The
computational complexity of basic operations such as addition or transposition is pro-
portional to mn. The complexity of more complicated operations such as triangular
factorization is proportional to mn2. This has limited the applicability of VIATLAB
to problems involving matrices of order a few hundred on contemporary workstations
and perhaps a few thousand on contemporary supercomputers.

We have now added sparse matrix storage and operations to VIATLAB. This report
describes our design and implementation.

Sparse matrices are widely used in scientific computation, especially in large-
scale optimization, structural and circuit analysis, computational fluid dynamics, and,
generally, the numerical solution of partial differential equations. Several effective
Fortran subroutine packages for solving sparse linear systems are available, including
SPARSPAK [11], the Yale Sparse Matrix Package [9], and some of the routines in the
Harwell Subroutine Library [25].
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TABLE 1
Operations with the 4096 by 4096 discrete Laplacian.

Sparse Full
Memory 0.25 megabyte 128 megabytes
Compute Dx 0.2 seconds 30 seconds
Solve Dx b 10 seconds > 12 hours

Our work was facilitated by our knowledge of the techniques used in the Fortran
sparse matrix packages, but we have not directly adapted any of their code. MATLAB
is written in C and we wished to take advantage of the data structures and other
programming features of C that would not be used in a simple translation of Fortran
code. We also wanted to implement the full range of matrix operations that MATLAB
provides; the Fortran packages do not generally have routines for simply adding or
transposing sparse matrices, for example. And, finally, we wanted to incorporate some
recent algorithmic ideas that are not used in the Fortran packages.

J. H. Wilkinson’s informal working definition of a sparse matrix was "any matrix
with enough zeros that it pays to take advantage of them." So sparsity is an economic
issue. By avoiding arithmetic operations on zero elements, sparse matrix algorithms
require less computer time. And, perhaps more importantly by not storing many zero
elements, sparse matrix data structures require less computer memory. In a sense,
we have not added any new functionality to MATLAB; we have merely made some
existing functionality more efficient in terms of both time and storage.

An important descriptive parameter of a sparse matrix S is nnz(S), the number of
nonzero elements in S. Computer storage requirements are proportional to nnz. The
computational complexity of simple array operations should also be proportional to
nnz, and perhaps also depend linearly on m or n, but be independent of the product
ran. The complexity of more complicated operations involves such factors as ordering
and fill-in, but an objective of a good sparse matrix algorithm should be:

The time required for a sparse matrix operation should be propor-
tional to the number of arithmetic operations on nonzero quantities.

We call this the "time is proportional to flops" rule; it is a fundamental tenet of our
design.

With sparse techniques, it is practical to handle matrices involving tens of thou-
sands of nonzero elements on contemporary workstations. As one example, let D be
the matrix representation of the discrete five-point Laplacian on a square 64 64 grid
with a nested dissection ordering. This is a 4096 4096 matrix with 20,224 nonzeros.
Table 1 gives the memory requirements for storing D as a MATLAB sparse matrix and
as a traditional Fortran or MATLAB full matrix, as well as the execution time on a
Sun SehRCstation-1 workstation for computing a matrix-vector product and solving
a linear system of equations by elimination.

Band matrices are special cases of sparse matrices whose nonzero elements all
happen to be near the diagonal. It would be somewhat more efficient, in both time
and storage, to provide a third data structure and collection of operations for band
matrices. We have decided against doing this because of the added complexity, par-
ticularly in cases involving mixtures of full, sparse, and band matrices. We suspect
that solving linear systems with matrices that are dense within a narrow band might
be twice as fast with band storage as it is with sparse matrix storage, but that lin-
ear systems with matrices that are sparse within the band (such as those obtained
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from two-dimensional grids) are more efficiently solved with general sparse matrix
technology. However, we have not investigated these tradeoffs in any detail.

In this paper, we concentrate on elementary sparse matrix operations, such as
addition and multiplication, and on direct methods for solving sparse linear systems
of equations. These operations are now included in the "core" of MATLAB. Except
for a few short examples, we will not discuss higher-level sparse matrix operations,
such as iterative methods for linear systems. We intend to implement such operations
as interpreted programs in the MATLAB language, so-called "m-files," outside the
MATLAB core.

2. The user’s view of sparse MATLAB.

2.1. Sparse matrix storage. We wish to emphasize the distinction between a
matrix and what we call its storage class. A given matrix can conceivably be stored
in many different ways--fixed point or floating point, by rows or by columns, real or
complex, full or sparse--but all the different ways represent the same matrix. We
now have two matrix storage classes in MATLAB, full and sparse.

Two MATLAB variables, A and B, can have different storage classes but still rep-
resent the same matrix. They occupy different amounts of computer memory, but in
most other respects they are the same. Their elements are equal, their determinants
and their eigenvalues are equal, and so on. The crucial question of which storage class
to choose for a given matrix is the topic of 2.5.

Even though MATLAB is written in C, it follows its LINPACK and Fortran pre-
decessors and stores full matrices by columns [5], [19]. This organization has been
carried over to sparse matrices. A sparse matrix is stored as the concatenation of the
sparse vectors representing its columns. Each sparse vector consists of a floating point
array of nonzero entries (or two such arrays for complex matrices), together with an
integer array of row indices. A second integer array gives the locations in the other
arrays of the first element in each column. Consequently, the storage requirement
for an m n real sparse matrix with nnz nonzero entries is nnz reals and nnz + n
integers. On typical machines with 8-byte reals and 4-byte integers, this is 12nnz+4n
bytes. Complex matrices use a second array of nnz reals. Notice that m, the number
of rows, is almost irrelevant. It is not involved in the storage requirements, nor in the
operation counts for most operations. Its primary use is in error checks for subscript
ranges. Similar storage schemes, with either row or column orientation, are used in
the Fortran sparse packages.

2.2. Converting between full and sparse storage. Initially, we contem-
plated schemes for automatic conversion between sparse and full storage. There is
a MATLAB precedent for such an approach. Matrices are either real or complex and
the conversion between the two is automatic. Computations such as square roots and
logarithms of negative numbers and eigenvalues of nonsymmetric matrices generate
complex results from real data. MATLAB automatically expands the data structure
by adding an array for the imaginary parts.

Moreover, several of MATLAB’S functions for building matrices produce results
that might effectively be stored in the sparse organization. The function zeros (re,n),
which generates an m n matrix of all zeros, is the most obvious candidate. The
functions eye(n) and d+/-ag(v), which generate the nn identity matrix and a diagonal
matrix with the entries of vector v on the main diagonal, are also possibilities. Even
tr+/-l (/) and tr+/-u (), which take the lower and upper triangular parts of a matrix A,
might be considered. But this short list begins to demonstrate a difficulty--how far
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FIG. 1. The Eppstein mesh as plotted by spy(A) and gplot(A,xy).

should "automatic sparsification" be carried? Is there some threshold value of sparsity
where the conversion should be done? Should the user provide the value for such a
sparsification parameter? We don’t know the answers to these questions, so we decided
to take another approach, which we have since found to be quite satisfactory.

No sparse matrices are created without some overt direction from the user. Thus,
the changes we have made to MATLAB do not affect the user who has no need for
sparsity. Operations on full matrices continue to produce full matrices. But once
initiated, sparsity propagates. Operations on sparse matrices produce sparse matrices,
and an operation on a mixture of sparse and full matrices produces a sparse result
unless the operator ordinarily destroys sparsity. (Matrix addition is an example; more
on this later.)

There are two new built-in functions, full and sparse. For any matrix A,
full(t,) returns A stored as a full matrix. If A is already full, then A is returned
unchanged. If A is sparse, then zeros are inserted at the appropriate locations to fill
out the storage. Conversely, sparse(A) removes any zero elements and returns A
stored as a sparse matrix, regardless of how sparse A actually is.

2.3. Displaying sparse matrices. Sparse and full matrices print differently.
The statement

t [0 0 11; 22 0 0; 0 33 01

produces a conventional MATLAB full matrix that prints as

0 0
22 0 0
0 33 0

The statement S sparse (A) converts A to sparse storage, and prints
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FIG. 2. The buckyball as rendered by spy and gplot.

(2,1) 22
(3,2) 33
(1,3) .:t

As this illustrates, sparse matrices are printed as a list of their nonzero elements (with
indices), in column major order.

The function maz (A) returns the number of nonzero elements of A. It is imple-
mented by scanning full matrices, and by access to the internal data structure for
sparse matrices. The function nzmax (A) returns the number of storage locations for
nonzeros allocated for A.

Graphic visualization of the structure of a sparse matrix is often a useful tool. The
function spy(h) plots a silhouette of the nonzero structure of A. Figure 1 illustrates
such a plot for a matrix that comes from a finite element mesh due to Eppstein. A
picture of the graph of a matrix is another way to visualize its structure. Laying out
an arbitrary graph for display is a hard problem that we do not address. However,
some sparse matrices (from finite element applications, for example) have spatial
coordinates associated with their rows or columns. If xy contains such coordinates
for matrix A, the function gplot(h,xy) draws its graph. The second plot in Fig. 1
shows the graph of the sample matrix, which in this case is just the same as the finite
element mesh. Figure 2 is another example: The spy plot is the 60 60 adjacency
matrix of the graph of a Buckminster Fuller geodesic dome, a soccer ball, and a C60
molecule, and the gp:[ot shows the graph itself.

Section 3.3.4 describes a function for visualizing the elimination tree of a matrix.

2.4. Creating sparse matrices. Usually one wants to create a sparse ma-
trix directly, without first having a full matrix A and then converting it with S
sparse(h). One way to do this is by simply supplying a list of nonzero entries and
their indices. Several alternate forms of sparse (with more than one argument) allow
this. The most general is

S sparse(i,j,s,m,n,nzmax).
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Ordinarily, and j are vectors of integer indices, s is a vector of real or complex entries,
and m, n, and nzmax are integer scalars. This call generates an m x n sparse matrix,
having one nonzero for each entry in the vectors i, j, and s, with S(i(k),j(k)) s(k),
and with enough space allocated for S to have nzmax nonzeros. The indices in i and
j need not be given in any particular order.

If a pair of indices occurs more than once in i and j, sparse adds the correspond-
ing values of s together. Then the sparse matrix S is created with one nonzero for each
nonzero in this modified vector s. The argument s and one of the arguments and j
may be scalars, in which case they are expanded so that the first three arguments all
have the same length.

There are several simplifications of the full six-argument call to sparse.
S sparse(i,j,s,m,n) uses nzmax length(s).
S sparse(i,j,s) uses m max(i) and n max(j).
S sparse(m,n) is the same as S sparse([], [], [],m,n), where [] is

MATLAB’S empty matrix. It produces the ultimate sparse matrix, an m x n matrix
of all zeros.

Thus, for example,

S sparse([1 2 3], [3 1 2], [11 22 33])

produces the sparse matrix S from the example in 2.3, but does not generate any
full 3 3 matrix during the process.

MATLAB’s function k find (h) returns a list of the positions of the nonzeros
of A, counting in column major order. For sparse MATLAB we extended the definition
of find to extract the nonzero elements together with their indices. For any matrix A,
full or sparse, [i,j,sJ find(h) returns the indices and values of the nonzeros.

(The square bracket notation on the left side of an assignment indicates that the
function being called can return more than one value. In this case, find returns three
values, which are assigned to the three separate variables i, j, and s.) For example,
this dissects and then reassembles a sparse matrix:

[i,j,s] find(S);
[re,n] size(S);
S sparse(i,j,s,m,n);

So does this, if the last row and column have nonzero entries:

[i,j,s] find(S);
S sparse(i,j ,s)

Another common way to create a sparse matrix, particularly for finite difference
computations, is to give the values of some of its diagonals. Two functions diags
and blockdiags can create sparse matrices with specified diagonal or block diagonal
structure.

There are several ways to read and write sparse matrices. The MATLAB save
and :load commands, which save the current workspace or load a saved workspace,
have been extended to accept sparse matrices and save them efficiently. We have
written a Fortran utility routine that converts a file containing a sparse matrix in the
Harwell-Boeing format [6] into a file that MATLAB can load.
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2.5. The results of sparse operations. What is the result of a MATLAB oper-
ation on sparse matrices? This is really two fundamental questions: what is the value
of the result, and what is its storage class? In this section we discuss the answers that
we settled on for those questions.

A function or subroutine written in MATLAB is called an m-file. We want it to be
possible to write m-files that produce the same results for sparse and for full inputs.
Of course, one could ensure this by converting all inputs to full, but that would defeat
the goal of efficiency. A better idea, we decided, is to postulate that:

The value of the result of an operation does not depend on the storage
class of the operands, although the storage class of the result may.

The only exception is a function to inquire about the storage class of an object:
issparse(A) returns 1 if A is sparse, 0 otherwise.

Some intriguing notions were ruled out by our postulate. We thought, for a while,
that in cases such as A ./ S (which denotes the pointwise quotient of A and S) we
ought not to divide by zero where S is zero, since that would not produce anything
useful; instead we thought to implement this as if it returned A(i,j)/S(i,j) wherever
S(i, j) O, leaving A unchanged elsewhere. All such ideas, however, were dropped in
the interest of observing the rule that the result does not depend on storage class.

The second fundamental question is how to determine the storage class of the
result of an operation. Our decision here is based on three ideas. First, the storage
class of the result of an operation should depend only on the storage classes of the
operands, not on their values or sizes. (Reason: it is too risky to make a heuristic de-
cision about when to sparsify a matrix without knowing how it will be used.) Second,
sparsity should not be introduced into a computation unless the user explicitly asks
for it. (Reason: the full matrix user should not have sparsity appear unexpectedly,
because of the performance penalty in doing sparse operations on mostly nonzero
matrices.) Third, once a sparse matrix is created, sparsity should propagate through
matrix and vector operations, concatenation, and so forth. (Reason: most m-files
should be able to do sparse operations for sparse input or full operations for full input
without modification.)

Thus full inputs always give full outputs, except for functions like sparse, whose
purpose is to create sparse matrices. Sparse inputs, or mixed sparse and full inputs,
follow these rules (where S is sparse and F is full):

Functions from matrices to scalars or fixed-size vectors, like size or nnz,
always return full results.
Functions from scalars or fixed-size vectors to matrices, like zeros, ones,
and eye, generally return full results. Having zeros(re,n) and eye(re,n)
return full results is necessary to avoid introducing sparsity into a full user’s
computation; there are also functions spzeros and speye that return sparse
zero and identity matrices.
The remaining unary functions from matrices to matrices or vectors generally
return a result of the same storage class as the operand (the main exceptions
are sparse and full). Thus, chol (S) returns a sparse Cholesky factor, and
diag (S) returns a sparse vector (a sparse m 1 matrix). The vectors returned
by max(S), sum(S), and their relatives (that is, the vectors of column maxima
and column sums, respectively) are sparse, even though they may well be all
nonzero.



340 JOHN R. GILBERT, CLEVE MOLER, AND ROBERT SCHREIBER

Binary operators yield sparse results if both operands are sparse, and full
results if both are full. In the mixed case, the result’s storage class depends
on the operator. For example, S + F and S \ F (which solves the linear
system SX F) are full; 8., F (the pointwise product) and & F are
sparse.
A block matrix formed by concatenating smaller matrices, like

6’ D

is written as [ B (J D] in MaTLaB. If all the inputs are full, the result is
full, but a concatenation that contains any sparse matrix is sparse. Submatrix
indexing on he right counts as a unary operagor; S(+/-, j) produces a
sparse result (for sparse S) whether i and j are scalars or vectors. Submatrix
indexing on the left, as in (+/-, j) S, does not change the storage class of
he matrix being modified.

These decisions gave us some difl:iculty. Cases like ~S and S -- T, where the result has
many ones when the operands are sparse, made us consider adding more exceptions
o the rules. We discussed the possibiligy of "sparse" matrices in which all the values
not explicitly sored would be some scalar (like 1) rather han ero. We rejected these
ideas in the interest of simplicity.

3. Implementation. This section describes the algorithms for he sparse oper-
ations in MaTgaB in some detail. We begin with a discussion of fundamental data
structures and design decisions.

3.1. Fundamentals.

3.1.1. Data structure. A very important implementation decision is the choice
of a data structure. The internal representation of a sparse matrix must be flexible
enough to implement all the MATLAB operations. For simplicity, we ruled out the
use of different data structures for different operations. The data structure should
be compact, storing only nonzero elements, with a minimum of overhead storage for
integers or pointers. Wherever possible, it should support matrix operations in time
proportional to flops. Since MATLAB is an interpreted, high-level matrix language,
efficiency is more important in matrix arithmetic and matrix-vector operations than
in accessing single elements of matrices.

These goals re met by simple column-oriented scheme that has been widely
used in sparse matrix computation. A sparse matrix is a C record structure with
the following constituents. The nonzero elements are stored in a one-dimensional
array of double-precision reals, in column major order. (If the mtrix is complex, the
imaginary prts are stored in another such array.) A second array of integers stores
the row indices. A third array of n + 1 integers stores the index into the first two
arrays of the leading entry in each of the n columns, and a terminating index whose
value is nnz. Thus a real m n sparse matrix with nnz nonzeros uses nnz reals and
nnz + n - 1 integers.

This scheme is not efficient for manipulating matrices one element at a time:
access to a single element takes time at least proportional to the logarithm of the
length of its column; inserting or removing a nonzero may require extensive data
movement. However, element-by-element mnipulation is rare in MATLAB (and is
expensive even in full MATLAB). Its most common application would be to create
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a sparse matrix, but this is more efficiently done by building a list [i, j, s] of matrix
elements in arbitrary order and then using sparse (+/-, j, s) to create the matrix.

The sparse data structure is allowed to have unused elements after the end of the
last column of the matrix. Thus an algorithm that builds up a matrix one column at
a time can be implemented efficiently by allocating enough space for all the expected
nonzeros at the outset.

3.1.2. Storage allocation. Storage allocation is one of the thorniest parts of
building portable systems. MATLAB handles storage allocation for the user, invisibly
allocating and deallocating storage as matrices appear, disappear, and change size.
Sometimes the user can gain efficiency by preallocating storage for the result of a
computation. One does this in full MATLAB by allocating a matrix of zeros and filling
it in incrementally. Similarly, in sparse MATLAB one can preallocate a matrix (using
sparse) with room for a specified number of nonzeros. Filling in the sparse matrix a
column at a time requires no copying or reallocation.

Within MATLAB, simple "allocate" and "free" procedures handle storage alloca-
tion. (We will not discuss how MATLAB handles its free storage and interfaces to
the operating system to provide these procedures.) There is no provision for doing
storage allocation within a single matrix; a matrix is allocated as a single block of
storage, and if it must expand beyond that block it is copied into a newly allocated
larger block.

MATLAB must allocate space to hold the results of operations. For a full re-
sult, MATLAB allocates mn elements at the start of the computation. This strategy
could be disastrous for sparse matrices. Thus, sparse MATLAB attempts to make a
reasonable choice of how much space to allocate for a sparse result.

Some sparse matrix operations, like Cholesky factorization, can predict in ad-
vance the exact amount of storage the result will require. These operations simply
allocate a block of the right size before the computation begins. Other operations,
like matrix multiplication and LU factorization, have results of unpredictable size.
These operations are all implemented by algorithms that compute one column at a
time. Such an algorithm first makes a guess at the size of the result. If more space
is needed at some point, it allocates a new block that is larger by a constant factor
(typically 1.5) than the current block, copies the columns already computed into the
new block, and frees the old block.

Most of the other operations compute a simple upper bound on the storage re-
quired by the result to decide how much space to allocate--for example, the pointwise
product S .. T uses the smaller of nnz(S) and nnz(T), and S + T uses the smaller
of nnz(S) / nnz(T) and mn.

3.1.3. The sparse accumulator. Many sparse matrix algorithms use a dense
working vector to allow random access to the currently "active" column or row of
a matrix. The sparse MATLAB implementation formalizes this idea by defining an
abstract data type called the sparse accumulator, or SPA. The SPA consists of a dense
vector of real (or complex) values, a dense vector of true/false "occupied" flags, and
an unordered list of the indices whose occupied flags are true.

The SPA represents a column vector whose "unoccupied" positions are zero and
whose "occupied" positions have values (zero or nonzero) specified by the dense real
or complex vector. It allows random access to a single element in constant time, as
well as sequencing through the occupied positions in constant time per element. Most
matrix operations allocate the SPA (with appropriate dimension) at their beginning
and free it at their end. Allocating the SPA takes time proportional to its dimension
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(to turn off all the occupied flags), but subsequent operations take only constant time
per nonzero.

In a sense, the SPA is a register and an instruction set in an abstract machine
architecture for sparse matrix computation. MATLAB manipulates the SPA through
some thirty-odd access procedures. About half of these are operations between the
SPA and a sparse or dense vector, from a "spaxpy" that implements SPA :-- SPA-ax
(where a is a scalar and x is a column of a sparse matrix) to a "spaeq" that tests
elementwise equality. Other routines load and store the SPA, permute it, and access
individual elements. The most complicated SPA operation is a depth-first search on
an acyclic graph, which marks as "occupied" a topologically ordered list of reachable
vertices; this is used in the sparse triangular solve described in 3.4.2.

The SPA simplifies data structure manipulation, because all fill occurs in the SPA;
that is, only in the SPA can a zero become nonzero. The "spastore" routine does not
store exact zeros, and in fact the sparse matrix data structure never contains any
explicit zeros. Almost all real arithmetic operations occur in SPA routines, too, which
simplifies MATLAB’S tally of flops. (The main exceptions are in certain scalar-matrix
operations like 2.h, which are implemented without the SPA for efficiency.)

3.1.4. Asymptotic complexity analysis. A strong philosophical principle in
the sparse MATLAB implementation is that it should be possible to analyze the com-
plexity of the various operations, and that they should be efficient in the asymptotic
sense as well as in practice. This section discusses this principle, in terms of both
theoretical ideals and engineering compromises.

Ideally all the matrix operations would use time proportional to flops, that is,
their running time would be proportional to the number of nonzero real arithmetic
operations performed. This goal cannot always be met: for example, [0 1] + [1 0]
does no nonzero arithmetic. A more accurate statement is that time should be pro-
portional to flops or data size, whichever is larger. Here "data size" means the size of
the output and that part of the input that is used nontrivially; for example, in A,b

only those columns of A corresponding to nonzeros in b participate nontrivially.
This more accurate ideal can be realized in almost all of IATLAB. The exceptions

are some operations that do no arithmetic and cannot be implemented in time propor-
tional to data size. The algorithms to compute most of the reordering permutations
described in 3.3 are efficient in practice but not linear in the worst case. Submatrix
indexing is another example: if and j are vectors of row and column indices, B
A(i,j) may examine all the nonzeros in the columns A(:,j), and B(i,j) A can at
worst take time linear in the total size of B.

The MATLAB implementation actually violates the "time proportional to flops"
philosophy in one systematic way. The list of occupied row indices in the SPA is not
maintained in numerical order, but the sparse matrix data structure does require row
indices to be ordered. Sorting the row indices when storing the SPA would theoretically
imply an extra factor of O(log n) in the worst-case running times of many of the matrix
operations. All our algorithms could avoid this factor--usually by storing the matrix
with unordered row indices, then using a linear-time transposition sort to reorder all
the rows of the final result at once--but for simplicity of programming we included
the sort in "spastore."

The idea that running time should be susceptible to analysis helps the user who
writes programs in MATLAB to choose among alternative algorithms, gives guidance
in scaling up running times from small examples to larger problems, and, in a general-
purpose system like MATLAB, gives some insurance against an unexpected worst-case
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instance arising in practice. Of course, complete a priori analysis is impossible--
the work in sparse LU factorization depends on numerical pivoting choices, and the
efficacy of a heuristic reordering such as minimum degree is unpredictable--but we
feel it is worthwhile to stay as close to the principle as we can.

In a technical report [14] we present some experimental evidence that sparse
MATLAB operations require time proportional to flops and data size in practice.

3.2. Factorizations. The LU and Cholesky factorizations of a sparse matrix
yield sparse results. MATLAB does not yet have a sparse QR factorization. Section 3.6
includes some remarks on sparse eigenvalue computation in MATLAB.

3.2.1. LU factorization. If A is a sparse matrix, [L,U,P] lu(A) returns
three sparse matrices such that PA LU, as obtained by Gaussian elimination with
partial pivoting. The permutation matrix P uses only O(n) storage in sparse format.
As in dense MATLAB, [L,U] lu(A) returns a permuted unit lower triangular and
an upper triangular matrix whose product is A.

Since sparse LU must behave like MATLAB’s full LU, it does not pivot for sparsity.
A user who happens to know a good column permutation Q for sparsity can, of course,
ask for lu (A*Q’), or lu (A ( :, q) ) where q is an integer permutation vector. Section 3.3
describes a few ways to find such a permutation. The matrix division operators \ and /
do pivot for sparsity by default; see 3.4.

We use a version of the GPLU algorithm [15] to compute the LU factorization.
This computes one column of L and U at a time by solving a sparse triangular system
with the already finished columns of L. Section 3.4.2 describes the sparse triangular
solver that does most of the work. The total time for the factorization is proportional
to the number of nonzero arithmetic operations (plus the size of the result), as desired.

The column-oriented data structure for the factors is created as the factorization
progresses, never using any more storage for a column than it requires. However, the
total size of L or U cannot be predicted in advance. Thus the factorization routine
makes an initial guess at the required storage, and expands that storage (by a factor
of 1.5) whenever necessary.

3.2.2. Cholesky factorization. As in full MATLAB, R ahol(/) returns the
upper triangular Cholesky factor of a Hermitian positive definite matrix A. Pivoting
for sparsity is not automatic, but minimum degree and profile-limiting permutations
can be computed as described in 3.3.

Our current implementation of Cholesky factorization emphasizes simplicity and
compatibility with the rest of sparse 1VATLAB; thus it does not use some of the more
sophisticated techniques, such as the compressed index storage scheme [11, 5.4.2],
or supernodal methods to take advantage of the clique structure of the chordal graph
of the factor [2]. It does, however, run in time proportional to arithmetic operations
with little overhead for data structure manipulation.

We use a slightly simplified version of an algorithm from the Yale Sparse Matrix
Package [9], which is described in detail by George and Liu [11]. We begin with a
combinatorial step that determines the number of nonzeros in the Cholesky factor
(assuming no exact cancellation) and allocates a large enough block of storage. We
then compute the lower triangular factor RT one column at a time. Unlike YSMP
and SPARSPAK, we do not begin with a symbolic factorization; instead, we create the
sparse data structure column by column as we compute the factor. The only reason
for the initial combinatorial step is to determine how much storage to allocate for the
result.
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3.3. Permutations. A permutation of the rows or columns of a sparse matrix
A can be represented in two ways. A permutation matrix P acts on the rows of A
as P,h or on the columns as h,P’. A permutation vector p, which is a full vector of
length n containing a permutation of 1 :n, acts on the rows of A as h (p, :) or on the
columns as h (:, p). Here p could be either a row vector or a column vector.

Both representations use O(n) storage, and both can be applied to A in time
proportional to nnz(A). The vector representation is slightly more compact and
efficient, so the various sparse matrix permutation routines all return vectors--full
row vectors, to be precise--with the exception of the pivoting permutation in LU
factorization.

Converting between the representations is almost never necessary, but it is simple.
If I is a sparse identity matrix of the appropriate size, then P is I (p, :) and pT is
I(:,p). Also p is (P*(l:n)’)’ or (l:n),P’. (We leave to the reader the puzzle of
using find to obtain p from P without doing any arithmetic.) The inverse of P is P’;
the inverse r of p can be computed by the "vectorized" statement r(p) l :n.

3.3.1. Permutations for sparsity: Asymmetric matrices. Reordering the
columns of a matrix can often make its LU or QR factors sparser. The simplest such
reordering is to sort the columns by increasing nonzero count. This is sometimes a
good reordering for matrices with very irregular structures, especially if there is great
variation in the nonzero counts of rows or columns.

The MATLAB function p colperm(/t) computes this column-count permuta-
tion. It is implemented as a two-line m-file:

[i,j] find(A);
[ignore,p] sort(diff(find(diff([O j’ inf]))));

The vector j is the column indices of all the nonzeros in A, in column major order.
The inner diff computes first differences of j to give a vector with ones at the starts
of columns and zeros elsewhere; the find converts this to a vector of column-start
indices; the outer diff gives the vector of column lengths; and the second output
argument from sort is the permutation that sorts this vector.

The symmetric reverse Cuthill-McKee ordering described in 3.3.2 can be used
for asymmetric matrices as well; the function symrcm(h) actually operates on the
nonzero structure of A -t- AT. This is sometimes a good ordering for matrices that
come from one-dimensional problems or problems that are in some sense long and
thin.

Minimum degree is an ordering that often performs better than colperm or
symrcm. The sparse MATLAB function p colmmd(A) computes a minimum-degree
ordering for the columns of A. This column ordering is the same as a symmetric
minimum-degree ordering for the matrix ATA, though we do not actually form ATA
to compute it.

George and Liu [10] survey the extensive development of efficient and effective
versions of symmetric minimum degree, most of which is reflected in the symmetric
minimum-degree codes in SPARSPAK, YSMP, and the Harwell Subroutine Library.
The MATLAB version of minimum degree uses many of these ideas, as well as some
ideas from a parallel symmetric minimum-degree algorithm by Gilbert, Lewis, and
Schreiber [13]. We sketch the algorithm briefly to show how these ideas are expressed
in the framework of column minimum degree. The reader who is not interested in all
the details can skip to 3.3.2.
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Although most column minimum-degree codes for asymmetric matrices are based
on a symmetric minimum-degree code, our organization is the other way around:
MATLAB’S symmetric minimum-degree code (described in 3.3.2) is based on its col-
umn minimum-degree code. This is because the best way to represent a symmetric
matrix (for the purposes of minimum degree) is as a union of cliques, or full subma-
trices. When we begin with an asymmetric matrix A, we wish to reorder its columns
by using a minimum-degree order on the symmetric matrix ATA--but each row of A
induces a clique in ATA, so we can simply use A itself to represent ATA instead of
forming the product explictly. Speelpenning [24] called such a clique representation
of a symmetric graph the "generalized element" representation; George and Liu [10]
call it the "quotient graph model." Ours is the first column minimum-degree imple-
mentation that we know of whose data structures are based directly on A, and which
does not need to spend the time and storage to form the structure of ATA. The
idea for such a code is not new, howeverGeorge and Liu [10] suggest it, and our
implementation owes a great deal to discussions with Ng and Peyton of Oak Ridge
National Laboratories.

We simulate symmetric Gaussian elimination on ATA, using a data structure that
represents A as a set of vertices and a set of cliques whose union is the graph of ATA.
Initially, each column of A is a vertex and each row is a clique. Elimination of a
vertex j induces fill among all the (so far uneliminated) vertices adjacent to j. This
means that all the vertices in cliques containing j become adjacent to one another.
Thus all the cliques containing vertex j merge into one clique. In other words, all the
rows of A with nonzeros in column j disappear, to be replaced by a single row whose
nonzero structure is their union. Even though fill is implicitly being added to ATA,
the data structure for A gets smaller as the rows merge, so no extra storage is required
during the elimination.

Minimum degree chooses a vertex of lowest degree (the sparsest remaining column
of ATA, or the column of A having nonzero rows in common with the fewest other
columns), eliminates that vertex, and updates the remainder of A by adding fill (i.e.,
merging rows). This whole process is called a "stage"; after n stages the columns
are all eliminated and the permutation is complete. In practice, updating the data
structure after each elimination is too slow, so several devices are used to perform
many eliminations in a single stage before doing the update for the stage.

First, instead of finding a single minimum-degree vertex, we find an entire "inde-
pendent set" of minimum-degree vertices with no common nonzero rows. Eliminating
one such vertex has no effect on the others, so we can eliminate them all at the same
stage and do a single update. George and Liu call this strategy "multiple elimination."
(They point out that the resulting permutation may not be a strict minimum-degree
order, but the difference is generally insignificant.)

Second, we use what George and Liu call "mass elimination": After a vertex j
is eliminated, its neighbors in ATA form a clique (a single row in A). Any of those
neighbors whose own neighbors all lie within that same clique will be a candidate for
elimination at the next stage. Thus, we may as well eliminate such a neighbor during
the same stage as j, immediately after j, delaying the update until afterward. This
often saves a tremendous number of stages because of the large cliques that form late
in the elimination. (The number of stages is reduced from the height of the elimination
tree to approximately the height of the clique tree; for many two-dimensional finite
element problems, for example, this reduces the number of stages from about
to about log n.) Mass elimination is particularly simple to implement in the column
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data structure: after all rows with nonzeros in column j are merged into one row, the
columns to be eliminated with j are those whose only remaining nonzero is in that
new row.

Third, we note that any two columns with the same nonzero structure will be
eliminated in the same stage by mass elimination. Thus we allow the option of com-
bining such columns into "supernodes" (or, as George and Liu call them, "indistin-
guishable nodes"). This speeds up the ordering by making the data structure for A
smaller. The degree computation must account for the sizes of supernodes, but this
turns out to be an advantage for two reasons. The quality of the ordering actually
improves slightly if the degree computation does not count neighbors within the same
supernode. (George and Liu observe this phenomenon and call the number of neigh-
bors outside a vertex’s supernode its "external degree.") Also, supernodes improve
the approximate degree computation described below. Amalgamating columns into
supernodes is fairly slow (though it takes time only proportional to the size of A).
Supernodes can be amalgamated at every stage, periodically, or never; the current
default is every third stage.

Fourth, we note that the structure of ATA is not changed by dropping any row
of A whose nonzero structure is a subset of that of another row. This row reduction
speeds up the ordering by making the data structure smaller. More significantly, it
allows mass elimination to recognize larger cliques, which decreases the number of
stages dramatically. Duff and Reid [8] call this strategy "element absorption." Row
reduction takes time proportional to multiplying AAT in the worst case (though the
worst case is rarely realized and the constant of proportionality is very small). By
default, we reduce at every third stage; again the user can change this.

Fifth, to achieve larger independent sets and hence fewer stages, we relax the
minimum-degree requirement and allow elimination of any vertex of degree at most
d+/, where d is the minimum degree at this stage and and/ are parameters. The
choice of threshold can be used to trade off ordering time for quality of the resulting
ordering. For problems that are very large, have many right-hand sides, or factor
many matrices with the same nonzero structure, ordering time is insignificant and
the tightest threshold is appropriate. For one-off problems of moderate size, looser
thresholds like 1.5d + 2 or even 2d + 10 may be appropriate. The threshold can be set
by the user; its default is 1.2d + 1.

Sixth and last, our code has the option of using an "approximate degree" instead
of computing the actual vertex degrees. Recall that a vertex is a column of A, and its
degree is the number of other columns with which it shares some nonzero row. Com-
puting all the vertex degrees in ATA takes time proportional to actually computing
ATA, though the constant is quite small and no extra space is needed. Still, the exact
degree computation can be the slowest part of a stage. If column j is a supernode
containing n(j) original columns, we define its approximate degree as

d(j) (nnz(A(i, :)) n(j)).
ajO

This can be interpreted as the sum of the sizes of the cliques containing j, except
that j and the other columns in its supernode are not counted. This is a fairly good
approximation in practice; it errs only by overcounting vertices that are members of
at least three cliques containing j. George and Liu call such vertices "outmatched
nodes," and observe that they tend to be rare in the symmetric algorithm. Computing
approximate degrees takes only time proportional to the size of A.
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Column minimum degree sometimes performs poorly if the matrix A has a few
very dense rows, because then the structure of ATA consists mostly of the cliques
induced by those rows. Thus colmmd will withhold from consideration any row con-
taining more than a fixed proportion (by default, 50 percent) of nonzeros.

All these options for minimum degree are under the user’s control, though the
casual user of MATLAB never needs to change the defaults. The default settings use
approximate degrees, row reduction and supernode amalgamation every third stage,
and a degree threshold of 1.2d + 1, and withhold rows that are at least 50 percent
dense.

3.3.2. Permutations for sparsity: Symmetric matrices. Preorderings for
Cholesky factorization apply symmetrically to the rows and columns of a symmetric
positive definite matrix. Sparse MATLAB includes two symmetric preordering permu-
tation functions. The co:[perm permutation can also be used as a symmetric ordering,
but it is usually not the best choice.

Bandwidth-limiting and profile-limiting orderings are useful for matrices whose
structure is "one-dimensional" in a sense that is hard to make precise. The reverse
Cuthill-McKee ordering is an effective and inexpensive profile-limiting permutation.
MATLAB function p symrcm(h) returns a reverse Cuthill-McKee permutation for
symmetric matrix A. The algorithm first finds a "pseudo-peripheral" vertex of the
graph of A, then generates a level structure by breadth-first search and orders the
vertices by decreasing distance from the pseudo-peripheral vertex. Our implementa-
tion is based closely on the SPARSPAK implementation as described by George and
Liu [11].

Profile methods like reverse Cuthill-McKee are not the best choice for most large
matrices arising from problems with two or more dimensions, or problems without
much geometric structure, because such matrices typically do not have reorderings
with low profile. The most generally useful symmetric preordering in MATLAB is
minimum degree, obtained by the function p symmmd (h). Our symmetric minimum-
degree implementation is based on the column minimum degree described in 3.3.1.
In fact, symmmd just creates a nonzero structure K with a column for each column
of A and a row for each above-diagonal nonzero in A, such that KTK has the same
nonzero structure as A; it then calls the column minimum-degree code on K.

3.3.3. Nonzero diagonals and block triangular form. A square nonsingular
matrix A always has a row permutation p such that A(p, :) has nonzeros on its main
diagonal. The MATLAB function p dmperm (h) computes such a permutation. With
two output arguments, the function [p, qJ dmperm (h) gives both row and column
permutations that put A into block upper triangular form; that is, A(p, q) has a
nonzero main diagonal and a block triangular structure with the largest possible
number of blocks. Notice that the permutations p returned by these two calls are
likely to be different.

The most common application of block triangular form is to solve a reducible
system of linear equations by block back-substitution, factoring only the diagonal
blocks of the matrix. Figure 9 is an m-file that implements this algorithm. The m-file
illustrates the call [p, q,r] dmperm(A), which returns p and q as before, and also
a vector r giving the boundaries of the blocks of the block upper triangular form. To
be precise, if there are b blocks in each direction, then r has length b + 1, and the ith
diagonal block of A(p, q) consists of rows and columns with indices from r(i) through
r(i + 1)- 1.
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FIG. 3. The Cholesky factor of a matrix and its elimination tree.

Any matrix, whether square or not, has a form called the "Dulmage-Mendelsohn
decomposition" [4], [20], which is the same as ordinary block upper triangular form if
the matrix is square and nonsingular. The most general form of the decomposition,
for arbitrary rectangular A, is [p,q,r,s] dmperm(h). The first two outputs are
permutations that put A(p, q) into block form. Then r describes the row boundaries
of the blocks and s the column boundaries: the ith diagonal block of A(p, q) has rows

r(i) through r(i q-1)-1 and columns s(i) through s(i-F 1)-1. The first diagonal block
may have more columns than rows, the last diagonal block may have more rows than
columns, and all the other diagonal blocks are square. The subdiagonal blocks are all
zero. The square diagonal blocks have nonzero diagonal elements. All the diagonal
blocks are irreducible; for the nonsquare blocks, this means that they have the "strong
Hall property" [4]. This block form can be used to solve least squares problems by a
method analogous to block back-substitution; see the references for more details.

3.3.4. Elimination trees. The elimination tree [21] of a symmetric positive
definite matrix describes the dependences among rows or columns in Cholesky factor-
ization. Liu [16] surveys applications of the elimination tree in sparse factorization.
The nodes of the tree are the integers 1 through n, representing the rows of the matrix
and of its upper triangular Cholesky factor. The parent of row is the smallest j >
such that the (i, j) element of the upper triangular Cholesky factor of the matrix is
nonzero; if row of the factor is zero after the diagonal, then i is a root. If the matrix
is irreducible, then its only root is node n.

Liu describes an algorithm to find the elimination tree without forming the
Cholesky factorization, in time almost linear in the size of the matrix. That algo-
rithm is implemented as the MATLAB function It, q] etree (h). The resulting tree
is represented by a row vector t of parent pointers: t(i) is the parent of node i, or
zero if i is a root.

The optional second output q is a permutation vector that gives a postorder
permutation of the tree, or of the rows and columns of A. This permutation reorders
the tree vertices so that every subtree is numbered consecutively, with the subtree’s
root last. This is an "equivalent reordering" of A, to use Liu’s terminology: the
Cholesky factorization of A(q, q) has the same fill, operation count, and elimination
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tree as that of A. The permutation brings together the "fundamental supernodes"
of A, which are full blocks in the Cholesky factor whose structure can be exploited in
vectorized or parallel supernodal factorization [2], [17].

The postorder permutation can also be used to lay out the vertices for a picture
of the elimination tree. The function tspy(A) plots a picture of the elimination tree
of A, as shown in Fig. 3.

3.4. Matrix division. The usual way to solve systems of linear equations in
MATLAB is not by calling lu or chol, but with the matrix division operators / and \.
If A is square, the result of X A\B is the solution to the linear system AX B;
if A is not square then a least squares solution is computed. The result of X
is the solution to A XB, which is (B’\h’)’. Full MATLAB computes A\B by LU
factorization with partial pivoting if A is square, or by QR factorization with column
pivoting if not.

3.4.1. The sparse linear equation solver. Like full MATLAB, sparse MATLAB
uses direct factorization methods to solve linear systems. The .philosophy behind this
is that iterative linear system solvers are best implemented as MATLAB m-files, which
can use the sparse matrix data structures and operations in the core of MATLAB.

If A is sparse, MATLAB chooses among a sparse triangular solve, sparse Cholesky
factorization, and sparse LU factorization, with optional preordering by minimum
degree in the last two cases. The result returned has the same storage class as B.
The outline of sparse A\B is as follows.

If A is not square, solve the least squares problem.
Otherwise, if A is triangular, perform a sparse triangular solve for each column
of B.
Otherwise, if A is a permutation of a triangular matrix, permute it and then
perform a sparse triangular solve for each column of B.
Otherwise, if A is Hermitian and has positive real diagonal elements, find a
symmetric minimum-degree order p and attempt to compute the Cholesky
factorization of A(p, p). If successful, finish with two sparse triangular solves
for each column of B.
Otherwise (if A is not Hermitian with positive diagonal or if Cholesky fac-
torization fails), find a column minimum-degree order p, compute the LU
factorization with partial pivoting of A(:, p), and perform two sparse triangu-
lar solves for each column of B.

Section 3.5 describes the sparse least squares method we currently use.
For a square matrix, the four possibilities are tried in order of increasing cost.

Thus, the cost of checking alternatives is a small fraction of the total cost. The test
for triangular A takes only O(n) time if A is n n; it just examines the first and
last row indices in each column. (Notice that a test for triangularity would take
O(n2) time for a full matrix.) The test for a "morally triangular" matrix, which
is a row and column permutation of a nonsingular triangular matrix, takes time
proportional to the number of nonzeros in the matrix and is in practice very fast.
(A Dulmage-Mendelsohn decomposition would also detect moral triangularity, but
would be slower.) These tests mean that, for example, the MATLAB sequence

[L,U] lu(A)
y L\b;
x U\y;
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will use triangular solves for both matrix divisions, since L is morally triangular and
U is triangular.

The test for Hermitian positive diagonal is an inexpensive guess at when to use
Cholesky factorization. Cholesky is quite a bit faster than LU, both because it does
half as many operations and because storage management is simpler. (The time to
look at every element of A in the test is insignificant.) Of course it is possible to
construct examples in which Cholesky fails only at the last column of the reordered
matrix, wasting significant time, but we have not seen this happen in practice.

The function sppar,s can be used to turn the minimum-degree preordering off if
the user knows how to compute a better preorder for the particular matrix in question.

MATLAB’S matrix division does not have a block triangular preordering built in,
unlike (for example) the Harwell 1A28 code. Block triangular preordering and solution
can be implemented easily as an m-file using the dmperm function; see 4.3.

Full MATLAB uses the LINPACK condition estimator and gives a warning if the
denominator in matrix division is nearly singular. Sparse MATLAB should do the
same, but the current version does not yet implement it.

3.4.2. Sparse triangular systems. The triangular linear system solver, which
is also the main step of LU factorization, is based on an algorithm of Gilbert and
Peierls [15]. When A is triangular and b is a sparse vector, x A\b is computed
in two steps. First, the nonzero structures of A and b are used (as described below)
to make a list of the nonzero indices of x. This list is also the list of columns of
A that participate nontrivially in the triangular solution. Second, the actual values
of x are computed by using each column on the list to update the sparse accumulator
with a "spaxpy" operation (3.1.3). The list is generated in a "topological" order,
which is one that guarantees that xi is computed before column of A is used in a
spaxpy. Increasing order is one topological order of a lower triangular matrix, but
any topological order will serve.

It remains to describe how to generate the topologically ordered list of indices
efficiently. Consider the directed graph whose vertices are the columns of A, with
an edge from j to if aij 0. (No extra data structure is needed to represent this
graph--it is just an interpretation of the standard column data structure for A.) Each
nonzero index of b corresponds to a vertex of the graph. The set of nonzero indices
of x corresponds to the set of all vertices of b, plus all vertices that can be reached
from vertices of b via directed paths in the graph of A. (This is true even if A is
not triangular [12].) Any graph-searching algorithm could be used to identify those
vertices and find the nonzero indices of x. A depth-first Search has the advantage
that a topological order for the list can be generated during the search. We add each
vertex to the list at the time the depth-first search backtracks from that vertex. This
creates the list in the reverse of a topological order; the numerical solution step then
processes the list backwards, in topological order.

The reason to use this "reverse postorder" as the topological order is that there
seems to be no way to generate the list in increasing or decreasing order, and the time
wasted in sorting it would often be more than the number of arithmetic operations.
However, the depth-first search examines just once each nonzero of A that participates
nontrivially in the solve. Thus generating the list takes time proportional to the
number of nonzero arithmetic operations in the numerical solve. This means that LU
factorization can run in time proportional to arithmetic operations.

3.5. Least squares and the augmented system. We have not yet written a
sparse QR factorization for the core of MATLAB. Instead, linear least squares problems
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of the form

min b Ax

are solved via the augmented system of equations

r+Ax b,
ATr O.

Introducing a residual scaling parameter , this can be written

(oi 
The augmented matrix, which inherits any sparsity in A, is symmetric, but clearly

no positive definite. We ignore the symmetry and solve the linear system with a
general sparse U factoriation, although a symmetric, indefinite factoriation might
be twice ft.

A recent note by Bj6rck [a] analyes the choice of the parameter by bounding
the effect of roundoff errors on the error in the computed solution . The value of
that minimizes the bound involves two quaniies, Ilrl and the smallest singular value
of A, which are too expensive to compute. Instead, we use an apparently satisfactory
substitute,

m laijl/lO00.

This approach h been used by several other authors, including Arioli, Duff, and de
Rijk [1], who do use a symmetric factorization and a similar heuristic for choosing .

It is not clear whether augmented matrices, orthogonal factorizations, or iterative
methods are preferable for let squares problems, from either an efficiency or an
accuracy point of view. We have chosen the augmented matrix approach because it
is competitive with the other approaches, and because we could use existing code.

3.6. Eigenvalues of sparse matrices. We expect that most eigenvalue com-
putations involving sparse matrices will be done with iterative methods of Lanczos
and Arnoldi type, implemented outside the core of MATLAB m-files. The most
time-consuming portion will be the computation of Ax for sparse A and dense x,
which can be done efficiently using our core operations.

However, we do provide one almost direct technique for computing all the eigen-
values (but not the eigenvectors) of a real symmetric or complex Hermitian sparse
matrix. The reverse Cuthill-McKee algorithm is first used to provide a permutation
that reduces the bandwidth. Then an algorithm of Schwartz [22] provides a sequence
of plane rotations that further reduces the bandwidth to tridiagonal. Finally, the
symmetric tridiagonal QR algorithm from dense MATLAB yields all the eigenvalues.

4. Examples. This section gives the flavor of sparse MATLAB by presenting
several examples. First, we show the effect of reorderings for sparse factorization by
illustrating a Cholesky factorization with several different permutations. Then we
give two examples of m-files, which are programs written in the MATLAB language
to provide functionality that is not implemented in the "core" of MATLAB. These
sample m-files are simplified somewhat for the purposes of presentation. They omit
some of the error checking that would be present in real implementations, and they
could be written to contain more flexible options than they do.
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FIG. 4. The structure of S and its Cholesky factor.
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FIG. 5. Matrix S and its Cholesky factor after reverse Cuthill-McKee reordering.

4.1. Effect of permutations on Cholesky factors. This sequence of exam-
ples illustrates the effect of reorderings on the computation of the Cholesky factor-
ization of one symmetric test matrix. The matrix is S WWT where W is the
Harwell-Boeing matrix WEST04?9 [6], a model due to Westerberg of an eight-stage
chemical distillation column.

TABLE 2

Effect of permutations on Cholesky factorization.

nnz Time

Original order 30141 5.64
Reverse Cuthill-McKee 23866 4.26
Column count 12675 1.91
Minimum degree 12064 1.75

There are four figures. Each figure shows two spy plots, first a particular symmet-
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FIG. 6. Matrix S and its Cholesky factor after column count reordering.
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FIG. 7. Matrix S and its Cholesky factor after minimum-degree reordering.

ric permutation of S and then the Cholesky factor of the permuted matrix. Figure 4
is the original ordering; Fig. 5 uses symmetric reverse Cuthill-McKee, symrcm; Fig. 6
uses the column count permutation, colperm; Fig. 7 uses symmetric minimum degree,
symd. Each of the spy plots shows a matrix profile that is typical for the underlying
permutation: Cuthill-McKee shows an envelope; column count shows all the mass in
the later rows and columns; and minimum degree shows a recursive pattern curiously
similar to divide-and-conquer orderings like nested dissection.

The matrix S is of order 479 and has 7551 nonzeros. Table 2 shows the number
of nonzeros and the execution time in seconds (on a Sun SPAPCstation-1) required to
compute the Cholesky factors for each of the permutations. The behavior of symrcm
and symd is typical; both produce significant reductions in nnz and in the execution
time. The behavior of coperm is less typical; its reductions re not usually this
significant.
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function x cgsolve (A,b,tol)

Solve A,x b by the conjugate gradient method.
Iterate until norm(A,x-b) / norm(b) <= tol.

x zeros(size(b))
r=b;
rtr r’*r;
p zeros(size(b))
beta O;
while (norm(r) > tol norm(b) )

p r + beta * p;
Ap=A ,p;
alpha rtr / ( p’ * Ap );
x x + alpha p;
r r- alpha Ap;
rtrold rtr;
rtr r’,r;
beta rtr / rtrold;

end

FIG. 8. Solving Ax- b by conjugate gradients.

function x dmsolve (A,b)

Solve A,x b by permuting A to block
upper triangular form and then performing
block back substitution.

Permute A to block form.
[p,q,r] dmperm(A);
nblocks length (r) -l

A(p,q)
b(p);

Y@ Block backsolve.
for k nblocks -1 1

Indices above the kth block.
1 r(k)-l;

Indices of the kth block.
r(k) r(k+l)-l;

x(j) h(j,j) \ x(j);
x(i) x(i) A(i,j) * x(j);

end;

Undo the permutation of x.
x(q) x;

FIG. 9. Solving Ax- b by block triangular back-substitution.
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4.2. The conjugate gradient method. Iterative techniques like the conjugate
gradient method are often attractive for solving large sparse systems of linear equa-
tions. Figure 8 is an m-file for a conjugate gradient method. The code is somewhat
simplified--a real code might use a more complicated criterion for termination, might
compute Ap in a gubroutine call in case A is not held explicitly, and might provide for
preconditioning--but it illustrates an important point. Sparsity is never mentioned
explicitly in the code. If the argument A is sparse, then/tp /t.p will be computed
as a sparse operation; if A is full, then all the operations will be full.

In contrast to sparse direct methods, most iterative methods operate on matrices
and vectors at a high level, typically using the coefficient matrix only in matrix-
vector multiplications. This is the reason for our decision not to build an iterative
linear solver into the core of MATLAB; such solvers can be more easily and flexibly
written as m-files that make use of the basic sparse operations.

4.3. Solving reducible systems. If A is a reducible matrix, the linear system
Ax b can be solved by permuting A to block upper triangular form (with irreducible
diagonal blocks) and then performing block back-substitution. Only the diagonal
blocks of the permuted matrix need to be factored, saving fill and arithmetic in the
above-diagonal blocks. This strategy is incorporated in some existing Fortran sparse
matrix packages, most notably Duff and Reid’s code MA28 in the Harwell Subroutine
Library [7]. Figure 9 is an implementation as a MATLAB m-file. This function is a
good illustration of the use of permutation vectors.

The call [p, q,r] dmperm(A) returns a row permutation p and a column per-
mutation q to put A in block triangular form. The third output argument r is an
integer vector describing the boundaries of the blocks: the kth block of A(p, q) includes
indices from r(k) to r(k + 1) 1. The loop has one iteration for each diagonal block;
note that i and j are vectors of indices. The code resembles an ordinary triangular
backsolve, but at each iteration the statement x (j) A (j, j ) \ x (j) solves for an
entire block of x at once by sparse LU decomposition (with column minimum-degree
ordering) of one of the irreducible diagonal blocks of A.

Again, this code is simplified a bit. A real code would merge every sequence of
adjacent 1 1 diagonal blocks into a single triangular block, thus reducing the number
of iterations of the main loop.

REFERENCES

[1] M. ARIOLI, I. S. DUFF, AND P. P. M. DE RIJK, On the augmented system approach to least-
squares problems, Numer. Math., 55 (1989), pp. 667-684.

[2] C. ASHCRAFT, R. GRIMES, J. LEWIS, B. PEYTON, AND H. SIMON, Progress in sparse matrix
methods for large linear systems on vector supercomputers, Internat. J. Supercomput.
Appl., 1 (1987), pp. 10-30.

[3] A. BJRCK, A note on scaling in the augmented system methods, unpublished manuscript,
1991.

[4] T. F. COLEMAN, A. EDENBRANDT, AND J. R. GILBERT, Predicting fill for sparse orthogonal
factorization, J. Assoc. Comput. Mach., 33 (1986), pp. 517-532.

[5] J. DONGARRA, J. BUNCH, C. MOLER, AND G. STEWART, LINPACK Users’ Guide, Society for
Industrial and Applied Mathematics, Philadelphia, PA, 1978.

[6] I. S. DUFF, R. G. GRIMES, AND J. G. LEWIS, Sparse matrix test problems, ACM Trans. Math.
Software, 15 (1989), pp. 1-14.

[7] I. S. DUFF AND J. K. REID, Some design features of a sparse matrix code, ACM Trans. Math.
Software, 5 (1979), pp. 18-35.

[8] , The multifrontal solution of indefinite sparse symmetric linear equations, ACM Trans.
Math. Software, 9 (1983), pp. 302-325.



356 JOHN R. GILBERT, CLEVE MOLER, AND ROBERT SCHREIBER

[9] S. C. EISENSTAT, M. H. SCHULTZ, AND A. H. SHERMAN, Algorithms and data structures for
sparse symmetric Gaussian elimination, SIAM J. Sci. Statist. Comput., 2 (1981), pp. 225-
237.

[10] A. GEORGE AND J. LIU, The evolution o] the minimum degree ordering algorithm, SIAM Rev.,
31 (1989), pp. 1-19.

[11] Computer Solution o] Large Sparse Positive Definite Systems, Prentice-Hall, Engle-
wood Cliffs, NJ, 1981.

[12] J. R. GILBERT, Predicting structure in sparse matrix computations, Tech. Report 86-750, Cor-
nell University, Ithaca, NY, 1986; SIAM J. Matrix Anal. Appl., submitted.

[13] J. R. GILBERT, C. LEWIS, AND R. SCHREIBER, Parallel preordering ]or sparse matrix actor-
ization, in preparation.

[14] J. R. GILBERT, C. MOLER, AND R. SCHREIBER, Sparse matrices in Matlab: Design and im-
plementation, Tech. Report CSL 91-4, Xerox Palo Alto Research Center, Palo Alto, CA,
1991.

[15] J. R. GILBERT AND T. PEIERLS, Sparse partial pivoting in time proportional to arithmetic
operations, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 862-874.

[16] J. W. H. LIU, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal.
Appl., 11 (1990), pp. 134-172.

[17] J. W. H. LIU, E. NG, AND B. W. PEYTON, On finding supernodes for sparse matrix computa-
tions, Tech. Report ORNL/TM-11563, Oak Ridge National Laboratory, Oak Ridge, TN,
1990; SIAM J. Matrix Anal. Appl., 14 (1992), to appear.

[18] THE MATHWORKS, Pro-Matlab User’s Guide, South Natick, MA, 1990.
[19] C. MOLER, Matrix computations with Fortran and paging, Comm. ACM, 15 (1972), pp. 268-

270.
[20] A. POTHEN AND C.-J. FAN, Computing the block triangular form of a sparse matrix, ACM

Trans. Math. Software, 16 (1990), pp. 303-324.
[21] R. SCHREIBER, A new implementation o] sparse Gaussian elimination, ACM Trans. Math.

Software, 8 (1982), pp. 256-276.
[22] H. SCHWARTZ, Tridiagonalization of a symmetric band matrix, Numer. Math., 12 (1968),

pp. 231-241; Also in [26, pp. 273-283].
[23] B. SMITH, J. BOYLE, Y. IKEBE, V. KLEMA, AND C. MOLER, Matrix Eigensystem Routines:

EISPACK Guide, Second Edition, Springer-Verlag, New York, 1970.
[24] B. SPEELPENNING, The generalized element method, Tech. Report UIUCDCS-R-78-946, Uni-

versity of Illinois, Urbana, IL, 1978.
[25] UNITED KINGDOM ATOMIC ENERGY AUTHORITY, Harwell subroutine library: A catalogue of

subroutines, Tech. Report AERE R 9185, Harwell Laboratory, Oxfordshire, Great Britain,
1988.

[26] J. WILKINSON AND C. REINSCH, EDS., Linear Algebra, Vol. 2, Handbook for Automatic Com-
putation, Springer-Verlag, New York, 1971.



SIAM J. MATRIX ANAL. APPL.
Vol. 13, No. 1, pp. 357-385, January 1992

() 1992 Society for Industrial and Applied Mathematics
024

IMPLICIT APPLICATION OF POLYNOMIAL FILTERS
IN A K-STEP ARNOLDI METHOD*
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Abstract. The Arnoldi process is a well-known technique for approximating a few eigenvalues
and corresponding eigenvectors of a general square matrix. Numerical difficulties such as loss of
orthogonality and assessment of the numerical quality of the approximations, as well as a potential
for unbounded growth in storage, have limited the applicability of the method. These issues are
addressed by fixing the number of steps in the Arnoldi process at a prescribed value k and then
treating the residual vector as a function of the initial Arnoldi vector. This starting vector is then
updated through an iterative scheme that is designed to force convergence of the residual to zero.
The iterative scheme is shown to be a truncation of the standard implicitly shifted QRoiteration for
dense problems and it avoids the need to explicitly restart the Arnoldi sequence. The main emphasis
of this paper is on the derivation and analysis of this scheme. However, there are obvious ways to
exploit parallelism through the matrix-vector operations that comprise the majority of the work in
the algorithm. Preliminary computational results are given for a few problems on some parallel and
vector computers.

Key words. Arnoldi method, eigenvalues, polynomial filter, iterative refinement, parallel com-
puting
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1. Introduction. Large scale eigenvalue problems arise in a variety of settings.
Often these very large problems arise through the discretization of a linear differential
operator in an attempt to approximate some of the spectral properties of the operator.
However, there are a considerable number of sources other than PDE. Saad gives a
number of examples in [28].

The Lanczos method [19] is a popular algorithm for solving large symmetric eigen-
value problems. The Arnoldi process [1] is a generalization of the Lanczos method
which is appropriate for finding a few eigenvalues and corresponding eigenvectors of
a large nonsymmetric matrix. These methods only require one to compute action of
the matrix on a vector through a matrix-vector product. Often this may be accom-
plished without explicit storage of the matrix and this property, along with a number
of theoretical and computational features, has contributed to the widespread appeal
of these methods. However, both of these share some inherent numerical difficulties,
which have been the subject of considerable research over the last two decades [8],

In this paper these methods will be discussed from a new perspective. The goal is
to address the nonsymmetric problem and thus the focus is on the Arnoldi algorithm.
However, since the Arnoldi method reduces to the Lanczos method when the matrix
is symmetric, everything that is developed here is applicable to the symmetric case as
well, with obvious savings in computational effort available through the exploitation
of symmetry. Traditionally, the point of view has been to let the Arnoldi or the
Lanczos sequence develop without bound while monitoring error estimates associated
with the Ritz vectors to identify converged eigenvalues. However, if one explores the
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relation with the QR-iteration it is apparent that the Arnoldi (Lanczos) method is
really a truncated reduction of the given matrix into upper Hessenberg (tridiagonal)
form. The iterative phase of the QR-method does not have an analogy within the
traditional treatment of these algorithms.

A variant of the Arnoldi method which includes such an iterative phase is devel-
oped here by analogy to the well-known implicitly shifted QWiteration [14], [33], [35]
for dense matrices. Such an analogy may be developed if one treats the residual vector
as a function of the initial Arnoldi (Lanczos) vector, and then attempts to iteratively
improve this vector in such a way as to force the residual vector to zero.

In 2 we develop the Arnoldi factorization, expose the functional dependence of
the residual on the starting vector, and give necessary and sufficient conditions for a
starting vector to produce a zero residual. In 3 we show how to update the start-
ing vector through implicit application of a polynomial filter to this vector on each
iteration. The implicit application of this polynomial filter is accomplished through
a truncated version of the implicitly shifted QR-iteration. Within this context, an
updating scheme is developed which preserves an Arnoldi (Lanczos) factorization of
predetermined size. The method generalizes explicit restart methods and as shown
in 4, it is possible to implement a mathematically equivalent implicit method corre-
sponding to all of the explicitly restarted methods that we are aware of. Convergence
results for specific restart strategies are given in 5. Extension to the generalized
problem is discussed in 6 and preliminary computational results are presented in 7.

The idea of iteratively forcing the residual to zero is not new. Variants of this idea
were introduced early by Karush in [18]. Cullum and her colleagues have investigated
explicit restart methods for the symmetric case [5], [6], [8]. Most recently the idea has
been explored by Saad in [28], [29], by Chatelin and Ho in [2], and by Chronopoulos
in [3] for the nonsymmetric case. All of these techniques use eigensystem information
from the projected matrix to construct an updated starting vector for the Arnoldi
(Lanczos) process, and then restart this process from scratch. Here, a computational
framework is developed that updates the Arnoldi factorization instead of restarting
it.

This approach has several advantages over more traditional approaches. The num-
ber of eigenvalues that are sought is prespecified. This fixes the storage requirements
instead of allowing them to become arbitrarily large. It is expected that the number
of eigenvalues that are sought will be modest, and in this situation, orthogonality of
the Arnoldi (Lanczos) basis for the Krylov subspace can be maintained. Therefore,
the questions of spurious eigenvalues and selective reorthogonalization do not enter.
Finally, the well-understood deflation rules associated with the QR-iteration may be
carried over directly to the technique.

2. The Arnoldi factorization. The Arnoldi factorization may be viewed as a
truncated reduction of an n x n matrix A to upper Hessenberg form. After k steps of
the factorization one has

(2.1) AV VH + re,
where V E Rnxk, vTv Ik, H Rkxk is upper Hessenberg, r R’ with 0- VTr.
An alternative way to write (2.1) is

(2.2) AV (V, v) ( H ) 1

ekT where / Ilrll and v r.
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From this representation, it is apparent that (2.2) is just a truncation of the complete
reduction

(2.3) A(V, )= (V, )( /ele’H M/:/ )
where (V, ) is an orthogonal n n matrix and/:/is an upper Hessenberg matrix of
order n- k. Equation (2.2) and hence (2.1) may^be derived from (2.3) by equating
the first k columns of both sides and setting v Vel.

Approximate eigenvalues and eigenvectors are readily available through this fac-
torization. If Hy yO is an eigenpair for H, then the vector x Vy satisfies

Ia yl.IIAx Oll II(AV VH)y]I T

We call the vector x a Ritz vector and the approximate eigenvalue a Ritz value and
note that the smaller TIek Yl is, the better these approximations are.

The factorization (2.1) may be advanced one step through the following recursion
formulas:

1
(2.3.1) --I1’11, v r,
(2.3.2) V+ (V, v),

(2.3.3) w= Av, ( h )( V+Tw

(2.3.4) H+: e"

(2.a.) r+ -w-V+

From this development it is easily seen that

TAV+ V+H+ + r+ek+ y_ y+ I + y_r+ O

In a certain sense, computation of the projection indicated at step (2.3.5) has been
the main source of research activity in this topic. The computational difficulty stems
from the fact that [Irll 0 if and only if the columns of V span an invariant subspace
of A. When Y "nearly" spans such a subspace Ilrll will be small. Typically, in this
situation, a loss of significant digits will take place at step (2.3.5) through numerical
cancellation unless special care is taken. On the one hand, it is a delightful situation
when Ilrll becomes small because this indicates that the eigenvalues of H are accu-
rate approximations to the eigenvalues of A. On the other hand, this "convergence"
will indicate a probable loss of numerical orthogonality in V. The identification of
this phenomenon in the symmetric case and the first rigorous numerical treatment is
due to Paige [22], [23]. There have been several approaches to overcoming this prob-
lem in the symmetric case. They include: (1) complete reorthogonalization which
may be accomplished through maintaining Y in product Householder form [15], [34]
or through the modified Gram-Schmidt processes with reorthogonalization [9], [26];
(2) Selective reorthogonalization, which has been proposed by Parlett and has been
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heavily researched by him and his students. Most notably, the thesis and subsequent
papers and computer codes of Scott have developed this idea [24], [25], [31]; (3) No
reorthogonalization, which has been developed by Cullum and her colleagues. This
last option introduces the almost certain possibility of introducing spurious eigenval-
ues. Various techniques have been developed to detect and deal with the presence of
spurious eigenvalues [7], [8].

The appearance of spurious eigenvalues may be avoided through complete re-
orthogonalization of the Arnoldi (or Lanczos) vectors. Computational cost has been
cited as the reason for not employing this option. However, the cost will be reasonable
if one is able to fix k at a modest size and then update the starting vector Vl Vel
while repeatedly doing k-Arnoldi steps. This approach has been explored to some
extent in [2], [28]. In the symmetric case Cullum [6] relates a variant of this approach
(which has been termed an s-step method) to applying a fixed number of conju-
gate gradient steps to minimize (maximize) (vVT, A> where (B,A> trace(BTA) is
the Frobenius product functional with V restricted to the generalized block Krylov
subspace. However, while this argument gives considerable credence to the restart
procedure, it does not establish convergence.

Throughout the remainder of this paper, the k-step approach will be developed
from a different point of view. An attempt will be made to iteratively update Vl in
order to force the residual vector r(vl) to zero. In order to make sense of this it will
be necessary to understand when r is indeed a function of vl and also to determine
its functional form and characterize the zeros of this function.

The classic simple result that explains when r is a function of Vl is the implicit
Q-theorem.

THEOREM 2.4. Suppose

AV VH + re[,
eTAQ-QG+f k,

where Q, V have orthonormal columns and G, H are both upper Hessenberg with pos-
itive subdiagonal elements. If Qel Vel and QTf VTr O, then Q V, G H,
and f r.

Proof. There is a straightforward inductive proof (or see I16, p. 367]). El
Of course the Krylov space

:k(A, vl) Span (vl, Avl, A2vl, Ak-lvl }

plays an important role along with the Krylov matrix

A-K (vl,Avl,..., Vl)

An alternate derivation of the Arnoldi process is to consider the companion (or Frobe-
sins) matrix

and to observe that

0 0,o
1 0’1

1

1

(2.5) AK- KF e



IMPLICITLY RESTARTED ARNOLDI METHODS 361

where Akvl- Kg with gT (%,T). Note that (A)vl where 15(A)
Ak +-__- /jAj, and also that iS(A) is the characteristic polynomial of F. If g is chosen
to solve min IIAkvl- ggll2 then is orthogonal to all vectors in Ek(A, vl). Moreover,
15 solves minpep {llp(A)vlll} where PJPIk is the set of all monic polynomials of
degree k.

To solve the minimization problem in (2.5), one would factor K QR where Q is
orthogonal and R is upper triangular. Note that R is nonsingular if and only if K has
linearly independent columns and that Q may be constructed so that pjj eRe > O.
One then solves

g R-1QTAkvl

This choice of g will minimize the residual and also will assure that 0 QTy.
Multiplying (2.5) on the right by R-1 gives

A(KR-1) (KR-1)RFR-1 /eR-1

(2.6) AQ QG fe
where Q KR-1, G RFR-1 is upper Hessenberg with the same characteristic
polynomial as F, and f (1/pkk). It is easily verified that vl Qel Vel and
0 QTf. Thus, the implicit Q-theorem will imply that Q V, G H, and f r.
Putting H G yields

Tj = ej+lHej e+IRFR-lej Pj+I,j+I

Moreover,

gives

This discussion establishes the following.
T be a sequence of successive Arnoldi stepsTHEOREM 2.7. Let AVj VjHj + rjej

1 <_ j <_ k and suppose that dim(k(A, Vl)) k. Then

(2.7.1) ry ilPy_l(A)v llPJ(A)v ,
where () is the characteristic polynomial of Hi. Moreover,

(2.7.2) py solves rain {I]p(A)vlll}

forl<_j<_k.
The development leading to Theorem 2.7 follows and builds upon the development

by Ruhe in [27]. The fact that IIk(A)vlll (the characteristic polynomial of Hk acting
on vl) will minimize IIp(A)vlll over all monic polynomials of degree k was proved
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by Saad in [29]. Theorem 2.7 points out that the structure of y is a somewhat
complicated function of A and v. This theorem will provide the foundation for a
convergence result to be presented later in 5.

The final result of this section will develop necessary and sufficient conditions for
a particular starting vector to generate a k-dimensional invariant subspace.

T be a k-step Arnoldi factorization of A,THEOREM 2.8. Let AVk VkHk rkek
with H unreduced (i.e., rj O, 1

_
j <_ k- 1). Then rk 0 if and only if v Xy

where AX XJ with rank(X) k and J a Jordan matrix of order k (i.e., the direct
sum of Jordan blocks).

Proof. If rk O, let H J be the Jordan canonical form of H and put
X VkX. Then AX XJ, rank(X) k and

Vl Vkel Vkfi[(-lel Xy, with y -le1.

Suppose now that AX XJ, rank(X) k, and Vl Xy. Then Amx XJm
for any nonnegative integer m and it follows that

Amvl AmXy XJmy Range(X)

for all m. Hence, dimk+(A, vl) <_ rank(X) k. Now, H unreduced
implies dimj(A, Vl) j for 1 _< j _< k- 1 and it follows from Theorem 2.7 that
rk --0.

A similar result may be formulated in terms of Schur vectors instead of generalized
eigenvectors. This result will be stated without its proof, which is very similar to the
proof of the previous result.

T be a k-step Arnoldi factorization ofTHEOREM 2.9. Let AVk- VkHk rkek
A, with H unreduced. Then rk 0 if and only if v Qy where AQ QR with
QHQ Ik and R upper triangular of order k.

Theorem 2.8 provides the motivation for the algorithms we shall develop. It sug-
gests that one might find an invariant subspace by iteratively replacing the starting
vector with a linear combination of approximate eigenvectors corresponding to eigen-
values of interest. Such approximations are readily available through the Arnoldi
factorization. This theorem also indicates that it will be impossible to force the resid-
ual to zero if Vl has a component of a generator of a cyclic subspace of dimension
greater than k. Theorem 2.9 indicates that our computations can be carried out
within the framework of a truncated Schur decomposition and this leads to the devel-
opment of an implicit restart method that is analogous to the implicitly shifted QR
iteration.

3. Updating the Arnoldi factorization via QR-iterations. In this section
a direct analogue of the implicitly shifted QR-iteration will be derived in the context
of the k-step Arnoldi factorization. This will lead to an updating formula that may
be used to implement iterative techniques designed to drive the residual rk to zero by
iteratively forcing Vl into a subspace spanned by k Schur vectors of A.

Throughout this discussion, the integer k should be thought of as a fixed pre-
specified integer of modest size. Let p be another positive integer, and consider the
result of k + p steps of the Arnoldi process applied to A, which has resulted in the
construction of an orthogonal matrix VkWp such that

T(3.1) AVk+p Vk+pHk+p - rk+pek+p

(VkTp, Vk+pT1)
eTflk+p k+p
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An analogy of the explicitly shifted QR-algorithm may be applied to this truncated
factorization of A. It consists of the following four steps. Let # be a shift and
let (H- #I) QR with Q orthogonal and R upper triangular. Then (putting
V Vk+p, H Hk+p)

(3.1.2)

(3.1.3)

(3.1.4)

(A #I)V V(H #I) T
rk+pek+p

(A #I)V VQR T
rk+pek_t_p

(A II)(VQ) (VQ)(RQ) r+e+Q,
A(VQ) (VQ)(RQ + #I) Trk+pek+pQ.

Let V+ VQ and H+ RQ + #I. Then H+ is upper Hessenberg and applying the
matrices in (3.1.2) to the vector el to expose the relationship of their first columns
gives

(A- #I)Vl

where Pl eT Re1, v+ V+el.
This idea may be extended for up to p shifts being applied successively. The

development will continue using the implicit shift strategy. The application of a
QR-iteration corresponding to an implicit shift produces an upper Hessenberg or-
thogonal Q E ak+p such that

AV+Q=(V+Q v++l) T

An application of p implicit shifts therefore results in

(3.2) A%p (Vkp Vk+p+l) Hk+P
T

where Vp Vk+pQ, Hk+p+ OTHk+pO, and O QQ2"’" Qp, with Qj the orthog-
onal matrix sociated with the shift p.

Now, partition

(3.3) Vp (V:, p) + ( H: M)Zkelek p
and note

(.0,0
k P

Substituting into (3.2) gives

A(V:, Irp) (U:, lrp, Vk+p+l flkelek^ T

Tflk+pek

Equating the first k columns on both sides of (3.4) gives

AVk+ + + + TVk Hk + rk ek
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so that

(3.6) Vk+1) -t- Tk ek

where + + + + +Vk+l (1/Zk)rk, rk =-- (pelk + Vk+p+IZk+p), and Z+k --Ilrk I1" Note that
+T+(V+)Tpe 0 and (Vk+)TVk+p+l O, SO (V vk+ O. Thus (3.6) is a legitimate

Arnoldi factorization of A. Using this as a starting point it is possible to use p
additional steps of the Arnoldi recursions (2.3.1)-(2.3.5) to return to the original form
(3.1). This requires only p evaluations of a matrix-vector product involving the matrix
A and the p-new Arnoldi vectors. This is to be contrasted with the Tchebyshev-
Arnoldi method of Saad [28] where the entire Arnoldi sequence is restarted. From the
standpoint of numerical stability this updating scheme has several advantages:
(1) Orthogonality can be maintained since the value of k is modest.
(2) There is no question of spurious eigenvalues.
(3) There is a fixed storage requirement.
(4) Deflation techniques similar to those associated with the QR-iteration for dealing

with numerically small subdiagonal elements of H} may be taken advantage of
directly.

For the sake of clarity, the Arnoldi iteration and the updating procedure will be
defined.

ALGORITHM 3.7.
function [H, V, r] Arnoldi (A, H, V, r, k, p)

VTInput: AV- VH re with vTv Ik, r O.
Output: AV VH rek+p

T with vTv Ik+p, VTr O.
(1) For j 1,2,...,p

(1) --Ilrll; if < tol then stop;

( H ) r; V -- (V, v);(2) H - T v -e+_
(3) w Av;
(4) h VTw; H -- (H,h);
(5) r w- Vh;
(6) whil I1 11 >

(1) s VTr;
(2) r - r- Vs;
(3) h h + s;

Remark 1. Step (1.6) is Gram-Schmidt with iterative refinement to assure orthog-
onality [9]. For details of implementation, see Reichel and Gragg [26]. Computational
experience with this device indicates that it is sufficient to do just one step of iterative
refinement.

With the basic Arnoldi factorization defined, it is possible to describe the complete
iteration.

ALGORITHM 3.8.
function IV, H, r] Arnupd (A, k, p, tol).
(1) initialize Y(’, 1) v; H (vTAvl); r Av vH
(2) [H, V, r] Arnoldi (A, H, V, r, 1, k)
(3) For m- 1,2,...

(1) if (llrll < tol) then stop;
(2) IV, H, r] - Arnoldi (A, H, V, r, k, p);
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(3) u Shifts (H,p); (defined below)
Q

(5) .for j 1,2,...,p
(1) H QiTHQi (Bulge-Chase corresponding to shift #i u(j))
(2) Q - QQi

v
T(7) r - (Vk + rak) where ek+T Uek ak ek+pQek;

Remark 2. The Bulge-Chase at step (3(5(1))) is defined implicitly as usual so
that H- #iI QiRi; if the shifts are in complex conjugate pairs then the implicit
double shift can be implemented to avoid complex arithmetic.

Remark 3. During a Bulge-Chase sweep at step (3(5(1))), it may happen that a
subdiagonal element flj becomes small. The deflation strategies associated with the
QR-algorithm are then employed. In this case, the matrix H is split, giving

Thus, an invariant subspace of dimension j has been found. If j >_ k and all the shifts
have been applied, then the iteration is halted. Otherwise Hi, V are retained and
the iteration proceeds with ,/:/i filling the role of V, H, respectively. However, Hi
continues to participate in the shift selection strategy on subsequent iterations. That
is, all of the eigenvalues of H are considered in the selection process. If some of the
eigenvalues of Hi are selected as shifts then these are applied implicitly to Hi to split
this matrix and the unwanted portion is discarded to form a submatrix of smaller
size. If the matrix is nonsymmetric the factorization must be explicitly restarted at
the j + 1 position with a vector that is orthogonal to the first j basis vectors. If the
matrix A is symmetric then the corresponding columns of the (updated) matrix V are

discarded and then j and/:/i are moved (concatenated)to the left. The remaining
shifts are applied implicitly to /:/i and then the Arnoldi factorization is completed
to fill out the remainder of the k + p columns of V. In this way the iteration is not
terminated by deflation until the appropriate approximation to the wanted spectrum
has appeared.

As discussed at the beginning of this section, each application of an implicit shift

#i will replace the starting vector v with (A- #iI)v. Thus after completion of each
cycle of the loop at step (3) in Algorithm 3.8:

Ve v - (A)v

where (A) (l/T) p1-Ij=l ()- #j) with T a normalization factor. Numerous choices
are possible for the selection of these p shifts. Some possibilities will be discussed
in 5. However, there is one immediate possibility to discuss and that is the case of
choosing p "exact" shifts with respect to H. Thus the selection process might be as
in Algorithm 3.9.

ALGORITHM 3.9.
function [u] Shifts (H, p)
(1) QR,
(2) Select p unwanted eigenvalues {u(j) -- tti: 1 _< j <_ p} C A(H)

Some obvious criteria for this selection might be
(i) Sort A(H) according to the algebraically largest real part and select the p eigen-

values with the smallest real part as shifts.
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(ii) Sort A(H) according to the largest modulus and select the p eigenvalues with
the smallest modulus as shifts.

Selecting these exact shifts has interesting consequences in the iteration.
LEMMA 3.10. Let A(H) {1,’" ",Ok} [.-J (1,’’" ,p} be a disjoint partition of

the spectrum of H and let

H+ QTHQ,

where Q QIQ2 Qp with Qj implicitly determined by the shift #. If 0,
j <_ k-1, then k ----O and

where ,(H:)= {O1,...,Ok} )i(Rp)= {l,2,’",p}. Moreover,

V+l VQel xj,

with

HQ QH+

ql =-Qel (H)el, (A) IIT
j=l

Therefore ql =1 YJJ where Hyj yjOj, since ql (H)ei has annihilated any
component of el along an eigenvector of H associated with # 1 _< j _< p. As a
consequence of Theorem 2.8, fik 0 must hold. Moreover, Vl+ VQel Vql

k kEy=I Vyj{ E=x xj{j.
This lemma provides a very nice interpretation of the iteration when exact shifts

are chosen. Casting out the unwanted set of eigenvalues using exact shifts is mathe-
matically equivalent to restarting the Arnoldi factorization from the beginning after
updating Vl - xy, a linear combination of Ritz vectors associated with the
"wanted" eigenvalues. Thus the updated starting vector has been implicitly replaced
by the sum of k approximate eigenvectors.

If A is symmetric and the p algebraically smallest eigenvalues of H are selected
for deletion, then this method is similar to the single vector s-step Lanczos process
described by Cullum and Donath in [5] and expanded on in [6], [8]. The particular
linear combination is apparently different. This variant has the advantage that a
restart of the entire Lanczos sequence is not required. Approximate eigenvectors from
a Krylov subspace of dimension k + p are available at each iteration for a cost of p
rather than k + p matrix-vector products per iteration.

4. Some polynomial filters. The previous discussion has indicated that it
would be advantageous to construct polynomials (A) of degree p that filter out cer-
tain portions of the spectrum of A. Several researchers have considered such schemes
[5], [8], [28]. Related ideas appear throughout the literature of iterative methods for
linear systems [17], [21], [30].

where each xj is a Ritz vector corresponding to the Ritz value 0, i.e., xy Vyy,
where Hy yjO, l <_ j <_ k.

Proof. After applying the p implicit shifts we have
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We have just described the use of exact shifts to construct such filters. Another
particularly appealing polynomial filter may be constructed using Tchebyshev poly-
nomials. In this case, one constructs an ellipse containing the unwanted eigenvalues of
H, then at step (3(3)) of Algorithm 3.8 the shifts #j are taken to be the zeroes of the
Tchebyshev polynomial of degree p associated with this ellipse (i.e., the polynomial
of degree p that gives the best approximation to 0 in the max norm). Construction of
such an ellipse and the associated polynomials is discussed by Saad [29] and is based
on Manteuffel’s scheme [20]. Variants of this are presented and discussed by Chatelin
and Ho in [2]. Since each of these schemes specifies the filter polynomials by their
roots, they may all be implemented within the framework of the algorithms developed
in the previous section. At some point in the iteration one might consider fixing the
roots used as shifts and continuing with a stationary iteration. The convergence of
this strategy is analyzed in the following section.

One may observe that these filters each have the feature of weighting the eigenval-
ues of the wanted spectrum quite unevenly. For example, in the symmetric case where
the wanted spectrum consists of the k largest eigenvalues, the eigenvalues closest to
the right end of the spectrum are weighted most heavily. An alternative is to construct
polynomial approximations to step functions which take the value zero in unwanted
regions and one in wanted regions of the complex plane. One also might construct
polynomials that produce an updated vl +, which is a weighted linear combination of
approximate eigenvectors corresponding to the wanted eigenvalues.

In order to construct these sorts of filters it is advantageous to be able to apply
the filter polynomial which is specified by its coefficients when expanded in the basis
of polynomials constructed through the Arnoldi (Lanczos) process. To make this more
precise, suppose is any polynomial of degree less than or equal to p. Then expand

in the form

j--1

where {pj } are the Arnoldi (Lanczos) polynomials. Observe that

(A)vl Vy

where yT (r]l, r]2,..., rip+l, 0, 0,..., 0) since

p+l p+l

j=l j--1

vj pj_l (A)vl.

The technique developed in 3 for the implicit application of (A) to Vl is not directly
applicable because the roots of are unknown. One could perhaps compute these
roots and then apply the scheme of 3. However, there is an alternate way to implicitly
apply this polynomial directly from its expansion in the Arnoldi basis. Assume that
IlYll 1 and construct a vector Wo such that

(4.1) (I- 2WoWoT) el y.

Replace H by

(4.2) [-I (I- 2WowoT)H(I- 2WoWoT).
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Now, apply the Householder reduction of/2/to upper Hessenberg form so that

[-I - QTHQ

where

Q (I- 2WoWoT) (I- 2WlwlT) (I- 2WkTp_2WkTp_2T),
with each (I 2wjwjT) being a Householder transformation constructed to introduce
zeros below the (j + 1)st element of the jth column. Now, consider the application of
Q to the Arnoldi factorization:

AVQ VQ(QTHQ) rek+pTQ.

In order to fit within the updating framework developed in 3, the condition

ek+pTQej 0, 1 _< j < k

must hold. This is established by the following lemma.
LEMMA 4.4. The matrix Q displayed in (4.3) satisfies ek+pTQej O, 1 <_ j < k.

Proof. Let Qj I- 2wjwjT for 0 _< j _< k + p- 2, and let H(j+l) QjTH(i)Qj
with H() H. From (4.1) it follows that Wo O(y el), with IlY elll. Thus,
eiTQo ei

T for i > p + 1. Since

QoH(1) HQo

and since H is upper Hessenberg, it follows that

eiTH(1)
eiTHQo eiTH

for > p + 2. From this one may conclude that eiTwl 0 for i > p + 2 and thus
eiTQ ei

T for > p + 2. Now, suppose that eiTQj ei
T and that eiTH(j) eiTH

for > p + j + 1. Since QjH(j+l) H(Y)Qj, it follows that

eiTH(J+1) eiTH(J)Qj eTH
for i > p+j+ 2, and again, one may conclude that eiTwj+l 0 so that eiTQj+l
for > p / j + 2. This inductive argument continues to hold until j k- 1. Hence,

ea+,TQ e+,TQ_Q Q+,_.

Now, observe that Qiej e for k 1 _< i _< k + p 2 and for 1 _< j < k to establish
the result.

This observation allows the application of any polynomial filter of degree p when
the polynomial is expanded in the Arnoldi basis.

Moreover, it provides the means for implicit application of all of the suggested
restart methods known to this author which are not specified by roots of polynomials.

5. Some convergence results. In this section, we analyze the algorithm just
developed with respect to two strategies for constructing the filter polynomials. The
first analysis applies to general (nonsymmetric) matrices but the filter polynomials
are stationary. The second analyzes the "exact shift" polynomials but applies only to
symmetric matrices. In this sense, each of the two is incomplete. However, they both
give insight to the nature of the convergence of this method.
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Let us begin with an analysis of the stationary iteration. To this end we define

A(A) )w(A) t2 Au(A)

where )w(A)- {A1,A2,’",Ak} and ,ku(A)- {Ak+l,Ak+2,’’’,A}. By a stationary
iteration, we mean that the set of shifts {#1, #2,"’, #p} used to construct the filter
polynomial remains fixed. This means that the filter polynomials are all multiples of
a fixed (i.e., stationary polynomial (A) k

We define

v) v and vj) (A)vj-1)/llo(A)v
where v is an arbitrary starting vector of length one. We define rj (j)2 (j) fk (y)

where the fi (j) are the subdiagonal elements ofH in the Arnoldi factorization resulting
from the starting vector vj).

THEOREM 5.1. Assume that the fixed polynomial satisfies

with

and assume that the starting vector v is not a member of the invariant subspace
corresponding to {Ak+l,’", An}. Then the sequence {rj } converges to zero. Moreover,
there is a fixed constant K and a positive integer J such that

O<_rj <_YK

.for all j > J.
Proof. Let

(5.2) A(Q1, Q:)= (Q, Qe)(R10 R2M )
be a Schur decomposition of A with A(R1) Aw(A). The hypothesis on assures
Aw(A) )u(A) is empty and thus there is a unique k (n k) matrix solution F to
the Sylvester equation

FR2 RIF M

Since

I F M
0 R2)--( R1

it follows that

(A)(Q QIF + Qe) (Q QIF + Qe) ((R)0 0 )
for any polynomial . Let (2 QF + Q2 and let v Qy + (2y2. Then,

CY (A)v QIY(R)y + (2J (R2)y2 Qy() + (2y2().
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Recall that vJ)= CJ(A)vl/IIJ(A)vlll and that from Theorem 2.7, one obtains rj

minpe {llp(A)vJ)ll }. Thus, putting i5 to be the characteristic polynomial of R1
gives

ry IIg, (A)vl <- 1115(A)j (A)vl - II(A)QIYl (j) T (A)(2y2() [I

Dividing both sides bylJ (Ak)l gives

r(llO(A)vll/I(A)l) <_ I]p(A)O, uy()II/I(A)I <_ /3(A)2 g,(Ak)g,(R2)
Note the spectral radius of (1/(Ak))(R2) is less than the number 9’ according to
the hypothesis. Using the fact that there is a consistent matrix norm such that
([(1/(Ak))(R2)]) <_ 9/, together with the equivalence of matrix norms, implies
the existence of a positive constant Ko such that

Y2

Thus

ry

_
(llY(A)vlll/iOy(),k)l)

Moreover, by hypothesis V is not in the invariant subspace corresponding to
{Ak+l,"" ,An}, and it follows that y 0. Since the spectral radius of (R2)/(Ak)
is less than one and since every eigenvalue (i.e., every diagonal element) of the tri-
angular matrix (RI)/(Ak) is greater than or equal to one, there is a J such that
j > J implies

> IIQ1 (Re)Yl II/1 ()1 I1=y (R)y= II/1 ()1
I1- 1 I,

where is the last nonzero component of y. Thus, the result is established with
g 2Ko(][Y211/Irll).

This result applies directly and generally to cases where there is a priori infor-
mation about the location of the spectrum and where a single polynomial might be
constructed (e.g., Tchebyshev polynomials). The analysis does not apply to the adap-
tive algorithms. However, it does give an indication of how these might behave near
the final stages of the iteration where the filter polynomials tend to become stationary.

Next, we analyze the "exact shift" filter polynomials in the symmetric case. This
analysis makes heavy use of the interlace property of eigenvalues of symmetric matrices
modified by low-rank changes. The analysis relies on two technical lemmas, which we
must establish first.

LEMMA 5.3. Let
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be a symmetric tridiagonal matrix. Then the roots of the equation

(5.4) 2 T ek o ,ek (T- i)-1

are eigenvalues of M.
See [25] for a proof.
If T yoyT is the eigendecomposition of T then (5.4) becomes

k 2

(5.5)

where (71 72 7k) T,..., ek Y and O diag(01,02,...,0k). It is easily verified that
this equation has exactly one root in each of the intervals

(--(:X:), 1), (1,02),""" (Ok-l, 0k),

and that the k largest, roots i of this equation satisfy

Also, we note for the sequal that if the subdiagonals of T are all nonzero, then none
of the 7j are zero and the Oj are distinct.

The next lemma shows that when the starting vector v nears a subspace of
dimension less than k, then deflation must occur.

LEMMA 5.6. Suppose AV VH + re is an Arnoldi factorization of A and
let j be the j th subdiagonal element of H. If v q/ + wa with 2 + a2 1,
Ilqll Ilwll 1, qTw O, and q =qj/j,Aqj qjj (where {Aj} are an
arbitrary set of i eigenvalues of A), then

H(A AjI)
j--1

Proof. From Theorem 2.7 and the fact that YIy=(A- AyI)q 0, we have

j-1

< (.4 ,XI)(q, + w)

(A II)wa

< .4- I)

With these technical lemmas established it will be possible to analyze the iter-
ations using polynomial filters constructed from exact shifts in the symmetric case.



372 D.C. SORENSEN

We assume throughout the remainder of this section that the matrix A is symmetric
and hence that H T is tridiagonal. The selection rule to be analyzed is to retain

the k largest eigenvalues of Tk+p. Let m denote the iteration number. Then vm) is
the starting vector, and

Let

’) z(’) T(’) (’) e+p"kTp "kTp k+p "kTp

T(m)
T(-) k
k+p (m) T

P elek

have eigenvalues

l,m+l < < p,m+l < Ol,m+l < <

and let (m)have eigenvaluesk

Olin < 02m <’’" < Okra.

Then, the exact implicit shift strategy provides

T(ra4-1)T(") Q(-)Q(m)T k+p 0

where Q(m) QlmQ2m... Qpm are the orthogonal matrices constructed to apply the
implicit shifts #im’"#p, at step (3(5)) of Algorithm 3.8. Step (3(6)) gives

l’k+p

LEMMA 5.7. Each {Oj,m :m-- 1,2,...} is an increasing convergent sequence for
each j 1, 2, k.

Proof. Since T(m) is obtained through a succession of p borderings of T(km) itk+p
follows from p successive applications of Lemma 5.3 that

0,, < Oi,m+l for j 1,...,k.

Since each Oj,m is a Raleigh quotient with respect to A it follows that A1 _< Oy,m <
An for all j, m. Since bounded increasing sequences are convergent the lemma is
established.

We now establish that the limits of the convergent sequences Oy,m are eigenvalues
of the matrix A.

LEMMA 5.8. Let T(m) Y(m)o(m)y(m)T where (rlm) rl(2m) rl(km)) Ty(m)
k ’’’ ek

Assume Oj are distinct, where Oj,m Oj. Then

l(m ?m -- O as m --+ c for j--1,...,k

and as a consequence

I[AV(’)YJ") uJ )0  11, =p l I- 0,
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where ym) y(,)ej for j 1,..., k.

Proof. Consider the leading (k / 1) x (k -t- 1) submatrix of ,(m)k-t-p

M(m)-
,)ek

From Lemma 5.3 it follows that the k largest eigenvalues j,m of M(m) satisfy

Moreover, a straightforward algebraic manipulation of (5.5) gives

= @(0-)
for any root I. Substituting the appropriate quantities indexed by m from the matrix
M() and putting I j,m gives

k _(m) 2

i:j+l (Oi,m Oj,m

The assumption that the limits Oj are distinct implies that the quantities

have finite limits for each j. Hence, for m sufficiently large there is a positive constant
K such that

((m)m)) < KlOy,m Oy,ml < KlOy,m Oj,m+ll -+ 0

as m-- oc.
The final task is to show that not only will the limits Oj be eigenvalues of A,

but they will be the k eigenvalues of interest. To do this, we shall show that if
deflation does not occur, then the coefficients @m)= qvm) must converge to zero
for j 1,..., n- k where qj is the eigenvector of A corresponding to the eigenvalue

Aj and vm) is the Arnoldi starting vector for the ruth iteration.

Define Ct(A) YIiP__l (,- #i,t) and m(A) rIim=l i(A). Then note that vm)

(m(A)vl/II(A)vl II).
THEOaEM 5.9. Suppose that the initial starting vector Vl satisfies qfvl / 0

for j n-k+1,..., n, where qj is the eigenvector ofA corresponding to the eigenvalue
with the eigenvalues ofA listed in increasing order. Let ’i

[(’) be the ith subdiagonal
l(m)T(m) and assume thatelement of k > e > 0 .for all i, m. Then the sequences

Oj,m Oj )in_k+j as m --,

Proof. The assumption/(m)’i > e > 0 assures that separation of the Oj,m is uniform
over all m so that the limits 0j are distinct. This implies that each 0j is an eigenvalue
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of A Moreover, the assumption implies a uniform lower bound on the quantities

Ir/m)l and thus (km) -- 0. (All due to remarks following Lemma 5.3.)
Let Cm(A) k k1-Ii=l(A the polynomial1-Ii=l (A 0j,m) and let (A) -0j) be limit

of the Cm. Then

k

IIO(A)) 1-I) - o
=1

and thus

Hence, either

(A) 0 or 3,") --, 0

for j 1,...,n. This means that n- k of the expansion coefficients /m) tend
to 0 as m c. Moreover, Lemma 5.7 implies that the k expansion coefficients
corresponding to the eigenvalues Oj must all be bounded away from zero due to the

assumption/m) > e > 0 for all j, m.
Now, suppose that Ajk Ok < An. Then the expansion coefficient

rn) vm) qm(A)vl

Hence

( ((o)/()) ( (o))/J 7 + En-i=x (i)l(n) <- --n m(n)
where the i are the expansion coefficients of v). Now, the roots pi, of the filter
polynomials all satsify 1 i,m < Ok,m Ok < n SO that

l=l i=l

since (Ok AllAn A1) < 1. This is a contradiction. We conclude that Ok An.
A similar argument may be carried out for each j in turn for the cases 0j < An-k+j

and this concludes the proof.

6. The generalized eigenvalue problem. In this section the generalized eigen-
value problem will briefly be discussed. The generalized problem is to find (x, ) such
that

Ax AMx.

In many cases the matrix M is symmetric and positive definite, and this condition shall
be assumed in this section. The basic iterative method will carry over to this setting
with very little modification. In this setting we maintain and update a factorization
of the form

(6.1) AV- MVH re
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where

VTMV I and VTr 0.

It is easily seen that one may apply the algorithm for the standard case to the matrix
M-1A in place of A. Of course this would be implemented through factorization of
M at the outset and solution of the appropriate linear system instead of applying

There are two key consequences of maintaining the form (6.1):
1. QTVTMVQ I is preserved so the implicit QR-shift strategy may be ap-

plied.
2. If A AT is symmetric, then

H VTAV

follows from VTMV I, VTr 0 so that H HT will be symmetric and
tridiagonal when A is symmetric.

With these observations, it is straightforward to adapt the algorithms previously
discussed to solve the generalized eigenproblem. Some limited computational experi-
ence with this approach is the subject of the following section.

7. Computational results and conclusions. Computational results for this
technique are quite promising but are certainly preliminary. There is a Fortran im-
plementation of the algorithms developed here. Two versions of the code have been
produced. One of these implements the strategy for the generalized symmetric eigen-
value problem as described in 6. The other implements the algorithm for the stan-
dard nonsymmetric eigenproblem. In addition to exhibiting behavior on some test
problems, two experiences with applications will be discussed. Finally, some very
interesting illustrations of the shapes of the filter polynomials that are constructed
through exact shifts shall be reported.

There are some important details of the Fortran implementation of Algorithm
3.7. Step (3) requires a user-supplied matrix-vector product. Steps (4) and (5) are
implemented through calls to the level-two BLAS [11], [12] routine DGEMV. One step
of iterative refinement is carried out at step (6) of Algorithm 3.7 rather than iterating
until the test Ilsl] <_ ellrll is passed. Steps (6(1)) and (6(2)) were also implemented
through calls to DGEMV. In all of the computations observed, there was never a loss
of orthogonality in the columns of V. In all cases IIVTV- Ill was on the order of unit
roundoff error. Eigenvalue calculations used a slight modification of EISPACK [32]
subroutines TQL in the symmetric case and HQR in the nonsymmetric case. These
may be replaced by the corresponding block routines from LAPACK [10] to enhance
performance in the future.

Expressing the algorithm in terms of the level-two BLAS has provided the means
to achieving high performance portable Fortran code. The code has been run on
SUN SPARC, CONVEX C1, Stardent Titan, CRAY 2, and CRAY YMP computers.
The cost of operations were clearly dominated by the user-supplied matrix-vector
products (and system solves in the generalized problem). The time spent in the user-
supplied portion was orders of magnitude over the time spent in the other parts of
the eigenvalue calculations. This performance characteristic is a direct consequence
of the performance of DGEMV on the architectures of the machines listed above. The
crucial point for improving the algorithm is to better understand the construction of
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TABLE 7.1
Discrete Laplacian.

Dimension Niters Ilrll IIA
100
256
400
625
900
1600
2500
3600
4900
8100
10000

12 1.4-06 3D-15
23 3.4-06 5D-15
29 6.5-06 5D-15
25 7.1-06 3D-14
29 6.2-06 2D-14
43 2.9-06 6D-14
50 1.1-05 9D-13
63 9.9-06 4D-11
92 8.9-06 1D-11
237 1.1-05 1D-11
165 1.1-05 8D-12

the filter polynomials in order to reduce the required number of user-supplied matrix-
vector products. Parallelism may be invoked through the level-two BLAS and also
through the user-supplied matrix-vector product.

In all of the results reported below, exact shifts were used as described in 3. The
iteration was halted when T(ek Yj)rkll < 10.7 1 _< j _< k- 3, where yj is the jth Ritz
vector corresponding to Ritz values approximating the wanted spectrum. This ad hoc
stopping rule allowed the iteration to halt quite early in cases where it was difficult
to make a clean separation between the wanted and unwanted spectrum. This ad hoc
criterion will have to be replaced with a more rigorous one in the future.

In the first set of test problems the matrix A arises from a standard five-point
discretization of the convection-diffusion operator on the unit square f. The partial
differential equations (PDE) is

-Au + puz Au, inf,, u]oa O.

When p 0 the matrix A is the discrete Laplacian and, for p > 0, A has distinct
complex eigenvalues that appear in a rectangular grid in the complex plane when the
cell size h 1/(n + 1) is large enough with respect to the parameter p. However,
the boundary conditions of the continuous problem do not admit eigenfunctions cor-
responding to complex eigenvalues, so the eigenvalues of the matrix A become real
when the mesh size becomes small enough. The order of the discrete operator A is
N n2 and since its eigenvalues are distinct, it is diagonalizable. These problems
allowed testing of the algorithm for accuracy and performance in some interesting but
well-understood cases. In both Tables 7.1 and 7.2, the values k 10 and p 10 were
used. The two columns on the right of the tables give the norm of the residual vector
r and the norm of the true residual IIAx- xAll for the sixth eigenvalue. Typically, the
eigenvalues of smaller index had residuals that were smaller than this one. For the
symmetric problems the residual estimates were uniformly small for the eight smallest
eigenvalues.

In Table 7.2 below, the problems of orders 256 and 400 did not satisfy the conver-
gence test before the maximum number of iterations allowed had been reached. In all
cases the ten eigenvalues of smallest real part were sought. In both of the problems
just mentioned, five or more eigenvalues had been determined to high accuracy. In all
cases the iterations could have halted much earlier if a better stopping criterion were
devised.

The second set of results will briefly describe two problems that arise in the
context of solving PDEs. The first of these involves a discretization of a membrane
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TABLE 7.2
Convection diffusion.

Dimension Niters Ilrll IIAx xAII
100
256
400
625
900
1600

61 5.3-06 1D-12
100 .23 1D-5
100 5.2-03 2D-10
77 2.3-06 8D-12
153 8.9-06 2D-14
103 7.4-06 6D-14

problem in which the membrane is composed of two materials. On an open bounded
connected set D C R2, we consider

-Au= Apu, inD, uloa =O,

where the density p is of the form

p oXs + fl(l

where Xs is the characteristic function of a subset S c D with area 7. The problem
is to determine the density function p that minimizes the lowest eigenvalue A1 (p) of
this PDE. Here ( and fl are the known (constant) densities of two given materials in
respective volume fractions 7/IDI and 1 -7/IDI and the set S is occupied by the ma-
terial with density . Cox [4] has formulated an algorithm to solve this minimization
problem. The algorithm generates a sequence of symmetric generalized eigenvalue
problems

Av AM(p)v,

which arise through a bilinear finite element discretization of the PDE. The density
function p is modified at each iteration with the set S determined through level sets of
the corresponding eigenfunction. The matrix A is positive definite and independent
of the density function p, so the problem was cast in the form

1
M(p)v Av.

Since only matrix-vector products are required of M the dependence on p presented
no additional computational burden. The matrix A was factored once and this fac-
torization was subsequently used repeatedly to compute A-1M(p)v for all p. The
eigenvalue iteration also benefited from the reuse of the converged starting vector
from the previous problem but this did not appear to be of great consequence in this
case. Table 7.3 gives results for the same subproblem on a variety of machines.

TABLE 7.3
Membrane problem on various machines.

Sun Convex Titan Y-MP
Time (secs)
Matrix-vector

IIVTW- III

240 81 40.9 5.4
40 40 40 40

10-14 10-14 10-14 10-11

The overall performance was excellent on this problem. Grid sizes of 64 by 64, 100
by 100, and 200 by 200 were used. Both minimization of A1 (p) and A2(p) were done.
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The number of matrix-vector products was typically around 32-40 regardless of the
dimension of the matrix. That is, with k 8 and p 8 the eigenvalue solver required
three to four iterations, with three being the usual number. The Ritz estimates for
[[Ax- M(p)xAl[ were on the order of 10D- 14 for the lowest six eigenvalues.

The second application leads to a nonsymmetric eigenvalue problem. The PDE
arises in a study of bifurcations in a Couette-Taylor wavy vortex instability cal-
culation. This work, described in [13], is based upon a method of Edwards and
Tuckerman that is designed to study these bifurcations from Taylor vortices to wavy
vortices. The discrete problem is obtained by first linearizing the Navier-Stokes equa-
tions about a (numerically) known steady state solution U corresponding to Taylor
vortices. The perturbation u corresponding to wavy vortices is found by solving the
linearized Navier-Stokes problem

(U
-(u. (u. v)u- vp +

with

V.u=0 and u[oa=O,

where f is the annular region between two concentric rotating cylinders. This PDE
is discretized to then yield a nonsymmetric eigenvalue problem

A(u)v Av.

Since a pseudospectral method is used, the discrete matrix is dense rather than sparse.
However, matrix-vector products can still be performed rapidly using Fourier trans-
forms. The discrete problem involved a matrix of order 2380. The eigenvalue code
with k 16 and p 40 required 60 iterations to produce eight eigenvalues and corre-
sponding eigenvectors with largest real part. This entailed about 2400 matrix-vector
products. The accuracy of these were confirmed to be at least five significant digits.

This behavior of the algorithm on these two problems seems to be typical of more
difficult problems. The number of matrix-vector products tends to be near n for
difficult nonsymmetric problems. Symmetric generalized eigenvalue problems from
finite element analysis of structures or membranes seem to be solved very rapidly if
posed in terms of finding the largest eigenvalues.

To close this section, the interesting behavior of filtering polynomials associated
with the choice of exact shifts will be presented. Two problems will be discussed.
The first example arises from the convection diffusion above with p 40. The grid
size was 1/30 leading to a nonsymmetric matrix of order 900. The results for this
problem are displayed in Figs. 7.1 and 7.2. The second example is the banded Toeplitz
matrix used for test purposes by Grcar [17]. This matrix is nonnormal and has a
nontrivial pseudospectrum, as discussed in [21]. (The e pseudospectrum of a matrix
A is {A e C: I[(AI A)-11[ >_ e-l}.) The matrix is a five-diagonal matrix with the
value -1 on the first subdiagonal and the value 1 on the main diagonal and the next
three superdiagonals. The results for this problem are displayed in Figs. 7.3 and 7.4.

The graphs shown below depict the filter polynomial (A) for values of A over
a region containing the eigenvalues of A. The surface plot is of ]] and the contour
plots are of log(ll ). The + symbols show the location of the true eigenvalues of A.
The o symbols mark the location of the eigenvalues of H that are "wanted." These
will eventually converge to eigenvalues of A. The symbols show the roots of the
polynomial .
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FIG. 7.1. Convection diffusion: Iteration 1.
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FIG. 7.2. Convection diffusion: At convergence.
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FIG. 7.3. Grcar matrix: Iteration 1.
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FIG. 7.4. Grcar matrix: At convergence.
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In Figs. 7.1 and 7.2 the values k 10, p 10 were used. One may observe
convergence by looking at the 10 leftmost o symbols enclosing the + symbols. The
interesting features of these filter polynomials is that they are remarkably well behaved
in terms of being very flat in the region that is to be damped and very steep outside
that region. The reason for this desirable behavior is not completely understood at
the moment.

In Figs. 7.3 and 7.4 the corresponding behavior of the filter polynomials is shown.
In these figures only the upper half-plane is shown. The dotted line shows the bound-
ary of the practical spectrum [21] for this matrix. It is interesting to note how the
contours of the filter polynomial obtained through the exact shifts mimic the shape
of this boundary. The algorithm claimed convergence of the leftmost eigenvalues (i.e.,
the ten eigenvalues of smallest real part). However, as demonstrated in the figure,
these are pseudoeigenvalues. Interestingly enough, HQR from Eispack will give the
same behavior if applied to the transpose of the Grcar matrix. HQR will give the
correct eigenvalues when applied to the Grcar matrix directly and it was used to
calculate the values of the "true" spectrum shown above.

In conclusion, it seems that this is quite a promising approach. A direct relation-
ship to the implicitly shifted QR-iteration has been established and several problems
inherent to the traditional Arnoldi method have been addressed through this new
approach. The most important of these are the fixed storage, maintenance of orthog-
onality, and avoidance of spurious eigenvalues. The computational results are clearly
preliminary. The limited experience indicates that research is needed in constructing
filter polynomials that have better properties with respect to the wanted part of the
spectrum. Moreover, a better understanding of the Ritz convergence estimates in the
nonsymmetric case would be helpful. These estimates have been very important in
terminating the iteration early (i.e., before the residual is very small) in the symmet-
ric (generalized) eigenproblem. A criterion for choosing the values of k and p is also
required. At present, ad hoc choices are made and there is little understanding of the
relation of these two parameters to each other and to the given problem. They have
been chosen through experimentation for these results.

Future research on this topic might include a blocked variant to better deal with
multiple eigenvalues. Investigations of the use of a preconditioner would also be
interesting. Finally, extensions of this idea to other settings, such as the solution
of linear systems, would seem to be a promising area of research as well. These
investigations are under way and will be the topic of subsequent papers.
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Abstract. Efficient algorithms are described for matrix multiplication on SIMD computers.
SIMD implementations of Winograd’s algorithm are considered in the case where additions are
faster than multiplications. Classical kernels and the use of Strassen’s algorithm are also considered.
Actual performance figures using the MasPar family of SIMD computers are presented and discussed.
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1. Introduction. One of the basic computational kernels in many linear algebra
codes is the multiplication of two matrices. It has been realized that most problems
in computational linear algebra can be expressed in block algorithms and that matrix
multiplication is the most important kernel in such a framework. This approach is
essential in order to achieve good performance on computer systems having a hier-
archical memory organization. Currently, computer technology is strongly directed
towards this design, due to the imbalance between the rapid advancement in processor
speed relative to the much slower progress towards large, inexpensive, fast memories.
This algorithmic development is highlighted by Golub and Van Loan [13], where the
formulation of block algorithms is an integrated part of the text. The rapid devel-
opment within the field of parallel computing and the increased need for cache and
multilevel memory systems are indeed well reflected in the changes from the first to
the second edition of this excellent text and reference book. Their notation and anal-
ysis of the "level-3 fraction" of a given matrix algorithm emphasizes the importance
of efficient computational kernels for BLAS-3-type [11] operations.

Today, hierarchical memories provide the same motivation as small memories and
secondary storage did in the sixties and seventies. The organization of linear algebra
computations in terms of a complete library of block algorithms with a corresponding
set of routines operating on individual blocks is more than twenty years old (see, for
example, [2]).

Matrix multiplication is a very compute-intensive task, but also rich in compu-
tational parallelism, and hence well suited for parallel computation. The problem
has a simple structure and well-understood mathematical properties. It is therefore
often used as a benchmark for parallel computers. Despite this, the task of writing
an efficient implementation of the BLAS-3 kernels for any particular advanced archi-
tecture machine is often nontrivial [3]. We will in this paper do a careful study of the
matrix multiplication problem on SIMD computers. In order to appreciate the often
subtle architectural differences between different computers, one must relate this type
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of work to a particular computer. We will use the MasPar MP-1 computer for our
actual implementations; a brief description of this computer can be found in 2. Most
of the discussion is relevant for other data parallel machines (like the AMT DAP or
the CM-2), but actual parameters will of course be different.

In particular, we will consider the relative speed of addition and multiplication as
well as the relative speed of arithmetic and communication, in order to find efficient
algorithms. We show that nonstandard algorithms like the one proposed by Winograd
[25] and the fast method of Strassen [23] can be efficiently implemented on SIMD
computers. Winograd’s algorithm is attractive in the case where additions are faster
than multiplications.

As was observed by Brent [7], the exchange of multiplications with additions can
give significant speedup, provided that floating point addition is executed faster than
floating point multiplication. This was indeed the case in the late sixties and early
seventies, but the difference decreased in the following years. Quite recently, this
trend has been partially changed, resulting in new computer systems where, again,
additions are less expensive than multiplications.

In the MP-1 computer, each processor is only four bits wide. Arithmetic must then
be implemented using four bit "nibbles," and while addition is linear in the number of
nibbles, multiplication is quadratic in the number of nibbles of the mantissa. Similarly,
the AMT DAP is based on single bit processors while the CM-2 has special hardware
for floating point arithmetic. It may also be expected that individual SIMD processors
will become more complex in future generations. This will increase the floating point
speed and tend to reduce the time difference between addition and multiplication.
On the other hand, this difference may also be present in modern high performance
microprocessors. An example is the Intel i860 chip [16], where 64 bit additions can be
executed at a peak rate of 40 Mflops, while 64 bit multiplications can be performed
in parallel, but at a maximum rate of 20 Mflops.

On any distributed memory computer performing matrix computations, impor-
tant questions include how to map the matrices onto the computer and how to design
an efficient data flow between processors. On massively parallel systems this issue
is critical. The problem has attracted much interest and a number of systolic arrays
have been proposed for the problem (see [17], [19] and their references). Some sys-
tolic algorithms impose a very specific design on the hardware that can be used; we
focus on algorithms that can be implemented efficiently on general purpose SIMD
computers.

After a brief description of the MasPar MP-1 computer, we focus, in 3, on
the case with N2 processors where all matrices are N N. These algorithms are the
computational kernels for various block algorithms needed to handle the multiplication
of arbitrary-sized matrices. In 4, we discuss the case where each matrix dimension
is of the form kN, for k 2, 3,.... In 5, we briefly discuss some of the questions
related to the case where the dimensions are arbitrary.

2. Some basic features of the MasPar MP-1 computer. The MasPar MP-
1 system is a massively parallel SIMD computer system. The system consists of a
high performance UNIX workstation (FE) and a data parallel unit (DPU). The DPU
consist of at least 1024 processor elements (PEs), each with 16Kb of memory and
192 bytes of register space. All processors execute instructions broadcast by an array
control unit (ACU) in lockstep, but each processor can disable itself based on logical
expressions for conditional execution. It should be noted that the individual proces-
sors may operate not only on different data, but also in different memory locations,
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thus supporting an indirect addressing mode.
There are three different communication mechanisms available: the Xnet, the

router, and the global or-tree.
The PEs are interconnected by a two-dimensional toroidal mesh that also allows

for diagonal communication. In the MasPar terminology this is called the Xnet. The
Xnet operates in three modes:

Xnet: time is: startup / #bits distance,
XnetP(ipe)" time is: startup + #bits + distance,
XnetC(opy)" time is: startup + #bits + distance.

The two last modes are useful for regular, nonlocal communication, but require
that the processors between any pair of communicating processors be inactive. Thus
for sending over longer distance, XnetP is much faster than basic Xnet. XnetC is sim-
ilar to XnetP, but it leaves a copy of the transmitted variable on all the intermediate
processors. The notation Xnet[k] means that the communication distance is k with
respect to the processor mesh.

MasPar also supports arbitrary node to node communication through a three-
stage switch called the router. For our purpose and for the current range of available
models, the router communication cost is constant, independent of the size of the
machine. This means that the router, despite its much higher startup time, becomes
more competitive compared with Xnet as the machine scales up in size, for all data
movements where the communication distance scales with the size of the machine.

The global or-tree can move data from the individual processors to the ACU.
If many processors send data at the same time a global reduction results. We take
advantage of this mechanism to find the maximum data value of an array at a very
small cost in time.

MasPar currently supports Fortran, including a substantial part of the new F90
standard [21] and C based on Kernighan and Ritchie [18], extended to take advantage
of the MasPar architecture.

Floating point is implemented in software. We define the average time of a float-
ing point instruction: 1/2(Mult + Add). Measured in units of , the floating
point performance of the MP-1 corresponds to a peak speed of 0.0355 Mflops in 64
bit arithmetic per processor, or 290 Mflops for a machine having 8192 processors.
The processors can access memory in parallel with the execution of arithmetic or
communication instructions. We define the ratio

Load
(1) 5 ,
where "Load" is the communication time between local memory and registers to load
or store one (64 bit) word. Expressing the relative speed of memory access and floating
point arithmetic, we expect 5 _< 1 on balanced systems. Due to the asynchronous
nature of this operation on the MP-1, 5 varies in the interval (0.05 -0.5) depending
on the algorithm. Also define the ratio

Xnet[1](2)

expressing the time of nearest neighbor communication relative to the time of an
average floating point operation. On the MasPar MP-1, - 0.2 and a floating point
multiplication takes approximately three times the time for a corresponding floating
point addition, all in 64 bit precision.

A more detailed general description of the MasPar MP-1 computer can be found
in [4], [9], and [22].
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3. Multiplying N N matrices on an N N processor array. To emphasize
the algorithmic structure, we first describe the basic algorithms for the special case
of square N N matrices that fit exactly on an N2 processor machine. We assume
(as is the case on current machines) that N is a power of two. Later, we discuss the
modifications necessary to obtain fast algorithms for larger matrix problems.

3.1. Cannon’s data flow for the standard algorithm. The standard defi-
nition of matrix multiplication, C AB, as

(3) ci,j ai,kbk5 V i, j
k

provides an obvious method for the computation. Evaluating each of the N2 elements
requires exactly N multiplications and N- 1 additions, a sequential complexity of
2N3 N2. If N3 processors are available, the N3 multiplications may be done in one
step and the N2 sums of N terms in logN steps. On a local memory machine one
must, however, take communication costs into account. On a two-dimensional mesh
of processors with nearest neighbor communication only, Gentleman [12] has proved
that there does not exist any parallel algorithm with communication complexity of
order less than O(N). This result is independent of the number of processors available.
Thus unless we use the router communication, the largest number of processors for
which we can hope to achieve optimal efficiency is O(N2).1

A data flow scheme for the evaluation of (3) on a two-dimensional mesh of pro-
cessors where the matrices fit exactly on the processor grid was designed by Cannon
[8]. The algorithm is well described in [13], but since it has similarities with the al-
ternative algorithms to be described and since it serves to introduce our notation, we
briefly describe it in the next paragraph.

Only one element from each matrix is stored on each processor. In order to keep
all the processors busy, we need to assure that each processor has elements from A
and B that form a product term (i.e., ai,k and bk,j for some k). In Cannon’s scheme
this is done by an initial preskewing of the matrices. The A matrix is preskewed by
rows, while the B matrix is preskewed by columns, as in the 4 4 example shown in
Fig. 1.

al a2 a3 ao blo b21 b32 b03
a22 a23 a20 a2 b20 b3 b02 b13
a33 a30 a31 a32 b30 bo b12 b23

FIG. 1. Standard preskewing.

With this preskewing, a very simple data flow scheme guarantees that each pro-
cessor gets appropriate pairs of elements in each step. The entire multiplication is
described by the algorithm below.

In all our algorithms we use - to denote assignment, while = denotes data
transmission. All operations are performed on matrix elements. Subscripts that occur
in algorithms do not represent the indices of the matrix elements, but a processor

Note that the use of pipelined communication on the mesh, like XnetP, has a cost proportional
to the distance, but such a small constant (one clock cycle) that it can be used efficiently to simulate
models of communication that violate this assumption for all computers in the MP-1 family.



390 P. BJORSTAD, F. MANNE, T. SOREVIK, AND M. VAJTERIC

address. All processor addresses are modulo N. We assume the processors, as well as
the matrices, to have indices running from 0,..., N- 1.

Standard Matrix Multiplication
on all processors:
Preskew A; Preskew B;
on all processors:

c ,,-- ab;
for/- 1, N-1

on all processors (i, j):
ai,j := ai,j+l;
bi,j bi+l,j;
c c + ab;

This algorithm performs all the multiplications needed for (3) and accumulates them
in c. The difference from the standard outer product update of C is that the index k
in the term a,kbk,j takes different values (in fact, k (i +j + l) (mod N)) on different
processors in each step. Consequently, the updates take place in different order on the
elements of C. In this algorithm we keep all the processors busy using only nearest
neighbor communication (Xnet[1]).

In the preskewing all elements of A move along rows on the processor grid while
B’s elements are moving along columns. This is a very regular communication and
consequently well suited for the Xnet. We tried two different implementations.

Linear Preskewing
/* A and B are initialized with
element (i, j) on processor (i, j) */
for k= 1, N- 1

on processors (i, j) where _> k:
ai,j ":=: ai,j+l

on processors (i, j) where j >_ k"
bi,y bi+l5;

or alternatively,

Logarithmic Preskewing
/* A and B are initialized with
element (i, j) on processor (i, j) */
fork--0, logN -1

on all processors (i, j) where i (mod 2k) is odd:
ai,j "(:= ai,j+2

on all processors (i, j) where j (mod 2k) is odd:
bi,j = bi+2,j

The total data transmission (words times distance) resulting from these two algo-
rithms is in both cases N2(N- 1), but their execution times on the MasPar MP-1
are different. With fewer iterations we reduce loop overhead and logical tests (with
resulting changes in the active processor set), as well as the accumulated startup time
for Xnet. Consequently, the logarithmic preskewing should perform better.

The router may also be used to preskew the matrices. The router views the
processors as a linear array and each processor must compute the destination address
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for its variable. The actual communication can then be viewed as taking place in
parallel. We have a total of 2N(N- 1) 64 bit words that must be moved. The
communication rates in Table 1 refer to this and do not consider the distance of
communication. If (i, j) is the coordinate of a processor, then p N i / j is the
router address. The individual i, j, and p are all predefined and available on each
processor.

The router preskew then takes the following simple form.

Router Preskewing
/* A and B are initialized with
element (i, j) on processor p N i + j */
on all processors p:

q--p-i;
on processors where (j < i):

q+-q+N;
aq = ap;
q-p-N.j;
on processors where (i < j):

q+-qWN2;
bq bp;

While the speed of a preskew based on Xnet depends on the size of the computer,
a router2 preskew does not. Thus increasing the size of the machine makes the router
more competitive relative to the Xnet.

TABLE
Mwords/s in preskewing.

Machine size
Matrix size N

Linear preskew
Log preskew
Router preskew

1024 2048 4096 8192
32 64 64 128

3.0 4.0 6.0 8.1
5.1 7.2 10.7 15.0
5.0 10.2 20.5 41.1

We present preskewing data for both square and rectangular machines in Table
1. The matrix size N will always be taken equal to the larger of the two sides if the
processor mesh is nonsquare. In this case, the matrix is mapped to the processor
array by having each processor store two matrix elements. We note that the router
bandwidth increases proportionally with the machine size, resulting in a constant time
for the preskewing, while the two algorithms using Xnet have a bandwidth increase
proportionally to the square root of the machine size. This reflects the fact that the
average communication distance grows as the square root of the number of processors.
Also note how much faster the logarithmic preskew is compared with the linear; in
fact, for the 1024 processor machine, this is the method of choice.

2 Clearly this is only true for the current range of machines. In general one would expect the time
to grow logarithmically with the number of processors since the number of stages in such a switch
will increase with the number of processors.
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3.2. Data flow for Winograd’s algorithm. Winograd [25] proposed the fol-
lowing method for matrix multiplication: Let

(4)

and

N/2-1

di,j E (ai,2k + b2k+lj)(ai,2k+l + b2kj)
k--0

N/2-1

(5) ai ai,2kai,2k+,
k=0

N/2-1

(6) b; E b2kTl,jb2k,j;
k=0

then the elements of C can be computed as

The exact flop count for this algorithm is 2N3 + 3N2 2N, which is slightly more
than the standard product (3). However, the number of multiplications is one half at
the expense of additions. Consequently, on the MP-1, there is a potential maximum
speedup of 25 percent using Winograd’s algorithm, if we are able to construct an
efficient data flow scheme for the algorithm.

The numerical stability of this algorithm was analyzed by Brent [7]. He shows that
scaling of the matrices A and B is essential. Define the norm IIAII maxi,d a,d I- If
the crude but easy-to-implement scaling

(8) A 2PA, B 2-PB,

where p is an integer such that

1 < 22p IIAII() < 2,

then (7) will compute AB + E with IIEI] bounded by

(0)
9
(n2 + 16n)ullAll IIBll,IlEll

and with u being the unit roundoff of the machine.
corresponding bound for the standard algorithm

This compares well with the

(11) IIEII _< n=ullAII IIBII / O(uU),

although a generally stronger, componentwise bound exists for this algorithm [13].
In Table 2, we compare two different scaling algorithms. Both algorithms first find

IIAII and IIBII in the two matrices. The scaling is then performed as outlined above.
We scale by a power of two, implemented either as a shift of the exponent or by a
straightforward multiplication. We report the performance in millions of 64 bit words
scaled per second. This scaling takes advantage of the global or-tree for finding the
maximum elements. We note that exponent shifting is much faster and also avoids
extra rounding errors. The drawback is a more machine-dependent implementation.
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TABLE 2
Mwords scaled/s in Winograd’s algorithm.

Machine size
Matrix size

Multiplication
Exponent shift

1024 2048 4096 8192
32 64 64 128

3 9 12 36
9 22 35 86

The correction terms (5) and (6) are easily computed by a standard log-sum in
parallel for all rows and columns. The choice of communication for this operation
is XnetP. When found, the correction terms are broadcasted along rows or columns
using XnetC. The parallel arithmetic complexity of (5) and (6) is log N. In computing
the log-sum there will be log N startups for the XnetP and a total transmission cost
proportional to N. (Remember that on the MP-1, the transmission cost will be
dominated by the log N term for all existing values of N.)

Keeping one element from each matrix on each processor, we need (ai,2k, b2k+l,j)
on processor (i,j). Next, we need (ai,2k+i,b2k,j) followed by (ai,2k+2, b2k+3,j) and
(ai,2k+3, b2k+2,j). This is the same regular data flow as in Cannon’s algorithm, except
that the elements of B are pairwise interchanged. The corresponding preskewing is
shown in Fig. 2.

all a12 a13 alo boo b31 b22 b13
a22 a23 a20 a2 b30 b2 b2 b03
a33 a30 a3 a32 b20 bll b02 b33

FIG. 2. Preskewing for Winograd I.

With this initialization, we are able to obtain all the sums ai,2k+l -b2k,j and
ai,2k + b2k,j+l on all processors. The difficulty is, however, that the two sums in (4)
do not turn up at the same time on every processor. The processors are divided into
two groups in a checkerboard pattern. On the "black" processors the second sum
turns up one step later than on the "white." In order to do the multiplication and
the update of di,j simultaneously on all processors, we need to store the first sum in
a register on the "white" processors until the second sum has been computed. This
results in an extra interchange of the values of two variables. The algorithm can be
described as follows.

Winograd I (Single Correction)
on all processors:

Scale A; Scale B;
/* compute the correction terms */
on all processors:
a - logsum(ai,lai,o + ai,3ai,2 +’" + ai,N-lai,N-2);
b - logsum(bo,jbl,j + b2,jb3,j +’" + bN-2,jbN-,j);
c +-- --a

/* preskew according to Fig. 2 */
on all processors:

Preskew A; Preskew B;
/*multiplication phase*/
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on all processors:
sO.-a+b;

for/= 1, N/2
on all processors:

ai,j = ai,j+1;

bi,j = bi+1,j

sl -a+b;
ai,j == hi,j+1;
bi,j = bi+1,
s2 - a + b;

on processors (i, j) where (i + j)is even:
tmp .- sO; sO s2; s2 -- tmp;

on all processors:
c - c/ sl. s2;

By unrolling the loop one level, the three assignments needed for swapping can
be replaced by one.

Another strategy that allows us to group together pairs of elements of A and B
where the index k differs by 1, is based on making copies of A and B that are shifted
one column or row, respectively. If we keep the same simple data flow, but cyclically
send one copy into the other, always sending the one which is a step ahead, we manage
to move both copies two positions in only two steps, instead of four. However, we are
now computing

(12)
N/2

di,j ai,2k + b2k-l,j )(ai,2k-1 nt- b2k,j
k=l

on half the processors. Note that the indices in (12) must be taken modulo N. Being
different from (4), we need different correction terms on these processors. Using
the two versions simultaneously, we now compute two sets of correction terms. For
each processor we use the term that corresponds to the di,j that is computed. The
algorithm can be stated as follows.

Winograd II (Double Correction)
/* Scale the matrices as in (8) and (9) */
on all processors:

Scale A; Scale B;
/* compute the correction terms */
on all processors:

a -- logsum(ai,lai,o + ai,3ai,2 +’" + ai,N-lai,N-2);
aa - logsum(ai,oai,N-1 + ai,2ai,1 +’" + ai,N-2ai,N-3);
b logsum(bo,jbl,j + b2,jb3,j +’" + bg-2,jbN-l,j);
bb logsum(bN-l,b05 + bsb2,j +... + bN-35bN-2,);

on all processors where (i + j) even:
c ,-- --a bj

on all processors where (i + j) odd:
c - -aa bb;

/* preskew as for Cannon’s algorithm */
on all processors:

Preskew A; Preskew B;
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TABLE 3
SIMD matrix multiplication kernels.

Machine size
Matrix size

Cannon
Winograd
Winograd II

1024 2048 4096 8192
32 64 64 128

Mflops OH Mflops OH Mflops OH Mflops OH
24 16%
21 38%
20 43%

54
47 24
57 27%

103 8%
102 25%
100 29%

226 4%
220 13%
258 16%

/* multiplication phase */
on all processors:

bi,j bi+1j;- + ( + ,) ( + );
for k- l,N/2-1

on all processors:
ai,j ":= ai,"3+1;
bi,j = hi+1,j

a_ i, a{,j+1;

bi,j = b+1,
c - c -t- (a -t- }) * (5 + b);

While computing the double set of log-sums we always have enough processors
to do the arithmetic in parallel for the sums. However, when using XnetP for the
communication all intermediate processors must be idle. The communication time
for computing the correction terms is doubled, while the arithmetic has the same
time complexity as in the single correction case.

3.3. Timing results. We have carefully timed the different routines. The re-
sults are presented in Tables 3 and 4. The Mflops3 are based on flop counts for the
standard method (3). We compare the three algorithms in Table 3, where all calcula-
tions are performed in 64 bit precision. We present Mflops figures and the percentage
of the total time spent in "OverHead." The column labeled "OH" covers preskewing
and, in the case of Winograd, scaling and computation of the correction terms.

The results require a few comments. When we compare the two variants of Wino-
grad as stated in this paper, it seems that Winograd I should be slightly superior in
terms of complexity. This advantage can be seen on the square machines (1024,4096).
On the nonsquare machines, we need to store two matrix elements on each proces-
sor. This leads to a reduction from 4 to 3 in the nearest neighbor communication
in the inner loop, but doubles the register requirements. In Winograd I there is the
additional need to unroll the inner loop one level. The resulting code requires more
registers than currently available. Winograd II is therefore considerably faster on the
nonsquare machines. As predicted by the analysis, the overhead of all three algo-
rithms is reduced as N increases. Cannon’s algorithm is competitive on the smaller
machines due to its lower overhead, but on the 8192 processor machine (and on larger

3 Since Winograd’s algorithm needs some additional operations for doing the correction terms
(O(n2)), the correct flop counts are actually somewhat higher here. But a fair comparison from a

practical point of view requires the same flop counts for both algorithms. All Mflops figures in this
paper refer to the standard method (3).
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TABLE 4
Dependence on floating point format.

Precision
Algorithm

Cannon
Winograd
Winograd II

64 bit
Mflops OH

226
220 13%
258 16%

32 bit
Mflops OH

461
384 16%
452 21%

machines) we note that the 25 percent saving in arithmetic puts Winograd ahead in
performance.

Since the relative speed of multiplication and addition depends on the length of the
mantissa, we give results for both 32 bit and 64 bit precision floating point formats
in Table 4. These formats have 23 and 52 bits in the mantissa, respectively. We
observe that Cannon more than doubles in performance, while the speedup is about
75 percent for Winograd, consistent with the relative importance of multiplications
in the two algorithms.

4. Block algorithms. In this section we discuss how to multiply matrices hav-
ing more elements than the number of processors available. Again, assuming N2

processors, we first deal with square matrices of size n kN, where k 2, 3,..-.
There are two common ways to partition the matrix. One can either divide it

into k2 blocks, each of size N N, and distribute one element of each submatrix to
the corresponding processor. Alternatively, one can split the matrix into N2 k k
blocks and distribute each block to an individual processor.

In the first case, one can simply do the matrix multiplication by a block version
of the standard algorithm. This requires k3 calls to a routine for doing the matrix
multiplication of N N matrices. The preskewing can be done once for each block,
giving a total of k2 calls to the preskewing routine. Similarly, for the Winograd kernel,
both the scaling and the correction terms can be computed directly on the global ma-
trix. This improves the parallel complexity to O(k2 T k log N) for the correction terms
and to O(k2) for the scaling. Thus, asymptotically, the arithmetic of the kernel loop
will dominate the entire computation. This approach gives the same ratio between
communication and arithmetic as for the N N case considered in 3. In Table 5,
we present data for this scheme with N 128 and 8192 processors.

In the second case, it is straightforward to do a block version of Cannon’s algo-
rithm. In this case we get a block preskewing. In N steps each processor will do
a matrix multiplication of k k blocks and send the two blocks to its neighbors.
Now we have O(k3N) arithmetic operations, but only O(k2N) communication. This
advantage may, however, be offset by the more frequent access to memory of order
O(k3N). Using the relations (1) and (2) we obtain the inequality

(13) ( 5)k _> /+ ,
which must hold if this algorithm shall be faster than the first one considered. Here
corresponds to the memory access speed for the first blocking strategy. The relation
shows that local memory access must be faster than nearest neighbor communication
for the second blocking strategy to give a faster method. This is only true on the MP-
1 if overlap between register loads and arithmetic can be achieved. The global N N
memory access (fetching one number to each processor) cannot easily be overlapped,
and .5 while the reading of local k k blocks facilitates a 5 of approximately .08
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TABLE 5
Performance of block algorithms with N x N kernel blocks based on kernels from Table 3.

n

256 0.15 230
512 1.15 233
1024 9.14 235
2048 72.82 236

64 bit precision

Block Cannon Block Winograd
Time Mflops Time Mflops

32 bit precision

Block Cannon Block Winograd
Time Mflops Time Mflops

0.12 272 0.07 484
0.92 291 0.54 495
7.14 301 4.30 500

56.50 304 34.12 503

0.07 490
0.50 531
3.89 551

30.47 564

in our case. We conclude that for sufficiently large matrices, the second strategy will
be most efficient. We employ Cannon’s data flow, but have a choice between standard
matrix multiplication at the block level or the use of Winograd’s method.4 We note
that preskewing, scaling, and correction terms can be performed in the same way as
above.

Finally, note that Winograd’s algorithm cannot be applied to matrix blocks since
(4)-(7) depends on commutativity. In addition to the two alternatives already men-
tioned, there is obviously a "virtual processor" Winograd method, where the data for
each virtual processor is grouped locally and assigned to physical processors. The
complexity of this method is similar to the first block method considered in this sec-
tion, but the programming is more complex. In addition, this approach suffers from
a more expensive and complicated preskewing.

4.1. Strassens algorithm on an SIMD machine. Strassen first presented
his algorithm for matrix multiplication in [23]. It is based on a recursive divide and
conquer scheme. The algorithm is clearly presented in Chapter 1 of [13]. It is well
known that the algorithm has a sequential complexity of O(n2"87), as compared to
O(r3) for ordinary matrix multiplication. Because of lower-order terms it is advisable
to employ an ordinary matrix multiplication routine when the dimension of the blocks
reaches some preset cutoff point no _> 8 [14]. Due to algorithm overhead that grows
with the number of recursions, as well as efficient use of the hardware at hand, we
chose to take no 128 for our 8192 processor machine. We can then use one of the
computational kernels described in the previous section with N 128.

Lately, there has been a renewed interest in Strassen’s algorithm. Bailey [1]
implemented it on a CRAY-2 and reported speedups up to 2.01 for. 2048. The
numerical properties of this algorithm are analyzed in [6] and more recently in [14]; see
also Golub and Van Loan [13] for a discussion of problems where Strassen’s algorithm
should not be used. The algorithm satisfies the following error bound:

(14) I[EI _< n (ng+ 5n0) 5n ul]AII IIBII + O(u2),
n0

where no _< n is the cutoff point mentioned above (log2 12 3.6). This should be
compared with standard multiplication (11) and with Winograd’s algorithm (10).
The error bound is somewhat weaker, but may still be regarded as acceptable unless
small, componentwise relative errors are required. Empirical results from both Bailey
[1] and nigham [15] show that the error in Strassen is small enough to justify its use
in applications where speed is crucial. Also note that our choice of no 128 improves

4 In this case k should be even, or the code must simulate the algorithm for k -+- 1.
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the bound for realistic values of n, compared to having a very small value. Both IBM
and CRAY support routines for fast matrix multiplications using Strassen’s algorithm.

In this section we restrict k to be a power of 2 (i.e., k 21 1, 2,...) and we
partition the matrix into k2 blocks of size N x N. With this layout of the matrix all
additions and subtractions can be performed in parallel without any communication
between the PEs. At each step of the algorithm, each processor views its data as
being a local n n matrix on which it is performing Strassen’s algorithm. Once the
cutoff point is reached, each processor will have one element that fits into one of the
standard kernel matrix multiplication algorithms described earlier. Both Cannon’s
and Winograd’s algorithms were tried as the kernel to perform the matrix multipli-
cations. Note that in both cases we can perform the preskewing of the k2 blocks in a
preprocessing step. Also, the scaling step in Winograd’s algorithm can be performed
as part of the preprocessing. This reduces the "Overhead" in Table 3 significantly.
The use of Winograd as a computational kernel in Strassen’s algorithm also slightly
changes the error bound (14) to

(15) IlSll-< 00 gn + 23n0 5n ullAll [[Bll + O(u2)

Strassen’s algorithm will have log(k) levels of recursion and require approx-
imately k2’8 (kernel) matrix multiplications each of size N N. Note that each
processor therefore will do 2k2"SN nearest neighbor communications compared with
only 2k2N for the block methods. Asymptotically, Strassen will always win due to
the lower exponent in arithmetic complexity, but for practical problems we obtain the
inequality

(16) (1 + " + /N)k
2"s <_ (1 + 5)k3 + (7 + 5 + )k2

for values of k where Strassen’s method will outperform the asymptotically best block
algorithm. Here again refers to memory access that cannot easily be overlapped
with arithmetic. The last term on the right-hand side comes from the memory access
when sending the blocks to neighbor processors. On the MP-1, this inequality is
always satisfied. If we neglect the /N term and the k2 terms, then (16) simplifies to

(17) k> (I+’Y)-1-I-5

The value of k is therefore quite sensitive to an increase in -. For example, if we assume
that i << 1 and take the quite reasonable value of /- 1, then k >_ 32, corresponding
to five levels of recursion in Strassen. This implies that the matrix must be at least of
dimension 4096, requiring more than 400 Mbytes of memory, perhaps exceeding the
size of the machine.

The algorithm was tried on matrices of size kN, N 128, k 2l, 1, 2, 3, 4.
Tables 6 and 7 give the timings of the different cases. Comparing Table 5 with the
left parts of Tables 6 and 7, we find, in agreement with the discussion, that the
partitioning into N N blocks is best for smaller matrices. The crossover point is
around n 2048, slightly higher than predicted. In 32 bit precision 5 increases and
the same effect is even more pronounced. As predicted by (16), Strassen’s algorithm
is faster than the block methods for any levels of recursion on the MP-1. We note
that our block Winograd code is faster than the one processor CRAY-2 figures using
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TABLE 6
Performance of block algorithms in 64 bit precision.

Block Cannon
n Time Mflops

256 0.21 163
512 1.35 199
1024 9.62 223
2048 72.44 237

Block Winograd
Time Mflops

0.20 170
1.17 230
7.82 275

56.87 302

Strassen-Cannon
Time Mflops

0.13 256
0.91 295
6.34 339

44.42 387

Strassen-Winograd
Time Mflops

0.11 294
0.79 341
5.47 392

38.14 450

TABLE 7
Performance of block algorithms in 32 bit precision.

Block Cannon
n Time Mflops

256 0.11 315
512 0.68 394
1024 4.80 447
2048 36.00 477

Block Winograd
Time Mflops

0.11 302
0.66 409
4.40 488

31.85 539

Strassen-Cannon
Time Mflops

0.06 538
0.43 624
3.00 716

21.02 817

Strassen-Winograd
Time Mflops

0.06 530
0.43 619
3.01 714

21.01 817

the CRAY MXM library, reported by Bailey [1]. Our results for Strassen’s method
are also quite comparable with his.

Another similar algorithm, due to Winograd [5], which uses only 15 additions and
subtractions (as compared to 18 by Strassen), was also implemented. There was no
significant improvement in execution time, since the block multiplication completely
dominates the small saving in arithmetic.

We note that Manber [20] claims that Strassen’s algorithm cannot be easily paral-
lelized. Our results show a practical, parallel version, but depends on a very favorable,
low value of the parameter 7.

5. Matrices of arbitrary size. Suppose we have two n n matrices and N2

processors. If n/N is an integer we can use any of the algorithms defined in 3 or 4.
If n/N is not an integer we may divide the matrices into k k blocks, k [n/N],
and place the K2 blocks, K [n/k, in the upper left K K part of processor
array. With this mapping of the data there are at least two simple modifications of
the standard algorithms from 4.

We may extend the matrix with zero blocks and run the algorithm as before.
Considering only the multiplication part, the parallel complexity of this algorithm
will be

(18) 2k2Na(k + 7),

where a and 7 are defined in (2). Alternatively, we only use the K K processors.
In this case the boundaries must be handled using two extra XnetP[N- K] in the
inner loop. For comparison we get"

(19) 2k2Ka(k + 7 + /),

where - is defined like 7, but using the time of XnetP[N- K] instead of Xnet[1]. For
the MP-1 one can assume that 7 < " < 27 for interesting values of K. This shows
that the last approach should be used if

(20) K < N.
k+27
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With 1/5, this will almost always be the best choice.
Consider now the case where the matrix blocks in our partition are nonsquare.

This is necessary when the matrices (or the processor array) are nonsquare. In Can-
hOE’S scheme the elements of two matrices move in every step. Cannon chose A and B
to move, while the elements of C remain in place. We may as well move B and C or A
and C. For the previously described preskewing, these alternative data flows force one
of the matrices to move along diagonals. While the arithmetic work is independent
of the data flow, the communication time is not. Assuming that the matrices are of
different shape and partitioned as above, we will minimize the communication effort
by always sending the two matrices with the smallest block sizes. This possibility is
available when the interconnection network supports diagonal communication, as on
the MP-1.

Finally, let us consider the case where the number of matrix elements is less then
the number of processors. Alternative algorithms based on making copies of A and B
to all processors exist. If this is done properly, up to n3 processors can participate in
the multiplication phase. Finally, the summation of all n2 inner products must take
at least log n steps. However, as proved by Gentleman [12], the communication com-
plexity is still O(n) for a two-dimensional mesh with nearest neighbor communication
only. Typically, we want a binary tree network to support this kind of algorithm
[10]. On the MP-1, one can do a rather efficient simulation of binary trees using
XnetP. In particular, one can design efficient algorithms for matrices of dimension
n-- 2 n < N. Vajteric has described such algorithms for the MP-1 in [24].

6. Conclusions. We have developed and analyzed data flow algorithms for Wino-
grad’s and Strassen’s matrix multiplication algorithms and shown that they can be
efficiently implemented on a state of the art massively parallel SIMD computer. The
algorithms perform close to the theoretical maximum of the machine and provide a
very cost-effective way of doing large scale matrix computations. Our algorithms can
also be implemented on alternative SIMD machines like the AMT DAP and the CM-
2. In order to predict the performance on these machines the parameters c, 5, and- must be determined and major architectural differences (e.g., router performance
and XnetP-type communication) must be taken into account. We note, in particu-
lar, that Strassen’s algorithm depends on a very favorable communication speed /.
There will be a considerable challenge to maintain this property in future data parallel
computing systems.
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GAUSS QUADRATURES: AN INVERSE PROBLEM*

JAROSLAV KAUTSKYt
Dedicated to Gene Golub on the occasion of his 60th birthday.

Abstract. The problem of finding the Gauss quadrature (i.e., the quadrature formula of the
maximal polynomial order) for a given weight function is reversed: a weight function, for which a
given quadrature formula with positive weights is the Gauss quadrature, is sought. Among all such
weight functions, those minimizing, in the least square sense, the kth derivative (k > 0 given) are
characterized. An algorithm for calculating the values of the minimizing weight functions is derived
and applied to find positive weights for quadratures with equidistant knots. The concepts are further
generalized to include Gauss-Radau and Gauss-Lobatto quadratures.

Key words, quadratures, Gauss quadratures, inverse problems, orthogonal polynomials, Jacobi
matrices

AMS(MOS) subject classifications, primary 65F30; secondary, 65D07, 65D30, 65D32,
65F25

1. Introduction. When approximating an integral Iw (f) f: f(x)w(x)dx by a
nquadrature formula Q(f) j=l wjf(xj), the Gauss quadrature has the advantages

of having simple knots xj inside the interval [a, b], the maximal polynomial order of
precision 2n, and, importantly, positive weights wj, for which it is sufficient to assume
that the weight function w does not change sign in [a, b]. If, however, the knots are
prescribed, the quadrature formula of the maximal polynomial order of precision
(generally n) may have weights which change sign and attain large values, rendering
the quadrature formula useless.

For any weight function w, positive in [a, b], we can approximate the integral

(1.1) II(f) f(x)dx f(x) w(x)dx wj w(xj) w(xj)
f(xj)

by the Gauss quadrature for w, leading to a quadrature for I(f) with weights
wj/w(xj), which is exact for all f such that f/w is a polynomial of degree less than
2n. We are therefore interested in the following problem.

PROBLEM 1.1. Given the knots xj in [a, b], is there a suitable weight function w
for which these knots are the knots of the Gauss quadrature for w?

For w to be suitable we require two properties:
(a) It should be positive, not only at xj, but everywhere in [a, b].
(b) It should be smooth; particularly, f/w should be well approximated by poly-

nomials.
We thus have a problem inverse to that of finding the Gauss quadrature for a

given w, i.e., the knots and the interval are given and we want to describe all weight
functions w on that interval for which the Gauss quadrature has the prescribed knots.
Obviously, this is not possible (with a weight function not changing sign) if the knots
are multiple (easy to avoid), or if one or both endpoints of the interval coincide
with one of the knots. To include the latter situation, which is definitely of interest,

Received by the editors February 8, 1991; accepted for publication (in revised form) August 2,
1991.

School of Information Science and Technology, Flinders University, Bedford Park, South Aus-
tralia, 5042 (j.kautsky@cc.flinders.edu.au).
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we generalize the requirement on the weight function and introduce the following
definitions.

DEFINITION 1.1. By V(x, a, b, M, w) we denote the set of all functions w defined
b

on [a,b] such that the interpolatory quadrature for Iw(f) f f(x)w(x)dx with the
knots x (Xl, x2,..-, xn)T has weights w (Wl, w2,..., wn)T-and polynomial order
of precision at least M.

DEFINITION 1.2. By V(x, a, b, M) we denote the union of l/Y(x, a, b, M, W) over
all w such that wj > 0 and IlWlll -jn__ w b- a.

We assume here that

a <_ x < X2 <’’" < Xn

_
b

and that M _< 2n (M <_ 2n- 1 or M _< 2n- 2 if one or two, respectively, equalities
hold in (1.2)). For the maximal M the interpolatory quadrature in Definition 1.1 will
be the Gauss, Gauss-Radau, or Gauss-Lobatto quadrature. Since for any positive
scalar ,k, w E W(x, a, b, M, w) implies w W(x, a, b, M, )w), we normalize w in
Definition 1.2 to avoid comparing pears with apples when we assess the suitability of
a particular weight function w.

To describe (so that we find the suitable one mentioned above) all weight functions
in W(x, a, b, M) is not an easy task. However, we can divide and, hopefully, conquer
the problem by considering, for fixed w, the weight functions in W(c., a, b, M, w).
Indeed, in 2 we characterize the unique weight function in W(, a, b, M, w) of given
smoothness. We can then vary w to achieve the other desired property, positiveness
of w. Such a search obviously covers all weight functions in W(, a, b, M).

In 3 we find the optimal weight functions for symmetric two- and three-point
quadratures. The approach used there does not generalize easily to a larger number
of knots. Therefore, in 4, we develop a numerical method for finding the smoothest
weight function by representing it in terms of orthogonal polynomials. This leads
to the problem of how to extend a given Jacobi matrix so that its spectrum lies in a
given interval. In 5 we present results of numerical experiments involving equidistant
knots and we conclude (6) by a list of open problems.

Finding w W(, a, b, M, w) resembles the (finite) Hausdorff moment problem
(HMP, see [6] for overview) where one seeks a function having specified moments, but
our situation is significantly different. We deal with the moments only implicitlywour
input is the knots and, possibly, the weights of the Gauss quadrature. HMP is known
to be ill posed [6]; intuitively, this is due to the bad condition of the map from the
moments to the corresponding Gauss quadrature [3]. Thus this ill-posedness does not
immediately apply to our problem. Furthermore, we do not seek to approximate the
solution of the infinite HMP, but wish to identify a particular weight function whose
finite number of moments also satisfy certain implicit conditions (prescribed Gauss
knots, not weights). Consequently, the conditions on the existence of a solution are
also simplified.

The work on this topic was initiated by a request from a theoretical physicist
to find a good quadrature with given knots. However, the approach and techniques
used here have been motivated by the author’s joint work ([4],[5]) on orthogonal
polynomials with Professor Gene H. Golub, to whom this work is gratefully dedicated.

2. Basic result. One way of achieving the smoothness of a function is to require
the existence and reasonable smallness of its derivative. The aim of this section

b
is to show that the weight function that minimizes SK(W) f, (w(K)(x))2dx over
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all w E 14)(x, a, b, M, w) is a polynomial of degree M / 2K 1, satisfying certain
boundary conditions. However, we first point out an obvious characterization of
)4;(x,a,b,M,w).

LEMMA 2.1. The weight function w is in VI;(x, a, b, M, w) if and only if

/ab w(x)xkdx WjX
j--1

k-O, 1,...,M- 1

The main result of this section resembles similar properties of natural interpolat-
ing splines.

THEOREM 2.2. Let M > K > 1. The weight function minimizing Sg(w) over
all sufficiently smooth w )/V(x,a, b,M, w) is the unique polynomial q of degree
M + 2K- 1 such that

b

(2.1) q(x)xJ-ldx--- #j--l, j 1,2,... ,M,

0,(2.2) k K,K + 1,.-.,2K- 1

where

n

(2.3) #k Z wjx,
j=l

k 0, 1,...,M- 1

Proof. Expressing q in standard powers expansion, the M -4- 2K equations (2.1)
and (2.2) are a linear system for the coefficients of q. We will show that if this
system has a solution for some moments/xj then it minimizes SK(w) and is unique
(we can take the Gauss-Legendre quadrature as a special case for which q 1 is such
a unique solution). From that the existence follows for any moments #j. For any
w )/Y(x, a, b, M, w), we have

SK(W) SK(w q + q) SK(w q) + SK(q) + 2X(w q, q),

where the cross term X is

b

X(f,q) f(K)(x)q(K)(x)dx

Integrating by parts K times and taking into account the conditions (2.2) shows that

b

X(f,q) f(x)q(2K)(x)dx

As q(2K) is a polynomial of degree M- 1, it now follows from Lemma 2.1 that
q e )/Y(x, a, b, M, w), and X(w-q, q) 0 for all w e ]/V(x, a, b, M, w). Thus Sg(w) >
Sg(q). If there are two solutions, then the Kth derivative and first M moments
of their difference vanish. As M > K they must be equal, which completes the
proof.

3. Two symmetric cases.

3.1. Two-point quadrature. The simplest symmetric case is a two-point quad-
rature on interval, say, [-1, 1] with knots x (_,)T and weights w (1, 1)r.
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To preserve symmetry, this is the only choice of w to contribute to W(x, a, b, 4)
W(x,a,b, 4, w) (here M 4 for Gauss quadrature), so that the minimal wg E
W(, a, b, 4, w), of minimal Kth derivative, depends only on .

Our aim here is to specify the range of E [0, 1] for which the minimal weight
function Wg is positive, and to calculate the value Wg(). According to Theorem 2.2,
wg(t) is a polynomial of order 4 / 2K, which, due to symmetry, can be written in
the form

K+I
WK(t) E aj(t2-- 1)J"

j=0

The vanishing of the required derivatives is achieved by the restrictions, given in Table
3.1, on the coefficients aj.

K
1
2
>2

TABLE 3.1

Derivatives to vanish Restrictions
1 al --0

2, 3 al 8a3, a2 -2a3
> 2 a2 :a3 0

Some work with MAPLE shows that to match the moments these coefficients
are as presented in Table 3.2.

K

1

2

>2

TABLE 3.2

a0 al a2 a3

(7(2 1) 0 105
3-- (1 3(2) 0

21 (32 1)1/4(272 5) Saa --2a3 -23-(52 1) -(32- 1) 0 0

Note that the Gauss knot 1/v/ leads to the constant weight function wK(t)
1 for all K. Further calculation shows that wK(t) > 0 on [--1, 1] if [min,max],
where the limits and the weight function values are as given in Table 3.3.

TABLE 3.3

min
0.3780

0.4472

max WK() WK(1/2)
0.7423 3-(27-1192-1056 + 2454) 2569--11

17311vff51 0.7606/61
V3 0.7746/-

4(151-5762 + i0504- 3366 + 638)

(9_302 + 454)
16384

69

We observe that the midpoint quadrature formula ( 3) is in the range of
positive WK for all K, while the open quadrature formula (- g) is not for any K.

MAPLE is a registered trademark of Waterloo Maple Software.
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3.2. Three-point quadrature. As a simplest case where the weights w are
changing in V(x, a, b,M), we will now consider a three-point quadrature, again on
interval [-1, 1], with knots x (-, 0,)T and weights w 2(1, a, 1)T/(2 +a), where
a > 0 is a free parameter. We restrict the consideration to minimizing $1 only (i.e.,
g 1), and to three choices of ; 1/2 (with M 6, open quadrature) 2_

3

(with M 6, midpoint quadrature), and 1 (with M 4, closed quadrature).
Our aim is to find, in each of these three cases, the corresponding weights for the
quadrature (1.1), and the value of a for which the weight function minimizing $1 over
)4;(x,-1, 1, M) has maximal minimum which, hopefully, will be positive.

As above, according to Theorem 2.2, the minimizing weight function wl (t) is a
polynomial of order 8 (6 for 1), which, due to symmetry, can be written in the
form

k

Wl,a(t) E aj(t2- 1)J’
j=o

k 3, 3 or 2

The vanishing of the first derivative at -1 and 1 is achieved by the restriction al 0.
Table 3.4 summarizes the values of the coefficients aj and weights. All values

should be multiplied by the normalizing factor 2/(2 + a).

TABLE 3.4

W(0) a0

1/2 2(1 + 2a)

2/3 s(22 -1 (12- a)

al a2 a3 w()
315
2-- (17 6a) 1265 (5 2a) 2-as (1051 166a)

’l-S (10 27a) l-as5 (2 3a) (41 3a)

-45 (a 4) 0 (12 a)

As for the two-point quadrature with K 1, Wl,2(t) ( 1) is minimal at t 0
if a2 < 0, and at t 1 otherwise. A simple calculation shows that the maximum is
reached (while scaling the above values by 2/(2 + a)) at a2 0, i.e., for a 4, which
reverts to constant w(t), and thus the Gauss-Lobatto quadrature.

The other two cases are not so simple. Function Wl,3(t) reaches its minimum in
three different regions depending on the relations between a0, a2, and a3. The ranges
of a and the minima (without the scaling factor 2/(2 + a)) are listed in Table 3.5.

TABLE 3.5

Region A B C
Relations 3a3 > max(3a2, 2a2) a2 > max(a3, 0) 3a3 < 2a2 < 0

Minimum ao -{- a2 a3 ao ao -[- 4.
27a,

Open quadrature ( 1/2)
Region 65/24 < a

Minimum
a ( -1/2 -1/2 ( a < 65/24
4 (25a 1 --51.a (8a 23)

Midpoint quadrature (-- 2/3)
Region a < 2/3 2/3 < a < 778/243 778/243 < a

Minimum (675a 482) --5 (27a 26) rm (a)432

Here

ro(a) 5(4158551- 4314744a + 1475904a2- 166400a3)
30976(8a- 17)2
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FIG. 3.1. Weight function w and quadrature with three knots, M 6, K 1. o: knots, -F
chosen weights, ,’final weights.

5(2986281736- 2540457108a + 688471974a2 57572775a3)
940896(27a- 74)2

The minima for regions A and B have positive derivatives, so the global min-
ima are reached in region C. The rational functions 2ro,m(a)/(2 + a) reach positive
maxima listed in Table 3.6 (the optimal value for the closed quadrature is added for
comparison).

TABLE 3.6

Optimal a Minimal value of best w

3.1783566 0.010149

3.4153582 0.277238

4 1

In Figs. 3.1 and 3.2 we present the optimal weight functions for the midpoint and
open three-point quadratures. For details of the layouts of these figures, see 5.

4. Numerical method. As the approach of the previous section is not likely to
be successful for larger numbers of knots, we are interested in developing a numerical
method to calculate the minimizing weight function w for given knots x, weights w,
and interval [a, b]. The solution being a polynomial, we will represent it as a linear
combination

W pTM+2KC
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2.5

FIG. 3.2. Weight function w and quadrature with three knots, M 6, K 1. o: knots, +
chosen weights, ,’final weights.

of suitably chosen orthogonal polynomials PM+2K (P0, Pl,’’’, PM+2K-1)T. Follow-
ing, e.g., [2], we recall that orthogonal polynomials Pm satisfy the three-term relation

jpj ( Olj)pj--1 (1 jl)j-lPj--2, j l,...,m,

which can be conveniently written in matrix notation

(4.1) tPm JmPm + 13mPmem

where we have denoted t the identity function, em the mth column of the identity
matrix, and Jm the Jacobi (symmetric, tridiagonal, unreduced) matrix

a 0 0
2 2 0

0 2 a "’. 0

0 0 0 am

Our aim is to construct a system of linear equations implementing conditions (2.1)
and (2.2) of Theorem 2.2 for the unknown coefficients c. Our strategy is to choose
the orthogonal polynomials (i.e., the matrix JM+2K) in a way which will make these
conditions, and those relating the moments of Lemma 2.1 with the given weights w,
simple.

We first establish two preliminary results. The first one can be seen by inspection
of the Stieltjes algorithm [3] for constructing the elements of a Jacobi matrix.
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LEMMA 4.1. Let #j be moments of some weight function and , elements of
the three-term relation (Jacobi matrix) .for the corresponding orthogonal polynomials.
For any m there is a one-to-one correspondence between the first m elements of the
sequences {#0, #1, #2,"" } and {#0, c1, 1, a2, 2,"" }.

The second result, the proof of which is also straightforward, is concerned with
the characterization of functions having the same moments.

LEMMA 4.2. Let Pm be the polynomials orthogonal with respect to a positive
weight function f on the interval (a,b) (which then contains the eigenvalues of the
corresponding Jacobi matrix Jm). Then

b
1/2 ab

Pm (t)f(t)dt to el, #o-- f(t)dt

Furthermore, any function g satisfying

bpm(t)g(t)dt
1/2

t*0 el

has the same first m moments as function f.
Given knots x and weights w of a Guass quadrature, we can construct (see [2])

a size n Jacobi matrix Jn for which the corresponding polynomials are orthogonal
with respect to any weight function with the same 2n moments, given by (2.3) with
M 2n. Applying Lemma 4.1 to these moments shows that, for j _< n,

(a) the first 2j moments determine the diagonal element 5 and
(b) the first 2j 1 moments determine the subdiagonal element/y-1

This means that we have the following result.
THEOREM 4.3. Let the matrix JM+2K satisfy the following:
(a) the first [M/2] diagonal elements equal those of Jn,
(b) the first [(M- 1)/2] subdiagonal elements equal those of n, and
(c) the eigenvalues of the order M principal submatrix of JM+2K are in [a, b].

Denoting py the vector of the first j orthogonal polynomials given by JM+2K, the
Tweight function w PM+2ga minimizing SK(W) over all w E Vl;(x,a, b,M, w) is

determined by the solution c of the system

(4.2)

(4.3)

PM(t)pTM+2K(t)dt C (b a)1/2e1
TM+2K(a) a-- 0

p(k) T k K, K + 1,M+2K(b) C- 0, ,2K- 1.

Proof. The theorem follows from Lemma 2.1, Theorem 2.2, and the above con-
siderations taking into account the normalization of the weights w. The condition (c)
is needed for (4.2) to enforce the moment preservation by Lemma 4.2.

The main problem here is the construction of the matrix JM+2K, that is, an
extension of n, obtained from the data x and w, in such a way that condition (c) of
Theorem 4.3 holds. Our solution is based on the fact that a given Jacobi matrix can
be (uniquely) escalated to assign to it two eigenvalues.

LEMMA 4.4. Given Jacobi matrix Jm of size m and scalars 1, 2 such that

spectrum(Jm < 2
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the matrix

J +l= a

has eigenvalues 1, )12 and

"1 -- spectrum(Jm+l) _< A2

provided that

(4.4)
. + + +
2 (,1 .2)/(fl2 Pl),

T (gm l,2I)-lemPl,2 em

Proof. The matrix calculation is elementary. As the eigenvalues of J, interlace
those of Jm+l, the second largest eigenvalue of Jm+l must be smaller than the largest
eigenvalue of Jm, and so on. D

For even M 2m, the eigenvalues of the order m _< n principal submatrix m
of n must lie inside [a, b] (for m n by assumptio_n), and we can choose a sequence
of additional eigenvalues between the spectrum of Jm and the endpoints, a and b, to
extend the matrix to size M, by applying Lemma 4.4 repeatedly.

For odd M 2m- 1, we can proceed as for even M, if the eigenvalues of
m lie inside [a, b], but if M + 1 2n and one of the prescribed knots coincides
with an endpoint (Gauss-Radau quadrature), this is not possible. However, we can
change the element (m,new (:m + O of Jm without affecting the first 2m- 1 M
moments specified by the given quadrature. Our aim in this case is to choose the
parameter c so that the spectrum of m moves towards the centre of [a, b] (we can
do this for any odd M, and any knots to improve the further extension). Denoting
Jm Qdiag(Ai,..-,mQT, )1 <’" < )m, the ordered eigenvalue decomposition of
m, the eigenvalues of Jm + aemeTm satisfy the secular equation

w() l+a
i_j=l

=0

where (V Vm T m,..., e,Q, and w(A) YIj=I (’j )" Differentiating with respect to
a, we find that

2

Ak() 1 + Ejk(vY
vk
+

The new eigenvalues are .l,m(0)--Ol,i,m(POl) where, by the mean value theorem,
0 _< p _< 1. To position them symmetrically in [a, b] leads to a quadratic equation for
c. We choose the root of smaller magnitude for the required correction. Numerical
evidence shows that this correction is quite sensitive to the choice of parameter p.
Using the Taylor expansion (p 0) gave bad results but more implicit choices (1/2 _<
p _< 1) worked quite well.

The extension from size M to M + 2K is arbitrary. Repeating the last elements
CM and M--1 appears satisfactory.
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Once the matrix JM/2K is available, the implementation of Theorem 4.3, i.e., the
construction of the matrix for the system of equations (4.2) and (4.3), is reasonably
straightforward. For the first part we have

TPM(t)pTM+2K(t)dt LM LM+2K,

where LM+2K (LM is its leading submatrix of order M) transforms Legendre orthog-
onal polynomials for [a, b] into PM+2K" It can be constructed recurrently, row by row,
from the relation

LM-2K J JM-2K LM-2K-{-eM-2K2T

for some z (not needed in the process), where is the known Jacobi matrix for the
Legendre weight function on [a,b]. The last 2K rows (4.3) of the system can be
obtained by differentiating the identity (4.1) (without the last row but augmented at
the top by eTlPm --(b- a) 1/2 giving an explicit recurrence).

5. Numerical examples. Using the results of the previous sections, the aim
of the numerical experiments was to find a positive weight function for which the
Gauss knots are equidistant. More explicitly, if the distance between adjacent knots
is constant, say h, and the distance between endpoints and extreme knots is ph,
0 _< p _< 1, we call the quadrature equidistant (closed for p 0, midpoint for p ).
The strategy was to choose the weights w in such a way that, for a given K, the
function minimizing Sg(w) over all w E Y(x, a, b, M, w) has a maximal minimum.

We have developed a set of MATLAB2 programs implementing the numerical
method of 4, together with the following steps:

(a) to choose w manually and to display the plot of the weight function and its
minimum, and

(b) to search for the optimal w using MATLAB function fmins (Nelder-Meade
simplex algorithm [1]).

The results of selected cases are in Figs. 5.1-5.7. Here, the "chosen weights"
are the searched for optimal values of w, and the "final weights" are the coefficients
wj/w(xj) of the quadrature in (1.1).

We first discuss the case of the midpoint quadrature with five knots. Due to
symmetry and scaling there are only two free parameters in w. In Fig. 5.1 we give,
for K 1, a typical starting guess with equal values in w. We note that the weight
function, a symmetric polynomial of degree 11, oscillates and turns negative near the
endpoints. Although it is not obvious from the graph, the first derivative is zero at
the endpoints (rechecked numerically from the coefficients of the solution). Figs. 5.2,
5.3, and 5.4, give the best (maximal minimum) weight functions for K 1, 2, and
3, respectively. We observe that the oscillations have been smoothed out and the
weight function has assumed a nice bell-like shape, possibly with gentle ripples near
the endpoints (this pattern will prevail in examples with more knots). The case of
minimizing the second derivative (Fig. 5.3, K 2) is an exception, in that the ripples
are significant. We suspected that we might have found a local, rather than global,
extreme, but the presented results were confirmed by the following experiment. In
the case K 1 we found, by the above-mentioned manual search, good values of w
giving a weight function with a shape similar to that of Fig. 5.3 (minimum 0.0226),

2 MATLAB is a trademark of MathWorks, Inc.
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FIG. 5.1. Weight function w and quadrature with five knots, M 10, K 1. o: knots, +
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FIG. 5.2. Weight function w and quadrature with five knots, M 10, K 1. o: knots, +
chosen weights, ,: final weights.
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FIG. 5.3. Weight function w and quadrature with five knots, M 10, K 2. o: knots, +
chosen weights, ," final weights.
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FIG. 5.4. Weight function w and quadrature with five knots, M 10, K 3. o: knots, +
chosen weights, ," final weights.
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TABLE 5.1

Maximal M equidistant quadratures with five points
Constant wWeight function

K, p 1, 1/2 1, 1/2
min w(t) -0.725366 0.034059

max w(t)/min w(t) -2.80 68.36
Wl 0.4 0.035937
w2 0.4 0.488661

0.4 0.950805
0.199430

W3/W(g3)
Sum 0f weights

0.561497

With maximalminimum
2, 1/2 3, 1/2
0.029346 0.033209
134.07 63.59

0.082406 0.033556
0.264247 0.514349
1.306695 0.904190

0.6323670.254805
2.394967

2, 0
0.185872
14.45

o.o23541
0.348803
1.255312
0.126089

w2/w(x2) 0.366431 0.385426 0.366897 0.652959
0.601283 0.408374 0.4281720.332116

5.631660
2.10 106

2.302221
2.99 103System condition

2.426700
2.52 109
(x 10-2) of

1.733007
1.55 103

Coefficients in the power expansion

0.467222
2.025318
4.48 105

1
2

4

s

t4

0.006652 0.023283 0.039345 0.021117 0.026868
0.203032 -0.077503 -0.545283 -0.011004 -0.158159

-1.794566 0.065802 2.762596 -0.370964 0.387747
1.291962 -0.461128

-1.965805 0.267394
1.583819 -0.060854

-0.662723
0.113930

5.216279 0.039453 -6.388922
-5.930627 -0.081007 7.454143
2.291954 0.030313 -4.300143

0.978696

and started the search from there. After exploring the neigbourhood of this, fairly
different, value of w, the algorithm again found the optimal solution given in Fig. 5.2.
We have repeated this experiment for Fig. 5.3 (K 2) in reverse, with the same
result.

Figure 5.5 gives the best (K 2) weight function with five equidistant Gauss-
Lobatto knots. Table 5.1 summarizes some numerical values of the five cases in
Figs. 5.1-5.5. Here x3 0, x4 -x2 0.4 or 0.5, andx5 -Xl 0.8 or 1 for
midpoint (p ) or closed (p 0) quadrature, and we do not repeat the symmetric
values of the weights. We do not present the coefficients of w in the orthogonal
expansion as the base changes from case to case, but list the standard power expansion
(not otherwise used in the calculations). We report that the orthogonal expansion
coefficients for the best weight functions decrease in magnitude for higher powers
more than those for the initial guesses. We also note the increasing magnitude of the
condition of the system solved to obtain these coefficients, particularly for higher K
(order of the minimized derivative). The sum of the total weights is not the length of
the interval 2 as the quadrature integrates exactly products of w (itself a polynomial),
and polynomials of degree 9 (7 in Fig. 5.5), which, of course, do not include a constant.

We now mention, briefly, a few results for midpoint quadratures with more than
five knots. In Fig. 5.6 we have a positive weight function with eight equidistant Gauss
knots minimizing $1 (the result for K 2 is very similar). The minimum is very
small, so we have tried decreasing M to 14 (a "sub-Gauss" quadrature), and the
result (Fig. 5.7) shows a different shape weight function, but still with a fairly small
minimum. We have not found a positive weight function with 10 equidistant knots,
with the maximal minimum reached for p-- 1/2 and K 2 being -0.0003.

6. Conclusions and open problems. We were motivated by the task of find-
ing a good quadrature with given knots, to attempt to solve an inverse problem for
Gauss quadrature: "Given the Gauss quadrature, find a good weight function for it."



GAUSS QUADRATURES: AN INVERSE PROBLEM 415

2.5

0.5

0
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

FIG. 5.5. Weight function w and quadrature with five knots, M 8, K 2. o: knots, q-
chosen weights, ," final weights.

Although we have developed a numerical algorithm for solving the latter problem, the
numerical solution appears quite difficult for a larger number of knots. In that sense
we have not found easy new answers to the original problem, but have shown some
theoretical and practical results for the inverse problem for Gauss quadratures.

In particular, we have searched, given n, for a smooth positive weight function,
the n Gauss knots of which would be equidistant. We have observed that such a

weight function tends to have a rather smooth bell shape (although it is a polynomial
of high degree) with very small, near constant, values near the endpoints. This is not
surprising as the Gauss knots for classical weight functions (Legendre, Gegenbauer,
etc.) accumulate at endpoints, so to push them towards the center requires the weight
function to emphasize the center of the interval. It is possibly of interest to know how
small the weight function must be at the endpoints and, furthermore, if it exists for
all n. Our results indicate that the cutoff value may be around n 10.

There are a number of other open problems which remain:

(a) Another weight function can be introduced into the integral to be approxi-
mated

n

Ic.(f) :(x)(x)dx w(x) w(xj)
f(xj).

This will be necessary if infinite intervals are to be considered. A similar result
to that of Theorem 2.2 can be derived with the optimal weight function w
being related to the antiderivatives of this weight function , rather than a

polynomial.
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FIG. 5.6. Weight function w and quadrature with eight knots, M 16, K 1. o: knots, +
chosen weights, ," final weights.

1.8

1.6

1.2

0.8

0.6

0.4

0.2 ...
"".,,,,,,.

-0.6 0.6 0.8-1 -0.8 -0.4 -0.2 0 0.2 0.4

FIG. 5.7. Weight function w and quadrature with eight knots, M 14, K 2. o: knots, +
chosen weights, ," final weights.
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(b) As for splines, a representation based on the Kth derivative of the solution
to the minimization problem can be sought.

(c) The numerical conditioning of the algebraic system (4.2), (4.3) can be studied,
particularly the dependence on the choice of eigenvalues when extending the
Jacobi matrix to the desired size. We have used a sequence of equidistant
values and have not experienced serious difficulties, although better strategies
may exist.

(d) New theoretical properties of the optimal solution may lead to a more efficient
global search for good positive weight functions.

(e) Minimizing other smoothness functionals, say, with a combination of deriva-
tives, may lead to more interesting results.

(f) Some of the techniques derived in this paper may be applicable in solving the
finite Hausdorff moment problem.
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Abstract. It is common in applied mathematics to encounter matrices that are symmetric, Hermitian,
skew symmetric, skew Hermitian, symplectic, conjugate symplectic, J-symmetric, J-Hermitian, J-skew symmetric,
or J-skew Hermitian. Eigenvalue algorithms for real and complex matrices that have at least two such algebraic
structures are considered. In the complex case numerically stable algorithms were found that preserve and
exploit both structures of 40 out of the 66 pairs studied. Of the remaining 26, algorithms were found that
preserve part of the structure of 12 pairs. In the real case algorithms were found for all pairs studied. The
algorithms are constructed from a small set of numerical tools, including orthogonal reduction to Hessenberg
form, simultaneous diagonalization of commuting normal matrices, Francis’s QR algorithm, the quaternion
QR-algorithm, and structure revealing, symplectic, unitary similaritytransformations.

Key words, eigenvalue, eigenvector, symmetric, Hermitian, skew symmetric, skew Hermitian, symplectic,
conjugate symplectic, Hamiltonian matrices, quaternion matrices, QR-algorithm, Jacobi algorithm

AMS(MOS) subject classifications. 65F15, 65H10, 65H15, 15A18, 93C45, 93E25, 49A10

1. Introduction and notation. This paper presents numerical methods for calculating
all eigenvalues and eigenvectors of matrices that have more than one of the following
special structures.

DEFINITION 1.1. A matrix A e cm’m is
msymmetric ifA T A;
--Hermitian ifA * A;
morthogonal ifA TA I;
munitary ifA *A I;
J-symmetric if m 2n and JA (JA)r, where J [_0/] and I is the n n

identity matrix;
J-Hermitian (or Hamiltonian) if m 2n and JA (JA) *;
J-orthogonal (or symplectic) if m 2n and A VJA J;
J-unitary (or conjugate symplectic) if m 2n and A * JA J;

J-skew symmetric if m 2n and JA (JA) ;
J-skew Hermitian if m 2n and JA (JA) *.

If A m,m some of these categories coalesce, e.g., Hermitian and symmetric, but
other categories take extra structure. A real skew Hermitian matrix has eigenvalues that
occur in +/- pairs while a complex skew Hermitian matrix may not.

There are several reasons why we are interested in algorithms which are not only
numerically stable but also preserve the algebraic structure ofthe problem, i.e., methods
that are strongly stable in the sense defined by Bunch [B4 ]. Usually the algebraic structure
forces the eigenvalues to lie in certain regions in the complex plane (e.g., on the unit
circle or on the real axis) or to occur in different kinds of pairings. (See Table 2.4.) A
treatment of the problem with an algorithm that does not reflect the algebraic structure
produces (in the iterative process) intermediate eigenvalue problems, which are similar
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or equivalent to the original problem but are without a structure that guarantees these
properties. Rounding errors can cause eigenvalues to wander out oftheir required regions
[V2 ]. This may be acceptable for eigenvalues, but it obscures the identity ofthe invariant
subspaces. Structure preserving algorithms are often more efficient than general methods.

A classic example ofthe benefits of structure preserving algorithms is the symmetric
eigenvalue problem. Subroutine CG from [$5 is perhaps the best available computer
program for calculating all eigenvalues and eigenvectors of a general complex matrix. It
has been shown both in theory and practice that in the presence of rounding errors, it
computes the eigenvalues and eigenvectors of a rounding-error-small perturbation of
the data. It has been tested on many different computers and many different problems.

Consider the real symmetric matrix A I- UU7 where U [1, 1, 1, 1, 1]re
n. On an IBM/XT with machine precision approximately 10 -17, rounding errors caused
CG to compute eigenvalues with imaginary parts as large as 10 -16 and eigenvectors with
imaginary parts as large as 7/10. Real symmetric matrices have real eigenvalues and
admit a system of real orthonormal eigenvectors. The eigenvalues calculated by CG are
not realistic, because they are not eigenvalues of a symmetric matrix.

Subroutine RS, also from [$5], is designed specifically for the real symmetric ei-
genvalue problem. When the same problem was solved by RS, the computed eigenvalues
have zero imaginary part and the computed eigenvectors are real and orthonormal up
to the precision of the arithmetic. Furthermore, RS uses only one-fourth of the storage
and does less than one-fourth of the arithmetic that CG does. For the real symmetric
eigenvalue problem, RS is superior to CG in every way.

One of the goals of this paper is to extend the advantages of structure preserving
algorithms to problems with other symmetry structures. We present a few basic numerical
techniques that combine to form structure preserving algorithms for doubly structured
eigenvalue problems.

Structured eigenvalue problems appear in many scientific and engineering appli-
cations. We briefly discuss a few of them below.

The real symmetric eigenvalue problem arises in almost every area of science and
engineering. It is the most extensively studied of the structured eigenvalue problems.
Efficient, numerically stable, structure preserving algorithms are well established [P5 ].
The excellent efficiency and accuracy of these methods result directly from their ability
to exploit and preserve symmetry. This area is still quite active, with much effort directed
toward supercomputer algorithms, e.g., C2 ], D3 ], H2 ], $3 ], W ].

The J-symmetric or Hamiltonian eigenvalue problem occurs when solving contin-
uous time linear-quadratic optimal control problems and algebraic Riccati equations
[A6 ], B 16 ], L1 ], L2 ], M2 ], P1 ], S ], V ]. Consider, for example, the well-
known control problem of selecting a control function u(t) e m to minimize

(1.2) J(x,u)= x(t)TQx(t)+ u(t)TRu(t)dt

subject to

1.3 Ax + Bu, x(O) Xo,

where Q Qr e n,n is positive semidefinite, R R r m,m is positive definite, A
Nn,n, B e Nn,m, and x(t) . Under mild assumptions [A6], there is a unique optimal
solution given by a linear feedback law

(1.4) u(t)=-R-IBrXx.
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In (1.4) X Rn’n is the symmetric positive semidefinite solution of the algebraic Riccati
equation

(1.5) O Q +A rX+XA XBR-BTX.
Solutions to 1.5 are given by X -ZY- where the columns of[z span the invariant
subspace of the real J-symmetric matrix

A BR-1Br
(1.6) M=

Q -A r

corresponding to eigenvalues with negative real part A3 ], A4 ], B 15 ], B 16 ], L ]-
[L3], [L5], [M2], [P1], [P7], [V1]. Complex control problems of the same type that
lead to eigenvalue problems for J-Hermitian matrices occur in the control ofrotor systems
M3 ], [M4 ]. Finding an efficient numerically stable algorithm that also preserves the J-
symmetric structure is still an open problem. Progress has been made on the special case
of J-symmetric matrices stemming from single input or single output control problems
[B 15 ], [B 16 ]. At this writing, in the general case, we must either drop the preservation
of structure and treat the problem as a general unsymmetric eigenvalue problem [L ],
[V ], or give up possible gains in efficiency by refining solutions produced by conditionally
stable methods [B1], [B12], [B13], [B17], [G2], [M2], [R1].

A Jacobi-type method for this problem has been studied in [B 18 ], but is still not
completely satisfactory.

Symplectic or conjugate symplectic eigenvalue problems come from the solution of
discrete-time linear-quadratic optimal control problems and discrete algebraic Riccati
equations analogous to the continuous case described above [L2 ], [M1], [M2 ], [P3 ],
[P6], [S 1], [$4]. As in the J-symmetric case, progress has been made in the single input
or single output case [M1 ], but in the general case no entirely satisfactory method is
known. Some algorithms treat this problem as a general nonsymmetric eigenvalue problem
[A3 ]-[A5], [L5], [P3], [V1], but this sacrifices the efficiency and numerical stability
that a structure preserving algorithm might offer. Other algorithms maintain the structure
only at the risk of numerical instability [B2], [G2].

For symplectic, J-symmetric, or J-skew symmetric problems, entirely satisfactory
algorithms are known only in case the problem has an additional structure D2 ], B 16 ],
[M ]. This paper systematically extends the list of these special cases. In particular we
exhibit numerically stable, structure preserving algorithms for most cases in which a J-
symmetry structure is combined with another special structure. Usually the algorithm is
a variant QR or Jacobi iteration that preserves both special structures. Hopefully, this is
another step towards understanding what algorithms should be like for the general case
of a J-symmetric structure. Some of these methods (e.g., the quaternion QR algorithm
[B9 ]) are block-QR iterations. Block-QR iterations are of interest for parallel and vector
computations and a study ofsimple special cases might help to find block-QR algorithms
for more general problems.

Applications of the orthogonal and unitary eigenvalue problem include calculation
of Gaussian quadrature formulae on the unit circle and Pisarenko frequency estimates
[C3 ]. Numerical methods for orthogonal and unitary eigenvalue problems have recently
been proposed in A2 ], G5 ], and G6 ].

The skew symmetric or skew Hermitian eigenvalue problems occur in mechanical
and quantum mechanical problems. They can be treated efficiently, structure preserving
and numerically stable, by QR and Jacobi methods, e.g., [G4], [P4], [P5].

J-skew symmetric or J-skew Hermitian eigenvalue problems which are furthermore
Hermitian arise in quantum mechanical problems with time reversal symmetry [D2].
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The numerical solution of these problems is simpler than the numerical solution of the
nonskew problems. Zeros in these structures can be exploited to split the problem into
smaller ones.

Near-best uniform rational approximation [A 1], [G7] requires the computation of
the symmetric singular value decomposition [B 11 which leads to a J-symmetric and
symmetric eigenvalue problem. Other problems of this type occur in linear response
theory, Hartree-Fock wave functions [O 1], and some mechanical problems [L1].

In [L 1], Example 6 (with r s is J-symmetric and orthogonal. Solutions of
linear-quadratic control problems with the matrix sign function method [A3 ], [A5 ],
B ], B2 ], B 17 ], G2 ], R transform a real J-symmetric invariant subspace problem

into a J-symmetric and symplectic invariant subspace problem.
The paper is divided into six sections. Section 2 reviews the algebraic structures

under consideration, discusses elementary structure preserving similarity transformations,
and lists some structured factorizations. Section 3 summarizes some basic numerical
tools including reduction to Hessenberg-like forms, QR-like methods, and simultaneous
diagonalization. Section 3 also comments on the rounding error analysis and numerical
stability ofthese numerical tools. Section 4 gives a chart of structure preserving algorithms
for complex matrices. Each position in the chart corresponds to an algebraic eigenvalue
problem with two special structures. Numerically stable methods are outlined for most
cases. Section 5 gives a chart of structure preserving algorithms for real matrices. Section
6 is a list of conclusions and open problems.

2. Algebraic structures. In this section we briefly review the basic algebraic structures
and properties ofthe matrix classes, for which we will describe numerically stable, structure
preserving methods. Basically we have a Lie algebra or Lie group structure (cf. [B3 ]).

DEFINITION 2.1. LetA be an m m matrix and let / k) C be not in the spectrum
of A. Then (A) (I + kA)(I- kA) -1 is called the Cayley transformation ofA and
cg (A) (I + kA (I A)-1 is called the conjugate Cayley transformation ofA G ].

We have the following well-known relations [G 1].
THEOREM 2.2.
IfA . tm’m is J-symmetric, then (A) is symplectic.
mira m,m is skew symmetric, then (A is orthogonal.
mira Cm’m is J-Hermitian, then cg. (A is conjugate symplectic.
IfA

_
Cm’m is skew Hermitian, then c. (A is unitary.

Thus, we have the Lie Algebra, Lie group table (Table 2.3).
Many of these structures impose special structures on the eigenvalues and eigen-

vectors. For example, if k is an eigenvalue of a J-Hermitian matrix H, then -, is also

TABLE 2.3
Theorem 2.2 relates the algebras in the left-hand column with the corresponding

groups in the right-hand column.

Lie algebra, product
[A, B] AB BA

J-symmetric
skew symmetric
J-Hermitian (Hamiltonian)
skew Hermitian

Lie group, matrix multiplication

symplectic
orthogonal
conjugate symplectic
unitary

The Hermitian and J-skew Hermitian matrices are obtained from the skew Her-
mitian and J-Hermitian classes by multiplication with -1.
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an eigenvalue. IfH is diagonalizable, then it admits a symplectic diagonalizing similarity
transform [B8], [B14], [L4]. Other eigenstructures are summarized in Table 2.4.

Some ofour numerical tools are based on the elementary observation that similarity
transformations of Lie algebra elements (and their relatives by a factor i) by members
ofthe corresponding Lie group are algebra endomorphisms and thus the algebra structure
is preserved. Similarity transformations ofLie group elements by other Lie group elements
are group endomorphisms and thus the group structure is preserved (cf. [B3 ]).

To promote numerical stability we consider only unitary similarity transformations,
or in the real case, orthogonal similarity transforms. Almost all the transformations that
will be used are unitary symplectic, real orthogonal symplectic matrices, or unitary con-
jugate symplectic matrices. The last two classes are contained in the centralizer of J,

Cdz,(J)= {A6CZ"Z’IAJ JA}
A2

A1,A2Cn’n

A1

while the first is in

c2,(J) {A 6C )-"2" AJ J, }

TABLE 2.4

Class of matrices

(l) J-symmetric

(2a) real skew symmetric
(2b) complex skew

symmetric

(3) J-skew symmetric

(4a) real symmetric
(4b) complex symmetric

(5) symplectic

(6a) real orthogonal

(6b) complex orthogonal

(7) J-Hermitian

(8) skew Hermitian

(9) J-skew Hermitian

(10) Hermitian

(11) conjugate symplectic

(12) unitary

Eigenvalues

pairs X, -X

purely imaginary
pairs X, X

double eigenvalues

real eigenvalues
essentially arbitrary

pairs X,

pairs X,

pairs X,-X

purely imaginary

pairs X, X

real eigenvalues

pairs X,

Eigenvectors

Ax Lr (Jx)rA -X(Jx)r

Ax= Xx xrA -Xxr

Ax k)c xrA -Xxr

Ax Lr (jx)rA X(Jx)r

Ax= Xx xrA Xxr

Ax= Xx xrA Xxr

Ax L,c Jx)rA - Jx)

xTAx= kx xrA

IxTAx= Lr xrA

Ax kx (Jx)*A -X(Jx)*

Ax L,c x*A -Xx*

Ax kx Jx)*A X(Jx)*

Ax L,c x*A

Ax k)c Jx)*A Jx)*
A-

Ax Xx x*A x*
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/’he algebraic structure ofthe centralizer and the anticentralizer (defined below) is clarified
by a similarity transformation with the unitary matrix

X:=- iI -iI

which diagonalizes J.
LEMMA 2.5. Let X be the matrix defined above. If

Al -A2]A 6 Czn(J),
Az A

where A, A2 C n,n, then

X*AX
AI + iA2 0 1"0 A-iA2

IfA is in the anticentralizer ofJ,

Cn(J) {A c2n’2n[ AJ -JA } { A A2
A2 -A

then

X*AX= [ 0

A -b iA2
AI iA2

(2.7) U=I-

(2.8) U=
-S

where

(2.9) C= I+ c )eke, S= seke,

2w*w

Givens simplectic matrices are complex rotations in planes (k, n + k), i.e.,

c, s 6 C with cl 2 + 112 and for k 6 1, n } eK is the kth unit vector.
Unitary conjugate symplectic matrices are products of Householder conjugate sym-

plectic matrices and Givens conjugate symplectic matrices. Householder conjugate sym-
plectic matrices are of the form

U 0 ](2.10) U=
0 U

where for some w Cn,

[U O](2.6) U=
O

Many of the similarity transformations we use are generated as products of easily
constructed elementary, unitary symplectic matrices. These are Householder symplectic
and Givens symplectic matrices [P ]. Householder symplectic matrices are of the form
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with U as in (2.7) and Givens conjugate symplectic matrices are of the form

(2.11) U=
-S

with c, s as in (2.9) and furthermore, ?s e [P1].
The real symmetric, Hermitian, the real skew symmetric, skew Hermitian, and the

real orthogonal and unitary matrices are normal and hence diagonalizable.
The J-symmetric, J-Hermitian, symplectic, J-symplectic, conjugate symplectic, J-

skew symmetric, and J-skew Hermitian matrices are not necessarily diagonalizable, but
have specially structured Schur-like and Jordan-like forms B 14 ], L4 ], P ]. We use
only the Schur-like forms described in the following table.

THEOREM 2.12 (Table of Special Schur Forms). IfA C2n’2n has the structure in
column and the restriction in column 2, then there is a unitary matrix U C2n’2n with
the structure in column 3 such that T U-AU has the structure in column 4.

TABLE OF SPECIAL SCHUR FORMS

Structure ofA

(i) J-Hermitian

(ii) conjugate
symplectic

(iii) J-skew Hermitian

(iv) J-symmetric

(v) symplectic

(vi) J-skew symmetric

Restriction on A

no eigenvalues on the
imaginary axis

no eigenvalues on the
unit circle

no eigenvalues on the
real axis

no eigenvalues on the
imaginary axis

no eigenvalues on the
unit circle

no real eigenvalues

Structure of U

unitary conjugate
symplectic

unitary conjugate
symplectic

unitary conjugate
symplectic

unitary symplectic

unitary symplectic

unitary symplectic

Schur-like form

T2
o -r]’

TI upper triangular, 7"2
Hermitian

[TT20 T-*
T upper triangular

T T2
0 T
T upper triangular, T2
skew Hermitian

T upper triangular, T2
symmetric

T upper triangular

T1 upper triangular, T2
skewsymmetric



426 A. BUNSE-GERSTNER, R. BYERS, AND V. MEHRMANN

Proof. (i), (iv), (v), and (vi) follow from minor modifications of the proof given
in [Vl].

(ii) Let * be the inverse transformation of the conjugate Cayley transformation
cg ,, then B c (A) is J-Hermitian. By (i) there exists U e C2n,2n unitary conjugate
symplectic such that

T1 TU*BU=
0 -T

It follows that if /? is not an eigenvalue ofA, then

cg,(U, BU)= U, Cg,(B)U= U,AU= ,( TIo -TT2 ])
(I+T)(I-T)- f’2

0 (I-T)(I+T)-’ J"
(iii) Let B iA, then B is J-Hermitian and, by (i), there exists U C2n,zn unitary

and conjugate symplectic such that

T1 T2 ]U*BU
0 -T

Clearly then,

U*AU
0 iT 0 (-iTs)*

In the real case, we use real orthogonal matrices to transform to real Schur-like
forms. In the following table, a quasi-triangular matrix is a block upper triangular matrix
with size or 2 2 diagonal blocks.

THEOREM 2.13 (Table of Special Real Schur-Like Forms). IfA g2,2 has the
structure in column and the restriction in column 2, then there is an orthogonal matrix
U g2,2n with the structure in column 3 such that T UTAU has the structure of
column 4.

TABLE OF SPECIAL REAL SCHUR-LIKE FORMS

Structure ofA

(i) J-symmetric

(ii) symplectic

(iii) J-skew symmetric

Restriction on A

no nonzero eigenvalues
on imaginary axis

no eigenvalues on the
unit circle except
possibly

no nonzero eigenvalues
on the real axis

Structure of U

orthogonal and
symplectic

orthogonal and
symplectic

orthogonal and
symplectic

Real Schur-like form

T upper quasi-triangular,
T2 symmetric

T upper quasi-triangular

T upper quasi-triangular,
T2 skew symmetric
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Proof. The prooffollows from minor modifications ofthe proofgiven in [P ]. V1

Another special Schur form is the Murnaghan canonicalform [M5] of real skew
symmetric matrices.

THEOREM 2.14. Let A gn,n be a rank 2k skew symmetric matrix; then there exists
an orthogonal U Rn’n such that

k k
0 D

grAU= -D1 0
0 0

where D1 k,k iS diagonal and nonsingular.
Proof. See, e.g., [M51 and [P4]. V1

n-2k
0 ]} k
0 } k
0 }n-2k

The QR-like algorithms described in this paper transform a matrix to a special
Schur-like form. They need initial reductions to the special Hessenberg-like forms ofthe
following theorems.

THEOREM 2.15. Let M C2n’zn. Let s C2 be such that s*s 1, s*Js O.
There exists S C2nz’n unitary conjugate symplectic with first column vector s

such that

S*MS= H--
[H21H22. x

where H, H2 ’ are upper Hessenberg matrices and H2,822 Cn’n. The elements
on the subdiagonal ofH are real and nonnegative. The elements on the subdiagonal of
H2 lie on the imaginary axis and the kth subdiagonal element ofH is not smaller than
the modulus ofthe kth subdiagonal element ofH2. S, H can be computed with a finite
number ofoperations.

(ii) Iffor all k { 1, n 1} the kth subdiagonal element ofH is strictly
greater than the modulus of the kth subdiagonal element ofH2, then this reduction is
uniquely determinedfor any choice ors.

(iii) IfM and s are real, then S and H can be chosen to be real and H2 will then
be upper triangular, i.e.,

Proof. See B6 ], B7 ], or B8,
As a corollary we obtain a generalization of results of [P 1] and [V2].
COROLLARY 2.16. Let M C2n,2n and let

[Hll H12]S’MS= H=
H21 H22

be the reduction from Theorem 2.15 with first column s ofS.
(i) IfM is J-Hermitian, then H22 -Hi*l, H2 is Hermitian and H2 is an Her-

mitian tridiagonal matrix with purely imaginary subdiagonal entries. IfM, S are real,
then S, H can be chosen real. Then H2 is diagonal.

(ii) IfM is J-skew Hermitian, then H22 H*, H2 is skew Hermitian and H2 is
a purely imaginary skew Hermitian tridiagonal matrix. IfM, S are real, then S, H can
be chosen real. Then, H2 vanishes.

Replacing conjugate symplectic by symplectic, Theorem 2.15 becomes Theo-
rem 2.17.
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THEOREM 2.17. (i) Let M C2n’2n and let s C2n such that s*s 1. There exists
a unitary symplectic S C2n’zn such that

H=S*MS= N
whereH is an n n upper Hessenberg matrix with real nonnegative subdiagonal entries,

H2 is upper triangular, and H2, H2 cn,n.
(ii) Ifnone ofthe diagonal elements ofH vanishes, then this reduction is uniquely

determinedfor anyfirst column s C2.
Proof. See B6 l, B71, or B8, p. 139 ]. [51

COROLLARY 2.18. Let M C2"’2 and let

S’MS=H=[ HI1H21H22HI2]
be the reductionfrom Theorem 2.17 with first column s ofS.

IfM is J-symmetric, then

H= H H I4_ I-I I4

(ii) IfM is J-skew symmetric, then H22 H(I, H21 O, H2 -HI2. If, in
addition, M is Hermitian, then H2 H2 0 andHI 922 is real symmetric tridiagonal.

We close this section with the singular value decomposition of a matrix and the
Takagi singular value decomposition ofa complex symmetric matrix, which are important
for our algorithms.

THEOREM 2.19. (i) IfA Cn’n, then there exists unitary matrices U, V
such that UA V Z is diagonal, and/f Z diag (a, an), then 0 <= rn <= rn- <=. 0-1.

(ii) IfA Cn’n is symmetric, then there exists a unitary matrix Q such that A
QZQ7, where Z diag (rl rn) with nonnegative r >= O"2 > >= O" > 0.

Proof. The proof of (i) is well known (see, e.g., G4 ).
(ii) See T ], T2 ], $2 ], and H4 for the proof.

3. Basic algorithms. In this section we describe the basic algorithms from which
special structured methods are constructed. We assume knowledge of the Francis QR
iteration IF2 ], [F3 ], the Jacobi method, and Householder and Givens matrices [G4 ].
In the following, the construction, storage, and matrix multiplication by rotations and
reflections are assumed to be carried out as in [G4, Chap. 3].

3.1. QR-like methods. We follow the outline of the QR iteration to construct
different algorithms for the computation of Schur-like forms for matrices with special
structure.

We call a matrix V Cm,m structure preserving if for any A Cn,n with a special
structure, V-AV also has that structure.

ALGORITHM 3.1 Framework of QR-like algorithm.
Input: A m,m ( or () with one of the structures in Definition 1.1.
Output: A unitary matrix U such that UAU * has the Schur form of Theorem 2.12 or

2.13.
Step 1" Perform an initial reduction with a unitary (orthogonal) transformation U that

preserves the structure, A0 UAU *, such that A0 has a suitable, Hessenberg-like
condensed form.
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Step 2:
FORk= 1,2,

Select a holomorphic shift functionf (to be described later).
Set a f(Ak-1)el. Let Vk be unitary (orthogonal) and structure preserving,
such that Vka cel, c e , Ilall .
Set A VkAV,, U := VgU.
Find W, WW =/, such that similarity transformation with Wk preserves the
structure of./i, Wgel el and WAgW, is again in the Hessenberg-like con-
densed form.

Let Ak WkW, U WU.
END FOR

QR-like algorithms essentially differ in the choice ofthe shift function f and the structure
preserving transformations.

The usual shift strategies in the QR algorithm are to choose the single shift

(3.2) f( A A M

for , an approximation to an eigenvalue or the double shift

3.3 f(A (A M)(A #I)

for ,, # approximations to a pair of eigenvalues. In the real case, if X a , then we choose
# to avoid complex arithmetic. For the Hamiltonian QR algorithm in [B 16 and
the symplectic QR algorithms of [M 1], the so-called "Cayley shifts" are used, i.e.,

(3.4) f( A (A M)(A + ,I)-or again in the real case to avoid complex arithmetic

(3.5) f( A (A M)(A I)(A + M)-’ (A + I)-’.
For complex symmetric matrices, the computation of the Takagi singular value decom-
position ofTheorem 2.19 suggested in B 11 uses essentially the framework ofAlgorithm
3.1, with the modification that the transformations are A0 UAU, VAV, etc.,
instead of similarity transformations. The initial reduction is to complex symmetric tri-
diagonal form and the shift function is

(3.6) f(A)=A2-I
for some suitably chosen real X.

The quaternion QR algorithm [B9 also fits the framework of Algorithm 3.1. It
works with matrices of the form

A -B 1M=
B

where A, B e C’’. These are complex representations of n n quaternion matrices
[B9], [R2]. It uses the shift function

f([A -: A -: [1 0 A I 0
(3.7)

An antiquaternion matrix is simply times a quaternion matrix, so one algorithm serves
for both.

The reduction to the condensed Hessenberg-like form of Theorems 2.15 and 2.17
can be performed by the following algorithm due to [P1] and [V2].
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ALGORITHM 3.8 [B7], [B8]. Reduction to condensed form
Input: Mo C2 n,2

Output" A unitary, symplectic matrix U e C2,2 such that

Set U- I.
FORk= 1,...,n-

Setrn =Mk-mm] e, where m m2 E ( n.
Construct an n n complex Householder transformation Q G4, p. 40 ], such
that Qm2 has zeros in positions k + 2, n.
Let

001 m_

Construct a Givens symplectic matrix P [_ ], where c (rfi+)/w, s

rh++ 1/w, and w /(rhk+ )z + (r++ )2.
(If rfi+ rfin++ =0, then set c 1, s=0.) In rh=[’]’=Pr the
(n + k + )st element is eliminated.

Construct a complex n n Householder transformation Qz that eliminates the
entries in positions k + 2, n of n.
Let

and

END FOR

U=U
Q*
o s c

Q o
o

Any practical implementation ofAlgorithm 3.8 should store and apply the rotations and
reflections in the efficient manner described in [G4], [P1], [P5], and [W2].

For the special case that the (2, block of M0 has rank 1, Algorithm 3.8 can be
modified to yield even more zeros in the condensed form [B 16], [M 1].

Remark 3.9. There is a similar algorithm for the reduction ofM to the form

using unitary conjugate symplectic transformations [B7], [B8]. If Mo 2n,2n, then U
and H are real. If M0 has further structure, then the form of H will often be more
condensed.

For matrices which have two ofthe properties in Table 2.4 we give the corresponding
condensed forms in Tables 3.10(a)-(c) below. (See also Table 4.1 .)
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QQ* 1

QJQ* J

Q=Q*

jQ (JQ)*

JQ -(JQ)*

TABLE 3.10(a)
Condensedform under unitary conjugate symplectic similarity transformation (Remark 3.9).

QQ* I QJQ* J

H1 N1]H2N2

Q=Q* JQ (JQ)*

HI N]T -HT

N

JQ -(jQ)*

N

N

Let M e c2n’2n. IfM has the structure at the head of column and the structure at
the head of row j in the tables below, then U*MU has the condensed form in position
(i, j). A zero indicates that the zero matrix is the only matrix with both structures.

In the table N, N1, N2, HI, H2 C n,n; H, H2 are upper Hessenberg matrices, N is
Hermitian, skew Hermitian, symmetric, or skew symmetric; T, T2 e Cn’ are tridiagonal
matrices; D e C’ is a diagonal matrix; and R e Cn’ is an upper triangular matrix.

In Table 3.10 (a) the transformation U is unitary and conjugate symplectic. The
extra zeros result from symmetry or unitarity or because the matrix is in the centralizer
of J, c2,(J), or in the anticentralizer of J, c(j). Note that Tables 3.10(a) and
3.10 (c) are symmetric, but Table 3.10 (b) is not.
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TABLE 3.10(b)
Condensedform under unitary symplectic similarity (Algorithm 3.8).

QQ* I

QjQ* j

Q=Q*

jQ (jQ)*

jQ -(jQ)*

QrQ= I QrjQ=j

H N

RN2

H

R

jQ (jQ)r jQ _(jQ)r

:[%0Lo%]

In Table 3.10 (b) the transformation U is unitary and symplectic. The extra zeros
in the condensed forms result from symmetry or unitarity or because the matrix is an
n n quaternion or antiquaternion matrix.

In Table 3.10(c) the transformation U is unitary and symplectic with the exception
of positions 1, 2) and (4, 5 ), where U is unitary and conjugate symplectic. In these two
cases the matrices are in cg2n(J).

Other special reductions include the well-known tridiagonalization procedures for
Hermitian and skew Hermitian matrices P5 ], G4 and the corresponding real versions.

3.2. Jacobi methods. Jacobi-like methods are methods which are variations or gen-
eralizations ofthe Jacobi method for symmetric or Hermitian matrices [J ], [B5 ], G4 ],
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TABLE 3.10(c)
Condensed form under unitary symplectic or unitary conjugate symplectic similarity (Algorithm 3.8, Re-

mark 3.9).

QrQ= I

QrJQ=J

Q= Qr

JQ (JQ)*

jQ _(jQ)r

QrQ= I QrjQ=j Q=Qr jQ (jQ)r

IH N]HO

jQ _(jQ)r

$6 ]. They have gained importance in recent years because they have inherent parallelism.
Apart from the Hermitian ! symmetric Jacobi method we will use the Jacobi method for
real skew-symmetric matrices from [P4].

For our purposes Jacobi-like methods for 2n 2n Hermitian or skew Hermitian
matrices can be performed using the four basic types of transformation matrices: Two
double rotations of the form

On=[ U O_
0 U 0 U
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where U t nx is a Givens rotation and two matrices of the form

-s ua -s
with C I + (c )ejef, S sejejT, cl 2 + sl 2 1, and for Ua the further requirement
c-s eN.

So, r/, a are unitary symplectic, and U/, Ua are unitary conjugate symplectic.
Similarity transformations with U/and Ua preserve J-Hermitian, J-skew Hermitian,
and conjugate symplectic structures. Similarity transformations with /and a preserve
J-symmetric, J-skew symmetric, symplectic, and quaternion structure. Jacobi-like al-
gorithms for eigenvalue problems with symmetry and a symplectic structure are currently
developed by the authors. To distinguish these methods from the usual Jacobi methods,
we call them symplectic Jacobi methods.

Other Jacobi-like methods include the Jacobi method for normal matrices [G3 ],
the Jacobi methods for nonsymmetric matrices of E and E2 or $7 ], the Hamiltonian
Jacobi method [B 18] for real J-symmetric or J-Hermitian matrices, and the Kogbetliantz
algorithm [K2], [P2] for computing singular value decompositions.

3.3. Simultaneous diagonalization. Many of the algorithms outlined below require
the simultaneous diagonalization of commuting pairs of normal matrices. Usually there
is a special structure in addition to normality. Examples include commuting pairs of real
symmetric matrices, a skew Hermitian matrix and an Hermitian matrix, and a pair of
real skew symmetric matrices. In this section we point out some of the difficulties asso-
ciated with simultaneous diagonalization and propose a family ofJacobi-like algorithms
for simultaneously diagonalizing commuting pairs of normal matrices.

For ease ofexplication, we will use the special case ofa commuting pair ofsymmetric
matrices A A r n,n and B Br n, to illustrate the problems and algorithms.
Afterwards, we will summarize the modifications required by other kinds of commuting
pairs. A more detailed study of simultaneous diagonalization will appear elsewhere [B 10 ].

To be viable, a simultaneous diagonalization algorithm must work with both mem-
bers of the pair simultaneously. To see how simultaneous diagonalization algorithms
that violate this principle can fail, consider the family ofdiagonalize-one-then-diagonalize-
the-other methods. These are the methods suggested by the classic proofthat commuting
pairs of diagonalizable matrices have a common system of eigenvectors [N ]. They are
characterized by using a conventional algorithm to diagonalize A alone, then performing
the same similarity transformation to B. So, for example, we might use the eigensystem
routine ItS from [$5 ], to find an orthogonal matrix U N’n and a diagonal matrix
D ’" such that A UrDU. Although RS does not produce the diagonal entries of
D in any particular order, it is easy to order the eigenvalues in decreasing algebraic order
(say) along the diagonal ofD. Then E := UBU is block diagonal with thejth diagonal
block of order equal to the multiplicity of the jth eigenvalue ofA. In particular, ifA has
distinct eigenvalues, then E is diagonal and the simultaneous diagonalization is complete.
In any case, a subsequent, block diagonal similarity transformation can diagonalize E
without disturbing D.

Rounding errors destroy this elegant approach. Suppose, for example, that rounding
error perturbs the commuting pair A, B to the nearly commuting pair

le0 0
elO 0A=
001 0
000 -1
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and

0 00

/= 0-100
0 0 le
0 0 el

where e is a small quantity caused by rounding error. If e 4: 0, then and/ do not
commute. Even if no other rounding errors occur, the diagonalize-one-then-diagonalize-
the-other procedure increases the magnitude ofsome off-diagonal entries to 1. The results
do not improve if the procedure is repeated. It never discovers that the trivial similarity
transformation U I "reduces" the off-diagonal entries of/ UUT and/ UU
to e’s and zeros.

The same kind of failure dooms any simultaneous diagonalization algorithm that
does a good job of diagonalizing one member of a commuting pair without regard to
what the similarity transformation does to the other member.

Goldstine and Horwitz G3 present a procedure for diagonalizing normal matrices
by simultaneously diagonalizing the Hermitian and skew Hermitian parts. Their algorithm
chooses similarity transformations taking both A and B into account. The simultaneous
diagonalization algorithms presented below are adaptations of [G3] to matrices with
special structure.

Following the classic approach of Jacobi [J we will measure progress toward si-
multaneous diagonalization by the quantity

(3.11) off(a, B): a 2ij + Z bij.2
i<j i<j

It seems to be best to scale A and B to have approximately equal norm so that contributions
from A and B are of equal "importance."

In broad outline, the algorithm consists of a sequence of similarity transformations
by plane rotations. We favor using plane rotations in the simple row serial order of
eliminating pivots elements in positions l, 2), l, 3), 1, n), (2, 3), (2, 3),
(2, n), (3, 4), (n 1, n). The angle of each plane rotation is chosen to minimize
off(A, B) as described below. We observe quadratic convergence [B 10] similar to Jacobi’s
method for the symmetric eigenvalue problem P5 ], F ], R3 ].

Let R R(O, i, j) En,n denote a plane rotation through angle 0 in the (i, j)th
plane, i.e., R agrees with the identity matrix except that

(3.12)
Fji Fjj --S C

where c cos (0) and s sin (0). An easy calculation shows that

off(RAR T, RBR T)= off(A,B)- a}- b.+ ((c2- s2)aji sc(a2- aii)) 2

(3.13)
+ C2

S2 bji sc( bjj bii) 2.

In general it is not possible to choose c cos (0) and s sin (0) so that both the last
two terms are zero. However, it is possible to choose 0 to minimize (3.13 ).

The angle 0 must minimize

(3.14)
bi (b-bu)/2 ksin (20) ’
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i.e., [cos (20) sin (20)]v must be a left singular vector of

aft (ajj-aii)/2](3.15)
bji (bjj-bii)/2

that corresponds to the smaller singular value. There are four roots 0 [-r, r]. To avoid
cycling, we choose the root 0 (-7r/4, r/4). Although the formulae given in [G3] are
more complicated, this is the same choice of c and s used there to diagonalize the normal
matrix A + iB. The following algorithm is known to enjoy local quadratic convergence
[B 10 ], [R3 ]. Variations have been shown to converge globally [G3 ].

ALGORITHM 3.16. Simultaneous diagonalization of commuting real symmetric matrices.
Input: A= A "" and B Bv e " such that AB BA a convergence tolerance

->0
Output: Q ,,n, such that QTQ I D ,,n and E n’ such that AQ QD,

BQ OE, and off(D, E) <=
Set Q := I;D:=A ;E:= B.
WHILE off(D, E) > r(I[AII + I[BI[) DO

FOR/= 1,2,3,...,n
FORj + 1, ...,n

Let 0 (-7r/4, 7r/4) be chosen such that [cos(20) sin(20)]v is the
left singular vector corresponding to the smaller singular value of (3.15).

Overwrite D := RDR E := RER T Q := QR
END FOR

END FOR
END WHILE

If rotations are stored and applied in the efficient manner outlined in [G4] or 6.4
of [P5 ], then the above algorithm uses 4n flops per iteration of the outermost loop.
Rarely, in our experience, does r 10 -14 make the algorithm run more than six iterations.
Since only the upper triangles ofA and B need be stored, the algorithm needs only 2n 2

storage.
As mentioned above, rounding errors often corrupt the commuting property of a

pair ofwould-be commuting matrices. As they arise in the next section, a computed pair
of "commuting" matrices A and B actually satisfies

(3.17) (A + AA)(B+ AB) (B+ AB)(A + AA)
for perturbations AA and AB satisfying

(3.18) AA + ABI[ -< O(n 3) e( A + BII
where e is the precision of the arithmetic. Thus, using orthogonal similarity transfor-
mations, it is possible to simultaneously diagonalize A and B except for a rounding-error
small perturbation bounded by the right-hand-side of 3.18 ).

Note that it is easy to find examples satisfying the weaker assumption AB BA
E where ]ILl] -< O(n3)e(llAl] + ]IBII)which do not satisfy (3.17) and (3.18).

A simultaneous diagonalization algorithm must ultimately set small off-diagonal
entries to zero and produce a genuinely commuting pair ofdiagonal matrices. Assumptions
3.17 and 3.18 are a necessary condition for such an algorithm to be backward stable.
Two consequences ofthe norm preserving property ofunitary similarity transformations
are

(i) Assumptions (3.17) and (3.18) are preserved despite rounding errors, and
(ii) Setting rounding-error small off-diagonal entries to zero is equivalent to a
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rounding-error small perturbation of the original A and B. Hence, under assumptions
(3.17) and (3.18), the Jacobi-like algorithm described above is backward stable.

Two kinds of modifications of the above basic simultaneous diagonalization algo-
rithm are needed to suit it to structures other than symmetric matrices. Complex similarity
transformations are required to diagonalize a commuting pair ofcomplex normal matrices.
The real rotations of the above algorithm become complex rotations. The analogue of
3.13 for complex rotations is a two real variable minimization. For the case of a com-
muting Hermitian and skew Hermitian pair, explicit expressions for the minimizing
parameters appear in [G3].

A commuting pair of real matrices that contains a real skew symmetric matrix or
a real orthogonal matrix cannot be diagonalized by real similarity transformations alone.
Nevertheless, complex arithmetic can be avoided by permitting one or both members of
the pair to converge to block diagonal form with one-by-one and two-by-two blocks. The
real rotations ofthe above algorithm become the 4-by-4 orthogonal "Jacobi annihilators"
of[P4 ]. Jacobi annihilators have a natural parametrization in terms ofthree real param-
eters. The minimization problem grows to involve 16 entries ofA and B in place of the
three that appear in (3.13). We have no explicit formulae for this more complicated
minimizer.

3.4. The "X-trick." The "X-trick" is a simple, structure revealing, symplectic, uni-
tary similarity transformation. If M [/] 6 2n,2n, ( C or ) and X

IIF+K+i(G-H)X*MX=- F-K+ i(G+H) F-K-i(G+H)I.F+K-i(G-H)

Immediate consequences of Lemma 2.5 are the block diagonal matrices in Table 3.19.
In the block diagonal cases, we solve one or two n n eigenvalue problems. In the

block antidiagonal case we compute one or two n n singular value decompositions
instead. (Details appear in 4.)

In other cases the "X-trick" leads to the problem of simultaneous diagonalization
of a pair of commuting normal matrices. Algorithms for these problems appear in G3
and [B10].

3.5. Error analysis and numerical stability. We finish the basic algorithm section
with a remark on the numerical stability of the above-mentioned algorithms.

The algorithms use a sequence of elementary unitary similarity transformations to
reduce a matrixA to a Schur-like form T. Well-known rounding-error analysis for standard
methods apply here [W2 ]. At every step the result of the similarity transformation
T satisfies

(A+E) U=UT

where U is a product ofunitary matrices and Ell is bounded by a small constant multiple
of the precision of the arithmetic. The algorithms are designed to drive T to one of the
Schur-like forms of Theorem 2.12. For the structure preserving methods E has the same
structure as A. So the algorithms produce eigenvalues of a nearby structured matrix with
appropriate eigenvalue pairing and structured matrix ofeigenvectors. Thus, these methods
are strongly stable in the sense of [B4].

4. The complex chart. In this section we now discuss all combinations of two of
the algebraic properties in Table 2.4. We list them in the form of charts.



438 A. BUNSE-GERSTNER, R. BYERS, AND V. MEHRMANN

TABLE 3.19
Block structures ofmatrices with twofoM symmetry. Let M [] 6 2n,2n( or C). IfM has the

structures at the heads ofcolumn and row j, then X*MX has the block structure in position (i, j).

QQ* I

Q=Q*

QQr= I

Q= Qr

QjQ. j

F+oiG 0F-iG]

F+ iG 0

0 F-iG

jQ (jQ),

0 F-iG]F+iG 0

F=F*,G=G

F+ iG 0

0 F-iG

F -F*, G G*

IF+ iG

F=Fr, G=G

F+oiG 0F-iG]

jQ -(jQ),

F+ iG 0

0 F-iG

F F*, G -G*

F+iG

F -F*, G -G*

F= Fr, G -Gr

0 F-iG]F+iG 0

F -Fr, G G r F= -Fr, G -GT

The first chart (Table 4.1) covers the complex case and lists unitary, structure pre-
serving methods that may be applied to solve the corresponding eigenvalue problem.
Question marks indicate cases for which structure preserving algorithms are not known
yet. Entries marked with "1/2" correspond to algorithms that preserve part but not all of
the structure. A "T" corresponds to cases which are trivial either because there are no
matrices with the prescribed pair of structures or because the eigenvalues are entirely
determined by these structures. For example, only the zero matrix is both Hermitian
and skew Hermitian. An "X" indicates that the X-trick zeros the diagonal blocks or
zeros the off-diagonal blocks, deflating the eigenvalue problem to one or two n-by-n
problems. An "S" indicates a method based on simultaneous diagonalization of com-
muting normal matrices. A "Q" indicates that the quaternion QR algorithm is satisfactory.
A "V" indicates that there exists some other satisfactory method already. "Real" indicates
that the corresponding class contains only real matrices and/or matrices with zero real
part. Clearly the chart is symmetric. For real problems we give a separate chart in the
next section.

In the following we assume that Q 6 cm’m, where if necessary, rn 2n. In the latter
case, we set Q [/], with F, G, H, K

a The Northwest corner ofthe chart.
Position (1, 1 ): Q 6 Cn’, QQ* I. This is the class of unitary matrices. Structure

exploiting unitary QR-algorithms are given in [A2] and [G6].
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Position (1, 2): Q e C"’", QQ* I, and QJQ* J. Then Q cr2n(J), the centralizer
of J. Applying the X-trick and Lemma 2.5 we obtain

X*QX=- 0 F-iG

where F + iG, F- iG are unitary. So this eigenproblem can be solved by applying
methods from position 1, to F + iG and F- iG.

Position (1, 3): Q e Cn’n, QQ* I, and Q* Q. This implies that all the eigenvalues
of Q are + and 1, so there is essentially nothing to do. The invariant subspace for the
eigenvalue + is Range (Q + I). All the matrices Q with this property are of the form
PDP*, where D is diagonal with + on the diagonal and P is unitary.

Position (1, 4): Q Cn’, QQ* I, and Q* -Q. A matrix Q is in this class if
and only if iQ is a matrix of position 1, 3).

Position (1, 5)" Q C’n, QQ* I, JQ (JQ)* -O* J. Then Q f/_aF,],
where G G*, H H*. Applying the X-trick, we obtain

I[F-F*+i(G-H)W=X*QX=- F+F* +i(G+H)

A + iB C- iD
--:

C+ iD A iB

whereA -A*, B -B*, C C*, D D*.
Let

and let

[A+iBW1---(W- W-1) ---(W-W*)-- 0

W* [ 0

W2=(W+W-I)=(W+ 1=
C+iD

F+F*-i(G+H)]F- F* i(G-H)

Observe that W and W2 commute. Thus we can simultaneously diagonalize W1 and
W2. W is skew Hermitian, its eigenvalues are the imaginary parts of the eigenvalues of
Q; W2 is Hermitian, its eigenvalues are the real parts of the eigenvalues of Q. Finding
the eigenvalues of W reduces to computing the eigenvalues of two n-by-n Hermitian
matrices. Finding the eigenvalues of W2 reduces to an n-by-n singular value decomposition.

The simultaneous diagonalization can be performed according to [G3 or, taking
advantage of the special structure of W’ and W, according to [B 10].

The eigenvalue problem for the Hermitian matrix W2 is essentially a singular value
decomposition for (C + iD). A head start on the simultaneous diagonalization of W1
and W2 is then easily obtained from the singular vectors of (C + iD).

Position (1, 6)" Q C’, QQ* I and JQ -(JQ)* Q*J. Then ( iQ is a
member of the class in position 1, 5).

Position (2, 2): Q C n,,,, QjQ, j. For conjugate symplectic matrices, the only
known unitary, structure preserving QR-like method is the symplectic QR algorithm in
M for the case in which the (2, block of Q C2,,2n is of rank 1.

Another nonunitary structure preserving method for this problem is the sign function
method [B2 ], [G2], and Newton’s method for discrete algebraic Riccati equations (see,
e.g., [A3], [A4], [HI], [H3], [K1]) also works in many cases. For an overview of the
methods and a comparison, see [M2].
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Position (2, 3)" Q Cn’n, Q*JQ J, Q Q*. Then Q [ft. r] where F F*,
K K*. The X-trick gives

I[F+K+i(G-G*) F-K-i(G+G*)]W=X*QX=- F-K+i(G+G*) F+K-i(G-G*)

_.[A+iB C-iD]C+ iD A iB

where A A*, B -B*, C C*, D D*. Now Q*JQ J; thus

0 0 -(C+iD) A-iB J
Thus we get

and

[A+iB O ]W =(W- W-l)
0 A-iB

[ O C-iD]W2=(W+W-I)= C+ iD 0

where W, W2 are Hermitian.
So, this is a simultaneous diagonalization problem, with head start as in positions 1, 5
and 1, 6).

Position (2, 4)" Q C"’n, Q.jQ j, Q _Q.. Then iQ is a member of the
class in position (2, 3).

Position (2, 5)" Q 6 C "’", Q*JQ J, JQ (JQ)* -Q*J. It follows that Q2
-I, so the eigenvalues are +__i. Matrices in this class are of the form Q PDP-1 where
D is a matrix of +i’s.

Position (2, 6)" Q C "’n, Q.jQ j, jQ jQ . Q.j. Then O iQ is a
member of the class in position (2, 5 ).

Position (3, 3)" Q e C "’n, Q Q*. This is the most extensively studied special
structure P5 ].

Position (3, 4)" Q e C"’, Q* Q -Q* implies Q 0.
Position (3, 5)" Q c’", Q* Q and JQ (JQ)* -Q*J. Then Q

[ft. . ], with F F*, G G*. The X-trick gives

0 F- iG]W=X*QX=
F+ iG 0

Let

UZ,V F- iG

be the singular value decomposition with U, V C" unitary and Z diag
(try, tr2, tr3,’", n) C"n. Then

0 V* F+iG 0 OV ZO

so Q has eigenvalues -+’0"i.
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Position (3, 6)" Q 6 C n,n, Q Q ,, and JQ JQ * Q*J. Then

with F* F and G* -G is in (92n (J), and consequently

F+iG 0 ]W=X*QX=
0 F- iG

which consists of two n n Hermitian eigenvalue problems.
Position (4, 4)" Q e C n,n, Q _Q,. For the skew Hermitian eigenvalue problem

we may apply the Hermitian methods to iQ.
Position (4, 5)" Q c n’n, Q -Q*, and JQ (JQ) * -Q* J. 0 iQ is a member

of the class in position (3, 6).
Position(4,6)" QeC"’n, Q _Q,, and JQ JQ * Q * J. O_ iQ is a

member of the class in position (3, 5 ).
Position (5, 5)" For J-Hermitian matrices the only known unitary, structure pre-

serving QR-like method is in the Hamiltonian QR algorithm [B 16] for the case where
the (2, block of Q e C2n,2 is of rank 1. A structure preserving Jacobi-like method is
given in B 18 ]. Other nonunitary methods for this problem are the sign function method
[B ], G2 ], [B 17 and also Newton’s method for the continuous algebraic Riccati equa-
tion A3 ], A4 ], H ], K1 ]. For an overview and a comparison of these methods,
see M2 ].

Position (5, 6)" Q C n,n, jQ (jQ) ,, and JQ (JQ) * implies Q 0.
Position (6, 6)" Q C ,,n, jQ jQ ,. Then 0 iQ is a member of the class in

position (5, 5 ). In the real case we have further simplifications discussed later.
In summary we see that except for a few diagonal positions, the Northwest corner

of the chart can be treated with unitary structure preserving methods.
(b) The Southeast corner ofthe chart.
Position (7, 7)" Q C n’", QQT I. At this writing there is no known unitary,

structure preserving method for this problem.
Position (7, 8)" Q Cn’n, QrQ I, and QrjQ j. Then Q 6 C2n(J and X*QX

IF+ iG 0 (F- iG) The QR algorithm computes the Schuro F- iG ], where (F + iG) r -1

form of F + iG, V*(F + iG)V R, where V is unitary and R upper triangular. Then
Vr(F iG)17"= R -T.

Position (7, 9)" Q Cn,,, QrQ I, and Q Qr implies that Q is diagonalizable
with eigenvalues ___1. Every matrix with this property can be written as Q UDU-,
where for some integer s,

0 } 2n-s

and U-1 UT. This is proved as follows. Clearly since Q2 I, Q VDV- for some
diagonal matrix D with + l’s on the diagonal. It follows that VDV-1 V-TDV and
thus VrVD DVVand consequently

vTv=[ VlO]OV2

with partitioning conformal to D.
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Now V, V2 are complex symmetric, thus they have a Takagi singular value decom-
position (Theorem 2.21 ). Vi UiZ, U, 1, 2 with U; unitary. Let ; Ui; l/z,

1, 2; then it follows that

Taking

it follows that U- UT and Q UDUT UDU-.
Position (7, 10)" Q Cn,n, Q _Q, and QQT I implies that Q2 I, i.e., all

eigenvalues are _+_i. As in Position (7, 9) we can show that every matrix with these
properties can be written as Q UDU-, where U- UT and D is a matrix of +i’s and
we have the same number of +i’s and -i’s.

Position (7, 11)" Q Cn’n, jQ (jQ) , and QQT I. We observe the same
difficulties as in positions (8, 9 ), (8, 10) below.

Position (7, 12)" Q Cn’n, JQ -(JQ), QQT I. According to Table 3.10(c)
we have a unitary symplectic U such that

[F G1]U*QU=
0 F

where G -G. We might then apply an unstructured eigenvalue method to F. But
the algorithm in [V2] easily generalizes to the complex case, such that we can work on
Q directly, preserving the property (JQ) T (jQ). Unfortunately QQT I is not used
and not preserved by the transformation.

Position (8, 8): Q C n’n, QTjQ j. At this writing there is no known unitary,
structure preserving method.

Position (8, 9)" Q C"’", Q Q r, and QJQT j. Then

FG
Q= GTK

with FT F, K KT.

I{F+K+i(G-GT)
W=X*QX=- F-K+ i(G+GT)

_-.[A+iB C-iD]C+ iD A iB

F-K-i(G+GT)]F+K- i(G- G T)

withA A , B -By C= Cr, D D T.
Now

W- W*(JQTJT)X=
0 -C- iD

-C+ iD

A- iB

Thus

W 2 C+ iD
W2

2 0 A iB
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The problem is now a simultaneous diagonalization problem for a nonnormal commuting
pair. An entirely satisfactory algorithm for this problem is unknown.

Position (8, 10): Q e Cn’n, Q _Qr, and QJQT‘= J. We observe the same difficulties
as in positions (8, 9) and (7, 11).

Position (8, 11): Q C’, QT‘JQ J, and JQ (JQ)7" -QT‘J. We then have
J QT‘JQ -JQQ; thus Q2 -I, i.e., all eigenvalues are +i and Q is diagonalizable.
Any Q with this property can be expressed in the form Q PDP-1 with PT‘JP J, and
D is a diagonal matrix of +i’s, with an equal number of +i’s and -i’s.

Position (8, 12)" Q C’’n, QJ _(Qj)T jQ, QjQ7" Jimplies Q2 I; thus
all eigenvalues are + and -1 and every matrix with this property is of the form Q
PDP-1, and D is a diagonal matrix of + l’s.

Position (9, 9): Q e cn’, Q Q T’. Every complex m-by-m matrix is similar to a
complex symmetric matrix. At this writing, there is no known unitary, structure preserving
method for complex symmetric matrices. A nonunitary structure preserving method for
this problem is the QL algorithm in [C1].

Position (9, 10)" Q C’, Q -Q r, and Q Q 7" implies Q 0.
Position (9, 11 )" Q C"’n, jQ jQ 7- jQ, and O Q 7". Then O -rF]

F iG]with G G, F Fr, and W X *QX [F o+ iG - This block structure is tantalizing;
however, we do not have a satisfactory eigenvalue algorithm.

Position (9, 12)" Q C"’ n, jQ jQ T Q 7-j, and Q Q 7‘. Then Q _Fa 6F
with FT‘ F, GT" -G. As in position (7, 12), there is a unitary symplectic U such that

0 FT"

A complex version of the algorithm in V2 can be applied to Q directly, preserving the
property JQ JQ .

Position (10, 10)" Q C’, Q -QV. Complex skew symmetric matrices have
pairs of eigenvalues ,, -, (Table 2.4), but at this writing, there is no known unitary,
structure preserving method for this problem.

Position (10, 11 )" Q e C’n, JQ (JQ) 7‘ -QT’J and -Q QT. This implies that
JQ QJ, so Q [_Fa F6] and thus W X*OX [F+ iG

F
O

0 iG], with F F, G G r,
and F + iG and F- iG complex skew symmetric. Although we do not have a satisfactory
algorithm for the n n complex skew symmetric problem, some of the structure is
preserved by treating F + iG and F- iG as unstructured problems.

Position (10, 12): Q 6 C n,n, jQ (jQ) T QTj and Q -Q 7‘. Then Q
IF FT
a -F] where -F, G -GT" As in position (7, 12), some of the structure is
preserved by applying the algorithm of [V2].

Position (ll, 11)- Q 6 C "’", JQ (JQ)r. We do not know a unitary structure
preserving method for this case.

Position (ll, 12)" Q C n’n, JQ -(JQ)7" jQT implies Q 0.
Position (12, 12)" Q 6 C’n, JQ (JQ)7‘. All of the structure is preserved by the

algorithm in [V2 ]. This is one ofthe few diagonal entries which admit an entirely structure
preserving algorithm.

We have seen that it is more difficult to preserve the structure in this quarter ofthe
chart. This is because few unitary matrices preserve these structures.

c The Northeast corner ofthe chart.
Position (1, 7)" Q C n,n, QQ . I, QQ 7" I implies that Q 7‘ QTQQ . 0 T.

So Q is real orthogonal. We discuss this problem in context with the real chart.
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Position (1, 8): QCn’n, QQ* I, QjQr= Jimplies that Qrj= jQ. or JO
QJ. Thus Q [_ ], which is a unitary quaternion matrix and thus may be treated by
the quaternion QR algorithm B9 ], which preserves the structure.

Position (1, 9)" Q C’’n, QQ* I, Q QT. Then,

with F Fr, K Kr. Set

Q+Q* Q+Qw Re(Q),
2 2

Q-Q* Q-Q
w2 iIm (Q).

2 2

So W and iW2 form a commuting pair of real symmetric matrices which may be si-
multaneously diagonalized B 10 ], G3 ].

Position (1, 10)" Q Cn’n, QQ* I, Q -Q. Set

Q+ Q* Q-Q
W Im (Q),

2 2

Q-Q* Q+Q
W2 Re(Q).

2 2

So, iWl and W2 form a commuting pair of real skew symmetric matrices which may be
simultaneously diagonalized B 10 ].

Position (1, 11): Q C"’, QQ* I, JQ (JQ)7- _Q7"j. Then

G=Gr, H=Hr, - - H+ G * FT" ffJ B

is an Hermitian antiquaternion matrix [B9 ], and

2 2 H-G* -FT’+ffJ D .
is a skew Hermitian quaternion matrix. We may apply the simultaneous diagonalization
procedure based on a quaternion Jacobi method [B 10].

Position (1, 12)" Q C"’n, QQ* I, JQ -(JQ)7" Q7"J. Algorithm 3.8 gives

W:=U*QU= OAT"
where U is symplectic and unitary. The unitary QR algorithm applied to A finishes the
diagonalization. A simultaneous diagonalization method as in position 1, 11 may also
be applied here.

Position (2, 7)" Q_e C n,,,, QjQ. j, QQT" I implies that QJ J, i.e., Q is a
quaternion matrix [re/F -p/], to which the quaternion QR algorithm applies. Note that we
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have no additional property for the quaternion matrix as in Position 1, 8). Thus, part
of the structure is lost.

Position (2, 8)" Q C n,,,, QjQ. j, QjQT j implies Q , i.e., the problem
is real and is thus discussed in the real chart.

Position (2, 9)" Q C n,n, QjQ. j, Q Q T’. At this writing, there is no known
unitary structure preserving method for this case.

Position (2, 10)" Q Cn,n, QjQ. j, Q _Q 7". At this writing, there is no known
unitary structure preserving method for this case.

Position (2, 11 ): Q C n,n, QjQ. j, jQ (jQ) T _Q7"j implies Q I.
At this writing, there is no known unitary structure preserving method for this case.

Position (2, 12)" Q Cn’", QJQ* J, JQ -(JQ)7" Q7"J. Algorithm 3.8
reduces Q to block upper triangular form with n-by-n blocks. The 1, block is the
transpose of the (2, 2) block. This preserves the JQ -(JQ) 7" structure, but not the
QJQ* J structure. A Schur-like form can be obtained from the QR algorithm applied
to the 1, block.

Position (3, 7)" Q C"’", Q Q*, QQT" I implies that Q T" Q- (. So if
Q A + iB with A, B real, then

I=(A + iB)( A + iB)=(A + iB)(A-iB)=A2+B+ i(BA-AB).

Thus A and B commute, A is real symmetric, and B is real skew symmetric. So the
Jacobi-like algorithm for simultaneous diagonalization of a real symmetric and a real
skew symmetric matrix applies [B 10].

Position (3, 8): Q C_."’", Q Q*, QJQ 7" J. A symplectic Jacobi-like algorithm
for Hermitian symplectic matrices can be constructed by using the unitary symplectic
similarity transformations discussed in 3.

Position (3, 9)" Q Cn,, Q Q., Q Q T" implies that Q is real. See 5.
Position (3, 10): Q e c"’", Q Q*, Q -Q 7" implies that Q -0, i.e., Q i0

with 0 real and 0 -0 7". This is essentially a real problem. See 5.
Position (3, 11 ): Q C"’", Q Q*, JQ (JQ) 7" -QT’J implies that QJ -JO,

thus Q is an antiquaternion matrix [B9] of the form Q [ _], with A A *, B B.
We may use the quaternion QR method B9 (in the Hermitian version) or a quaternion
Jacobi method [B 10 ], both of which preserve all the structure.

Position (3, 12)" Q C"’" Q Q *, JQ JQ 7" Q 7"j. So, Q is a Hermitian
quaternion matrix. A numerical method for this problem appears in [D2 ]. It uses Al-
gorithm 3.8 to split Q into the direct sum of two copies of a real symmetric, tridiagonal
matrix.

Position (4, 7)" Q C"", Q -Q*, QQ 7- I implies that Q 7" Q- -0. So if
Q A + iB, with A, B real, then A is skew symmetric, B is symmetric, and

I=-(A + iB)(A + iB)=(-A-iB)(A-iB)=-A2-B2-i(BA AB).

So A and B commute and the Jacobi-like algorithm [B 10 for simultaneous diagonal-
ization of a real symmetric and a real skew symmetric matrix applies.

Position (4, 8): Q C’", Q -Q *, QJQ 7" J.

Q
-G*

F -F* K K*

A symplectic Jacobi-like algorithm for skew Hermitian symplectic matrices can be con-
structed by using the unitary symplectic transformations discussed in 3.
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Positions (4, 9), (4, 10), (4, 11), (4, 12)" Each of these classes consist of matrices
which are scalar multiples by of matrices in the corresponding classes in row 3.

Position (5, 7)" Q C n,,, jQ jQ ., QQ 7; I. At this writing, there is no known
unitary structure preserving method for this case.

Position (5, 8)" Q e C n,n, jO (jQ)., QjQT j implies Q0 I. We do not
know a method for this structure.

Position (5, 9)" Q Cn’, JQ JQ *, Q Qr implies that JQ -Q * J -J
is a symmetric antiquaternion matrix Q [ _], with F F, G G*. We may apply
the quaternion QR algorithm [B9], but this does not preserve the symmetry of Q, so
part of the structure is lost.

Position (5, 10)" Q __.n,n, jQ (jQ)., Q _Q7; implies that JQ OJ, i.e., Q
is a skew symmetric quaternion matrix. The quaternion QR may again be applied but
the skew symmetry of Q is not preserved, so part of the structure is lost.

Position (5, 11 )" Q e Cn,, jQ (jQ)., jQ (jQ) r implies that the problem is
real. See 5.

Position (5, 12): Q C n,,,, jQ (jQ). (jQ) 7; implies that Q -0, so the
problem is purely imaginary. Let Q i0; then we have a problem for satisfying
JO (J0) 7; with 0 real. See 5.

Position (6, 7)" Q C n,,, jQ jQ ., Q 7;Q I. At this writing, there is no
known unitary structure preserving method for this case.

Position (6, 8)" Q e C’, JQ (JQ) *, Q 7;jQ j. It follows that Q7;Q* I or
QQ I. We do not know a method for this case.

Positions (6, 9), (6, 10), (6, 11 ), (6, 12)" Each of these classes consist of matrices
which are scalar multiples by of matrices in the corresponding classes in row 5.

In summary, in the Northeast corner, we have problems that are either reducible
to the real case or quaternion problems or are trivial. Often, we can preserve only part
of the structure.

If, in one ofthe above cases, there is both a Jacobi-like and a QR-like method, then
in a conventional serial computing environment, the QR-like method is less expensive
in work and storage. However, Jacobi methods may be able to take better advantage of
parallelism.

5. The real chart. In this section we discuss orthogonal structure preserving methods
for real, multiple structured matrices. In Table 5.1 we assume Q m,m, where ifnecessary,
m 2n and then Q [ ] with F, G, H, K e n,.

Position (1, 1 ): Q "’", QQT; I. Probably the best available method in terms
of storage and preservation of structure is the orthogonal QR method in A2 and G5 ].
The Francis double shift implicit QR method and the Goldstine/Horwitz Jacobi method
[G3] also preserve this structure.

Position (1, 2): Q n,n, QQr I, QT;JQ J implies that JQ QJ, Q
[_F ] is in C2(J), the centralizer of J. So, Q is the 2n-by-2n real representation of the
n-by-n complex matrix F + iG. Observe that F + iG is unitary, so all eigenvalue eigen-
vector information for Q can be obtained from the unitary QR algorithm of [A2] and
[G5].

Position (1, 3): Q g,,,n, QQT; I, Q QT;. As in position 1, 3) of the complex
chart, we have that all eigenvalues are + 1, -1 and any matrix with these properties may
be written as Q PDP, where D is diagonal with elements __+ and P is real orthogonal.

Position (1, 4): Q "’", QQ 7; I, Q -Q 7;. As in position 1, 4) ofthe complex
chart, we have that any matrix with this property may be written as Q PDP, where
D is diagonal with an equal number of +i and -i diagonal entries.
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TABLE 5.1
Summary ofstructure preserving algorithms for real matrices.

QQr= I

QjQr= j

Q=Qr

jQ jQ)r

jQ _(jQ)r

QQr= I QjQr= j Q=Qr jQ jQ)r jQ _(jQ)r

V: satisfactory algorithm not listed below.
Q: quaternion algorithm preserves all structure.
?: no structure preserving method known yet.
T: trivial case.
S: simultaneous diagonalization of commuting normal matrices.

Position (1, 5): QQ 7" I, QJ (QJ) 7" jQ r. So

Q
_Fr

with G G r, H Hr. Set

2 2 2 H+Gr -Fr-F] B -A

with A A r and B B So W1 is an antiquaternion matrix. Set

2 2 2 H-Gr -Fr+F] -D C

with C -Cr and D D r. This is a skew symmetric quaternion matrix. We thus may
use a variation ofthe simultaneous diagonalization rocedure based upon the quaternion
Jacobi method B 10 ].

Position ( 1, 6)" Q e N n,n, QQr I, JQ (JQ) Observe that

Q=
HFr

with G -G r, H -Hr. Algorithm 3.8 preserves both structures and reduces Q to
the form

The real orthogonal QR method of [A2] and [G5 ], applied to each block separately, is
a good choice to finish diagonalizing A.

Position (2, 2): Except for the case of a rank matrix H or G [M 1], we do not
know any structure preserving numerically stable method for this case.
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Position (2, 3): Q N’’n, QrjQ j, Q Qr. Set

w_Q+Q- I[F+K_=(Q_jQTj)=_ GT+G G+Gr]K-Fr

B:Br, A=A

and set

=..

=_(Q+jQrj)=_ GT-G FT+KJ -D C’
C=Cr, D=-D r.

Wl is a symmetric antiquaternion matrix. W2 is a symmetric quaternion matrix. These
may be simultaneously diagonalized by a symmetric quaternion Jacobi-like algo-
rithm [B10].

Position (2, 4): Q N n’n, QTjQ j, Q _QT.

with F Fr, K KT. Set

wI=Q+Q-: I F-Kr G+Gr

2 -GV-G K-F

A -A T, B B v, which is a skew symmetric quaternion and set

2 -Gr+G K+Fr D

which is a skew symmetric antiquaternion. These may be simultaneously diagonalized
by a skew symmetric quaternion Jacobi method [B 10].

Position (2, 5): Q ,"’", QrjQ j, jQ (jQ)r implies that Q2 -I. Matrices
in this class are of the form PJP-1, where P is symplectic.

Position (2, 6): QrJQ J, JQ -(JQ)r implies Q2 I; thus all eigenvalues are
+ 1, -1. These matrices are of the form P[ _0zip-1 for an orthogonal symplectic ma-
trix P.

Position (3, 3): Q e n,n, Q Q. The real symmetric case has been extensively
studied P5 ].

Position (3, 4): Q "’", Q Qr _Qr implies Q 0.
Position (3, 5)" Q ,,,n, Q Qr, jQ (jQ)T implies that JQ -QJ; thus Q is

in n(J), the anticentralizer of J, i.e., Q [ _aF] with F Fr, G G, which is also
antiquaternion. So we may apply the symmetric quaternion QR algorithm B9 ].

Position (3, 6)" Q Nn,n, Q Qr, jQ _(jQ)r implies that JQ QJ; thus Q
is in _n(J), the centralizer of J, i.e., Q [_FG F with F Fr, G -G, which is via
the X-trick equivalent to the Hermitian eigenproblem for F + iG Cn, [P5].

Position (4, 4): Q ’n, Q _Qr. Pardekooper’s skew symmetric Jacobi method
[P4 preserves the structure. So does the QR algorithm.

Position (4, 5)" Q ’", Q -Qr, JQ (JQ) 7- implies that JQ QJ and then
Q [_FG F with G G, F -Fr. Applying Algorithm 3.8 we obtain a form
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which is permutationally similar to the form

i.e., after a simple permutation Q splits into [_d 0
d with a real symmetric tridiagonal G.

Diagonalizing G by the symmetric QR or Jacobi method followed by an appropriate
permutation, then yields the diagonal form for Q.

Position (4, 6)" Q e N", Q -Q JQ (JQ) T implies JQ -QJ, and then
Q. [ F] with G -G r, F -F. Applying Algorithm 3.8 we obtain a splitting
[ 2p] and we can treat with the skew symmetric QR or Pardekooper’s Jacobi
method P4 ].

Position (5, 5): Only in the case that for

Q
_Fr

H or G are rank 1, is a structure preserving numerically stable QR-like method known
B 16 ]. A Jacobi-like method is given in B 18 ].

Position (5, 6): Q e N’, QJ (QJ) r (Qj) T implies Q 0.
Position (6, 6): Q ,n, Qj _(Qj)r jQV. If we apply Algorithm 3.8, we

obtain an ohogonal symplectic P such that

where is upper Hessenberg. A Schur-like form is readily available from the Schur
decomposition of.

6. Conclusion. We have shown that for most ofour specially structured eigenvalue
problems a few basic ingredients combine to form strongly numerically stable, structure
preserving methods. The basic methods include the Francis QR algorithm, the quaternion
QR algorithm, Jacobi methods, simultaneous diagonalization, and Algorithm 3.8. There
are still some specially structured problems where we do not know structure preserving,
unitary methods. The main reason is that the class of structure preserving unitary trans-
formation is too small.

There are other special structures of interest that are not considered here. For ex-
ample, a J-symmetric and [0 ]_symmetric twofold structure is studied in [O 1].

Some ofthe discussed problems (e.g., the symplectic eigenvalue problems) originate
from specially structured matrix pencils. We speculate that QZ-type methods for matrices
with very special structure can be obtained by generalizing the described algorithms to
the pencil case.
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A SHARP BOUND ON POSITIVE SOLUTIONS
OF LINEAR DIOPHANTINE EQUATIONS*

I. BOROSH AND L. B. TREYBIGf

Abstract. Let Ax b be an m n system of linear equations with rank m < n and integer coefficients.
Denote by Y the maximum of the absolute values of the m m minors of the augmented matrix (A, b). It is
proved that if the system has an integral solution x (xi) with each xi >= 0, and either Ax 0 has no such
solution which is nontrivial or ttiere is an m (rn + submatrix A’ ofA with rank m such that A’y 0 has
a solution with positive integer components, then Ax b has an integral solution with each 0 =< xi =< Y. The
bound is sharp.

Key words, linear Diophantine equations, positive integral solutions, minors, rank, bound, Smith’s normal
form, group knapsack

AMS(MOS) subject classifications, primary 15A36; secondary 11D04, 90C 10

1. Introduction. It has been recently proved 5 that if a system Ax b of linear
equations with integer coefficients and rank m has a solution in integers, it has a solution
bounded by the maximum Yofthe absolute values ofthe m m minors ofthe augmented
matrix [A, b]. This bound is sharp. However, other bounds in terms of the system’s
coetflcients have been obtained for the case ofa homogeneous system. A notable example
is the classical Siegel’s Lemma [6], which has been generalized by Bombieri and Vaaler

]. Their result also guarantees the existence of a basis of small solutions. It was con-
jectured in [3] that a similar result to the one in [5 ], with the same bound, holds for
nonnegative solutions of linear Diophantine equations.

Several papers by the authors and others have dealt with this conjecture, and partial
results were obtained. On one hand, the conjecture was proved in special cases, such as
the case n m + l, one equation, the case where Ax 0 has no nonnegative nontrivial
solution [3 ], and the homogeneous case [2 ]. On the other hand, larger bounds have
been obtained in the general case [3], [4], [7], and Ill], the lowest one being
(n m + )Y[4]. It has also been noted that the conjecture would give a sharp bound.

In this paper the conjecture will be proved for a large class of matrices A, a class
which includes those for which all m m minors are nonzero.

As a byproduct ofthe proof, it turns out that the "small" positive solution obtained
does not have too many nonzero entries, generalizing the well-known linear programming
result that the existence of a feasible solution implies the existence of a basic feasible
solution. Here, since we have an integer programming problem, we get only an "almost"
basic solution.

2. Notation and main results. Let A, b be, respectively, m n and m integer
matrices with rn < n, b q: 0, and rank (A) m. We will consider the system:

(1) Ax=b.

Denote by D(il, i2, im) the m m minor of[A, b] built on the columns il’" "im
of[A, b l, where b is considered as the (m + )st column of[A, b]. Let

Y max D(il, i2, im)[.
Nil <i2 <im<=m+

Received by the editors December 26, 1989; accepted for publication October 4, 1990.- Department of Mathematics, Texas A&M University, College Station,
(MathDept@VENUS.TAMU.edu).
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It was proved in [3 that if Ax 0 has no nontrivial nonnegative solution, then
every nonnegative solution of is bounded by Y. We will therefore consider only the
case where the homogeneous system has a nontrivial nonnegative solution. In fact, we
will assume the following somewhat stronger condition:

C There exists an m m + submatrix A’ ofA ofrank m such that A’x 0
has a nontrivial solution with all components positive.

We will denote by g >= the greatest common denominator (g.c.d.) of all m m
minors of A’. Our main results are presented in the following theorem.

THEOREM 1. IfA satisfies condition C) and (1) has a solution in nonnegative
integers, then (1) has such a solution within the bound Y. Moreover, the number of
nonzero entries in this solution is at most m + + log2 g.

COROLLARY 2. IfAx 0 has a nonnegative nontrivial integer solution and ifnone
ofthe m m minors ofA is 0 and has a solution in nonnegative integers, then it has
such a solution within the bound Y.

3. Proof of the main results. The proofofTheorem follows a technique introduced
by Gomory 9 ]. The system is transformed into an abelian group knapsack problem
using Smith’s normal form of matrices. The next lemma appears as an exercise in [8,
Ex. 12, p. 245 ]. We present a proof, since it is not long.

LEMMA. Let G be a finite abelian group and let gl, "’", gk, g* be elements ofG.
Assume that

k

(2) tigi g *
i=1

has a solution in nonnegative integers t, ..., tk. Then (2) has a solution in nonnegative
integers t, ..., t such that

k

(3) I-I (1 +t-/)=< Ial
i=1

and

k

(4) X t/ Ial- 1,
i=1

where GI denotes the order ofG.
Proofofthe Lemma. It is enough to prove (3) since (4) is a trivial consequence.

Let (, t-) be the solution of in nonnegative integers, such that Z/= i is
minimal, and if there is more than one such solution, let be the smallest one in lexi-
cographic order. Assume that (3) does not hold and let T { s (s, s)l each si
is an integer and 0 =< si =< t; for 1, k}. Since

k

IZl X-I +Ti) lal + l,
i=1

there exists s (1), S(2) in T such that S (1) 5/= S (2) and

k k
(2S} )gi Si )gi.

il i=1
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Assume that s precedes s 2) in lexicographic order. Clearly, + (s S (2),) and +
(s t2) s)) are both solutions of (2) and have nonnegative entries. We must have

k k

i=1 i=1

otherwise the sum of the entries ofi + s s 2)) or + (s 2) s )) would be smaller
than Z= ti. Therefore,

k k

i -(S} 1)-S}2)) t-/,
i=1 i=1

and since s ) precedes s2) in the lexicographic order, + stl) s2) precedes , contra-
dicting the minimality of t.

Proofof Theorem 1. Assume, without loss of generality, that the matrix A’ in con-
dition (C) consists of the first (m + columns of A. Let S be Smith’s normal form of
A’ 10, p. 25]. There exist unimodular matrices P, Q such that

s 0... 0 0

(5) PA’Q=S= 0 s2... 0 0

0 Sm 0

where s d (A’) and

di(A’)
for 2, ,m,Si di_ (A’)

and di(A’) is the g.c.d, of all minors of A’. In particular

H Si dm(A’)= g.
i=1

Partition A as A (A’IN) and partition x accordingly into x T Ix’Ix"] T, so that
becomes:.

(6) A’x’+ Nx"= b.

Define y with yv (y, Ym+ by

(7) x’=Qy,

and get from (5) and (6)"

(8) Sy + PNx" Pb.

Let g), ..., g) be the columns of PN with k n m and g* Pb. Then
(8) can be written as a system of congruences:

S1

(9) Xm+2g)+ +xg)g* mod sz

Any solution to (9) provides a nonnegative integer vector x" and an integer vector
y satisfying (8) and using (7), x’ is computed (an arbitrary integer value can be given
for Ym + so that x’ and x" satisfy (6). The process can be reversed since Q is unimodular.
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Equation (9) can be considered as a group knapsack problem, the group being
G Zst (R) Zs: (R) (R) Zs,,, with

Ial =Hsi=g.

According to the lemma, (9) has a solution in nonnegative integers m / 2,’", x-
such that

ffl (1 -F.i <= g,
i=m+2

and therefore

.i<=g--1.
i=m+2

We use now the process described earlier to complete (m / 2, )n) to an integer
solution of ). Let h be a solution to A’x 0, which by condition (C), has positive
entries. We can always assume that

h= (hi, ,hm + 1)

=-(IO(2,3, ,m+ 1)1, 19(1,3, ,m+ 1)1, "", ID(1,2, ,m)l).
g

For every integer u, z + uh is an integer solution to ), and zi >= 0 for m +
2, ..., n. Let u be the smallest integer such that z; >= 0 for all 1, ..., n. Then there
exists i0, -< i0 =< m + such that Zio < hio, and we can assume, without loss ofgenerality,
that i0 m + 1. Then solving for z, ..., Zm, we get by Cramer’s formula

(10) Dzi di,m + 1Zm + + Z di,lZl + ei 1, ,m,
l=m+2

where D D( 1, 2, ..., m) and d,j and ei are all m m minors of A, b]. By construction
we have

and

z>=O fori =l,...,n,

Zm+ <hm+ IDI

., zt .t<=g 1.
/=m+2 /=m+2

For -< m, we get from 10)"

d/,m +,1 n Id/zl leil
Zm+l + Z ZI--IDI z=+z IDI IDI

-< -1 + (g- 1)+
-IOl g - IOl

=< Y + IOi Y 1- 1- 1--
In fact, we get a strict inequality unless g or DI g.
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To prove the second claim of the theorem, if we let r be the number of the nonzero
zi for m + 2, ..., n, then

g>= -I (1 + Zi)>=2 r. [--I

i=m+2

Proof of Corollary 2. Let A satisfy the conditions in Corollary 2 and let A’ be an
rn k submatrix of A such that A’x 0 has a positive solution and k is minimal. We
can assume, without loss ofgenerality, that A’ consists ofthe first k columns ofA. Clearly,
k >- rn + 1, otherwise some rn columns of A would be linearly dependent, and since k
is minimal, we have xi > 0 for 1, ..., k. To show that A satisfies condition (C), we
need only show that k rn + 1. If k > rn + 1, there exists a solution y Z" of A’y
0, independent of x over the rationals Q. Let

X=max ---y>0
Yi Yio

and consider the solution w x + y to Ax 0. Then w _>- 0 and Wio 0, contradicting
the minimality of k. ff]

Remark. It does not seem that condition (C) is necessary for the existence of a
solution to within the bound Y. In fact, we were able to prove it for the case where
A is a 2 n matrix by noticing that if a minor ofA is 0, the corresponding columns are
integer multiples of the same column, and this enables the reduction of the problem to
the 2 (n case.
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OPTIMAL AND SUPEROPTIMAL CIRCULANT PRECONDITIONERS*

EVGENIJ E. TYRTYSHNIKOV"

Abstract. While applying iterative methods to solve a linear algebraic system with matrix A, one often
uses some preconditioner C. Two kinds ofpreconditioners are investigated: the "optimal" one, which minimizes
C-A IIF, and the "superoptimal" one, which minimizes I- C-A IIF. It is proved that both inherit nonsingularity

and positive-definiteness from A. Fast algorithms for finding superoptimal preconditioners are suggested that
take O(n log2 n) operations in case ofarbitrary A oforder n, and only O( n log2 n) operations in case ofToeplitz
or doubly Toeplitz A.

Key words. Toeplitz systems, circulants, iterative methods, preconditioners
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1. Introduction. Consider the system of linear algebraic equations

(1.1) AnUn---fn,

where A is a nonsingular real dense matrix of order n, and suppose that direct methods
(such as Gaussian elimination) require more computer resources than we have at our
disposal. It is expedient to apply iterative methods in this situation.

Fast convergence of iterations is usually connected with choosing the splitting

(1.2) An=Cn-Kn,

where Cn is a nonsingular "easily invertible" matrix considered as a good approximation
to An. When choosing Cn from some set Mn, it seems worthwhile to consider the following
optimization problem:

(1.3) I- C-1An min, cn e M,,,

or, in the simplified form, the following one:

(1.4) Cn An min, Cn
We shall call Cn an optimal preconditioner if it satisfies (1.4) and a superoptimal pre-
conditioner if it satisfies 1.3 ).

This paper discusses optimal and superoptimal preconditioners in the cases when

Mn is the set of circulant matrices, doubly circulant matrices, or, in the general case,
multilevel circulant matrices. Assume that the Frobenius norm is used in (1.3) and 1.4).

We recall that Cn [cij] ’- is called a circulant matrix if

1.5 cij Ci-j(mod n), 0 <= i, j <= n 1;

Tn [t;j]- is called a Toeplitz matrix if

1.6 tj t _j, 0 <- i, j <= n 1.

For n 4 we have:

CO 3 C2 C1 0 t_ t-2
C2 tl to t-1 /’-2C-- Cl c c3 T

l-1c2 Cl Co c3 t2 tl to
C3 C2 C1 CO t3 12 tl t0
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Further, there are many cases in which some matrix A oforder n may be considered
as a multilevel matrix. This means that each of its elements

aij, O<=i,j<=n 1,

can be pointed to with the aid of s pairs of indices

a6 ai Jl; ;isJs,

1.7)
iln2n3" ns + i2n3" ns + + is ns + is,

j jln2n3" "ns +j2n3" "ns + +js- ns +js.

The number s is called the number of levels ofA; n, n are the orders ofthese
levels.

Let all the pairs of indices be fixed, save one pair corresponding, for example, to
the level l. Then one may write aij a.t.. The level ofA is called circulant if

iljl-- it-jl(mod nl), 0 <= i1, jl <= nl-- 1,

and is called Toeplitz if

a’,.t il- Jl, 0 <= il, jl <= n-- 1.

Thus, a doubly Toeplitz matrix is a matrix with two levels, i.e., s 2 and every level is
circulant. For n 6, n 3, n2 2, a doubly circulant matrix looks like this:

C0;0 (70;1. C2;0 C2;1 (71;0 C1;1
C0;I C0;0 C2;1 C2;0 Cl.I Cl;0

Cl ;0 C1; C0;0 C0;I C2;0 C2;
(71;1 C1;0 C0;I C0;0 C2;1 C2;0

C2;0 C2;1 el;0 el;1 C0;0 C0;l
C2;1 C2;0 CI.1 Cl;0 C0;1 C0;0

It is well known that circulant and multilevel circulant matrices are easily invertible
by means of Fast Fourier Transforms (FFTs). One step of inverse iteration with such a
matrix takes only O(n log n) operations. Therefore, one requirement on the precondi-
tionermthat it must be easily invertiblemis fulfilled in this case.

Note, by the way, that for the multilevel circulant matrix the inverse keeps the same
structural property. Hence, for this class of matrices there is no difference between the
application of implicit or explicit preconditioners.

Circulant and doubly circulant preconditioners were earlier discussed in [1 ]-[ 3 ],
6 ], 8 ], 9 ], and 12 ]. There are many concrete examples of their efficiency. The theo-

retical background, however, is often lacking. Recently Strang and Chan[ 3 ], 12 made
a great stride in this direction. They proved that if An is a symmetric Toeplitz matrix
generated by the Fourier-Laurent series ofa real positive function and Cn is the symmetric
circulant matrix which copies the middle diagonals of An, then the eigenvalues of
C An cluster around (except for a few ofthem). This result is formulated asymptotically
(with n -- ), but numerical examples often show the clustering of eigenvalues even if
n is not large.

The effect of Strang’s preconditioner seems amazing, for its construction does not
involve as much as half the information about An. Apparently, using the information in
a more complete way, we may expect a better result. We hope this can be done by means
of the solutions of the above problems, 1.3 and (1.4).
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Recently, Chan [2] has considered the optimal preconditioner Cn [ci-j], which
corresponds to (1.4) when An [ap_q] is a Toeplitz matrix and Mn is the set of all
circulant matrices of order n. It can be easily verified that

(1.8) ci-j Z ap_ q.
n ,_ q -j(mod n)

Chan had a series of numerical tests with various symmetric An. In all cases, the optimal
preconditioner caused the spectrum of CIAn to be located in a more narrow interval
than Strang’s preconditioner did. But the clustering of the spectrum was not improved.

The real advantage ofthe optimal preconditioner is that it is guaranteed to be positive
definite if the original matrix is. This fact is one of our results. Note that Strang’s pre-
conditioner could be singular or indefinite.

When exploiting circulant preconditioners, we should not confine ourselves only to
Toeplitz matrices given as An. We expect circulant preconditioners to be helpful for a
wide class of linear algebraic systems tied with the solution of integral equations. We
base this statement on the experience of solving some 2-dimensional and 3-dimensional
problems in subsonic aerodynamics. Doubly circulant preconditioners are natural for
the special difficulties arising in 3-dimensional problems. In particular, doubly circulant
preconditioners allow the fast solution of doubly Toeplitz systems in many cases.

In 2 we shall formulate the auxiliary statements for further references. Section 3
is devoted to optimal preconditioners, and 4 deals with superoptimal ones. We shall
prove that both inherit the property of positive-definiteness from An.

In 5 we propose a fast algorithm for the calculation ofsuperoptimal preconditioners.
It has O( n 2 log2 n) complexity ifAn is an arbitrary matrix oforder n. A special algorithm
is derived for An being Toeplitz or doubly Toeplitz, which requires only O(n log2 n)
operations. Some numerical results are presented in 6.

2. Auxiliary statements.
THEOREM 2.1. Let the set ofindices

be written as a union

Nn i,j) i,j= 1, n }

k

Nn U N(nt)

/=0

ofnonintersecting subsets Nt), the lth one with n elements, and suppose that Mn comprises
matrices Cn cij] characterized by thefollowing conditions"

if( i, j) N(n), then cij 0;
(2) if il j ), (i2,j2) N)for some <= <= k, then

Cilj Ci2J2.

Then the optimal preconditionerfor An apq] is defined asfollows"

(2.1)
cij= O, i,j)rN(n);

Cij apq/n, i,j)rN), <= <= k.
(P,q N(nl)

We omit the proof because it is trivial. Note that (1.8) is a simple corollary of
Theorem 2.1 (in this case N0) ). There is no difficulty in getting optimal precon-



462 EVGENIJ E. TYRTYSHNIKOV

ditioners in all the situations this theorem deals with. In the case n nk 1, Mn
consists of matrices with some prescribed sparse pattern. One could, if needed, easily get
an analogous statement involving a generalized Frobenius norm with weights.

Below, we shall use the well-known spectral theorem for circulant and multilevel
circulant matrices.

THEOREM 2.2. Let A be a multilevel circulant matrix oforder n, which has s circulant
levels oforders nl, ns n n... ns). Then

(2.2) A n -I F* diag (Fna)F,

where

F F, X X F and F,= l exp l 2rkml/ \ ]

I.\].l#’l!

is the Fourier transform matrix is the imaginary unit); a is thefirst column ofA; and
diag (F.a) is the diagonal matrix composed ofthe components ofthe vector F.a.

Equation (2.2) demonstrates that a multilevel circulant is unitarily diagonalizable,
its eigenvalues are the components ofthe vector F.a, and its eigenvectors are the columns
of F*. Since F* differs from F. by column permutations, we conclude that the eigen-
vectors ofA comprise the columns of Fn.

3. Optimal preconditioners. Let A [a0] be a real nonsingular matrix of order n
and let C [ci-/] be a real circulant matrix of the same order. Assume that C is the
solution of the optimization problem 1.4)"

(3.1) ]IC-AIIF.-- min, Ce,,

where is the set of all real circulants of order n. Then applying Theorem 2.1 we get

(3.2) c=- , ape, k=0, 1, ,n- 1.
/7 p_ q k(mod n)

THEOREM 3.1. Let A be a real matrix of order n, such that (Ax, x) > 0 for
x 4: O, and suppose that C is defined by (3.2). Then C is nonsingular and, moreover,
Cx, x) > O for x 4 O.

IfA A r, then also C Cr. Setting the eigenvalues ofA and C in increasing order,
we have thefollowing inequalities"

kl(A)+ -1- j(A)>=)kI(C)+ -[- Xj(C),
(3.3)

X,(A)+ +Xn_j+l(A)<-)tn(C)+ 2t-kn_j+l(C), j= 1, ,n.

Proof. Consider the orthonormal system of vectors

[ek. 0 k. k.(-l) r,(3.4) uk=-n e ’’’e k=0,1,...,n-1,

where

e=exp(i 2r)n

By Theorem 2.2, uk is the eigenvector of the circulant matrix C which corresponds to
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the eigenvalue CUk, uk). From (3.2) we find
n- n_.l

CUk, Uk) ! E ,-kp Cp- q, kq-_ E Cl’-kl
n p=0 q=0 1=0

n-I ln-1 n-1

Z e-ll Z apq Z e-kP E apqekq=(AUk, Uk),
0 H p q l(mod n) n p 0 q 0

that is,

(3.5) CUk, Uk) (AUk, Uk), k 0, 1, n 1.

We assumed that (Au,, ug) > 0 for all k and, therefore, that all eigenvalues of C differ
from zero. Hence, C is nonsingular.

Further, take a real nonzero vector

n-1

(3.6) x aug
k=0

and write

(3.7) (nl nl ) nlCx, x) OlkCUk, Oll Ul Olkl 2 CIAk Uk) > O.
k=0 l=0 k=0

Thus, (Cx, x) > 0 for x v O.
IfA A , then

(3.8) ., apq E apq, k-- 1, n-1.
p q k(mod n) p q k(mod n)

From (3.2), we obtain

(3.9) Ck"n-k, k 1, ,n- 1,

and this is equivalent to the symmetry of C.
Let us reorder vectors u0, , Un- to get vectors vl, vn so that

C1)1,1)1 C1)2,1)2 >" >" C1)n, 1)n).

Hence,

X( C) Cv, v).

For an orthonormal system Z1, Zj, the inequalities

j j

Z ,n-l+ I(A) -< Z (Azj, zj) <= X
/=1 l=1 /=1

are fulfilled (see [7]). Allowing for (3.4) we conclude that (3.3) holds. This completes
the proof.

To proceed further, let us consider problem (3.1) with the assumption that -n is
the set of all real s-level matrices which have circulant levels of orders nl, ..., ns. Any
matrix C -, is defined by its first column. In accordance with 1.7 ), we write

3.1 O) Cil;"" ;is Cil0; ;isO"



464 EVGENIJ E. TYRTYSHNIKOV

By Theorem 2.1 we have

(3.11 ci;... ;is alotq; ;losqs.n p q il(mOd nl)

ls qs is(mOd ns)

THEOREM 3.2. Let A be a real matrix of order n nl’"ns and C be the s-level
matrix with circulant levels of orders n1,..., ns, defined by (3.11 ). Suppose that
(Ax, x) > 0 for x 4 O. Then C is nonsingular and, moreover, Cx, x) > Ofor x 4 O.

IfA A T, then also C CT. With this, the eigenvalues ofA and C, taken in
increasing order, satisfy (3.3).

Proof. Denote by el any nlth degree root of unity; set

(3.12) u=--:--[ee} "e’]’- ,]r, l= 1, ,s,
Vn

and consider the vector

According to Theorem 2.2, u is a normalized eigenvector of C, which is coupled with
the eigenvalue (Cu, u). Choosing various roots e and forming corresponding vectors u
we can get an orthonormal system of eigenvectors of C. Pursuing the analogy with (3.5)
we find

(Cu, u)=(Au, u)

for vectors u mentioned above. This implies that C is nonsingular and that (Cx, x) > 0
with x :/: 0.

IfA A T, then

p q k(mod nl)

(3.13) Ps qs ks(mod ns)

aplql; ;psqs E
P q nl kl(mOd nl)

Ps qs ns ks(rood ns)

0-<kl-<nl- 1, ,O<=ks<=ns 1.

This means that C is symmetric. The relations for the eigenvalues ofA and C are derived
by the same reasoning we have used in the proof of Theorem 3.1. Actually, Theorem
3.1 is simply a corollary of Theorem 3.2 corresponding to the case s 1. []

4. Superoptimal preconditioners. Suppose that C is the solution of the optimization
problem of the form 1.3 )"

(4.1) ]II-C-AIIF-- min, CE’n,
wheren is the set of real nonsingular circulants of order n. Let

(4.2)
n-I

’=C-1= Z QJ
j=O

where

(4.3)

0 0 0 0
0 0 0

0 0 0

0 0 0

0
0

0



OPTIMAL CIRCULANT PRECONDITIONERS 465

Instead of (4.1), consider the following problem:

(4.4) I- min,

where "n is the set of all real circulants of order n.
In order to solve problem (4.4), let us investigate the functional

n-1 2

(dO, dl, ,dn-1) I-- , QJA
j=0 F

(4.5)

where

n-1 n-ln-I

n- Z Yif+ Z Z iUij
i=0 i=0j=0

(4.6) f-=tr (A rQ-i + QiA ),

(4.7) uo=-tr (A rQ- iA ).

Compute the partial derivatives of and require them to be zero:
n-1

(4.8)
O

__f + Z 4"(Uij + Uji)-’O,
Oi j =0

or, in a matrix-vector notation,

(4.9) (g+gr)

The solution of this linear algebraic system will give the minimum point of.
THEOREM 4.1. Let A be a real nonsingular matrix of order n. Then the linear

algebraic system (4.9) has a unique solution. If(Ax, x) > 0 with x 4: O, then the circulant
matrix with thefirst column

[0"" ".-,l

is nonsingular and, moreover, x, x) > 0for x # O. IfA A T, then r.
Proof. By (4.7) and (4.), the matrix U is circulant. Taking into account well-

known properties of traces of matrices, we have

(4.10) Uij tr (A rQj- iA) tr QJ- iAA r).
From (3.2) and (4.3) we have that the matrix

(4.11) U=-U
n

is nothing other than the solution of the optimization problem

4.12 0 AA Tll r--" min, ( --From Theorem 3.1 the matrix is symmetric positive definite, because AA T is (A is
nonsingular by the condition of the theorem). As a consequence of (4.11 ), the matrix

(4.13) U+Ur=2U

is symmetric positive definite and so we see that the system (4.9) has a unique solution.
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Denote by F the circulant matrix with the first column [fo/2... f_ l/2] r. Since a
product of circulants is circulant, from (4.9) and (4.13 ), we have

(4.14) U=F.
Then

(4.15) F= [tr (Qi-JA)]} ,
so the circulant matrix

(4.16) /=IF
n

is the solution of the optimization problem

(4.17) ]I--AI]F’ min,

and by Theorem 3.1, if (Ax, x) > 0 with x 4: 0, then (Fx, x) > 0 with x 4: 0. Therefore,

(4.18) (Fx, x)>O with x4:0.

By (4.14) is nonsingular.
Further, since U is symmetric and positive definite,

(4.19) (x,x)=(U-IFx,x)=( U-1/ZFx, U-1/2x)--(( U-1/2FU1/z)u-I/2x, U-1/2x).
Equations (3.6) and (3.7) show that a (nonsymmetric) circulant with all eigenvalues
being positive is positive definite. It is clear that all eigenvalues of circulants U-/2, F,
U/2 are positive and, therefore, all eigenvalues of U-1/zFU1/2 are positive as well. By
(4.19 we have

(4.20) x, x) > 0 with x 4 0.

IfA A r, then F Fr by Theorem 3.1. The relationship (4.14) implies r,
since the product of symmetric circulants (and an inverse of a nonsingular circulant)
remains symmetric circulant. This completes the proof.

THEOREM 4.2. Let A be a real nonsingular matrix oforder n n" "ns and C be
the solution ofthe optimization problem (4.1), assuming that ’ is the set ofreal non-
singular s-level matrices with circulant levels of orders n1,’", ns. Then (4.1) has a
unique solution. If(Ax, x) > 0 with x 4 O, then Cx, x) > 0 with x 4 O. IfA A then
C=C.

Let Qt denote the matrix of the form (4.3) but of order n. Then for (2 C-we have

nl- ns-
Q(4.21) (= Z cjl; ; .

Jl =0 js=O

where .,; ; are the components of the first column of the matrix , arranged in the
order that corresponds to (1.7).

Consider the functional

(4.22)

O N i,j

_
n

0

_
is, Js <= ns
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where

(4.23) f,; ;is tr (A TQ Os + Ql QisA

(4.24) UilJl ;isJs tr (A TQ Jl- il Q Js-- isA ).

In order to compute Y we get the system of linear algebraic equations

(4.25) U+ Ur)Y =f,
where U is the s-level circulant matrix with components uilj, ;;sJs and fis the vector
with components fl ;is taken in such order that is is the first increasing, then is-
is, and so on. System (4.25) can be analyzed in the same manner as system (4.9),
studied above.

5. Fast algorithms for finding superoptimal preconditioners. When using super-
optimal preconditioners in practice, one obviously should be assured that there is a way
to compute them sufficiently quickly. We have already known that components

are determined as the solution of the linear algebraic system (4.9) with a symmetric
positive-definite circulant matrix of coefficients. Such a system can be solved with
O(n log2 n) complexity applying Theorem 2.2 and the FFT. But the main work lies in
the computation of components uo, f.

Suppose first that A is a matrix with no special structure. Then the vector
[f0" f ---the fight-hand side of (4.9)mcan be calculated at a cost of O(n2) op-
erations.

Further, U is entirely defined by its first row; the components of this row are of
the form

n-1

(5.1) Uoj=tr(ArQJA) , arQJar,
r=0

where a0, a, an- are the columns ofA. Let r be fixed and first find the values

(5.2) Otrj= aTr QJar,

using

(5.3) [Or0"" Olrn_ aSCr, C2 Qar, Qn- ar].
Note that Cr is circulant. For every r the multiplication of a row by a circulant can be
performed at a cost of O(n log2 n) operations. Therefore, all the values

arj, O<=r,j<=n 1,

can be had with O( n 2 log2 n) complexity. We need another O( n2) additions to calculate
Uoj, 0 =< j =< n 1, from the values ar;. Thus, O(n2 log2 n) operations are sufficient to
compute the superoptimal circulant preconditioner ( when A is a general matrix.

In what follows, we study how a special structure ofA can be used to accelerate the
computing of the Uo. Note that Uoj. tr (A rQ;A) tr (QJAA ). Hence, we shall reach
our goal if we consider a somewhat general problem. Namely, let a matrix

(5.4) M= [mj]2
be given and let our goal be the computation of values

(5.5) sk=-- sk(M)=-- , mi,
-j k(mod n)

k=0, 1, ,n-1.

Obviously, u0 s;.
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THEOREM 5.1. Let M LR, where

(5.6)
l lo 0
12 ll lo

ln -1 ln 2 In-3
Then

r r2
ro rl

rn-
rn-2
rn-

ro

(5.7)

So rn-1 0
S1 rn 2 rn -1
$2 =P rn-3 +Q 2rn-2

s,_l ro (n- 1)rl

where

ln_ 2/,-2 3ln-3 nlo
In--1 2ln-2 (n- 1)li

ln- (n-2)/2

l lo 0
12 l lo

l_ l,_ ln-3 10

Proof. The relations

(5.9) mij= mi- ,j- + lirj, <=i,j <- n 1,

are true, since the matrices L and R are triangular. Therefore,

n-k-1 k-1

sk mk+j,j+ mj,,_+j

n-k-1 k-1., (n--k--j)lk+jrj+ Z (k--j)ljr_k+j.
j =0 j =0

The last two terms agree with two terms in (5.7). The proof is over. []

COROLLARY 1. The values s, 0 <= k <- n 1, can be computed with O( n log2 n)
complexity.

Indeed, Theorem 5.1 yields that the computation we are considering is reducible to
matrix by vector multiplications with matrices P and Q being Toeplitz, i.e., we need to
apply the so-called aperiodic convolution, which takes O(n log2 n) operations, as is well
known 11 ].

COROLLARY 2. Suppose the conditions ofTheorem 5.1 arefulfilled; then the values
sg(RL), 0 <= k <= n 1, can be computed with O(n log2 n) complexity.

It is not difficult to check that the relations

(5.11) Sk(M)=Sn_k(modn)(JMJ), O<=k<=n 1,
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are valid, where

[01](5.2) j= .."
0

So relations

5.13 sk(RL) Sn moo n)( (JRJ)(JLJ))

hold and it remains to be noted that matrices JRJ and JLJ are Toeplitz lower and upper
triangular, respectively. Hence, we may directly use Corollary 1.

COROIIAR 3. For arbitrary Toeplitz matrices A and B of order n, the values
sk(AB), 0 <= k <= n 1, can be computed with O(n log2 n) complexity.

Write

A LA + RA, B Le + Re,

where LA, Le are Toeplitz lower triangular and RA, Re are Toeplitz upper triangular.
Then AB T+ LARe + RALe, where the matrix T LaLe + RARe is Toeplitz, because
the product ofToeplitz lower (upper) triangular matrices remains Toeplitz lower (upper)
triangular and the sum of Toeplitz matrices is also Toeplitz. The first row and column
of T can be obtained with O(n log2 n) operations (by an aperiodic convolution). Further,

s(AB) s( T) + s(LARe) + sk(RALe),

and we need to apply Corollaries and 2.
COROLLARY 4. For any nonsingular Toeplitz matrix A oforder n the superoptimal

circulant preconditioner can be computed with O( n log2 n) operations.
COROLLARY 5. Let A be a nonsingular real Toeplitz symmetric matrix of order

n 2 L. Then 0(n) operations are sufficient to reduce the computation ofthe superoptimal
circulant preconditioner to the performance offour complex FFTs oforder n and three
complex FFTs oforder n / 4.

Writing A L + L 7" where L is a Toeplitz lower triangular matrix, we get AA 7"

A 2 L2 + (L2)7- + LL 7" + L rL. The first column of L2 can be calculated using two
FFTs of order n and, after that, O(n) operations are needed to find s(L2 + (L2) 7") for
all k. To calculate s(LL 7") we use 5.7 and Theorem 2.2; this can be done by two FFTs
of order n if the result of one of the previous transforms has been saved. Note that the
FFTs operate on the vectors which are real, or conjugate, and, hence, are reducible to
FFTs of complex vectors of less than half the order (see 5 ], 14 ). Three FFTs of order
n are needed to determine from (4.14); these FFTs work with real symmetric vectors
of even order and, therefore, are reducible to FFTs of complex vectors of order n/4 [5].

Thus, using split-algorithms ofFFT 10 we compute a superoptimal circulant pre-
conditioner for a real symmetric Toeplitz matrix with 1.55 n log2 n complex multipli-
cations and 4.75 n log n complex additions-subtractions (n 2L) plus lower order terms.
The operation count can be a bit improved if the relations s sn-moa n), 0 =< k -< n
1, are used.

COROLLARY 6. Suppose that a nonsingular matrix A is written in theform

(5.14) A= Z LR,
j=O

where L andR are Toeplitz lower and upper triangular, respectively. Then the optimal
and the superoptimal circulant preconditionersfor A can be computed with O( tn log2 n)
operations.
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For superoptimal preconditioners, AA T must be representable in a form like (5.14),
but with the number of terms less than or equal to 2t + (see [4], [13]).

Now we shall switch to the case ofM being composed of blocks mij, each of order
p. It is easy to show that Theorem 5.1 still holds in this case. But now SK is a block of
order p, i.e.,

., (k)Sk--’[,ij ] .
Assume that we want to compute the values

(5.15) s= s,, 0<l<p-= 1,
i-j l(mod p)

O<=k<=n-1.

Hence,

(5.17)

are to be computed.
From Theorem 2.2 we set

(5.16) (fuXlp)
U- I)N-

then

V= l)i_j], W- wi_j]

of block order N >- 2n be given and the values

SI( Zi-j) where Z= zi_j] VW,

(FX b)
2N WN

.,(FXI,,)
ZN- )N- 2N

(5.18) --rFN
Sl( ZN- Sl(N 2N- 1)

We have described a way to implement (5.7) using the property that a (block)
Toeplitz matrix by vector multiplication is reducible to a (block) circulant by (block)
circulant multiplication, and the order of the (block) circulants may be equal to N >_-
2n where n is the order of the given (block) Toeplitz matrix. While exploiting the
FFT and choosing N 2L, we always can guarantee that N _-< 4n.

Equations (5.16)-( 5.18 permit us to build up superoptimal doubly circulant pre-
conditioners for doubly Toeplitz matrices at a cost of O(n log2 n) operations.

6. Numerical results anti some remarks. We have mentioned above that in com-
parison with Strang’s preconditioners, optimal and superoptimal circulant preconditioners
inherit nonsingularity and positive-definiteness from the original matrix. For example,
if we take

2 -1
-1 2 -1 0

A -1 2 -1

-1 2

If l were fixed, then the computation of Ski, 0 k _-< n 1, would be reduced to the
following problem: let two block circulants
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then Strang’s preconditioner is of the form

2 -1 -1
-1 2 -1 0

S -1 2 -1

-1 -1 2

and so it is singular. Instead, the optimal preconditioner is of the form

n-1 n-1
2

n n

n-1 n-1
2 0

n n

n-1 n-1
n n

and we see that C CT > 0. The distributions of eigenvalues ofA, C-A, and T-A T
is a superoptimal preconditioner) are shown in the following chart (n 32)"

A: IIII II

0 0.01 2 3 4

C-1A: II I1|

0 0.1 2 3 4 4.06

T-1A:
0 0.01 1.8 2 3 4

Further, for the Toeplitz matrix

]0.25 -j) 2

we have the following picture (n 32)"

A:

0 0.22 2 3

C-IA: II I1 ii
0 0.58 1 2 2.1

T-1A:
0 1.6

Note that

4 5 6 6.28

I- C-’A 1.7, I- T-A 2F 1.4.
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Our next example will give some new information about properties of two precon-
ditioners. Let

I ]A
/1 + i-jl nn

The eigenvalues are distributed as shown below (n 32):

0.21 11.8
| |11,4".

0 1 2 3 4 5 6 7 8 9 10 11 12

C-1A: II
0 0.651 2 2.8 3

T-A" III
0 0.58 1 2 2.4

Curiously, the eigenvalues of T-1A cluster on the interval [0.73, 0.83 ], but the
eigenvalues of C-IA go on clustering around 1, as they do in all observations. Here
we have

1- C-’AIIF 3.62, I-- T-AI[ 2F. 3.57.

The last example will be the Toeplitz symmetric-indefinite matrix

[ ]0.25- /I i-jl
The real parts of eigenvalues are distributed as in the following chart:

-10.1 -1.1 5.7
A: IIII III II

0
-25.3 26.8

C-A:

T-1A: Iii
0 1

Note that T-A has one pair of complex eigenvalues but all eigenvalues of C-A
are real. We have

I- c-a ZF 1361.2, I-- T-A 2.3.
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PERTURBATION OF THE EIGENVALUES OF
QUADRATIC MATRIX POLYNOMIALS*

H. LANGER’, B. NAJMAN:, AND K. VESELI

Abstract. Perturbation properties ofa quadratic matrix pencil containing a "small" parameter are considered.
Main results concern the splitting properties of multiple eigenvalues and the corresponding Puiseux expansions.
For hermitian pencils it is proved that the Puiseux expansion generates groups of eigenvalues ordered according
to the partial algebraic multiplicities of the unperturbed eigenvalue.

Key words, eigenvalues, quadratic matrix pencils, perturbation theory

AMS(MOS) subject classification. 15A 18

Introduction. Let C and K be n n matrices. We study the eigenvalues k(e) of
the matrix polynomial

(0.1) T(k, e) k2I+ k( + e)C+K
for small e, considering T( X, e) as a perturbation of the matrix polynomial

(0.2) T(X,0) X2I+ XC+ K=:A(k)
by the function B(X, e) := XeC. These eigenvalues are of interest as they represent the
oscillation frequencies of a vibrating system described by the differential equation

d2Y -( + e)
dy

dt2 C-+ KY 0"

Here C corresponds to the damping forces of the system. So the functions e X(e), for
small e, give information on how these oscillation frequencies change if the damping is
changed by eC.

As in 6 and 8 (see also 7 and 9 our main tool for studying the behavior of
X(e) near e 0 is the Newton diagram of the function det T( X, e).

In the following, Xo always denotes an eigenvalue of the unperturbed matrix poly-
nomial A (X) of algebraic multiplicity a. Recall that according to the general results of
analytic perturbation theory for small e the polynomial T( X, e) has a eigenvalues (e)
near ko such that X(0) X0; these eigenvalues appear in groups and have Puiseux
expansions at e 0 (see [1], [5]). In of this note we show that if the matrix C in
(0.1) is diagonal (C and K need not be hermitian) and if 0 4: 0, then the number of
groups of eigenvalues X (e) near k0 ofthe perturbed polynomial T( X, e) can be estimated
not only by the algebraic multiplicity a of X0 as an eigenvalue ofA (X), but also by the
algebraic multiplicity b of zero as an eigenvalue of the matrix A (X0), and that in the
case where a > b, there are eigenvalues k (e) such that , (e) k0 e + o( e n) as

Received by the editors June 18, 1990; accepted for publication (in revised form) August 15, 1990.

? Fachbereich Mathematik, Universitit Regensburg, D-8400 Regensburg, Federal Republic of Germany
(langer@vax .rz.uni-regensburg.dbp.de).

Department of Mathematics, University of Zagreb, P.O. Box 187, YU-41001 Zagreb, Yugoslavia. The
research of this author was supported by Samoupravna Interesna Zajednica of Socijalisti6ka Republika Hrvatiska.

Fachbereich Mathematik, Fernuniversitit Hagen, Postfach 940, D-5800 Hagen 1, Federal Republic of
Germany (ma704%dhafeu 11.bitnet).

For the definition of eigenvalues, eigenvectors, and associated vectors of matrix polynomials, we refer
to [3].
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e -- 0 with some B _-< b/a, "r 4: 0, that is, b/a is an upper bound for the smallest (worst)
exponent of e. A similar result holds if 0 0.

In 2 we consider the case of hermitian matrices C and K. Denote the partial
multiplicities of the eigenvalue 0 ofA() by ml, mg. We assume that there are k
groups of mutually equal mj., the jth group containing nj elements:

(0.3)

and define

m mnl < mnl +

mnl + n2 < < mnl + + nk- + mnl + + nk

tT;’= nl + + n, nj:= mnj, j= 1, ,k.

In 6 we introduced a sufficient condition (relation (6)) which assured that among
the eigenvalues of T(k, e) near k0 for each j e { 1, k }, there are njrh eigenvalues
k,,(e), u 1, nj.; a 1, rh, satisfying for e -- 0 the asymptotic relations

(0.4) ,j.,,(e)

with numbers 3’j, 4:0 and 0m, := exp (2ri(a 1)/m), a 1, 2, m. If these
relations hold, we shall say that T(, e) has the completely regular splitting property
at o.2

In other words, T(X, e) has the completely regular splitting property at 3,o if for
each partial multiplicity mi (i 1, g) from o there emerge m; eigenvalues of
the form

(0.5) kip( e

p 1, mi, with i =/= 0. We shall say that T(, e) has the regular splitting property
at o if for each partial multiplicity mi of the eigenvalue ,o from ,o there emerge mi
eigenvalues ip(e) of T( , e) of the form (0.5), where ’’i 5/= 0 for those for which mi >
1. That is, all the eigenvalues of T(, e) near o can still be written in the form (0.4),
however for the real differentiable eigenvalues the derivative at e 0 may be zero; for
all the other eigenvalues the first nonzero (i.e., the leading) term in its Puiseux expansion
at e 0 is 3’e 1/fftj, ,y =/= 0. A sufficient condition for the regular splitting property was
given in [7 ]. Applying this sufficient condition we show that for hermitian matrices C
and Kthe matrix function T( X, e) has the regular splitting property at every real nonzero
eigenvalue ofA (X).

Finally, in 3 we prove that the perturbed eigenvalues have additional properties
if one of the matrices C or K is definite.

Our interest in the particular matrix polynomial T(,, e) was largely motivated by
[4 ]. We mention also the paper [2 ], where a more general matrix polynomial T(X, e)
was considered.

1. Results for a general diagonable matrix C. Let C and K be n n matrices and
A (X), T( X, e) be given by (0.2) and (0.1), respectively. In this section we often assume
that C is diagonable, that is, that there exists a basis in C such that

(1.1) C=diag(cl,...,c,,), cieC, i= l, ,n.

Let X0 be an eigenvalue of A (X) of geometric multiplicity g and algebraic multiplicity

Some physical examples exhibiting this behavior can be found in 10 ].
The eigenvalue ,(e) is called real differentiable at 0 if for 0, real, there exists lim e-l(X(e)

x(o)).
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a. Then zero is an eigenvalue of the matrix A ()0) of geometric multiplicity g; denote
by b its algebraic multiplicity. Evidently, b >- g, and all three cases b > a, b a, and
b < a are possible. In fact, ifA ()o) is hermitian, then b g; as a can be either equal to
g or larger than g, it remains to show that b can be larger than a.

Example. Let

C=
0 0 0

Then t(X) := det (),I + ),C + K) ),4 + ),3 3X + and t(Xo) 0, (dt/dX)(Xo) g:
0; hence a 1. As

-1
A(1)=I+C+K=

we find det (#I- A )) and b 2.
Let o, o, be the eigenvalues of A(),o), counted according to their algebraic

multiplicities, and denote by s, j 0, n 1, the elementary symmetric function
of order n j of o1, ,:

So Ol Ol S H Olj "’’, Sn Olk
k= j:j4=k k=

As exactly b of the aj’s are zero, it follows that So sb- 0, sb :/: 0.
Furthermore, we put

t()Le) := det T(), e),

and for k 1, n and mutually different v, Vk { 1, n },

t(), e; u, uk) det 7(),, e; u, Uk),

where 7(), e; v, uk) is the matrix obtained from T(),, e) by deleting the rows and
columns with indices , . Introducing

a(, ,v):=t()o,0;, ,),

the following identities hold:

So =det A(Ao) t(o,0), sj= a(v, ...,vj), j= 1, ...,n- 1.
l_--<vl< <vj<=n

If f is a polynomial in A Ao and e, and f(Ao, 0) 0, we denote by N(f) the
falling part ofthe corresponding Newton diagram off and by E(f) the set ofits extremal
points (for the definition of the Newton diagram we refer to and 11 ).

PROPOSITION 1.1. Let a be defined as above.
The point a, O) belongs to E( t).

(ii) IfC is diagonable and o 4:0 is an eigenvalue ofA(o) ofalgebraic multiplicity
b, then there exists a point (Xo, yo) E(t) such that

(1.2) yo <= b- xo.

Proof. We put

oi+Jt
t :=

OhOe------ ho, 0).
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Since ho is an eigenvalue ofA h)( T( h, 0)) of algebraic multiplicity a, we have

too ta- 1,O O, ta,O =/= O,

and this is equivalent to (i).
In order to prove (ii) we can assume that C is of the form 1.1 ). Then

h2+ h(1 -" )Cl +kll k12 kin
T(h,e) k21 h2-[ h( +e)cz+k22"" k2n

k’n l2 :" h 2 q- h( -- e. Cn -1- knn
Applying the formula for the derivative of a determinant it follows that

(1.3) Ot(h,e)=
v=l

(1.4) Ot(h,e)= , hc,t(h,e;ii),
.=l

and fork= 1,...,n-

(2h+(1 +e)c,)t(h,e" ill,

here we put t(h, e; 1, n) 1. The identities 1.3)-(1.6) imply

to,=ho Ga(ii), tlo (2ho+G)a(ii),
=1 v=l

t02 h G, Gza(ill,ii2),
"l,V2

n

t , c,a()+ Xo G,(2ho+Gz)a(ill,ii2),
ll,l

n

t2o=2 a(il)+
ll,l

where the sum Z,,,,2 runs over all ordered pairs of different Ill, Il2 E { 1, n }. In order
to simplify the notation, we define for k _-<

where the sum runs again over all mutually different Ill, Ill (i.e., over all variations
of ! elements of the integers l, n).
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Now the o, + j _-< 2, can be written as

tol XoDll, tlo 2XoDol + Dll, /02 XgD22,

(1.7) tl 2)kgOl2 + Dl + )koO22,

t2o 4)kDo2 + 2Do + 4XoD + D22.
If I > 2 we obtain in a similar way

tot XDz,

t,,,_ 2XD,_ ,,, +(1- 1)X-D,_ ,,,_, +
ti,_ 2 xD_ i,z + + X- iDz, 2, l,

where represent the terms containing Dz withj l i, andDwith k < I. Evidently,
(1.7) implies that these relations hold also for and 2.

Now suppose that Xo 0. Then we have

D Xto,

-1 , 2x) -1 t,, -1 x-z) + 2x - x- -1, -,

(2X)-I (tl,1 1-- XI/0/) + X2(/- )D_ ,_ 1,

and for general l, l- 1, 0"

l-i

(1.8) Dz N 7’)t,_ + Rz,
k=0

where Rt denotes a sum of terms containing D with k N 1, and ’z) are complex
(U)numbers, t_ 0. By induction with respect to l, it follows that Dt is a linear expression

in ti where + k N I. As Ro in 1.8 contains onlyD with k N l 1, it does not contain
the term to. Therefore it follows from (1.8) that

(.9) to (’z)-lDo+ pj tj,

where the sum extends over all (j, k) with j + k N l, (j, k) (l, 0), 1, n.
After these preparations, the statement (ii) follows easily. Indeed, if a N b, then (ii)

is a consequence of (i). If a > b we consider (1.9) for b, and assume that no point
(x, y) with y N b x belongs to E(t). Then no such point belongs to N(t) and from
1.9) it follows that Do6 0. On the other hand, we have Do6 s-b 0, a contradiction.

THEOREM 1.2. Assume that C is diagonable, that Xo 0 is an eigenvalue ofA (X)
ofalgebraic multiplicity a, and that zero is an eigenvalue ofthe matrixA (Xo) ofalgebraic
multiplicity b. Then thefollowing statements hoM:

(i) The number ofgroups ofeigenvalues ofT(X, e) near Xo is less than or equal to
min (a, b).

(ii) If a > b, then at least one eigenvalue X(e) of T(X, e) near Xo satisfies the
asymptotic relation

with some ba, O.
Proof. If a N b, then the statement (i) is trivial as T(X, e) has only a eigenvalues

near Xo. Suppose, therefore, that a > b and consider the point Po (Xo, Yo) E(t) with
the propey (1.2), which exists according to Proposition 1.1. Then there are at most Xo
groups of eigenvalues of T( X, e) near Xo which coespond to the pa of N(t) to the left
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of Po (as there are only x0 eigenvalues corresponding to that part of N(t)), and at most

Yo groups which correspond to the part of N(t) to the fight of Po (as N(t) can have at
most Y0 segments there). As Xo + Y0 -< b the statement (i) follows. In order to prove (ii)
we observe that E(t) contains a point (x0, Y0) below or on the line y -x + b. It follows
from a > b that the modulus of the slope of the segment of N(t) which ends at (a, 0) is
less than or equal to b/a.

In the following corollaries of Theorem 1.2 we always assume that X0 4 0 and that
C is diagonable.

COROLLARY 1.3. Ifb 1, then the eigenvalues Xj-(e),j 1, a, ofT(X, e) near

Xo form one group; they have the Puiseux expansions

Xj( , )t o "ll- OlkOka,j k/a
k=l

with 4 O.
The assumption b in Corollary 1.3 implies that the geometric multiplicity g (of

both the eigenvalue Xo ofA (X) and the eigenvalue zero ofA (Xo)) is one. On the other
hand, if g and A (Xo) is normal, then also b 1.

COROLLARY 1.4. Assume b 2.
(i) If a <= 2, then all the eigenvalues of T(X, e) near Xo are real differentiable at

--0o
(ii) Ifa > 2, then thefollowing alternative holds:
(ii) The eigenvalues ofT(X, e) near Xoform two groups, one ofthem consisting of

a eigenvalues having the Puiseux expansion

Xj(,) X0 "- OlkOka 1,j$
k/(a- 1) j= a-

k=l

with c 4 O, the other group consisting ofone analytic eigenvalue Xa(e.,
(ii2) No eigenvalue of T(X, e) near X0 is differentiable at e O. These eigenvalues

form either one group:

Xj($)-- X O’Jl- Ol202a,j, 2/a-l-

_
OlkOk .,k/a

a,j

k=3

with a2 4 O, or two groups, each ofthem containing at least two eigenvalues.
Proof. First we observe that b 2 implies Sl 0; therefore from (1.7) it follows

that Xotlo to.
(i) If a 1, then the analyticity of the eigenvalue of T( X, e) near Xo is well known

(and follows from the fact that N(t) consists of one segment with slope -k, k a natural
number). Ira 2, then tlo to 0, that is, (0, )N(t). As(2, O)eN(t), the moduli
of the slopes of (the one or two segments of) N(t) are greater than or equal to one.

(ii) If a > 2, then we have tlo t0 t20 0. Moreover, it follows from (1.7) that

0 8Xgs2 -- 2Xotl to2.

Therefore, as $2 0, at least one of the points P1 1, ), P2 (0, 2) belongs to E(t).
If PI E E(t), then we are in case (iil) and the claim follows from the fact that E(t)
contains PI and Po (a, 0). If P1 E(t), then Po, P2 e E(t); N(t) may also contain a
third point (m, with 2 _-< m _-< [a/2]. Again, all the claims in (ii2) follow from the
form of the Newton diagram of t.
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The next two examples illustrate the various possibilities in Corollary 1.4.
Example 1. Let

C
c 0

K=
0 c2 0 -1

and denote cl + c2 71, clc2 3’2. Let 3,o 1. Since A(,o) [o], it follows that b
2. A calculation shows that

t(X) det A(X)= X4+71X3+(72-71-2)X+(-272-71)X+7+71 + 1,

hence t(,o) 0, t’(,o) 0, t"(o) 2(72 + 271 + 4), t"(o) 24 + 671. If 72 +
27, 4 -4, then a 2 and we are in case (i).

If 72 + 2"/1 -4, then a >_- 3 and we are in case (ii); moreover, a 4 only if,
additionally, 71 -4, implying cl c2 -2. Another computation shows that

t(,, e) )k 4 +Tl( +))k +(( + e)272--’y1- 2)X2-- + e)(71 + 272)3 +71 +72 + 1,

hence lll (ozt/oXOe)( 1, 0) 2"y1 + 272, to2 (ozt/oe2)( 1, 0) 272. It follows that
if 71 + 7z 4 0 then we are in case (iil); this is the case, for example, if cl 0, c2 -2.

If 71 + 72 0, then we are in case (ii2); together with 72 + 271 -4, this implies
71 --4, 72 4, hence cl c2 -2. In this case N(t) consists of the points (4, 0),
(2, ), and (0, 2).

Example 2. Let

C= 0
0

Since

c2 K c2
0 c3 -c3

Ao=l.

1]A(Xo)

it follows that b g 2. Set 71 cl + c2 + c3, 72 C1C2 + C1C3 + C2C3, 73 CIC2C3 A
calculation yields

t() det A(X)= k6 + 71k5 + (72-- 71)k4 + (73-- 272)k3

+(72-- 373-- 3 )X 2 + (373-- 71)X +71--73 + 2,

t(,o) t’(o) 0, t"(,o) 2( 12 + 471 + 72).

Therefore the alternative (ii) prevails if and only if 471 + 72 --12. Another calcula-
tion gives

02
tll O-O--e det T(X,e)l:d=471 +272.

We see that (ii2) holds if and only if 3’1 -6, 72 12.
If ,o is an eigenvalue of A(,), it is possible that t(o, e) 0 for all e, that is,

,(e) o is an eigenvalue of T(, e). In this case we call o a trivial eigenvalue of
T(,, e). The exponent d >_- such that

t(,,e) (X- ,o)U (,, e),

where (,, e) is holomorphic in , e and (o, ") is not identically zero, is called the
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algebraic multiplicity of the trivial eigenvalue Xo of T(X, e). Evidently, Xo is a trivial
eigenvalue of T(, e) of algebraic multiplicity d > 0 if and only if the left endpoint of
N(t) is (d, rn) for some rn >= 0.

Finally, we consider the unperturbed eigenvalue Xo 0. Evidently, Xo 0 is an
eigenvalue ofA (),) if and only if it is an eigenvalue of T( X, e) and if and only if it is an
eigenvalue of A(0) K, and all three geometric multiplicities coincide. Hence if

Xo 0 is an eigenvalue ofA ()), it is a trivial eigenvalue of T(X, e). Moreover, if there
exists a Jordan chain of length 2 to the eigenvalue Xo 0 ofA (X), that is, if there exist
elements Xo 4 0 and Xl such that

Kxo O, Cxo +Kx O,

then with o Xo, l (e) / e)Xl, we have

K)o 0, + e)Co + K2 () 0,

that is, a chain of length two is associated to the trivial eigenvalue ), (e) 0 of T(X, e).
Observe that although the eigenvalue Xo and the eigenvector Xo do not depend on e, the
first associated vector 1 (e) does.

PROPOSITION 1.5. Assume that C is diagonable and that o 0 is an eigenvalue
ofA(). If(x, y) belongs to N(t), then x > y.

Proof. For l e { 1, n }, k _-< l define

gkt(X,e) 2 (2X+%(1 +e))’’ .(2X+%(1 +e))t(X,e;ul, ,ut),

where the sum runs over all possible choices of mutually different l, ; note that
with Dkt defined in the proof of Proposition 1.1, we have Dkz gkt(0, 0).

From (1.3) we find

(1.10) ag---(X, e): 2kgk- l.(X,e)+ gk+ ,+ (X,e).
0X

We prove by induction that for every k, =< k =< n, there exist positive numbers cj

(0 =< 2j =< k) such that

(.) a{x,)= .g_,_{x,).
O<=2j_k

From (1.3) we see that (1.11 holds for k 1; if it holds for some k, then we find
from (1.10)

O + t Ogk-2j,k-j ()i,e)
O_2j_k, ak[2(k--2j)gk-2j-l,k-(X,e)+gk-2+l,k-+(X,e)],
O_2j_k

and this is of the form 1.11 ), with k replaced by k + 1. From the definition of gk and
from (1.6) it follows that

O.rgk! k!
(1.12)

Oe (O,O)=(k_r)!Dkt if r<-_k<=l

and

Orgkl
(1.13) &r (0,0) =0 ifk<=l, k<r"
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From 1.11 we conclude that if r > k, then tkr 0; hence (k, r) e N(t) implies k >_- r.
To exclude k r, note that by 1.11 )-(1.13) we have

02k
tkk Oe 0X(0, 0) aok!D,

0- It c9k-
t,- =Oek- io-(O,O)= ao Oe- (O,O)= aok!Dk,

hence

tkk tk,k- 1.

If t # 0, then also t,k_ =/= 0. According to the definition of N(t) the point (k, k) does
not belong to N(t).

From Proposition 1.5 we obtain a result similar to Theorem 1.2.
PROPOSITION 1.6. Assume that C is diagonable. Let X0 0 be an eigenvalue of

A (X) of algebraic multiplicity a and let d be the algebraic multiplicity of Xo 0 as a
trivial eigenvalue of T( X, e). Then thefollowing statements hold:

(i) The nontrivial eigenvalues of T( X, e) near Xoform at most d- groups.
(ii) At least one eigenvalue X (e) of T( X, e) near Xo satisfies the asymptotic relation

x() ,+ o(11 ) (o)

with some [3 <= d- /(a d), "r # O.
Proof. The left endpoint of N(t) is (d, m) for some m =< d- by Proposition 1.5;

the fight endpoint ofN(t) is (a, 0). Both statements of the proposition follow from this.
Remark. In the genetic case of [4] the algebraic multiplicity a is less than or

equal to two.
Hence if Xo 0, then a d 2 and the only eigenvalue X(e) of T(X, e) near X0

0 is the trivial eigenvalue. If X0 # 0, then either a and X(e) is analytic or a 2. In
the latter case Corollaries 1.3 or 1.4 (i) apply if b or b 2, respectively. There remains
the case a 2, b > 2 where Theorem 1.2 does not provide any additional information.
This case does not occur if C and K are hermitian and X0 is real.

2. The regular splitting property in the hermitian case. In this section we apply the
results of[6] and [7] to the quadratic polynomial

T(X, e) )k2I+ )k( A-e)C-t-K,

where C and K are hermitian n X n matrices. Again, let

A(X) T(X, 0) X2I+ XC+K

be the corresponding unperturbed polynomial and suppose first that Xo is a real eigenvalue
of A(X) with partial multiplicities m, me, ordered as in (0.3). If n > g we put
mg/1 m 0. According to a theorem of Rellich there exist an analytic n n
matrix function U(X) such that U(X) * U(),)-I, real analytic functions (),), and
numbers a e {- 1, 1}, j 1, n, such that o(Xo) > 0 and

(2.1) A(X)= U(X) diag (#I(X), ,,n(X)) U(X)-1,

where #(X) a( X xo)mp( X)a,j 1, n. The number a is the sign characteristic
corresponding to the partial multiplicity mj., j 1, g. Defining the matrices

q(X)’= diag (pl(X), ,p(X)),

D(X)’=diag((X-Xo) ml, ,(X-xo)m"), S’=diag(r, ,an),
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it follows that

A(X) U(X),(X)SD(X)b(X)U(X)-If we denote by R the left upper block of size g g of the n n matrix R, then the
matrix H, defined by

(2.2) H=S-{’,l(,o)-’[ U(o) *
OB
(Xo,O)U(Xo) ,(Xo)-,

where B(, e) T(, e) T( ,, 0) heC, determines the leading terms ofthe eigenvalues
of T(,, e) near o (see [6], [7 ]). The first g columns x, l, g, of the unitary
matrix U(,o) form an orthogonal basis of the kernel ofA (Xo). Thus

(2.3) ’= ko[ U( kO) * CU( k0 ]1 ko(( Cxj xi) )i,j: 1,. .,g,

and if we put

/=det(_+ 1,_+2, ,g), j= 1, ,k,

where/(rj_ + 1, g) denotes the (g j_ 1) (g tT_ l) submatrix of in the
fight lower corner, then the numbers Aj from relation (5) of[6] and zj differ only by a
nonzero factor which originates from the diagonal matrices S? (o) -1 and (,o)-in (2.2).

Below, we also use the following simple fact about the eigenvalues ofa (not necessarily
hermitian) quadratic polynomial A(X) h2I + XC + K. Ifxo is an eigenvector ofA(X),
corresponding to the eigenvalue ,o, and if for Xo there exists an associated vector Yo
ofA(X)"

(2.4) A(Xo)Xo 0, A(Xo)Yo+(2o+C)xo=O,

then for each vector Xo from the kernel ofA (ho)* we have

2?o(XolX + Cxo x O.

In particular, if A() is hermitian, that is C C*, K K* (or, equivalently, A() *,
A (),)), this Xo is an eigenvector ofthe polynomial A() corresponding to the eigenvalue
,o. In this case, if ,o is nonzero and real, we can choose x) Xo and obtain

(Cxo Ixo) -2>,oll xoll 2 4= o.

If, however, ,o is nonreal, it may happen that (Cxol x 0 for eigenvalues Xo,

Xo ofA (X) at ),o and Y,o, respectively (see the example at the end of this section).
The main result of this section is the following theorem.
THEOREM 2.1. Let C and K be hermitian n n matrices and let o 4:0 be a real

eigenvalue of the matrix polynomial A 3I + C + K. Then the matrix function
T( , e) )21 + 3 + e)C + K has the regular splitting property at o.

Proof. We consider the matrix from (2.3). If { 1, g ) is such that mi >
1, then the identity (2.5) implies

Cxi[ xl)-- -2Xo(Xi Xl)- -2oi, 1, ,g.

Therefore has the following form:

(2.6) = ,o
0 -2Xolg-n,

if ml mnl 1, mnl + > 1,
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where the left upper corner is an n n matrix which cannot, in general, be speci-
fied, and

I=-2kIg ifm > 1.

According to the remarks following (2.3), we see that for the determinants Aj from [6,
eq. (5)] it holds that

A2" "Akq/:O.

Moreover, if m > 1, then we have

A1... mk :: O.
The claim of Theorem 2.1 now follows from Corollary of 7 ].

Remark. Ifm > 1, these considerations and Theorem of 6 imply that T()t, e)
has the completely regular splitting property at )to.

It is a well-known fact that if the algebraic multiplicity a ofthe eigenvalue )to of the
matrix polynomial A ()t) is one, then the polynomial T()t, e) has only one eigenvalue
)t(e) near )to and this eigenvalue is a holomorphic function of e. In the following two
theorems, we consider the special situations where a > and the geometric multiplicity
g of )to equals either or a. Evidently, if g 1, then the matrix H reduces to a number.

THEOREM 2.2. Let C and K be hermitian n n matrices, and let )to C be an
eigenvalue of the matrix polynomial A ()t) )t 21 + )tC + K ofgeometric multiplicity
g and algebraic multiplicity a > 1. Let Xo and Xo be eigenvectors ofA ()t) at )to and
)to, respectively. Then

(i) If )to is nonreal and (x0[ x) 4 0, or if )to is real and nonzero, then T( )t, )
has the regular splitting property at )to; the eigenvalues )tj(e), j 1, a, of T()t, e)
near )to form one group with Puiseux expansions

)tj( )tO -t’- Z OlkOka jk/a,
k=l

where ol O.
(ii) If )to O, then )t(e) 0 is for e =/= 0 an eigenvalue of T()t, e) of geometric

multiplicity one and algebraic multiplicity two; in the case where a > 2 the remaining
a 2 eigenvalues of T( )t, e) near )to belong to one group having Puiseux expansions

)tj(?)-- Z OlkOk k/(a-2)
a_2,j, j= 1,"" ,a-2,

k=l

with a 4: O.
Proof. (i) If )to is real, then the statement is an immediate consequence ofTheorem

2.1 or the following considerations in the nonreal case, as we can take xg Xo, hence
(xo] xg) 4 0. Therefore suppose )to 4 o.

We linearize the polynomial A ()t) by introducing the 2n 2n matrices

A= G
I

-C 0].0 0

Then the eigenvalue problems for A ()t) and T()t, e) are equivalent to the eigenvalue
problems forA M, A + eB M, respectively. Noting that the matrix A is G-hermitian,
we can apply the remarks of [6], n3, in particular, the relation (19). If Xo (x, respec-
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tively) is a eigenvector ofA (X) at Xo (X0, respectively), then

is an eigenvector of A at ko (at ko, respectively). Since the inner product [., in [6,
eq. 19)] is defined by the matrix G above, it follows that

h,, Xo(Cxol x),

which according to (2.5) equals 2X(Xo x ). Now Theorem of 6 can be applied and
the statement follows.

(ii) We have shown before Proposition 1.5 that if Xo 0 is an eigenvalue ofA (X)
of geometric multiplicity and algebraic multiplicity greater than or equal to 2, then
X(e) 0 is an eigenvalue of T( X, e) of algebraic multiplicity greater than or equal to 2.
On the other hand, zero is an eigenvalue ofA (0) ofgeometric and algebraic multiplicity
1, which implies D01 Sl 4 0. Using the identities 1.3)-(1.6) it is not hard to see that
t2o 1/2 t2 + 2Dol. If a 2 there is nothing to prove. If a > 2, then t2o 0, hence t21 4
0. Therefore N(t) consists of the points (2.1) and (a, 0) and the statement follows.

If a > and g a, then it follows from Corollary 5 of 7 that all the eigenvalues
of T(, e) near X0 are real differentiable. If, additionally, A1 det H is nonzero (the
matrix H is defined by (2.2)), then it follows from Theorem of 6 that all derivatives
ofthe eigenvalues at e 0 are nonzero. In a special case we can prove that the eigenvalues
form more than one group.

THEOREM 2.3. Suppose that, with the notation of Theorem 2.1, for the real eigen-
value o 4 0 ofA (), we have

g=a>l.

Ifall the aj, j 1, g, are equal, then there are at least two groups ofeigenvalues of
T( , e) near o.

Proof. According to Corollary 7 of [7] (applied to (X) A(Xo )), if all the
eigenvalues of T( , e) near o belong to one group, then there exists an c R such that
H aI. We consider again the Rellich representation (2.1) of A (X). If xi is the ith
column of U(o), it follows from (2.2) that

k O Cx xj ff ctg k o ctgj X o ho, i,j= 1, ,g.

AS #i(X) ffi(X X0)0i()) 2 and hij aio, we conclude that

(2.7)
d#i

o Cx xj c-- Xo rij

Differentiating the identity i(X) (A(X)U(X)ei[ U(X)e) at X Xo, we find

d#i
dX (dA )()ko)-- -()o )Xi Xi C-t- 2)to )Xi xi).

Using the identity (2.7) it follows that

hence Xo 4 a and

Xo( Cxi xj) oz( C+ 2Xo)Xi xj) 6ij,

2o
=6ij, j= ,g.Cxi xj)
Xo- O
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Let Xo ker A (3‘o), Xl X. With respect to the decomposition C Xo (R) X1
the matrix C has the block structure

C
dI C’
c c3

where d := 2a3‘o/(3‘o a) and C3 is hermitian. Therefore K and T(3‘, e) decompose
as follows:

with

where det R 4 0. If

K= [ -(3‘o2 + 3‘od)I -XoC ]R- 3‘oC3- 3‘I

T(3‘, e) [ h(3‘,e)I
(X + Xe-

(X + Xe- Xo)C’ ]
R(3‘,e)

h(3‘, e)-= 3,2- X +(3‘ + M-

R(3‘, e)’= (3‘2_ 3‘g)i+ (3‘ + M- 3‘0) C3 +R,

T2 T22

is a block matrix and det Tll 4 0, then det T det Tll det T22 Tzl T]- T12). Hence
we find

(2.8) t(3‘, e)’= det T(3‘, e) h(3‘,e)g det JR(3‘, e) -(3‘ +h(3‘,e)3‘e-3‘0)
2

C2C ].
Since R R(3‘o, 0) is invertible, it follows that R(3‘, e) is invertible for (3‘, e) near
(3‘o, 0). For such values of 3‘, e define

Applying the identity det (I- AB) det (I- BA to (2.8), it follows that

(2.9) t(3‘, e) det R(3‘, e) det

Let qj(3‘, e), j 1, g, be the eigenvalues of the matrix Q(3‘, e). As Q(3‘, e) is
hermitian for real
Furthermore, let

It follows from (2.9) that the eigenvalue equation t( 3‘, e) 0 factors into g equations

(2.10) j(3‘, e) 0, j= 1, ,g.

The analyticity ofJ near (3‘o, 0) and the relations

Of Oh
4: O,

03‘
(3‘0,0) -(3‘o, 0) 23‘0 + d 1---

imply by the implicit function theorem that each equation in (2.10) gives a real analytic
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function Xj.(e) near e 0, that is, the eigenvalues of T( X, e) near X0 form g "groups," a
contradiction. The theorem is proved.

The following example shows that the regular splitting property does not always
hold for nonreal o. Let

C 0 2 -1 K= 0 2 -1
0 -1 2 -1 -1 2

Then the matrix polynomial A (),) X 21 + XC + K has the eigenvalue Xo + with
geometric multiplicity g and algebraic multiplicity a 2. The algebraic multiplicity
b of the eigenvalue zero ofA (Xo) is three. A calculation gives

t00 t10 t01 =0, /20 8, tll 8i, t02 -16,

and therefore the essential part to( X, e) of t(X, e) near (Xo, 0) is

to(X, e)= 4(X- k0) 2 -- 8ie(X- Xo)- 85 2

and the two analytic eigenvalues of T(X, e) are

kl ($) 1-i+(1-i)e+O(lel),

2() i-( + i)e+ O(lel2).
Note that in this example the eigenvector ofA (X) corresponding to Xo is

Xo

the eigenvalue corresponding to ko is

hence (x0[xS) O. The matrices C and K are positive definite.
Finally, let the (hermitian) matrix C be of rank one. If X0 4:0 is a real eigenvalue

ofA (X) such that -X is not an eigenvalue of K, then

codim (A(Xo)) 1.

Therefore g 1, and it follows from Theorem 2.2 that the regular splitting property
always holds in this case.

3. Some results for definite matrices C and K. In Theorem 2.1 we have shown that
for a real eigenvalue k0 :/: 0 of A(k) the number of real differentiable eigenvalues of
T( k, e) near ko coincides with the number of partial multiplicities rnj which are equal to
one. Here we prove that if C is semidefinite and k(e) is a real differentiable eigenvalue
of T(X, e), then we have either X’(0) 4 0 or X(e) Xo for all e in a neighbourhood of

THEOREM 3.1. Let C, K, A (X), T( X, e and Xo be as in Theorem 2.1, and suppose
additionally that C is semidefinite. If X(e) is a real differentiable eigenvalue of T( X, e)
near Xo with (dX/de)(O) O, then X(e) Xofor all e in a neighbourhood ofe O.

Proof. We first reduce the general case to special ones. Let Lo be the subspace
of C" spanned by the common eigenvectors of C and K and let L1 be the subspace of
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vectors from L0 which belong to the kernel of C. Finally, define L2 to be the orthogonal
complement of LI in Lo and L3 to be the orthogonal complement of L0 in Cn. Then
we have

C L L2( L3
and, with respect to this decomposition,

T()‘,e) 0 0
T( )‘, e 0 Tz, )‘, e 0

0 0

A(X) 0 0 ]A(X)= 0 A_(X) 0
0 0 A3()‘)

where T()‘,e)=A()‘)= )‘2 + K, T2()‘, e) diag ()‘ 2 + )‘(1 + e)cj+ kj) ifthe common
eigenvectors of C and K are chosen as a basis of L2 and cj., k denote the corresponding
eigenvalues of C and K, respectively, cj. 4: 0, and T3( )‘, e) )‘21 + )‘ + e)C3 + K3,
where C3 and K3 have no common eigenvector.

(2) Without loss of generality, we can suppose that C is nonnegative definite (oth-
erwise we replace C by -C and )‘ by -)‘). Let )‘(e) be a real differentiable eigenvalue of
T()‘, e) near )‘o with )‘’(0) 0. Then )‘(e) is an eigenvalue of a component T()‘, e),
j 1, 2, 3. If it is an eigenvalue of T ()‘, e), it is evidently independent of e. If it is an
eigenvalue of T2( )‘, e), then it must be a solution of an equation

x+ x( +e)c+k= 0

with cj. 4: 0. Implicit differentiation yields 2)‘0)‘’(0) + )‘’(0)cj + )‘oCj 0, hence )‘’(0)
0 would imply )‘oCj. 0, which is impossible. It remains to consider the case that )‘(e)
is an eigenvalue of T3( )‘, e).

The semidefiniteness of C implies (C3y] y) > 0 for all y e L3 tq ker T3()‘o, 0), y 4
0. Indeed C3Y Y) 0 yields C3y 0, hence )‘o2 + K3)y 0, which is impossible as C3
and K3 have no common eigenvector. Therefore the left upper corner in the matrix/-
in (2.6) associated with T3( )‘, e) is positive definite and consequently the corresponding
determinant A is nonzero. Now the claim follows from Theorem of[6].

Remark. It follows from the proof of Theorem 3.1 that the semidefiniteness of C
can be replaced by the semidefiniteness of C on ker A()‘0) (or of C3 on ker A3()‘o)).

Finally, we prove two results about the eigenvalues )‘(r/) of the matrix polynomial
S( )‘, /) :’- )‘ 21 + )‘tiC + K, which is considered as a perturbation of P()‘) := )‘ 2

_
K by

),r/C, ifK is positive definite.
THEOREM 3.2. Let C be a hermitian and K a positive-definite hermitian matrix,

and let )‘o be a (purely imaginary) eigenvalue of P()‘) )‘ 2 -Jr" K of (geometric and
algebraic) multiplicity g. Then all g eigenvalues )‘(n) ofS()‘, n) )‘2I + )‘IC -t- K near
)‘o are analyticfunctions at n 0 and (d)‘/d)(O) is real.

Proof. Let K/2 be the positive-definite square root of K. Define

B:=
_K1/2 0

C:=
0

Then the eigenvalue problem for P()‘) andS( )‘, r) is equivalent to the eigenvalue problem
for B M and B + r/C- M, respectively. Making use of the observation 12 that
iB nC is a hermitian matrix for real rt, it follows that its eigenvalues u(r) are analytic
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functions at rt 0 with real coefficients. This proves the theorem as k(n) -it(-in)
for some (r/).

THEOREM 3.3. Let C be a hermitian and K a positive-definite hermitian matrix.
Then there are at mostfinitely many C such that some eigenvalue k(n) orS (, n)
2I + koC + K is not semisimple (i.e., that not all ofits partial multiplicities are one).

Proof. According to the general matrix perturbation theory ([1 or 5 ]) the eigen-
values, the eigenprojections, and the eigennilpotents of S() B + nC are algebraic
functions of n with an (at most) finite set of singularities. Therefore, for any rt which
does not belong to this finite set of exceptional points, we find a connected open set
which contains 7, intersects the imaginary axis, and contains no singular point. Since
S(n) is antihermitian if n is on the imaginary axis, the eigennilpotents vanish there and
consequently they vanish on .
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A LOOK-AHEAD LEVINSON ALGORITHM
FOR INDEFINITE TOEPLITZ SYSTEMS*

TONY F. CHAN’ AND PER CHRISTIAN HANSEN:I:

Abstract. An extension of Levinson’s algorithm for solving linear systems with symmetric indefinite Toeplitz
matrices is presented. This new algorithm is able to "look ahead" and, if necessary, use block Gaussian elimination
to skip all ill-conditioned leading principal submatrices encountered during the recursive processing. This makes
the new algorithm numerically stable for a broader class of symmetric Toeplitz matrices than the standard
Levinson algorithm. In addition, a reliable condition number estimate is produced. The overhead is typi-
cally small.

Key words, symmetric indefinite Toeplitz matrices, Levinson’s algorithm, Durbin’s algorithm, numerical
stability, condition estimation

AMS(MOS) subject classification. 65F30

1. Introduction. Many matrix problems arising in signal processing, as well as in
several other applications, involve Toeplitz matrices (see, e.g., [2 ], [5], [12 ]-[ 14 ]). In
some of these applications the Toeplitz matrices are guaranteed to be positive definite;
but in other applications such as eigenfilter problems, harmonic retrieval, and linear
prediction, the matrices may also be indefinite [7]. Since these matrices are often large
and dense, the Toeplitz structure must be exploited when solving the system ofequations
with the Toeplitz matrix, but preferably without sacrificing the numerical stability of the
algorithm. Our new algorithm is a first step in devising such a general algorithm.

In this presentation, for clarity we restrict our discussion to real symmetric Toeplitz
matrices:

PO Pl Pl Pn-

1.1 Tn Pl PO P2 Pn-2 nxn
Pn- Pn- 2 Pn- DO

The extension to the nonsymmetric case is considered in forthcoming papers [4 and
[10]. The classical algorithm for solving Toeplitz systems Tnx b [/31, g/n] is
the Levinson algorithm ], 14 ], which requires 3n 2 multiplications for general matrices
and 2n 2 multiplications for symmetric matrices. From a linear algebraic point of view,
the classical Levinson algorithm for solving the problem Tnx b, as well as the classical
Durbin algorithm [8, 4.7.2] for solving the Yule-Walker problem Tny -r
-[pl, 0n T, are basically recursive sequences ofupdating the solutions to increasingly
larger systems of equations involving all the leading submatrices Tk, k 1, n
of Tn in their natural order. Hence, the accuracy of the computed solutions x and y
implicitly depends on the condition of all these submatrices. In the general case, when
the matrix is indefinite, one or more of the leading submatrices Tk may be arbitrarily
close to being singular, even if Tn is well conditioned. Only if the matrix Tn is positive
definite and well conditioned can we guarantee that all the leading submatrices are well
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conditioned, and both algorithms are therefore numerically stable only for this class of
matrices 2 ]. The same is true for all the "fast" O( n log 2 n algorithms (cf. the discussion
in 2 ). The O(n2) QR-factorization due to Sweet 17 may also break down for indefinite
matrices 15 ], and the complexity is 25n 2, i.e., much larger than that of the Levinson
algorithm. Therefore, it is important to develop an efficient algorithm for general Toeplitz
matrices.

Our approach is essentially a block method using block Gaussian elimination steps,
and in each step the block size is adjusted adaptively to ensure optimal conditioning of
the submatrix involved. This idea is based on the fact that, during the Levinson algorithm,
it is possible to compute inexpensive estimates of the condition number of the leading
submatrices. Hence, our algorithm can "look ahead" and always choose locally the best-
conditioned leading submatrix for the block Gaussian elimination step. As a result, the
new algorithm is numerically stable for a broader class of matrices than the classical
Levinson algorithm, namely those matrices that have at most p consecutive ill-
conditioned leading submatrices. The overhead is difficult to predict, because it depends
on the number of ill-conditioned submatrices, as well as on the maximum number of
steps p that the user is willing to "look ahead." In the worst case (which is very unlikely
to occur in practice) the complexity of the extended algorithm is about 1/2(p3/6 +
(5 / 2 )p2 + 10 / 3 )p + 3 n 2 multiplications. For positive-definite matrices the relative
overhead decreases with the order n of the matrix, and for n 64 it is less than 10
percent. For indefinite matrices with one ill-conditioned leading submatrix, which typically
appear in Toeplitz eigenvalue problems [6 ], [19 ], the overhead is about 25 percent. An
indefinite matrix of order n 120 with 39 distinct singular leading submatrices required
an overhead of 44 percent. Note that much of this overhead is due to the necessary
condition estimation in each step.

The idea of skipping certain leading submatrices is a natural one and, in fact, has
been used before by several authors [7 ], [9 ], [18 ], [20]. In all these algorithms, the
decision for taking a block step is based solely on the size of the so-called "prediction
error," which appears as a denominator in the algorithms. The prediction error is zero
if and only if the corresponding leading submatrix is singular. In [7], [9], and [20], a
block step is taken only if a true zero prediction error is encountered. Moreover, these
algorithms make explicit use ofthe fact that the leading submatrix is singular, and therefore
need further development before they can be used in finite-precision arithmetic. Sweet
[18] uses a simple threshold-type test wherein he takes a block step when the prediction
error is less than a preset threshold value. However, an ill-conditioned leading submatrix
is not guaranteed to be revealed by a small prediction error, and his algorithm is therefore
not guaranteed to detect the need for a block step. Our algorithm is based on a much
more reliable--and still efficient--test for ill-conditioned submatrices.

The paper is organized as follows. In 2, we review the classical Levinson algorithm,
while the new extended Levinson algorithm is presented in 3. In 4, we briefly discuss
its numerical stability, and in 5 we give some important details concerning the practical
implementation of the extended algorithm. Finally, in 6 we present some numerical
results.

2. The classical Levinson algorithm. Since our new algorithm is basically an ex-
tension of the classical Levinson algorithm, let us first summarize this algorithm following
the formulation in [8, 4.7.3 ]. At the kth stage, we have recursively computed the
solution xk k to the order-k problem

(2.1) Tz:xz:= b= [l ] T
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and, simultaneously, the solution Yk - k to the Yule-Walker problem of order k,

(2.2) TkYk --rk [0 Ok] r.
The next step is then to solve the problems Tk + 1Xk + bk + and Tk + 1Yk + --rk + 1.

First, we factorize the matrix Tk + as follows:

(2.3) Tk+l rEk o ] rEkT{ 0 r k) ]
Here, and throughout the paper, Ek denotes the exchange matrix antidiag 1,
,kk. Note that E Ik and that a Toeplitz matrix as well as its inverse are persymmetric,
i.e., TkEk EkT and TIEk Ek( T- r. Since Tk is symmetric, this means that the
Schur complement 3’

k) of Tk in Tk +1 is given by

(2.4)

Now, write

3"
(k)=

Po rEkT{1Ekrk PO rT- rk PO + r fYk.

Xk + t(k
and Yk +

Ol
(k)

Using the factorization in (2.3), it is easy to see that Xk + and Yk+ are the solutions to
the systems

(2.5a)
0 r 3"(k) #(k) k+ 1--rEkXk

(2.5b)
0 T 3"k) ak --Ok+ l--rEkYk

Solving these systems by backsubstitution, we see that the new vectors Xk +1 and Yk +1
are given by the following updates to Xk and Yk"

Xk
2V d(k) Yk + 2t-(2.6) Xk+

0 0

where the scalars k) and a k) are computed by

2.7 (k) a (k)

The Durbin algorithm for solving the Yule-Walker problem is incorporated in the Lev-
inson algorithm because the vector Yk is needed in the updating (2.6) of Xk.

For efficiency, 3’
(k) should not be computed via its definition (2.4). Instead, it is

computed recursively along with the Xk and Yk by the following recursion (starting with
3"

co) oo and a co) -ol/oo)"

(2.8) r Ekyk)a k) (a k))2)3" k.

It is easy to show that the classical Levinson algorithm for symmetric Toeplitz matrices
requires 2n 2 2 multiplications and divisions. Because of the division by 3"

(k) in (2.7),
we immediately see that instability will occur if one or several successive 3"

(k) encountered
during the recursive process become numerically small. This cannot occur for well-con-
ditioned symmetric positive-definite matrices, for which there is a monotonic decrease
of the 3"

(k) so that they cannot be smaller than the final value, but it is possible for
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indefinite matrices. To avoid a small 13’ (k)l we could incorporate pivoting, but this
would destroy the Toeplitz structure. This motivates us to perform a block step instead,
as described in the next section.

3. The extended Levinson algorithm. We are now ready to describe our extension
ofthe Levinson algorithm. Assume, at stage k, that we have encountered an ill-conditioned
Tk+ 1. We therefore wish to perform a p-step, i.e., to skip ahead from Tk to a well-
conditioned T/p. Assume for the moment that p is given; in 5 we address the question
of how to actually choose p. Let us define the shifted vectors rk, [p + i, p2 + i,

Pk / i] r (in particular, r,0 r)and the k p matrix Rp =- [rk,0, rg,,_ 1]. Then
we can write

T ER](3.1) T+= REk Tp ]"

In order to update the Xk and yk to Xk / p and Yk / p, we proceed in a similar fashion as in
the classical Levinson algorithm and use block Gaussian elimination to solve the two
(k + p)-by-(k + p) systems rk+pXk+p bk+p and rk+pYk+p --Fk+ p. First, factorize
rk+p as

(3.2) Tk + p RrpEk T_l Ip 0 Pk) J’
where the symmetric Schur complement P) e NP x p of T is given by

(33) r; T; g

and where the matrix Yp is defined as the solution to the problem

(3.4) Tr= -.
Note that the first column of Yp is simply y. Now, write

x+p= w and y+p= z
and define

bk + p and r + p
r (pk

where bp() [/+ 1, /+p]r and rp() [pk+ 1, o+p] . Then we use the fac-
torization in (3.2) to obtain the systems

(3.5a)
0 P)] w;k) b)-RfEx

.(k) T(3.5b)
0 r J z; -rp RpEy

Ifwe solve these systems by backsubstitution, we see that the new vectors x+ and y+p

are given by the following updates to x and y"

(3.6) x+P= 0
+

Ip w’ Y+P= 0
+

I
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where W(pk) and Z(pk) are the solutions to the symmetric indefinite systems

(3.7) rvk) Wpk)= bk)-R rpExk, rp(-()..p -r{p)-RrpEyk.
It is easy to see that this will handle the instability problem as long as p is chosen

properly. It would be expensive if we were to solve for the extraneous p vectors in
Yp (3.4) naively, say using Levinson’s algorithm, because we would have to choose an a
priori number Pmax such that p < Pmax and then carry along Pmax extra systems, thus
increasing the overhead of the algorithm by (Pmax )/72 multiplications. Instead, we
present an updating procedure which is cheaper, because we only compute Yp when
necessary. The idea is to write the columns of Yp in terms ofupdates to already computed
quantities. This is possible due to the following theorem.

THEOREM 1. Let the p columns of Yp be denoted by y,i, 1, ..., p 1, with
each column satisfying Ty,i -r,i. Also, let (y,) denote the first component of the
vector y,, and define the "upshift" matrix

0 0
0 0

(3.8) A=- 0 0 ".. 6kk

"
0 0

Then all the vectors Yk, can be computed recursivelyfrom Yk,o Yk by means ofthe relation

(3.9) Yk,i= AkYk,i_--(Yk,i_)yk+CiSk, 1, ,p--

where we have defined the vector

(Ek_,yk_)(3.10) s-- _)"y

and where ci is the ith component ofthe right-hand side ofthe second equation in (3.7)

(3.11) c= -rp)-RTpEy.

Proof. Consider the following matrix-vector product of order k + 1:

Y,i- 0o r (y,i-)l oo(Y,-)+rY,-
(3.12) T+

0 r T y,i_ (y,i_)r+ Ty,i_

Using Tky,i -r,i and (3.4) it follows that this vector is also given by

(3.13)

(y,i- ) ( TT+
0 rEk

--rk, )Tr k IS’k..Vk,i-

--rk, Pk + i-- k zkYk,i-

-rl,i Dk + i-- yErl,i-
TIn the last step, we have used rcEcyk,i- -yTTcEgyk,i- -yEkTy,i_I

yEkrk,i-. Equating the last k elements of the vectors in (3.12) and (3.13), we obtain

(/TcAIcYl,i-1 --rlc,i--(Yk,i- )rk--
c

i=1, ,p-1.
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By multiplying with T-1 and using TkYk, --rk, again, we get

mkYk’i-1 =Yk’iW(Yk’i-)lyk--T-l(O)’i i= 1, ,p- 1.

To obtain the expression (3.9) for Yk,i, we just need to consider the rightmost term in
the above equation. Now, using one step of the classical Levinson algorithm to go from
Tk-1 to Tk (cf. 2), the solution to this system can simply be written as

i 3"
(k- 1)

Thus, we have proved (3.9).
After the p-step, we have two choices for computing the 3"

(k + p) required in the next
step. We can use an updating formula similar to (2.8), which becomes 3"

(k+p)
3"
(k

crz(pk), or we can compute 3"(k+p) by the definition (2.4), e.g., 3,(k+p)= o0 +
r+pYk +. We tried both in our numerical experiments, and the latter turned out to be
slightly more accurate (although we do not have an explanation for this).

We can determine the computational effort for performing a p-step at the kth stage
as follows. Computation of the extraneous p vectors Yk, requires 2 (p )k multi-
plications. Since 3"

(k is already given by (2.8), setting up I’p(k) and the fight-hand sides
in (3.7) requires (1/2p(p + + 2p)k (1/2p2 + (5/2)p )k multiplications. The
computational effort involved in an LU-factorization of the indefinite matrix r (k) isp

O(p3) multiplications. Thus, the effort in preparing the p-step is

(3.14) preparation effort 1/2p2 + (9/2)p_ 3 )k + O(p3) multiplications.

Solving the two systems in (3.7) using the LU-factorization requires 2p2 multiplications,
while the updating ofxk +p and Yk +p in (3.6) requires additional 2pk multiplications and
the recomputation of 3’

(k + p) (for p > only) requires k + p multiplications. Thus, the
effort in updating the solution is

2k multiplications, p
(3.15 updating effort

(2p + )k + O(p2) multiplications, p > 1.

However, note that we save p classical Levinson steps which would have involved ap-
proximately 2pk multiplications. Hence, the computational overhead in the updating
phase is only k + O(p2) multiplications for p > 1.

4. A brief error analysis. The purpose of this section is to show that our extended
algorithm is numerically stable (in fact, "weakly stable" in the terminology of Bunch
3 ]). We shall base our discussion on the error analysis by Cybenko 5 and, like Cybenko,

restrict our discussion to the Durbin algorithm for the Yule-Walker problem.
Let 37k and 37 denote the solutions to the Yule-Walker problems computed by the

Durbin algorithm. Cybenko’s analysis is carried out for positive-definite matrices only.
His basic idea is to consider the residual for the kth order system dk Tk(yk k) and
in this way derive a bound on the norm of the residual T,,(y- ). Most of Cybenko’s
analysis--including Lemmas 5.1, 5.2, and 5.3 in [5 ]--are still valid for general, indefinite
Toeplitz matrices; only the relation I)1 < does not hold in general.
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Let us consider Cybenko’s expression for dk+, which in our notation becomes

( dk+a(k’Ekdk )(4.1) dk+ (k) (k) + Tk+
--el,)/, e2a

Here, e and e represent all the accumulated rounding eors involved in computing
(k) and 7 k, respectively, while the represent the rounding eors produced when
updating yg. Following Cybenko’s analysis step by step, it is not dicult to see that his
expressions for r and s 5, p. 317 now (for general T) should be multiplied by
The upper bound for the 1-norm ofd thus becomes

(4.2) ,[dk+,[le max ,(J)[(k2+llk)( (l+l(J)l)-l)+O()Ojk j=0

where eM is the machine precision. This result confirms that the key to the failure of the
classical Durbin algorithm is the fact that one or several consecutive I i) can become
arbitrarily small and hence the product =0( + IJ) l) can become arbitrarily large,
thus "blowing up" the rounding errors.

Our extended algorithm avoids large d ]1 by the incooration of the p-steps,
guaranteeing that the norm of

( I ]
z;k)

in (3.6) is not large because p is chosen such that Tk+ is well conditioned. Consider
again the residual coesponding to step k, immediately after tang a p-step and updating
the solution Yk. Assuming for simplicity that this is the first p-step, we have

(d+ E,[ d,,o,’", dg-,,,-1]zk))(4.3) d+p= _F)e_E2z) + T+ k
0

The vector e represents the accumulated rounding eors involved in computing zg),
the matrix E2 represents all the rounding eors in the elements of the matrix Fg), and
the represent the rounding eors involved in updating Yk. Ofcourse, all these quantities
are still bounded as before; but now we are working with p-vectors and p-by-p matrices.
If we use the Frobenius norm of E2 in our new bounds, we must multiply Cybenko’s
bounds by p2 to obtain upper bounds for the peurbations in d+p. Thus, we have proved
the following upper bound coesponding to (4.2).

THEOREM 2. Immediately after the first p-step, the 1-norm ofthe residual dg +
T+p(y+p +) satisfies

lld+lNe max (l((k- 1)a+ ll(k- 1)) (1 + I(Jl)
ONjNk- j =0

(4.4)
+eMp(3k+ 5)z (1 + (J/I)--

j=0

We see that we can indeed guarantee that d+p I1 does not become large by con-
trolling the size of ul and z
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5. Practical details. In this section we discuss some ofthe practical details involved
in an implementation of our new algorithm. First of all, it is important to decide when
to perform a p-step and to chose the correct value of the block-size p. Our aim is to
choose the block size adaptively in order to ensure the best possible accuracy in the
computed solution while, at the same time, choosing p > only when necessary, because
such block steps are more expensive (as measured in multiplications) than p usual Lev-
inson steps. Our approach is to let the user choose a small number Pmax and then, in
each step k, choose the optimal block-size p within the look-ahead range p 1, ...,
Pmax. To do this, let trmi Tp+ k) denote the smallest singular value of Tk +p, and let Smin
denote the smallest O’mi Tk +p) accepted so far in all the previous steps. We then choose
as block size the smallest p for which

5.1 O’min Tk + p) >---- 0.1Smin-
The reason for comparing with Smin is that there is no point in trying to use a larger pivot
in this step than in any previous step as far as the condition of Tk / p is concerned, and
the factor 0.1 is included in 5.1 to avoid choosing a too large p if O’min Zk +p) is only
slightly smaller than Smin such that Tk / is still well conditioned. If (5.1) is not satisfied
for any p =< Pmax, then we choose as block size the p for which trmi Zk + p) is maximum,
and only in this case do we update the Smin. In this way, we are guaranteed in each step
to choose the optimally conditioned Tg / within the allowed look-ahead range Pmax, and
the strategy is numerically stable as long as Tn does not have more than Pmax con-
secutive ill-conditioned leading submatrices.

An important side effect of using Smin in this fashion to keep track of the smallest
accepted O’mi Zk +p) is that it provides us with an inexpensive estimate ofthe condition
number for the algorithm. Since the accuracy of the computed solution depends on the
smallest singular value of any Tg / p accepted during the extended Levinson algorithm,
we define the algorithm condition number as

(5.2) KLevinson Z. 2/min accepted tTmi Zk + p) ) Zn ! Smin.
Thus, without increasing the complexity ofthe algorithm, we can return reliable estimates
ofthe algorithm condition number KLevinson, as well as the usual condition number Tn I1/
O’min (Tn).

In order to keep the computational overhead as small as possible, it is important to
compute an estimate of trmi Zk +p) efficiently. It is well known that the smallest singular
value of the Schur complement I’p(g) does not give a reliable estimate of the condition of
Tk/p, and our numerical experiments confirmed this: in some situations an ill-conditioned

T+ was not reflected by a small trmi (Fp(k)), and a necessary p-step was therefore not
performed. However, we want our algorithm to be highly reliable.

As an alternative to using O’mi (Fp(k)), we will estimate O’mi Zk +p) directly through
an estimate for T’+ I1= tTmin (Zk+p)] -1. Consider therefore the following expression
for T’+, which is obtained by means of (3.2) and (3.4)"

(5.3) T-+ T-I + EYp( Fg))-I YEk
P (r()) -’YE (r()) -’

Since we arc only concerned with identifying the ill-conditioned submatficcs Tk+ in
order to "leap over" them, the accuracy of the estimate of T+ I12 O’min Tk+p)] -I

is not so important. What we need is a cliablc and efficient means for detecting when
T+ I12 becomes large. A lowc bound is given by

(5.4) IIT+pll2>_-max {IIT’ +EkYp(F(p)) -’ TYEII2, [IEY(F()) ’112,
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There are no simple lower bounds for the matrix norms in (5.4), so instead we use the
upper bounds

r’ / EY(F())- yTpE ll- <- T;’ II= / Y (F()) -’

Next, we note that Yp 2 always lies between and Yp , and we use the lower bound
max {l(Yp)0]} --< Yp 112. Finally, due to our block algorithm we know that Tk is well
conditioned such that T; 1112 is not large and therefore cannot contribute to a large
]lT-l+pll2, and we can therefore readily ignore IIT’ 112. This combination of lower and
upper bounds leads to the following heuristic estimate, which works well in practice:

(5.5) IIT+I[2 max {max [(Yp)0l }2/ O’mi (r;k)) 1/O’mi (r;k))}
For p 1, O’mi (Fp(k)) is simply ] (k)], and for p > l, O’mi (F;k)) can be estimated by
any efficient condition number estimator in O(p2) multiplications. Determination of
the numerically largest element in Yv requires kp comparisons at the kth stage, i.e., O(n2)
comparisons for the complete algorithm. We do not think it is possible to get good
estimates of the smallest singular values with a lower complexity than this.

A nice consequence of combining this strategy for estimating [[Tl+v[12 with the
block-size decision, based on (4.1), is that a specific threshold for detection of ill-con-
ditioned submatrices is not required. This is important both from a numerical and a
practical (i.e., a user’s) point of view.

At this point, it is interesting to note that for a symmetric Toeplitz matrix and in
exact arithmetic, the number 2l- ofconsecutive singular leading submatrices is always
an odd number, and the nullities of these submatrices are l, 2,... l,... 2, [1 l,
Thm. 15.6]. In the presence of rounding errors, we do not expect this to hold in general.

We stress that the extended algorithm will certainly not handle all indefinite Toeplitz
matrices efficiently, simply because the necessary p could become so large that the overhead
becomes too large. As an example of where our algorithm is not suited, take the matrix
(for n even)"

lOin/2](5.6) T,, 1,,/2 identity matrix of order n/2,
/n/2 0

where all leading submatrices are singular except for T,. However, our algorithm still
has its usefulness whenever the number of consecutive ill-conditioned leading principal
submatrices is small. One such application is eigenfilter problems, where eigensolutions
of indefinite matrices must be computed, and this usually requires the solution ofYule-
Walker systems involving the shifted matrix T, M,. The algorithm by Cybenko and
Van Loan [6 ], as well as the more recent algorithm by Trench [19 ], precludes any
singular or ill-conditioned leading principal submatrices. Our algorithm allows this as-
sumption to be removed. In particular, if the eigenvalues are well separated, then Trench’s
method 19 requires Pmax 2 only.

The second important detail in a practical implementation of our algorithm is the
fact that two extended steps may follow immediately after each other. Let p’ denote the
size ofthe previous p’-step, and let k’ denote the corresponding dimension ofthat leading
submatrix Tk,, such that k k’ + p’. In such a situation, neither "r (k-l) nor Yk-1 is
available because we skipped the step k and the ill-conditioned matrix Tk-, when
going from Tk, to
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Hence, we cannot use (3.9) to compute the vectors y,; because we cannot produce the
vector s in (3.10) (which is a function of , (-l) and y_ 1). However, in this special
situation there is another way to proceed. The idea is to compute Y,l by updating the
vector yk,, and, if p > 2, then compute an s such that (3.9) still gives the solu-
tion y,i.

THEOR.M 3. In case oftwo consecutive extended Levinson steps with k k’ + p’,
the vector y, is given by

(5.7)
Yk’,l + a’1= 0 I,

where the vector a NP’ is the solution to the system

(5.8) I’ p’)a Rp,E,y,,1.

Ok+

Ifp > 2, then the remaining vectors y,i, 2, p can be computedfrom (3.9)
with the vectors s given by

(5.9) s c-{ (y, Ay+ (Y)lYk)

in which c is thefirst component ofthe vector c defined in (3.11 ).
Proof. We recall that the vector Y,I is the solution to the system Ty,I

T-[02, 0k+ ]T -[r,,, Pk’+2, Pk+ 1] T. In the previous p’-step, we already
computed Yk’, satisfying Tk,yg,, --rg,,. Since the first k’ components of these two
right-hand sides are identical, it is immediately clear that we can use an extended Levinson
step as described in 3, equations (3.5)-(3.7), to obtain (5.7) with a given by (5.8).
Equation (5.9) follows immediately from (3.9) with 1. if3
Hence, all we need to do is to save the matrix Yp, and the factorization of I’p,’) from the
previous p’-step. Then the vectors Yk,i, 1, ..., p can be computed recursively
using (3.9) and Theorem 2. The effort in computing yg, and s this way is only about
2(p’ + )k + O((p’) 2) multiplications.

In the situation mentioned in the beginning of this section, where we have looked
Pmax steps ahead, but chosen ap < Pmax, we could in principle update the remaining Y’,i,

p + 1, Pmax to obtain some of the new vectors Yk,i. This is, however, not reliable
in general because some of these remaining Y’,i might correspond to ill-conditioned
leading submatrices occurring after the current T+p. Thus, we prefer to recompute all
the Y,i by means of Theorem 3.

The third detail, which is but a minor one, is that the very first leading submatrices
T, T2, Tp of Tn may be ill conditioned. If this is the case, we cannot perform a
p-step, simply because we have no starting vectors to update. Instead, we must compute
the solutions Xp and yp by a standard linear-equation solver, such as LU-factorization
with pivoting, ignoring the Toeplitz structure.

The complete version of the extended Levinson algorithm, including condition
numbers estimates, is given in Fig. 1.

We conclude this section by giving upper and lower bounds for the computational
effort involved in the new algorithm. In the worst case (which is very unlikely to occur),
for each k we will look Pmax steps ahead and choose p 1. According to (3.14) and
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init.:

loop:

update:

let Tk best-conditioned Ti, 1 :Pmnx
solve Tk x bk and TY -Rk, e.g.,by LU-factorization
the first column of Y is y
7() po + r’y
8min (rmin(Tk
for k" n-1

for p 1 min(pmx, n- k)
if last step was a block-step

set up Yp using Theorem 3
else

set up Yp using Theorem 1
end
set up the systems in (3.7)
estimate amin(T+) by (5.5)
if amin(Tk+p) > 0.1 8min goto update

end
let T+v best-conditioned Tk+i, 1 min(pmax, n- k)
if amin(Tk+v) < stain then stain amin(Tk+)
solve (3.7)for updates w(k) and z(pk) e.g. by LU-factorization
update xk+p and Yk+v by (3.6)
update 7(k+)

end

n(Tn)--IIT IIz/amin(Tn)

FIG. 1. The look-ahead Levinson algorithm.

(3.15), and taking into account the overhead in estimating O’mi (Tk +p) as well as in
Theorem 3, each step thus requires about

p=
p +p-3 k+(2pmax+ 1)k+2(Pmax+ 1)k

p3m
+Pm+--Pmx + 3 k multiplications.

6

Summing over all k, we then obtain the following approximate expression for the very
pessimistic upper bound

(5.10) maximum effort= 6 -I-Pmax+--pmax+3 g/ multiplications.

For Pm equal to 2, 3, and 4, this amounts to 10n, 20n, and 33n multiplications,
respectively. As we shall see in the next section, we never obtain this upper bound in
practice. The minimum computational effort corresponds to matrices where all the
rm T/ ) form an increasing sequence, such that only 1-steps are performed, and we
only look one step ahead in each stage. For such matrices, Theorem 3 is never used, and
(3.14) and (3.15) lead to 4k multiplications in each stage, thus giving a total computational
effort of

(5.11) minimum effort 2n2 multiplications.
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Note that this is identical to the complexity of the classical Levinson algorithm, i.e., for
such matrices there is no overhead. Also note that this is not the case for well-conditioned
symmetric positive-definite Toeplitz matrices Tn. For such matrices, it can be shown
that the trmi (Tk +1) form a slowly but strictly decreasing sequence. Hence, due to our
strategy for choosing the block-size p, our algorithm will always take classical 1-steps
only. Also, it will usually only look one step ahead until it reaches a stage k where the
estimate of trmi Tk + has dropped so much that (5.1) is not satisfied any more. Then
the algorithm will look Pmax steps ahead, choose p 1, update Smin, and continue the
process. Depending on the order n and the condition number of Tn, this may occur more
than once; but only very rarely as long as Tn is well conditioned. Thus, the overhead
compared to the classical Levinson algorithm is only very small for well-conditioned
symmetric positive-definite Toeplitz matrices, and in addition we obtain the condition
number estimates.

6. Numerical results. In this section we present some numerical results from ap-
plying our extended Levinson algorithm to a series of test problems. Our tests were
performed with symmetric test matrices with at least one leading submatrix being ill
conditioned. It is difficult to generate large test problems with an arbitrary number of
ill-conditioned leading submatrices, so we concentrated our testing effort on test matrices
with one ill-conditioned leading submatrix. Such test matrices are easily generated: gen-
erate a random symmetric Toeplitz matrix Tn, compute the largest eigenvalue k of its
order-k leading submatrix Tk for some k, and set

(6.1) Tn=Tn-(k-6)In,

where 6 > 0 is a real parameter, and In is the identity matrix of order n. Thus, we are
guaranteed that the computed Tn has a leading submatrix Tk with O’mi (T) /, and
in this way we can control the ill-conditioning of Tg by means of 6. Shifted matrices of
this form are common in inverse iterations.

We implemented the extended Levinson algorithm in Matlab [16] and restricted
the maximal block size to 4. The tests were carried out on a computer with machine
precision et 2.22.10 -16 and with the following values of 6 and Pmax"

(6.2a) 6=0, 10 eM, 10 6
eM, 10 9

eM, 1,

(6.2b) Pmax (classical Levinson), 2, 3, 4.

For each 6 we generated 300 test matrices: 100 of order n 16, 100 of order n 32,
and 100 of order n 64. In all cases, we chose the k for which T is guaranteed to be ill
conditioned to k n/2, and we chose the fight-hand side b such that the exact solution
isx=[1,’", 1] r.

Figure 2 illustrates the behavior of our algorithm for a typical test example with
n 64, i 10 6

eM, Pmax 4, and IITnll2 28.4. The top figure shows how many steps
we look ahead in each stage k (typically one step); the middle figure shows the chosen
value ofthe block-size p in each stage k (typically one); and the bottom figure shows the
accepted estimates of O’mi Tk +p) in each stage k. Note that one 2-step was taken in the
beginning of the process, when O’mi (Tk+p) was gradually decreasing, and that one 4-
step was needed for k 29 in order to skip the severely ill conditioned submatrix T32.

Figure 3, which supplements Fig. 2, shows for the same test matrix a plot of all the
true O’mi (T) solid line as well as the estimates computed by 5.5 circles ). This figure
illustrates that our rough estimates actually follow the same variation as the ffmin(Tk),
such that the choice of block-size p can, indeed, be based on these estimates. In Fig. 3
we have also included, by dotted lines, the 2-step and the 4-step mentioned above. Note
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1,, look-ahead" steps
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block-size p
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0
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70

lOX
estimated min(Tk+p

10
oo.Ooo.O.o,

0.oO.o.O
10-

10-

10"30 1’0 10 70

. 9’ ooo o 06. ob
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FIG. 2. A typical example of the behavior of the number of "look-ahead" steps (top), the block-size p
(middle), and the accepted estimates of groin (Tk) bottom ).

that the "canyon" of the ffmin (Tk)-curve is fairly wide around k 31. This is actually
an example of a matrix for which Pmax 2 would be bad (the algorithm would jump
from k 30 to k + p 32), Pmax 4 is better, and Pmax > 4 would be even better.

To monitor the accuracy of the computed solutions Y we computed the rela-
tive errors

(6.3)

10

10

10-7

10-0

min(Tk

o o
ooO

k

1’0 10 3’0’ 4’0 5b 60 70

FIG. 3. A typical example ofall the true O’min(Tk) (solid line) and the estimated values (circles). The 2-
step and the 4-step are shown by dotted lines (same matrix as in Fig. 2).
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Figure 4 shows histograms of a for four tests with n 64,/5 10 M, and/)max equal to
1, 2, 3, and 4. For Pmax (classical Levinson), p is never smaller than 10 -5 due to the
ill-conditioned submatrix T32. On the other hand, for//max 4 the relative error/) is
never larger than 10 -9 and typically it is even smaller, about 10 -12 The largest relative
errors/) for//max 2 and 3 correspond to test matrices that actually required a block-size
p >/7max in order to "leap over" a sequence of ill-conditioned leading submatrices. We
have never encountered a situation where our algorithm missed an ill-conditioned sub-
matrix.

For each combination of/5 and//max, we computed the maximum relative error
/)max max {/) } over all 300 test matrices. Figure 5 shows a plot of/)max as a function
of/5 and//max. For//max (classical Levinson), the maximum relative error/)max is ap-
proximately proportional to/5-1, as expected, while/)max is almost independent of/5 for
//max > 1. We see that the extended Levinson algorithm is always doing better than the
classical algorithm, even in the case/5 (where all the leading submatrices are well
conditioned). For/5 < 1, we are actually doing much better than the classical Levinson
algorithm, with a maximum relative error of about 10 -8 almost independent of/5.

In Fig. 6 we show the average number ofp-steps required in our experiments. For
//max equal to 2 or 3, the average number of 2-steps is about 2, and for/)max 4 it is about

20

15

0
-14

classical Levinson

-12 -10 -8 -6 -4 -2 0

20

Pmax 2
15

10

log p
0 [-[] r m
-14 -12 -10 -8 -6 -4 -2 0

20

Pmax
15

log p
0
-14 -12 -10 -8 -6 -4 -2 0

20

15
Pmax 4

10

Iogp
0 ]
-14 -12 -10 -8 -6 -4 -2 0

FIG. 4. Histograms ofthe relative error p for 100 test matrices with n 64 and 6 103eM, using Pmax
1, 2, 3, and 4.
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10-9

lOdO

10-11

FIG. 5. The maximum relative error ofthe computed solution.

1.5. This is the "price" we have to pay for ensuring that we can handle these indefi-
nite Toeplitz matrices. The average number of 3-steps and 4-steps are much smaller,
about 0.5.

Finally, in Table we compare the number of multiplications required in our new
algorithm with those ofthe classical Levinson algorithm, still using the above-mentioned
test matrices with one ill-conditioned leading submatrix. Each entry in Table shows,
for each combination of n and/9max, the average number of multiplications over all 300
test matrices (left) and the maximum number of multiplications (fight) over the same
300 test matrices. We do not show the dependency on 6 because, due to the uniform
way in which we generate the test matrices, the average multiplication count for/9max >

is almost independent of 5malthough somewhat smaller for/ than for < 1-
and completely independent of 6 for Pmax (classical Levinson). We note that the
multiplication count for our new method with Pmax < 4 is never more than three times
the multiplication count for the classical Levinson algorithm, the average ratio, in fact,

2.5

1.5

0.5 3-steps

4-stp

FIG. 6. The average number ofp-steps for Pmax 2 (dashed line), Pm,x 3 (dotted line), and Pmax 4
(solid line).
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TABLE
The average (left) and maximum (right) number ofmultiplications.

16
32
64

510 510
2046 2046
8190 8190

Pmax

634 774
2322 2573
8795 9502

689 876
2451 2912
9061 O012

744 1057
2577 3268
9369 10710

being only 1.25. Also, note that the average ratio decreases as n increases, from 1.4 (for
n 16) to 1.1 (for n 64). Hence, for this particular class of matrices the complexity
of our new algorithm, including condition estimation, is about 25 percent larger than
that of the classical Levinson algorithm.

Following Trench [19 ], we also tried our algorithm on the KMS matrices given by

(6.4) p0=0, pi--(1/2) i-1 n-

for which all the leading submatrices Tk, k 1, 4, 7, are exactly singular. In order
to compare our algorithm with the classical Levinson algorithm, which breaks down
whenever 00 0, we modified the matrix slightly and put o0 10-14. The results, given
in Table 2, show that our algorithm computes an accurate solution with an overhead of
about 50 percent, including condition estimation.

As a final example, we applied the new algorithm to a highly ill conditioned test
matrix with elements given by/9 2 i, 0, ..., n 1, and n 64 (Matlab produced
IIT.IIz 1.23.1019 and O’mi (Tn) 0). For this matrix, the ,y(k)form an increasing
sequence. Only classical 1-steps were performed, and the algorithm never looked more
than step ahead, so this is an example of a matrix for which the overhead is minimum.
The ill-conditioning was detected by our algorithm, which returned a condition number
estimate equal to 1.84- 1019. In comparison, the classical Levinson algorithm applied to
this matrix never breaks down and simply produces an extremely bad solution without
any warning to the user.

7. Conclusion. We have presented an extension ofthe classical Levinson algorithm
based on the ability to take block steps instead of classical steps of size one. Combining
this feature with an inexpensive and reliable estimate of the condition of all the leading
submatrices encountered during the process, the algorithm in each step chooses the optimal
block size and thus is able to skip consecutive ill-conditioned submatrices. This condition
estimate also yields reliable estimates of both the matrix and the algorithm condition
numbers.

TABLE 2
Numerical resultsfor the KMS test-matrices given by (6.4).

15
3O
60
120

1.0.10-3

7.5.10-4

7.2- 10-4

7.0.10-4

Multiplications

448
1798
7198

28798

9.3" 10-13

1.3" 10-12

1.3" 10-12

1.3" 10-lzz

Pmax >

Multiplications

698
2678
10463
41333
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The only limitation of the algorithm is the maximum block-size Pmax, which deter-
mines the maximum number of consecutive ill-conditioned submatrices the algorithm
is able to skip over--at the cost of a computational overhead which increases slightly
with Pmax, compared to the classical Levinson algorithm. As a good choice of this max-
imum block size, we suggest Pmax 2 for a fast extended algorithm which is numerically
stable for a much larger class of indefinite Toeplitz matrices than the classical Levinson
algorithm. In the rare cases where a larger Pmax is needed, a comparison of the estimated
algorithm and matrix condition numbers will reveal this.

Our algorithm is particularly suited for problems which do not have many consec-
utive ill-conditioned leading submatrices. One important application of our algorithm
is in fast algorithms for computing eigenvalues of Toeplitz matrices.
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AN EIGENVALUE REGION FOR LESLIE MATRICES*

STEVE KIRKLAND?

Abstract. Leslie matrices arise in a mathematical model for population growth and the eigenvalues of a
Leslie matrix are important in describing the limiting behaviour of the corresponding population model. While
it is well known that such matrices have exactly one positive eigenvalue, which dominates the others in modulus,
little has been said about the nonpositive eigenvalues of a Leslie matrix, which are also of interest. In this paper,
a brief description of the Leslie model is given, and a sharp containment region for the nonpositive spectrum
of a Leslie matrix is constructed, characterizing the region in terms of some simple equations.

Key words Leslie model, nonpositive eigenvalue, row-stochastic Leslie matrix
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1. Introduction. There are many models which attempt to describe the growth of
populations; one of the best known is the Leslie model, which first appeared in the early
1940s [6], [5 ]. In this model we take a population that is closed to migration and
consider only one sexmusually females. Each female may live up to a maximum of k
time units, and the interval [0, k) is partitioned into {[i 1, i))i 1, ..-, k; we say
that a female is in the ith age group if her exact age falls in [i 1, i). Letting p,.,
1, ..., k be the (positive) probability that a female in the th age group survives
one time unit, and letting mi, 1, k be the (nonnegative) expected number of
surviving daughters that a female in the ith age group contributes in one time unit, we
arrive at the following equation, where f,t, 1, ..., 1, 2,-.. is the expected
number of females in the ith age group after time units have passed:

ml m2 mk- mk fl,t
f.fl’t + P fz,t
a,. + P2

A 1,tf" +
pk- 0

If the age-dependent mortality and fertility has remained constant since time 0 we see
that ft M%, where f,, s O, 1, is the k-vector whose entries are thef,,, 1,
k, and M is the matrix above.

This last equation indicates that if we are interested in the long-term effects of this
age-dependent schedule of mortality and fertility, we need to examine the eigenvalues
ofM, which is commonly called a Leslie matrix. Ifrn > 0 then the matrix is nonsingular,
but if there is some n such that m. > 0 and mn + mn + 2 mk 0, then M may
be partitioned as

where

ml mn mn
Pl

P,, -1 0
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0 is an n k n matrix of zeros, P is k n n with its only nonzero entry being Pn in
the upper fight corner, and N is k n k n with all entries zero except for the
subdiagonal, which consists ofp / , , Pk- . This partition reveals that the eigenvalue
0 has multiplicity k- n, and that the only nonzero eigenvalues are those of the matrix
L. In either case, the problem is reduced to studying the spectrum of L, where we take
n kifmk > 0.

It is well known to mathematical demographers (amongst others) that L has exactly
one strictly positive eigenvalue, say/9, which has algebraic multiplicity one, and that
/9 >_- ), for all X e a(L). Further, if gcd { i[ mi > 0 } 1, then/9 > X for all X e a(L)
{/9 }, while if gcd { lmi > 0 } d >- 2, then L has exactly d eigenvalues of modulus/9,
namely/ge2’ia/a, a 0, ..., d- 1, and all other eigenvalues of L have modulus strictly
less than/9. The reader seeking some discussion of these results is referred to [4], or to
the exposition ofPollard 7 ], which uses the characteristic equation ofL to derive them,
or to a general reference on nonnegative matrix theory (Seneta [91, for example).

If/9 strictly dominates the other eigenvalues of L in modulus (which is often the
case in demographic applications), we see from the Jordan form for L that

L P twv’-I-o(tn-llX] l) ast--oe,yrw

where w and v’ are the fight and left eigenvectors corresponding to/9, respectively, and
Xl is an eigenvalue ofL with next largest modulus after/9. Elementary calculations show
that w may be written as

(PlP2]

(Pl ;__P 1)
while v’ may be written as a vector with strictly positive entries. Since f0 has nonnegative
entries (and is assumed to have at least one positive entry), we see that v’f0 > 0. In
particular, we have

f v’w f+O(t-llX] I)=(cnstant)/gtw+O(tn-llXt I) ast--oe,

where the constant is strictly positive. As time goes on, our population forgets its initial
distribution and heads towards a stable age distribution that is proportional to w. Note
that the kind of convergence of our population to the stable age distribution depends on
)’ / O, where X e (L) { o }.

On the other hand, if L has d eigenvalues of modulus/9 for some d >_- 2, then the
behaviour of the age distributions is somewhat different. If d n, the age distributions
are cyclic with period n in general, while ifd < n, the age distributions are asymptotically
cyclic with period d in general. This cycling arises from the fact that the collection of
X//9, X e tr(L) consists of the dth roots of unity and, if d < n, n d complex numbers
whose moduli are strictly less than 1. As in the noncyclic case, the behaviour of the age
distributions in the Leslie model depends on these X//9.
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In order to study these ,/p, consider the similarity transformation S-lLS, where
S diag (w }. It is not difficult to see that

ml plm2 191 "Pn 2mn PI "Pn lmn
p 1)

2
0
n-I

0
n

S-ILS P

0

so that the eigenvalues of L are just X/o, X e a(L), precisely the quantities in which we
are interested. Letting 1 be the column vector of size n with each entry equal to unity,
we see that

1 S_ILSI S_ILw S-lw= 1
P P

and hence that L is a row-stochastic matrix. For obvious reasons, we will refer to L as a
row-stochastic Leslie matrix; this is not to be confused with the term "stochastic Leslie
matrix," which denotes a Leslie matrix whose entries are random. In attempting to say
something about the nonpositive eigenvalues of L, we may look to Mn { e C[X e
a(A), A n n and row-stochastic }, for certainly any eigenvalue ofL will lie in Mn. The
problem of characterizing Mn was partially solved by Dmitriev and Dynkin [1], who
found Mn for n 2, 5 and was fully solved by Karpelevich [3], who characterized
Mn for all n >_- 2. However, L has a very special structure which could perhaps be used
to obtain a sharper containment region for the nonpositive eigenvalues of L. Further,
by investigating the region analogous to Mn for row-stochastic Leslie matrices, we will
get information about which values of /p are admitted by Leslie matrices, and hence
about the kinds of convergence to the stable age distribution which are admitted by the
Leslie model. What follows is the construction and characterization ofjust such a region.

2. Basic properties of the region. In light of our interest in the nonpositive eigen-
values of an n n row-stochastic Leslie matrix, we make the following definition.

DEFINITION 1. For each n >- 2, let Ln { C {1}IX r(A) for some n n
row-stochastic Leslie matrix A }.

Noting that an n n row-stochastic Leslie matrix is determined by its top row,
which is nonnegative and has unit sum, we make another definition.

DEFINITION 2. Let

I n

}Kn (a,a2, ,an)e’"lai>=O,i 1, ,n, , ai
i=1

It is useful to know which entries of a vector in Kn are positive and which are zero;
this suggests the next definition.

DEFINITION 3. Given a (al, an) - Kn, let supp (a) { i[ ai > 0 }.
So given a row-stochastic Leslie matrix A, we have AI, ai, 1, , n for some

(a, , an) e Kn, and it is easily seen that the characteristic equation for the eigenvalues
of A is k n ak a2kn-2 an 0. Dividing out a factor of from
the equation, we see that , Ln if and only if there exists (al, , an) Kn such that
kn-I + (1 al)kn-2 + (1 a a2)kn-3 + + (1 a a2 an-l) O.
From this formulation, we find that L2 1, 0 and that Ln

__
Ln / for all n >_- 2. Note
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that Ln N R L2, because Ln is contained in the unit disc and has no positive elements.
Since L2 is known, we shall take n >_- 3 in what follows, unless otherwise indicated.

It is evident that Ln is both closed and symmetric with respect to the real axis; the
latter observation prompts our next definition.

DEFINITION 4. Let L+ { L, [Im () >- 0 }.
For the sake of brevity, we will often only deal with L+ since results for the lower

half ofZn will follow immediately. We are now ready for our first result about the nature
ofL.

THEOREM 1. L is star-shaped with respect to the origin for all n -> 3.
Proof. 0 L:

_
Ln, so we need only show that if L, then e Ln for all p

(0, 1). Fix such a p. Since L there exists (a,..., a) Kn such that - +
(1 a)kn-2 + + (1 a a_ ) 0. Multiplication of this equation by
pn- yields (pX)n- + p(1 al)(p)k) n-2 + p2(1 al a2)(p)k) n-3 + + pn-l(1
a an ) 0. We now define bl p( a), bi + pi( a ai)
-pi+l(1-al ai+),i 1,...,n-2, andb,=p"-l(1-al a,-1).
Then (bl, ,b,)Knand(pX)"-1 +(1 bl)(p)n-2 + +(1 b bn-1)

0, and hence p , Ln. V]

Thus L, can be viewed as a collection of ray segments emanating from the origin,
and we may well ask: For which 00 6 (0, 2r) can the ray described in polar coordinates
by 0 00 intersect Ln nontrivially? We answer this question in the following theorem.

THEOREM 2. If L + 0 }, then arg (r/ (n ), r]. Conversely, for all
0 (r/(n ), r] there exists L + { 0 } such that arg , 0.

Proof. To prove the first statement, we note that if X rei L+ { 0 }, then
xn-1 + (1 a),-2

__
+ (1 a an-) 0 for some (a, ..., a)

K with a q: 1. Taking imaginary parts of the polynomial equation gives

r"-1 sin ((n- 1)0)+( -al)rn-2 sin ((n- 2)0)

+... +( -al an-2)r sin (0) 0;

since the left-hand side is strictly positive for all 0 e (0, zr/(n )], we must have
arg (,) 0 e (r/(n 1),

To prove the second statement, we will use induction on n. If n 3 we find that as
a runs from 0 to 1, the argument of the solution to ,2 _[_. a), + a 0 which
falls in L covers the interval (r/2, 2r/3], while as/ runs from 0 to 1, the argument
of the solution to , 2 + q_ -/3 0 which falls in L covers the interval [2r/3,
Thus the result holds when n 3.

Now suppose that the result holds for some n >_- 3. If 0 (Tr/(n ), r] there exists
L + { 0 }. To completeX e L+ { 0 } with arg (X) 0, and hence such a X also lies in +

the induction step, we need only show that if

0 3XL+
nn-1

with arg (,) 0. Fix such a 0;

2r
n+l-n-l’

so sin (( n + )0) _-< 0, sin (0) > 0, and sin n 0) < 0. Note that there exists r e (0, such
that r sin ((n + )0) r +1 sin (0) sin (n0) (since the left side is 0 when r 0 and is
sin ((n + )0) sin (0) =< sin (nO) when r ). Letting

r sin ((n + )0)
sin n0)
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(so that a > 0), we see from the equation for r that

rn + sin (0)
a=l+

sin (nO)
so that a < 1. We have r/7 +l sin ((n + )0) ar sin (nO), and by expanding sin (0) as
sin ((n + )0 nO), we find that

rn + sin (0)
a- otr cos (nO)- r + cos ((n+ )0),

sin (n0)
so that both the real and imaginary parts of (rei)n+l a(rei) + a are satisfied.
Thus rei Ln++l { 0 }, and the induction is finished.

We now have a picture of L+ as a star-shaped set which has a nontrivial intersec-
tion with the ray 0 00 for all 00 (r/(n ), r]. It is natural to wonder: when 0

+? If 0 7r, then the(r/(n ), 7r], at what point does the ray at angle 0 exit from Ln

answer is -1, but what about the other values of 0? This question prompts the following
definition.

DEFINITION 5. Fix n >_- 3 and 0 e (r/(n ), r). Let en.o be the complex number
rei such that rei L +n but rei t L + for all " > 1.

Evidently e/7,o OL/7 for all 0 e (Tr/(n ), r) and the question arises as to whether
these are the only points in the open upper half plane on the boundary of Ln. The
following definition and lemma (in the spirit of [2]) will help us to answer this question
by telling us something about int

DEFINITION 6. Given z e C and a (a, a/7) e K/7, let Pz be the convex
hull of { z/7 supp (a) }.

We note that P is either a single point, a line segment, or a polygon with nonvoid
interior in C, and that if , , e L/7 if and only if ,/7 P for some a

LEMMA 1. Suppose that and Y. 7-- ai =0 for some a
a, a) K/7. IfP has nonvoid interior in C, then int Ln.

Proof. /7 P and since P has nonvoid interior and , is a strictly positive convex
combination of all of the points in { x n-il supp (a)}, we see that /7 e int P. The
vertices of P are continuous in 3,, so there is a neighbourhood of , such that for each
o in the neighbourhood, o 4:1 and Xg 6 Po, so that o 6 Ln. Thus 6 int

Lemma will help us to establish the following result.
THEOREM 3. IfX L +n and arg () 0, then OL/7 ifarld only ifX

+Proof. Certainly, if en,o, then 0L/7, we need only show that if X e L/7
and X 4 e/7,0, then int

If , L+- and X 4 en,o, then there exists /> such that 3’ L/7-
Hence there exist (al, an) - gn such that (’X)/7-1 + a)(3,X)/7- 2 + +

a a2 an- ) 0. Let m min { j lJ,:= ai } evidently n >= m >= 3
and a am- > 0. Dividing the polynomial equation by 7/7- yields

km-

__
al____)) km 2 +

Setting

(1-al)
bl= 1-,

bi+l

-a-ag_)m_3+.. + -a-a am- )
0.2 m-1

(1-a ai) (1-a ai+l)
i+1 1, ,m-2,

(1-al am-l)
and b=(b,...,bm),
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gives km- ..[_ (1 bl km- 2 _[_ _[_ (1 bl bm -1) 0 and hence )k

Z 7’=1 bim-i. Note that b Km, that b; > 0, 1, ..., m, and that m fi ebx. Since
m >- 3, and { m, m 1, m 2 } supp (b), it follows that 1, X, and 2 are all in Pbx.
But , R, so 1, X, and X2 are not collinear and hence int Pbx is not void, so by Lemma
1, , int Lm int L,.

COROLLARY 3.1. IfX and is an eigenvalue ofan n n substochastic Leslie
matrix, at least one ofwhose row sums is strictly less than unity, then int Zn.

Proof. Let arg (X) 00 (r/(n ), r) without loss of generality. If X is an
eigenvalue of a strictly substochastic Leslie matrix, then there exists a >= 0, 1, .-., n
with Z’_ Z -1 ai 0. Thus (’yX)n i=1 ai’yi(’YX)-1 ai - (0, such that ,n 7- xn-i n

0 for all "r > 1. Since 7-_ ai for some > 1, we see that e Ln and hence
/ , but X :/: en,oo so that int Ln by Theorem 3.XLn
COROLLARY 3.2. e,,0 is continuous (in O) for 0 r/ n ), r ).
Proof. Suppose that e,,0 is not continuous at 0 for some 0 e (r/(n ), r). Then

there exists Ok, k l, 2, and there exists e > 0 such that 0 -- 0 but en,o e,,ol >
e for all k. OL, is compact, so a subsequence of en,o converges, say, to OLn. Writing
en,ok e,0 e, we see that arg (X) . But X en,ol >= e, so
int L by Theorem 3--a contradiction.

Recalling that L+ fq R L2 [-1, 0], our primary interest is in describing the
nonreal elements of L+. Since L+ is star-shaped with respect to the origin, a character-
ization of e,0 for 0 e (r/(n ), 7r) will, in turn, give rise to a complete description of
L+ , and hence of L. In the next section, we will find just such a characterization
of e,0.

3. Characterizing the boundary of the region. It is evident from our discussion in
the introduction that if 0 2rk/j for some k, j e r with n >= j > 2k >= 2, then en,o
ek/, and that these are the only points in the open upper half plane where OL,, intersects
the unit circle. Fortunately, Lemma suggests a way to find the rest of the nonreal
portion of OLd.

LEMMA 2. IfX (OLd) , there exist [0, 1] and p, q with n >- p > q >-_
such that aXq a) O.

Proof. Since X e Ln, there exists a Kn such that p. OLn, so P must have
void interior by Lemma l, and hence P is either a line segment or a single point. In
either case, we may write X an-+ + a)- for some a e [0, l] and some
p, q with n >= p > q >- 1, which yields the result.

The exponents arising in Lemma 2 prompt the following definition.
DEFINITION 7. Let E { (p, q) e rln >_- p > q >- }.
Lemma 2 also suggests that given 0 e (r/(n ), r), we should attempt to char-

acterize en,0 as a root of XP aXq a) for some p, q, and a. Notice that e,0 is a
function of 0 (when n is fixed) while the roots of Xp o/q a) are parameterized
by a (when p and q are fixed). The following lemma presents some properties of the
roots of XP aXq c) which will help us to reparameterize these roots in terms
of 0.

LEMMA 3. (i) If X rei for some 0 (0, r) and r > O, and X satisfies (a) X
an-p + for some a [0, 1] and some n, p) E,, then the pair r, O) satisfies
(b) r sin (nO) r" sin (pO) sin ((n -p)O).

(ii) If0 (0, r) and either { sin n 0) >= 0, sin (p0) =< 0, sin (( n p)0) > 0 } or
,{sin(n0) -< 0, sin(p0) >- 0, sin((n p)O) < 0} holds, then there exists r(O)

with values in (0, 1] which is differentiable in a neighbourhood of O, such that the pair
(r(O), O) satisfies (b). Further, there exists a(O) with values in [0, 1] such that
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(r(O)ei) # a(O)(r(O)ei) "-p + a(O), and if) 4 O, arg ()) 0 and ) solves (a)for
some a [0, ], then ) must equal r( O )e.

Proof. (i) If a 0, then ) e2’il/n for some with n/2 > 1 >= 1, and
certainly the pair 1, 2rl/n) (r, O) satisfies (b). If a > 0 in (a), substitution of )

rei into (a) gives r" cos (n 0) a(r"-p cos ((n p) 0) and r" sin (n 0)
arn-p sin ((n p)O). Crossmultiplying these two equations and cancelling the com-
mon nonzero factor of arn-p from each side yields r# cos(n0)sin ((n- p)O)-
sin (( n p) 0 r" cos n p) 0 sin n 0 r sin n 0 ), which reduces to (b).

(ii) Suppose that holds for some 0 (0, r) and consider the function g(r)
rp sin (nO) r" sin (pO) sin ((n p)O) for r [0, 1]. g(0) -sin ((n p)O) < O,
g( sin (nO) sin (pO) sin ((n p)O)

_
0 and gis strictly increasing in r, so there

exists r(O) with -> r(O) > 0 such that g(r(O)) 0. Since Og(r)/Or]r(o) > 0 the Implicit
Function Theorem applies and so r(0) is differentiable in a neighbourhood of 0.

Now let

rP(O) sin (nO)
a(0)

sin ((n-p)O)’

a(0) ->_ 0 follows from ,, while (b) tells us that

r"(O) sin (pO)
a(0)= + _-<1,

sn ((n-p)O)

the inequality following from ,. From the definition of a(0), we have that (1)
r" (0) sin (n 0) a(0) r"- p(0) sin ((n p) 0). Further,

(0)- = r"(O) sin (pO)
sin (( n -p)O)

a(O)r-P(O) cos ((n-p)O)- r"(O) cos (nO),

and hence (2) rn(O) COS (nO) a(O)rn-p(o) cos ((n p)O) + o(0). (1) and
(2) are the imaginary and real parts, respectively, of (r(O) ri) a(O) (r(O) ei) p +

(0).
Finally, if ) 4: 0, arg ()) 0 and ) solves (a) for some a 0, ], then writing )

pei, we have (from (i)) g(p) 0 and hence p r(0). This proves (ii) when holds;
the proof of (ii) when . holds is analogous, and is omitted.

Recall that Lemma 2 tells us that every point on (0L.) satisfies at least one
equation of the form ,P a a) 0, a [0, ], (p, q) E.; it is clear that
some points on (OLd) , for example e2’ik/j when (j, k) E., may satisfy more than
one such equation. The lemma which follows establishes which elements of Ln can
satisfy two (or more) such equations.

LEMMA 4. Fix n >= 3 and suppose that ) C and
E. Further suppose that ) solves both ) a)p + a for some a O, and
some p [ with n > p >-_ 1, and (2))km )kq -[- for some [0, 1] and some
(m, q) E, (n, p). Then ) int

Proof. First we note that a,/3 e (0, since ) 4: e2ik/j for all (j, k)
0. If)", then )P and )-P are also real, and one ofX", )P, and )"-P must be positive.
But ) g and ) 4: e2k/j for all (j, k) En, so ) :/: e,, arg (x) and hence ), e int L, by
Theorem 3. To complete the proof, we will take arg )) e (0, r) without loss ofgenerality,
and proceed by extended induction on n.

For n 3, we note that the solutions of )2 a) + a, a e 0, are real, and
when a,/3 e [0, 1], the only nonreal solutions common to both ),3 a)2 _[_ a and
) 3 =/3) + -/3 are e+2i/3, when a =/3 0. Thus the result holds trivially for n 3.



514 STEVE KIRKLAND

Next we suppose that the result holds for all e M with n >= l >= 3; we must show
that it holds for n. Either n < m or n m, and we suppose the latter for the moment.
When n m then p 4: q and so we will take p > q. This gives rise to the picture shown
in Fig. 1. From Fig. we have (3) XP *yq -- -), for some 3’ e (0, ), and recalling
that -< q < p < n, we see that the case n m can be reduced to the case n > m by
considering and (3) instead of and (2).

We now take n > m. tells us that n is on the segment joining >,P to 1, while
multiplying (2) by tells us that , is also on the segment joining ,n- ,+ q to , m.
Thus A is at the intersection of two line segments, and if they are not collinear,
then the convex hull of {1, XP, kn-m, kn-m+q } has nonvoid interior. Defining a
(al, an) by setting supp (a) { n p, m q, n, m } and letting an-p a/2 > 0,
am-q [J/2 > O, am (1 3)/2 > 0, and an (1 a)/2 > 0, we have a Kn and
(considering 1/2 + 1/2 m (2)) 6 p. But as noted above, P has nonvoid interior,
so 6 int Ln by Lemma 1.

If the segment joining XP to is collinear with that joining xn-m+q to
we recall that Xn sites on the segment joining to XP, and we note that xn-m+q and
xn-m must "bracket" ,n on the line; in particular, one of xn-m+q and xn-m, say
x b, falls strictly between and x n on the line. The configuration is shown in Fig. 2.
From Fig. 2, we see that (4) xn 3,Xp + 3’), b for some 3’ 6 (0, ). If p > b and
(n b, p b) 4: (m, q), then (5) ,n-b 3,p-b + " and (2) k q -- r,
so by the induction step, , e int Lmax (n-b,m) int Ln. If p < b and (n p, b p)
(re, q), then (6) >,n-P=q<+(1--y)Xb-p, which, along with (2), yields
int Lmax (n-p,m) int Ln by the induction step. The only remaining cases are (A)
(n b, p b) (m, q) and (B) (n p, b p) (m, q). We shall deal with (A) first.

If (A) holds, then b n m p q and XP, Xn, Xp-, and are all collinear in
that order (see Fig. 2), and hence , q, >, / q-p, and Xq-P are all collinear in that order,
and >, q-P is in the open lower half plane. The configurations are shown in Figs. 3 and 4.
Evidently , 2 6 (0, 7r/2), as indicated in Figs. 3 and 4. Letting ,P-q pei, we see
that since IXp-q > 0, then 20 cos (00) + p 2 > 0, which gives

0 cos (00) 0
2 tan ()

l>
cos (00) tan (2)"

Thus < 2 and we can combine Figs. 3 and 4 into the picture shown in Fig. 5.
From Fig. 5, we see that ,n is in the interior of the convex hull of { 1, ,q, P, 0 } and

q

FIG.
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FIG. 2

hence h c -]- c2hq + c3hp + c c2 c3)(0) for some C > 0, 1, 2, 3 with
ci < So h is a nonreal eigenvalue of a strictly substochastic Leslie matrix, and

hence h e int Ln by Corollary 3.1.
If(B) holds, thenp n m, b p + q n- m + q, and hp, h, hp+q, and are

collinear in that order (see Fig. 2) and hence 1, h-p hm, h q, and h -p are collinear in
that order with h -p in the open lower half plane. Note that the map z 1/z pre-
serves the order of points encountered on a straight line, and takes the line through 1,
h m, h a, and h -p to the circle through 0, 1, h -m, h -q, and hp and takes the lower half
plane to the upper half plane. Noticing that (2) yields hm-q + 3)h-q, we ar-
rive at the picture shown in Fig. 6. From Fig. 6, h is in the interior of the convex hull
of { 1, h m-q, hp, 0 ) and so as in the preceding paragraph, h is a nonreal eigenvalue of a
strictly substochastic Leslie matrix. Thus h e int Ln by Corollary 3.1, which completes
the induction step and the proof. 1--1

We know that for each 0 e (r/(n ), r), e,,0 will be a root of h o/h

(1 c) for some m, 1, and c. Lemma 4 suggests that as 0 runs between two neigh-
bouring angles of the form 2rk/j, (j, k) E,,, the m and l will be fixed, and only
a will change with 0. The angles 2rk/j, (j, k) eE,, give rise to a partition of

FIG. 3
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;k
q

tn+q-p

FIG. 4

(r/(n ), r) and a brief discussion of their properties will prove useful in our char-
acterization of OL,,.

DEFINITION 8. For each n >- 3, let

We order An increasingly as

(j,k)En
k k },-< and- is in lowest terms

27r 2rk 27rk2 2rkum< <...<
n j j2 ju

The fractions ks/js, s 1, u are actually a subset of the nth Farey Series,

F,,= k,jeT/,O<-k<-j<-n,jO and
k

is in lowest terms
J

We shall require the following facts about consecutive terms in a Farey Series, which can
be found in Roberts [8], or can be easily demonstrated by the reader.

FIG. 5
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FIG. 6

FACTS. (i) js + L + > n when _-< s _-< u 1.
(ii) Ifl_-<s=<u- 1, then

k(m+ ioL)+
js+l=m+ioL and ks+l

where rn is defined by 0 < rn < L and ksm mod (L) and

io=[ n-m ]L
(Here the denotes the greatest integer function.)

(iii) If _-< s =< u then js and js + are mutually prime.
As mentioned above, the set An gives rise to a partition of (r/(n ), r), namely

into the subintervals

s=l,...,u-1
n- n Js Js+l

and [2rku/ju, 7r). The lemma which follows will confirm our suspicions about the im-
plications of Lemma 4.

LEMMA 5. (i) Suppose that n >= 3 and that 2rks/L An, s 1, "’", u. Let I be
one ofthe intervals

(r 2r] [ 2"xk 2"xk + s=l,...,u-1
n- 1’ n Js

or [2rku/ju, r) and let Oo int I. If there exists a [0, 1] such that en,oo solves XP
aXq + a for some (p, q) En, then for all 0 I there exists a [0, 1] such that en,o
solves XP aXq + a.

(ii) Ifthere exist ao, al [0, 1] such that e2ics/js solves XP aoXq + ao and
e (-iks+’)/(j+’) solves XP aXq + alfor some s 1, u and some (p, q)
En then ao a is either (0, or (1, 0).

Proof. If there exists 0 I such that en,0 does not solve XP aXq + a for any
a 0, ], then without loss of generality we may take 0 > 0o, and let 01 be the first such
element ofI which is larger than 0o. By Lemma 2 en,0, solves pl =/3q, + -/3 for some
/3 [0, 1], (p, ql) En {(p, q)}. Thus for all 0 [0o, 01) there exists ao [0, 1] such
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that (en,0)p ao(en,o) q + Oto; letting { "gi ) be a sequence in [00, 01 such that "gi -’ 01
and aT; converges, say to ao, [0, ], we see that since en,0 is continuous in 0, en,0, solves
Up Olo1 q + aO,. By Lemma 4, 01 must be one of the closed end points of I (and
hence 0 01) and for all 0 6 [0o, 01] there exists a [0, 1] such that en,0 solves kP

aku + a, which proves the result.
(ii) If a0 (0, ), then the p p row-stochastic Leslie matrix with an ao in the

(p q)th spot of the top row and a ao in the pth spot of the top row has e2iks/js as
an eigenvalue, soLlp andLl(p- q). Since e2is+1)/+1) solves kp alkq -- a, we
see that Js + divides one ofp and (p q). Fact (iii) tells us thatL andj + are mutually
prime, so p >= LL + ButLL + >-- L + L + > n (the last by Fact (i))a contradiction.
A similar argument applies if a 6 (0, ), so ao, a { 0, }.

Ifao= a =0, thenp>-LL+l, whileifao= a 1, then (p q) >= LL + and
each of these leads to the contradiction above. Thus (ao, a) is either (0, or
(, 0).

The subdivision of (r/(n ), r) by An into subintervals gives rise to the u
(interior) intervals

2ks +_ 1]Js+
s= 1, ,u- 1,

and two end ones,

n-l’n ju
,r

(in light of Lemma 5 (i)), it is natural to attempt to characterize en,0 (as roots of some
Up akq (1 c)) as 0 ranges over each subinterval. Typically, a subinterval may
have several such polynomials as candidates, and the problem is to determine which of
the candidates has en,0 as a root. Recalling that we also want to express the roots of such
polynomials in terms of 0 (instead of a), we should look for a condition like or in
Lemma 3 to hold when 0 is in one of these subintervals. We address this matter now.

LEMMA 6. Fix n >- 3; suppose that

2rk 2rk +An

for somes 1, ..-, u- and that

a ks c ks+
b L’ d L+

for some a, b, c, d with <= b, d <= n (note that neither a/b nor cd need be in lowest
terms). Further suppose that ifd > b then c, d) 4 (2, 6 ). Then

thefollowing inequalities hoM:
(i) (2a + 1)r > bO >= 2ar,
(ii) 27rc -> dO > (2c )r,
(iii) (2a 2c + 1)r > (b d)O > (2a 2c)r.
Proof. First we note that b - d, for if b d, then both js andj + divide b, which

yields b >_- LL + >-- L + L + > n (by Facts (i) and (iii))a contradiction.
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(i) 2a/b < 1, so 2a =< b 1. We claim that

2a+ 2c
b >d’

which is obvious if 2a b 1. If 2a < b 1, then

2a + 2a
b b-1

But by the ordering ofAn,

2a
b-1

as claimed. Thus if

2ks + 2c 2a+l> SO
js+l d b

2c

then

2rcb
(2a+ 1)r>

d
>= bO >= 2rra.

(ii) We claim that

2a 2c-

If b > d, then from the claim in (i), we have

2a+ 2c
b >d’

which yields

2a 2c 2c-

as desired. Now we take b < d, and note that if this is the case, we must have c >- 2 and
d >= 5. We shall first suppose that 2c/d 4: 2/3. Consider the collection of intervals
(4/3r, 2/r), r 2, [d/3] + 1. Since r >- 2 we have

2 4

r+ 3r

(with equality if and only if r 2) and so the union of the intervals covers the set
[4/d, { 2/3 because the intervals overlap for r >- 3. Thus

d
e

’r

for some r e N with 2 <- r <- [d/3 + 1. So for some such r, 2d > 2cr and hence

2c 2c-2
d d-r
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Since

4 2c
3r- (2c- )r

we have

so that (2 c )r > d and hence

2c 4 2c
d 3r-(2c-1)r

2(c- 1) 2c-1
d-r d

Thus for some suitable r,

2c 2(c-1) 2c-1
d d-r d

and so by the ordering ofAn, we must have

2c 2a 2(c-1)
d b- d-r

2c-1
d

as claimed.
If d > b and (2cd) (2/3) but (c, d) 4: (2, 6), then d > 6, c > 2, and d 3 c.

This yields

2c 2(c- 1)
d d-2

as well as

2(c- 1) 2c-1
d-2 d

so that by the ordering of

2c 2a 2(c-1) 2c-1>m>__>_
d b d-2 d

and the claim holds. Thus if0 [2ra/b, 2rc/d], then

2rad
2rc>-dO>= >(2c-

b

(iii) If 0 2ra/ b, 2rc/d], then

2rad 2rcb
2ra <- b- d)O<=- 27rc.

b d

We showed in (i) that 2a+l>(2cb/d) and obviously (2ad/b)<2c, so that
(2a 2c)- < (b- d)O < (2a + 2c)r. []

COROLLARY 6.1. Under the hypotheses ofLemma 6, ifb > d( b < d), then for all
0 [2ra/b, 2rc/d] there exists r(O) with values in (0, 1] and there exists (0) with values
in O, ], with r(O differentiable in 0 such that r(O) ei solves ) b (O) )b d 3f_ Ol( 0
(ha (0))a-b + (0)). Further, r(2ra/b) r(2rc/d) and r(O)ei is the
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unique nonzero solution ofhb a,b- a + a ha a,a- b + a), a 0, with
argument O.

Proof. Ifb > d, then by Lemma 6, if0 [2ra/b, 2rc/d], condition in Lemma
3 (ii) holds for b ab- a + a so that Lemma 3 (ii) provides the desired r(0) and
a(0) and it is easily checked (using (b) in Lemma 3(ii)) that r(2ra/b) r(2rc/d)
1. If b < d, then by Lemma 6, if 0 [2ra/b, 2rc/d], condition ** in Lemma 3(ii)
holds for a aka-b + a and again the result follows.

We pause to make a brief remark about the case d > b, (c, d) (2, 6), which was
omitted from Lemma 6 and its corollary. In conjunction with the other hypotheses of
the lemma, it is easy to see that this condition requires that n 6, a 1, and b 4.
Observe that if this is the case, the strict lower bound in (ii) and the strict upper bound
in (iii) both fail when 0 r/2. The corollary also fails when 0 -/2: although the
polynomial )k 6 o/)k 2 (1 a) has, for each a e [0, ]), one root X(a) such that
arg X(a)) e r/2, 2r/ 3 ], it has at a ] the double root i// and for a e ], it has
two pure imaginary roots in the upper half plane, one of which goes to 0 while the
other goes to as a -- 1-. In particular, neither r(r/2) nor a(r/2) are well defined in
this case.

Having established technical conditions for the interior subintervals, we now turn
our attention to some properties of the subintervals at either end: (r/(n ), 2r/n]
and [2rku/ju, ’); these properties will help us to decide which polynomials can have
en,0 as a root when 0 is in one of these two end intervals.

LEMMA 7. (i) Fix q such that <= q <= n and suppose that

r 2r]V0e ]ae[0, 1]n-l’n

such that ) a)q a) has a nonzero root with argument O. Then q n 1.
(ii) Fix l such that <= <= ju and suppose that

such that XJu aXJu-t_ (1 a) has a nonzero root with argument O. Then is even.
Further, if <- q <-ju, there exists 0 [2rku/ju, r) such that no polynomial oftheform
X"+ a)q a), a e [0, 1], can have a nonzero root with argument O.

Proof. (i) Writing X rei and taking the imaginary parts of X n a,q + a,
we see from the hypothesis that

r 2r)VO 3r,a [0, 1]n-l’n

such that rn sin (n0) arq sin (q0). Since X 4:0 then r > 0 and since sin (n0) < 0, we
must have a > 0. But if =< q -< n 2, there exists

Os
n-l’ n

such that sin (q0) > 0, which is impossible. Thus q must be n 1.
(ii) First we note that j, is n if n is odd while ju is n if n is even, and that

2k j, 1. To prove the first statement in part (ii), suppose that the hypothesis holds
for some odd l. Writing X re and applying Lemma 3 (i), we see that

2rku )VO
ju

,r 3re(O, 1]
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such that r sin (juO) r ju sin (10) sin ((ju l)0). The right-hand side is not zero for
such 0, so the equation is equivalent to

r sin (juO)
sin ((ju l)0)

As 0 -- r-,

r ju sin (10)
sin ((ju l)0)

sin (ju0) ju sin 0)-- and --sin ((ju- l)0) j- l sin ((ju- l)0) j- l’

so that when 0 is sufficiently close to r, we see that

r sin (ju0) r u sin 0
-<0 Vr[0, 1],

sin ((ju l) 0 sin ((ju 1) O)

and hence for such 0, there is no a e [0, 1] such that )u a)u-1 c) has a root
with argument 0. Thus l is even, as desired.

To prove the second statement, first suppose that q is odd and that a e [0, 1].
Writing , re and taking imaginary parts of ku +1 aq

_
a, we see that any

nonzero root with argument 0 must satisfy r j" +1 sin ((ju + )0) arq sin (q0). When
0 [2rk/j, rr) and is sufficiently close to r, the left side is negative while the fight
side is positive, so that J"+ akq (1 a) cannot have a nonzero root with
argument 0. If q is even and a e [0, 1], writing j + 2p, q 2m, and k z,
we see that ,u+ akq -- a yields 3,p o-y m -- a. If arg () 7r e for e e
(0, r/2(p- 1)), then

,eL and arg(3,) =2r-2ee(2r r 2)p-l’

contradicting Theorem 2. Thus X" + O/X q 19/) cannot have a nonzero root with
argument 7r e, and the result is proved. D

Upon making one final definition, we will at last be ready to characterize en,0 for
0 (Tr/(n 1), r).

DEFiNiTiON 9. Fix n >_- 3, suppose that

27rks 2rks +1An, s= 1, u- 1,
L js+l

and recall that L 4 L + 1. Let g max (L, L + 1) and ls min (js, L + 1). We also let

ds={ ks if gs=L,

ks + ifgs=js+,

and

ms={ks if l, =js,

k,+ ifls=L+.

THEOREM 4. Fix n >= 3 and consider the intervals

n- 1’ n L Js+l
s=l,...,u-1
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and 2rk./ju, r), where

2rk-An, s= 1, t.

Thefollowing assertions hold.
(i) IfO (r/(n ), 2r/n], then en.o is a root of)" aX"-1 a)for some

a [0, 1]. Further, e..o rei where r is the positive solution to r sin (n0) r" sin (0)
sin ((n )0), and

r sin (nO)
sin ((n- )0)

(ii) IfO [2rk./j., r), then e..o is a root of Xs" a)& -2 a)for some a

[0, 1]. Further, en.o rei where r is the positive solution to r2 sin (j.O) r" sin (20)
sin ((j. 2)0) and

r2 sin (j.O)
sin ((ju- 2)0)

(iii) IfO [2rk/L, 2rk+/L+]for some s 1, ..., u I, e..o is a root of
xgs axgs-l ) for some a [0, 1]. Further, e..o rei where r is the positive
solution to r l sin (gO) rg sin (lO) sin ((g l)O) and

rl sin (gO)
sin ((gs- l.)O)

Proof. (i) Fix 0o (r/(n ), 2r/n). By Lemma 2, there exists ao [0, 1] and
(p, q) 6 E. such that e..0o is a root of Xp aoXq ao), and so by Lemma 5 (i),

r 2r
V0

n-l’n 3ae[O, 1]

such that e,0 is a root of Xp aXq (1 a), and in particular this holds for 0
2r/n. Since en,2/ e2/" a L-l, we must have p n. Thus there exists q e t with
l_-<q_-<n- such that

r 2r
V0e

n-l’n
e[O, 1]

such that e.,0 is a root of X aXq a); by Lemma 7 (i), q n 1. So

r 2r]rOe 3a[0, 1]n-l’n

such that en,0 is a root of X" aX a). Writing e,0 rei and applying Lemma
3(i) gives the equation for r, while taking imaginary parts of (rei) a(rei)-I +

a yields the equation for a.

(ii) For notational simplicity, we shall suppress the subscript u when referring to

k and j, in what follows. Fix 0o [2rk/j, r); by Lemma 2, there exist ao [0, 1]
and (p, q) En such that e,,0o is a root of Xp aoXq ao) and so by Lemma 5 (i)
en,2k/j e2ik/j is a root of Xp- a)tq--(1- a) for some a e[0, 1]. If n is odd,
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then j n and we have p j, since e2’k/J Ln . If n is even, then j n and p is
either j or j + since e2k/j Ln_ 2. Ifp j + 1, then again by Lemma 5 (i),

[2rk )v0 --]-, [0,1

such that e,,0 is a root of ), j + a), q a)ma contradiction to Lemma 7 (ii). So
in either case, we have p j and hence, applying Lemma 5 (i) and Lemma 7 (ii), q
j 2a for some a such that j > 2a >_- 2.

Thus there exists a with j > 2a >= 2 such that

[2rk )v0 -)-,r [0,]

such that e,,0 is a root of ), a),- 2a (1 ). For each such a and 0 we have
sin (jO) >= O, sin (2a0) < 0, and sin ((j 2a)0) > 0. So for each such a and 0, holds in
Lemma 3(ii) and there exists ra(O), a differentiable function on [2rk/j, r)with values
in (0, 1] such that (R) r2a(o) sin (jO) r (0) sin (2a0) sin ((j 2a)0). Further, if
arg ()) 0 e [27rk/j, r) and ), ol)k j-2a - a for some a [0, 1], then )

ra(O)ei. Applying the Implicit Function Theorem to (R) and using the fact that
ra(2rk/j) (which is easily checked by using (R)), we have

rka)-cos
j

so that when e > 0 is sufficiently small,

ra(2rk---+e) l+e
sin (4.Trka)J

+o()

for any such a.
Writing 2rk/j= 7r (r/j), we have 4rka/j= 2ra- (2ra/j) so that

(4rka/j) mod (2r) 6 (r, 2r). Since (1- cos(x))/sin (x) is negative and strictly in-
creasing for x e (r, 2r), we see that

sin ( ___)4rk
4rka)-cos
j

sin( 4rka)j
for any a >= 2. Thus when-e > 0 is sufficiently small,

[ 2rk ) [ 2rk )rlt--j-+>ral--)-+ Va

withj > 2a > 2. Consequently, en,(2,k/j)+, must be a root ofXj c,-2 a) for
some a [0, 1] and so by Lemma 5 (i),

VO6127rk/j, Tr) 3a[0, 1]
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such that en,0 is a root of ,j a>,j- 2 a), and en,0 r (0)eg. We have already
seen that rl satisfies the desired equation, and taking imaginary parts of (rlei)
Ol.(r el)j- 2

__
(x yields the equation for a.

(iii) For notational simplicity, we shall suppress the subscript s when referring to
gs, ls, ds, and ms in what follows. Fix 0o strictly between 2rd/g and 2rm/l. By Lemma
2, there exists B e [0, 1] and (p, q) e E# such that e#,oo is a root ofXp B>,P-q
and so by Lemma 5(i), there exists ao, al ( [0, 1] such that e2rid/g is a root of XP
aop-* ao) and e2m/l is a root of P alAp-g al); by Lemma 5(ii),
(ao, a is either (0, or 1, 0). If (ao, al) (0, ), then g p and q. Since

2>1+l n p

g g g

(recall that g + l > n by Fact (i)), we must have g p so that (p, q) (g, al) for some
a e such that al < g. If (a0, al) 1, 0) then g lq and II p. As above,

2>1+
l q

g g

so we must have g q and hence (p, q) (al, g) for some a e such that n al > g.
Thus the polynomials which are candidates to have en,oo as a root are (1) g

g-al__ a), a [0, 1] for a e with al> g, and (2) al__ xal-g_
a e [0, 1] for a e with g < al n. Note that if al > g and (am, al) (2, 6) (recall
that this was the exception in Corollaff 6.1 ), then g 4, d 1, and n 6; the root,
(), of 6 X2 a), which has argument in (r/2, 2r/3] cannot be on OLn
since, as remarked after Corollaff 6.1,

3-
X()e,/ as.4

Having disposed of this special case, we will not consider it fuher.
Aplying Corollaw 6.1 to the remaining candidates ofthe form and (2), we see

that for each a e with n al and each 0 between 2d/g and 2m/l, there exists
r(O), a differentiable function taking values in (0, 1] such that @ r(0)sin (gO)
rg(O) sin (alO) sin ((g al)O). Fuher, if arg (X) 0 for such a 0 and X is a root of
a polynomial of type or (2) for some e [0, ], then X r(O)ei. We recall that
r(2d/g) (by Corollaw 6.1 and using this fact in our application of the Implicit
Function Theorem to @ we have

cos (2@a/)
 aZ)

If 2d/g < 2am/al, then using Lemma 6(ii) and writing 2d/g 2am/al-
gives

2d
2am> al 2am al> 2am .

g

Since cos (x))/sin (x) is negative and increasing for x e (, 2), we see that

r(2d
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for any a > with n >= al > 1. Thus if e > 0 is sufficiently small,

r, ---g-+e >ra ---+
for any a > with n >= al > 1. Similarly, if

2rd 27ram
g al

writing

and using Lemma 6 (i) yields

2rd 2ram
-/
g al

2ram < 2ram + al
27rd

al< 2ram + r.

Since cos (x))/sin (x) is positive and increasing for x e (0, 7r), we have

rl T <r
for any a > with n >= al > 1, and hence when e > 0 is sufficiently small,

(2__ e
{2rd

for any such a.
Thus when 0 is stctly between 2d/g and 2m/l and suciently close to 2d/g,

e,0 must be a root of X X-- ) for some e [0, 1]; hence by Lemma 5 (i)
for any 0 between 2d/g and 2m/l, there exists e [0, 1] such that e,0 is a root of
X X-- (1 ) and e,0 r (0)ei. We have already seen that r satisfies the
desired equation, and taking imagina pas of (rl(O)ei) (r(O)e)- +
gives the equation for .

COROLLARY 4.1. Fix n 3 and let

2rkseA,, s= 1, ,u.

Let Ro {oeilO (Tr/(n ), 27r/n], p

_
[0, ro(0)], where ro > 0 solves rsin (nO)

rnsin (0) sin ((n 1)0)}; let Rs {oeilO [2rks/L, 2rks+,/L+l], o [0, r(0)],
where rs > 0 solves rts sin (gsO) r gssin(ls0) sin((gs l)O) s 1,...,
u 1; let Ru ( oei[O 2rku/j,, r), 0 - O, r(O) ], where r > 0 solves r2 sin (juO)
r Ju sin (20) sin ((ju 2)0) } and let R-s { ,1 z Rs }, s O, u. Then

Ln Rs U ss U[-1,0].
s=0

Proof. The result follows from Theorem 1, Theorem 4, and the symmetry of Ln
with respect to the real axis. [2
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-1

IG. 10

So we really have accomplished the task of describing Ln, for it is now possible to
pick an arbitrary n and construct Ln as follows. Knowing n, we can generate the successive
elements of An by starting with 2,rk/j 2r/n and using Fact (ii) concerning Farey
Series (which is stated just after Definition 8) repeatedly. This gives us 2rks/js, s
1, u and hence the regions Rs and Rs, s 0, ..., u, which, along with [-1, 0],
form the set L. In Figs. 7-10, we present Ls, Z6, L7, and M7 for the reader’s consideration.

Recall that the motivation for determining L came from looking at eigenvalues of
Leslie matrices. Specifically, given a Leslie matrix L that has t9 as its positive eigenvalue,
say, we are interested in ,/p, , a(L) { p }, since these quantities determine the
convergence (if any) of the successive age distributions. Plotting these ,/ in the plane
gives us an idea ofhow these complex numbers sit inside the unit disc, but our knowledge
ofL also enables us to see how these quantities compare to those ofother Leslie matrices;
we can see not only how quickly our age distributions are converging (by looking at
,/ ), but also how this convergence compares to the range of possibilities available to

Leslie matrices of the same order. Thus L provides us with a sharp frame of reference
in which to view the ,/ by giving precise information about which values of ,/ are
admitted by Leslie matrices of order n.
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ON INVERSION OF SYMMETRIC TOEPLITZ MATRICES*

LEIBA RODMANf AND TAMIR SHALOM

Abstract. It is shown that the inverse of a symmetric Toeplitz matrix is determined by at most two of its
columns, when properly chosen. A formula for the inverse matrix is given in terms of these columns, generalizing
the version of the Gohberg-Semencul formula for the symmetric case. Similar results for the Hermitian case
are also given.

Key words, symmetric Toeplitz matrices, Hermitian Toeplitz matrices, inversion
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1. Introduction. Let A be a symmetric Toeplitz matrix:

ao al a2 ak-
a ao al ak 2

.4 a2 a ao ak

ak ak 2 ak ao
where a0, a, , ak- are complex numbers. General, not necessarily symmetric, Toe-
plitz matrices play an important role in many applications. Therefore, algorithms (starting
with [L]) and formulae (starting with [GS]) for inversion of such matrices have been
extensively developed. A partial list offurther developments ofrelated algorithms includes
T ], BGY], and some of the generalizations of GS appear in GK], HR], BS ],
and KC].

In this paper we study the invertibility of.4 and produce formulae for .4-1 in terms
of the solutions of linear equations of the form

AX E,

where E is a column vector which belongs to the standard basis in C n. Namely, we obtain
formulae for A -1 in terms of a minimal number of its columns. Problems of this type
(for general nonsymmetric Toeplitz matrices) were studied first in [GS] and later in
[GK] and [BS]. In particular, the celebrated Gohberg-Semencul formula is in this cat-
egory. The symmetric version of the theorem of Gohberg and Semencul GS states, in
particular, that the inverse ofa symmetric Toeplitz matrix can sometimes be represented
via its first column. Hereafter, we use 6i,. to denote the Kronecker index, namely,

I if =j,
i,j

0 ifi4:j.

THEOREM 1.1 (Gohberg and Semencul) Let .4 ai_j) k-i,j= o be a symmetric Toe-
plitz matrix, i.e., a_p apfor p O, 1, k 1. Ifthefollowing system ofequations

k-1

ai_jxj--to,i, (i=0, 1, ,k- 1),
j=0
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is solvable and Xo 4: O, then A is invertible and

A_l Xl X0 O0 0 X0 Xk_ 2

Xo xi_ ". ".
Xk-2 0 b X0

However, this is not always the case. It might happen that an invertible symmetric

is an invertible symmetric Toeplitz matrix with

O 0
0 0 0

0 0
0

Note that

O 0 0t0 0 -1
-1 0 0

0 0 0

0 0 0 0 0 0
0 0 0 0 0

0 0 0 0 0

which has the same first and last columns as A-1 while

-1 -1 -1 0 0 -1
0 -1 -1 -1 0 0
0 0 -1 -1 0 -1

which has the same second and third columns as A-.
Let us remark that the same matrixA was given in GK] as an example ofa Toeplitz

matrix whose inverse cannot be determined (in the class of inverses of general, not
necessarily symmetric, Toeplitz matrices) by any pair of its columns.

Ben-Artzi and Shalom have shown in [BS] that three columns of the inverse of a
general (not necessarily symmetric) Toeplitz matrix are always enough to reconstruct it.

THEOREM 1.2 (Ben-Artzi and Shalom) Let A (ai_j)i -f be a Toeplitz matrix=0

Ifeach ofthefollowing system ofequations
k-1, ai-jxj 6o.i, O, 1, k- ),
j=0

k-1

ai-jyj k- 1-p,i,

j=0

k-1

Z ai-jZj=k-p,i,
j=O

(i=0, 1, ,k- 1),

(i-0, 1, ,k- 1),

Toeplitz matrix is not determined by a single column of its inverse. Indeed, the matrix
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is so&able and Xp 4: O, then A is invertible and

A_ x Xo O0 0 Yk-
-p

Xk-I X-2 0 d
(1.2) .. .. o 6

Zk- l--Yk-2 ZI--Yo 0 0 0

Yo-Zl tYl Z2

Oo
Yl-

Xk-1

The main result of this paper shows that at most two columns of the inverse of a
symmetric Toeplitz matrix, when properly chosen, are always enough to represent the
inverse matrix, hence, to determine the matrix itself.

THEOREM 1.3. Let A (ai_j),]20 be a symmetric Toeplitz matrix, i.e., a_v av
for p O, 1,..., k 1. The matrix is invertible if and only if the following condi-
tions hoM.

(a) There exists a solution for thefollowing system ofequations:
k-1

ai_jxj=o,i, (i=0, 1, ,k- 1).
j=O

(b) Let p be such that Xp 4:0 and Xq Ofor all q < p; then p <= k/2 and Xq Ofor
all q > k p.

c There exists a solution for thefollowing system ofequations
k-1

ai-jYk-l-j=
j=0

(i=0, 1, ,k- 1).

In case p O, then

(1.3)

A 1 X XO. O. O. XO. Xk 2

Xk- Xk- 2 XO 0 XO

x_ 0 "..
"’. 0 0 Xk-1

X Xk- 0 0 0

In case p > O, then Xk-q OlXqfor q 1, 2, k with a or a =-1 and

A-l= ml Xl. "’’. O. Y;-. Yk-1. "’’. Yl--Z2

Xk-1 Xl 0 Yk-1

(1.4) "47 Yk- 2 Zk -1 Yk-1 0 ",
"’. 0 6 Xl

Yo-- z Yl z2 Yk- 0 0 0

x 0 0 "..

Xk- X 0 0 0 0
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for

Zk_ 2 x 0

Zo Xk- X

The result of Theorem 1.3, together with its proof, holds verbatim for symmetric
Toeplitz matrices over any (commutative) field.

Now let us consider a Hermitian Toeplitz matrix that is a matrix of the form

ao al a2 ak-
al ao al ak 2

a2 al ao ak-

ak ak 2 ak ao

where a0 is a real number and a, a2, "", ak- are complex numbers. Hereafter, d
denotes the complex conjugate of the complex number a and al denotes its absolute
value. The following result is the analogue of Theorem 1.3 for the Hermitian case.

THEOREM 1.4. Let A (ai_j)ki.,f .=O be a Hermitian Toeplitz matrix, i.e., a_p dp
for p O, 1,..., k 1. The matrix is invertible if and only if the following condi-
tions hold.

a There exists a solution for thefollowing system ofequations"

k-I, ai-xj 6o,i,
j=0

(i=0, 1,-" ,k- 1).

(b) Let p be such that xp 4 0 and xq 0for all q < p; then p <- k2 and xq 0for
all q > k p.

c There exists a solution for thefollowing system ofequations"

k-I

ai-jYk- -j 6,i,
j=0

(i=0, 1, ,k- 1).

(Note that Yk-p- (A - ), and hence it & a real number.)
In case p O, then

(1.6)

A_l= x Xo 0 0 Xo

Xk-1 Xk- 2 Xo 0 6
-k.-
Xo
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In case p > O, then Xk_ q ot.qfOr q 1, 2, k with a constant complex number
such that ]a] and

x .. .. 37k:_1 /Xk-1 XI 0 0 6

(1.7) +_---
".. o 6 ,

Yo- z1 Yl z2 Yk- 0 0 0

for

Zk.- X 0

Zo Xk- Xl

Note that in case p 0, Theorems 1.3 and 1.4 state the result of Gohberg and
Semencul for the symmetric and the Hermitian cases, respectively.

The paper consists of four additional sections. In {} 2 we give some notation and
preliminaries, in {} 3 we prove Theorem 1.3, and in {} 4 we prove Theorem 1.4. In {} 5 we
present some examples.

2. Notation and preliminaries. We denote the row with entries b, b2, , bs either
by row(bl, b2,’", bs) or by row(bj)]= 1. The column with entries b, b2,’", bs is
denoted either by col(b, b2, bs) or by col(bi)= . Let E(), E, E(k- 1) and
F(), F(), F(k- ) be the k unit columns and unit rows, i.e.,

E() col( k-6id)i=o, (j=O, 1, ,k- 1),

and

F() row( k-i,j)j=O, (i=0, 1, ,k- 1).

For any matrix A we denote its transposed matrix by A r. We denote by S and by J the
following k x k matrices:

o o o o o o o
0 0 0

0
0 0 0

0 0 J- """. , 6 ..: 6 o
o6 ..: 0 O0

LEMMA 2.1. IfA & a symmetric Toeplitz matrix and

A col(bi)ki-d col(ci)kis_,
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then

and

A col(  _ co (c _

row( bj)Y_)A row(cj)-,

k-Irow( bk-1-) =oA row( ck_ )7_.
This well-known lemma follows from the fact that J A J A for any symmetric

Toeplitz matrix A.
For any k k matrix D k-did)id=o we denote by AD the (k + (k + )matrix

defined by

AD di,j di- l,j- )ki,j o,

with d,j 0 if q { 0, 1, ..., k } orj { 0, 1, ..., k ). We shall use the following
result, which appears in [HR].

LEMMA 2.2 (Heinig and Rost). Let A be a nonsingular Toeplitz matrix; then

rankA(A -1 2.

The proof follows essentially from

SA AS SAEk- l)F(k- 1) EO)FO)AS,

which holds for any Toeplitz matrix A, and from

A(A-I ( A-I
It is proved in [HR] that the converse of Lemma 2.2 holds as well, however, the

converse statement is not used in this paper.

3. Proof of Theorem 1.3. We divide the proof into two parts. In the necessity part,
we show that if A is an invertible symmetric matrix, then the conditions hold and A -1

admits the stated formula.
Proofofnecessity. We assume that A is an invertible symmetric Toeplitz matrix.

It is clear that if we define col(xi)ki_ and col(Yi)kis_ by

col(xi)ki s_) A-1EO), col(yk- -i)kis- A-IE(p),

where p is such that Xp :/: 0 and Xq 0 for all q < p, then these are the solutions for the
given systems of equations. Let us consider the cases ofp 0 and ofp > 0 separately.

It is clear that if p 0, then Yk-i-i Xi for 0, 1, ..., k 1. In this case,
condition b holds trivially and the formula for A -1 follows from Theorem 1.2, noting
that zi 0 in this case.

From now on we assume that p > 0. It follows from Lemma 2.1 that A -1 is of
the form

(3.1) A -l=

Xo Xl Xk-2 Xk-1
Xl Xk-2

*
Xk-2
Xk-I Xk-2 X1 Xo
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and hence,

A(A-I)

Xo Xl Xk- 0
x --Xk

*

--Xk- Xl --Xo

It follows from Lemma 2.2 that rankA(A -1) 2 and hence the determinant of any
3 3 submatrix of A(A -1) must equal zero. Let q be any integer such that k p <
q < k, then

O=det Xp =det xv
0 -Xq --Xk-v/ 0 --Xq --Xk-p/

as k q < p. Now, xp 4: 0, therefore, xo 0. We have just proved that xo 0 for all
q > k p, but Xp 4: O, hence, p -< k p or p <- k/2.

Define col(zi)2 A-1E(k-p). Then by Lemma 2.1, COI(Zk-1-i)/_-- A-IE(p-I).
Now we apply 1.2) and obtain

col( zk i)ki 2 k
xv

Xl Xo

Xk-1 Xk- 2

Zk Yk- 2

Yk-p- Zk-p+

oo1[
"]1

0 0

Note that the second summand is zero as Xq 0 for q > k p. Moreover, Zq 0 for
q >= k p as x0 xl xp_ 0. This proves 1.5 ).

Now, it is clear that

". Xl Xo o
o 6 "..
0 0 0 Xk-I Xk-2

yO--Zl 0

_2--Zk_ yO--Zl

Yl Z2

:’" y -T z3

-Zo
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Yk-2--Zk
Yk- Yl--Z2 Yo--Z1

Yk- Yk- 2-- Zk-

o ...zotyo-zl

Xo 0 0
x Xo 0

Xk- Xk- 2 Xo

! Xk-I X1

0 0

Therefore, it follows from 1.2) that A-l admits the following representation as well.

A_ 1 O. Yk-. Yl --. Z2 Xl. Xo. O0
0 6 Yk-I Xk-l Xk-2

Zl--Yo 0 0
"- 0 6 Xk-- "’.

0 0 0 Zk-l--Yk-2 ZI--Yo ZO

(3.2)

Now, according to (3.1),
A-l E(a:- l)= col(xa:_ l-i)/-:,

and therefore, it follows from (3.2) that

COI(Xk -,)-) Xo col(y,- Zi +, )i :-d + Zo COI(x +, )_--d,
Xp Xp

setting Xk Zk 0. But, Zo F(k- 1)A-IEtP-l) Xk-p and Xo 0, since
0. Consequently,

(3.3)
Xl Xk
0

In particular Xp (x, p/xp)Xk p and hence x, p/Xp or x_p/Xp 1.
c- -1E(p)It remains to prove (1.4). Note that col(y,-1-i)i=o A and therefore, it

follows from (1.2) that

col(yk-1-i)ki 2-d Xk-p Zl YO
Xp

Zk-1--Yk-2

+
Xp

Xk

0
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or,

Zk-l--Yk-2tcol(Yi)i 2d Xk-p

xp Zl -Yo
zo

Xo x
0 Xo

Xp
0 0

It follows from (3.3) that

(3.4)

.o
Xk 2

Yk-

XO / Yk-2--Zk-I

\Yk-p- Zk-
\

0.

"}- Yk-1
Xk_ p 0 6 Xk -1

0 0 0 ] Yk-2- Zk-1 ]

But according to Lemma 2.1, col(yi)2d A-E(k-p-), and hence, it follows from
(3.2) that

0

col(Yi)i 2) +-- Zox O x_

Yk-1 0 0 0 :Yo
\Zp yp

which, combined with (3.4) gives

Xk p

zI--Y0 Xp 0 6
Zo 0 0

Xk-1
Z - yO0

p--Yp-1

Yl--Z2 ".

Xk-p 0
Yk-1 0 0

o.

J2k p Zk
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Note that zp F(P)A -1 E(k-p) yp_ and Zk_p O, SO

0 0 x_

Zo 0 0

0

x Zo
0 z -Yo
0

Zp-l--Yp-

0 0 Xk-
Yo--Z1 \

Yk- 2 Zk Xk-p 0 0 0
Yk-1 0 0 0

0

0
Xk- Yk-

/ Yk-2--Zk-l.
Yk-p-- Zk-p+

Xk p

Xl

Define

Wi-" Yi-- Zi + --Xi+

for 0, 1, k- (where, as before, Xk Zk 0). Then

0 0 Xk-1

lo6 6
Zl--Yo xp 0 0 0

Zo 0 0 0

0

0 Zl -Yo
0

zp_-yp_

0 0 Xk-i

w.o 6 6
Wk

Xk p 0 0
0 0

0

0 Wk-

0
0 w_
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since Xk-p + Xk- 2 Xk- O. Equivalently,

xk-
Xp z -Yo Xp ".

ZO Xk-

(3.5)
+ x

)
x-I x_wo. x_+

x_ ".
w-i

x-i

Note that the k X k matrix B defined by

Okx (k- ZI--Yo

Zk- l--Yk-2

Wk- 1)Okx (k-

Wo

Xk-p Xk
X (k-p) Xk-.p+ 0

Xk- 0
0 0
0 0

is upper triangular with zero diagonal as xq 0 for q > k p. But (3.5) implies

[lk--B][ Xk-P col(2k- l-i--Yk-2-i)ki 2d --col( wi)ki g ]
setting y_ O. Now [Ik B] is nonsingular, so

Zk i-- Yk- 2- Wi
Xk-p

for 0, 1, k 1. So, it follows from the definition of w and from (3.3) that

Xp
yi--Zi+l--Xk-l-i (i=0,1, ,k-l).(3.6) Zk-l-i--Yk-2-i

Xk-p Xp

Plugging (3.3) and (3.6) into (1.2) proves (1.4).
In order to complete the proofofthe theorem it is enough to show that ifconditions

(a)-(c) hold, then the matrix is invertible. Here we check separately the cases ofp 0
andp 4: 0.

Proofofsufficiency. In casep 0, the assertion follows from Theorem 1.1 ofGohberg
and Semencul.

Now let us consider the case ofp 4: 0. We assume that conditions (a)-(c) hold. Let
us show that ifA col(bi)i2 0, then col(b)i2 must equal zero. It follows from Lemma
2.1 that A col(bk_

_
)2d 0 as well. Therefore, we may assume that either b bk--
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for 0, 1, ..., k or bi --bk-l-i for 0, 1, ..., k as we may define
col(ci)is_d col(bi)is_) + col(bk_l_i)is_d and col(di)i col(bi)is_)- col
(bk--i)2, and it is clear that A col(c)i;d A col(d)i:_d 0 and that col(bi)s_
is a linear combination of col(ci)is_d and of col(di)is_.

We need only a weaker assumption that br 0 if and only if bk- -r # 0 for r 0,
1, k 1. Now it follows from Lemma 2.1 that row( k-bj)j oA 0 and hence

b0 row(bj)Y_)A col(xi)kis_) =0.

Similarly, we can replace col(xi)ki) by col(Yi)kid, col(Xk__i)kid, or col
(y_ -)/ks, to show that

bp bk- bk- -p 0.

Let q be such that bq 4:0 but bi 0 for all < q. Then bk- -q # 0, but bi 0 for all
> k q. In particular, q -< (k )/2. Our aim is to show that the existence of

such a q implies contradiction. It follows from row(b)A 0 that
k-l-q

k-I(3.7) brrow( ar-j)j o O.
r=q

First let us assume that 0 < q < p. In this case, (3.7) implies

k-l-q
k-p+q, brroW(qr-j=,+q=O,

r=q

or, equivalently,
k- -2q

r=O

k-pbr + qroW( ar_j)j O.

Thus
k- -2q. br + qrow( ar k- p k-t,_)=p col(x)= =0
r=0

Recall that xi 0 for < p or > k p, so we conclude that
k- -2q. br+qroW(ar-j)lj-)col(xi)i-d=O,
r=0

which is impossible, as k- /__-ar-j)j=oCOl(xi) 60,r and hence bq O.
Assume now that q > p. It follows from A col(yk_ -i)is_d E’) that

(3.8) row(ar_j);col(yk_l-i)i-) =0 forr>=q,

since p < q. In particular,

k-l-q

r=q

brrow(ar + -j)j o col(yk- i).=

Considering (3.7), we conclude that

k-l-q

r=q
brar + Yk- O.
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But Yk- row(xi)ki -)A col(yk- -i)ki ;) Xp, and therefore, Yk- :/: O. Consequently,

which, together with (3.7), gives

k-q

r=q+l

k-l-q

brar+l=O,
r=q

br lrow(ar _j j= O.

We can similarly use k 2q consecutive r values in (3.8) and conclude that
k-l-q+i

br_iroW(ar-j)lf-) =0,
r=q+i

for 0, 1, ..-, q p. In the case of q p, we obtain
k-l-p

br-q+prow(ar-j)jk’2d=O,
2q-p

and therefore,
k-l-p_, br-q+prow(ar-j)-tcol(yi)z-=O,

2q--p

which is impossible as (ar-j)2)col(Yi)ki-)= k-1-p,r, and hence bk- 1-q O. Vq

4. Proof of Theorem 1.4. Essentially, this is the same as the proof ofTheorem 1.3,
so we will indicate only the differences. Here we use the fact that if A is a Hermitian
Toeplitz matrix and

then

and

A col(bi)ki-) col(ci)kis_d,

A col(b_ i)/kd --col(k i)/kd,

t’ow(- k- k-b) oA row( e)y o

k-1)k-)A row(ck_ -j)j=orow.( bk -as for a Toeplitz matrix A we have JA J A T and AT is Hermitian as well.
Proofof necessity. We assume that A is an invertible Hermitian Toeplitz matrix.

Again, we define col(xi) - and col(yi) ) by
col(xi)ki zd A-’E(), col(Yk- ,-i)ki _) A-’E(),

where p is such that xp 4:0 and Xq 0 for all q < p. So, these are the solutions for the
given systems of equations. Note that if p 0, then Yk- -i X-/for 0, 1, ..., k
1, and (1.6) follows from Theorem 1.2 with z; 0.

From now on, we assume thatp > 0. It is clear that since A is an invertible Hermitian
Toeplitz matrix, then its inverse is of the form

Xo Xl Xk 2 Xk-1
Xl Yk-2

Xk-2
Xk-I Xk-2 Xl Xo
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and hence,

Xl mXk-
A(A-I) ,

m-l
--Xk Xl Xo

Again, as rankA(A -1) 2, the determinant of any 3 3 submatrix of A(A -) must
equal zero, and for any integer q such that k p < q < k, then

Xo 2k- q 0 0
0=det Xp =det Xp

0 --Xq --Xk-p/ 0 --Xq --Xk-p/

so Xq 0 for all q > k p and p <-_ k2 as well
Define col(Zk__i)iS_d =A-1E(p-). It follows from our definitions that

A col(Yi)ki:_d g(k-p-l) and that A col(,i)i_ E(k-p). Thus, according to Theo-
rem 1.2,

(4.1)
Xk-1 Xk- 2 0 0

.. .. o o
k 1-- Yk- 2 l "frO 0 0 0

;k’-I /

Xk
0

as well as

(4.2)

A-I L
k

0

Xp
0

Y.- i".. y S. z x.. Xo..
Yk’-I ] Xk-1 Xk-2

O Xk-I

0 0

Xl Z0
-370

Xk- ".
0 k-l--k-2

0 tlZl Y0 0

It follows from (4.1) that

CO"Zk
"#-" =-- "-’(p-
)i 6 a 1 Xl. XO. .’’"

Xk -1 Xk 2

0

as Xq 0 for q > k p. Moreover, Zq 0 for q >= k p as Xo x xp_ 0,
so (1.8) is proved.
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Now, according to (4.2),

1
A-1 E(k- l) Z._o

xpX;--IYo
as Xo O. But, fo F()A-IE(k-p) .k-p and therefore,

t"k!flt tXlt"(4.3) =xk-p
Xp X;-1

In particular 2 (2k_p/x)xk and hence a & 2_p/x satisfies a 1.
It remains to prove (1.7). It follows from (4.1) that as col(y,-l-i)2

A -1E(), then

col(yk_ _i)i 2 X_Ptxp Z --Yo

Zk-l--Yk-2

Xo 0
)1 "0

Xk-1 Xk- 2

or, according to (4.3),

col(yi)i 2_
Xk_p

Xp Z-l
o

(4.4)

Xk -p

O .k-1

0 0

Now, col(.gi)i2d A-IE(k-p-l). Thus, according to (4.2),

col(i)- ;I--2 +2
Xp 0

k-1 0

Xo

0

XI

Yl-
Xk Yk- 2 --k0

k-p-l--k-

fo
Xk-10 l 7 JO
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which, combined with (4.4) gives

Xk p

Xp

0

x
Z0

Xk-
0 z17Yo

\z,- y,_

y Z2

2,_p 0 "Yk-1 0 0

Note that Zp F(k-p- 1)A-I E(p- 1) yp_ and ffk-p 0, SO

Xk p

0 0 2_

6 6
71 YO 2p 0 0o o o

0

k- Zo

0 0 2k-1

Yk-2--Zk-1 Xk-p 0 0 0
Yk-1 0 0 0

0

0
"’k ;k-

00/ Yk-2--k-l.
Yk-p-- k-p+

Xk -p

Note that Yk p (A-1 )p,p, and hence is a real number. Define

Xi+l
Xk-p
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for 0, 1, k- 1, setting 2k Zk 0. Then

0 0 2k-
Xk-p

e,-;o o 6 o
0 0 0o 0 0 0

0 0 ’k-1
W.o

0
Wk-

2-p 0 0 0
0 0 0

0

Xk ZO
0 z -Yo
0

Zp- -yp-2

2k- vk-1
0 k_Io /

since Xk-p-l Xk- 2 Xk- O. Equivalently,

Ok (k

Consequently,

z /z -Yo

Zk- l--Yk-2

’p.+ 22

W.o Xk-p+ Ok tk-

X

0

(4.5) x-e col( i-- Yk- 2-i)ki-d col( wi)ki
_
d

xp

I-B Xk-Pcol(z_ _g--y_2_i)ki-d --col(g)i2dp
(with y_ 0 for the k X k matrix B defined by

X2 Xp +

2_p

B= x (k-p) Xk-.p+l
Xk -p .

2k- 0
0 0
0 0
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Denote by B the matrix with entries being the complex conjugates of the entries of B;
then (4.5) implies

col(ci)ki - B col(.)2_ Bcol(ci)2_ BB. "Jcol(ci)ki _d,

for

Ci.Xk-P(k-l-i--k-2-i)--Wi, (i=0, 1, ,k- 1).
xp

Note that B, and hence B, are both upper triangular matrices with zero diagonal as
Xq 0 for q > k p. Therefore, k products of B and/i equal zero and consequently,
col(ci)is_ 0, or equivalently,

(’i i 1) ( Yk-P-1 )Yk-l-i--Zk-i-- _"-.k-i (i=0,1, ,k-l),x xk_p x_p

which, together with (4.1) and (4.3), prove 1.7 ).
The proof of the sufficiency is almost identical to the one in Theorem 1.3.
Proofofsufficiency. We consider the case ofp g: 0, assuming that conditions (a)-

(c) hold. Let us show that if A col(bi)i2 0, then col(bi)i2 must equal zero. In the
Hermitian case, it follows that A col(g_ l_;)/_--d 0 as well. Therefore, we may as-
sume that either b; b_ 1-i for 0, 1, k 1, or bi bk-1-i for 0, 1,
k 1, as we may define col(ci)i_d col(bi)i_ + col(k_ 1-i)i-d and col(di)_
col(bi)s_d col()k_ -i)kis-, and it is clear that A col(ci)Sd A col(di)i_ 0 and
that col(bi)ki_d is a linear combination of col(ci)kiz_d and of col(di)_. As in the proof
of sufficiency of Theorem 1.3, we need only the weaker assumption that br :: 0 if and
only if bg_ 1-r =/= 0 for r 0, 1, k 1, and the proof continues similarly.

5. Examples. In this section we give several examples that illustrate the necessity
of the conditions in Theorem 1.3.

Example 5.1. Consider the 9 9 symmetric Toeplitz matrix

2 0 2 -4 2 -4 2 -8 18
0 2 0 2 -4 2 -4 2 -8
2 0 2 0 2 -4 2 -4 2

-4 2 0 2 0 2 -4 2 -4
A 2 -4 2 0 2 0 2 -4 2

-4 2 -4 2 0 2 0 2 -4
2 -4 2 -4 2 0 2 0 2

-8 2 -4 2 -4 2 0 2 0
18 -8 2 -4 2 -4 2 0 2

The inverse matrix A- is

0 0 0 0
0 0 2 0 2

0 3
2 0 -1 2 3 0

=___SL 0 0 -1 0 -1 0
0 0 3 2 -1 0 2

3 0
2 0 2 0

0 0 0 0

0

0
0

0
0
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In this case k 9, p 2, and according to Theorem 1.3, the matrix A is determined by
the two columns of A -1, which are A-E() and A-E(a). It is clear that A-E(8) can
replace A -l E() and that A-E(6) can replace A-E(2). However, the columns A-E(),
A E ), A E(3), A E(4), A 1E(5), A E(7), and A E(8) do not determine A. Indeed,
the symmetric Toeplitz matrix

-3 -3 -7 17
-3 -3 -7

-3 -3
3 -3 -3

B= -3 -3
3 -3 -3

-3 -3
7 -3 -3
7 -7 -3 -3

has an inverse of the form

0 0 0 0
A

0 0 2 0 2
0 0 3 0

2 0 -1 2 3 0 0
0 0 -1 0 -1 0 0
0 0 3 2 -1 0 2

0 3 0 0

121012100/
011 0 0 110

and B-EJ) A-Ej) for j 0, 1, 3, 4, 5, 7, 8. Furthermore, consider the symmetric
Toeplitz matrix

C=2B-A

0 2 0 -2 0 -2 0 -6 16
2 0 2 0 -2 0 -2 0 -6
0 2 0 2 0 -2 0 -2 0

-2 0 2 0 2 0 -2 0 -2
0 -2 0 2 0 2 0 -2 0

-2 0 -2 0 2 0 2 0 -2
0 -2 0 -2 0 2 0 2 0

-6 0 -2 0 -2 0 2 0 2
16 -6 0 -2 0 -2 0 2 0

Then, there exist column vectors X(j), which satisfy CX() E() for j 0, 1, 3, 4, 5, 7,
8, and these are the same vectors that satisfy bothAX(J) E(J) and BX() E(). However,
there is no solution for CX(a) E(2) and condition (c) does not hold. The matrix C is
indeed singular as F(2)C F(6) C.

Example 5.2. Look at the 3 3 matrix

A 0 0
0

Note that A col(O, 0, col( 1, 0, 0), so p 2 and A col( 1, 0, 0) col(O, 0, E(p).

But p > k/2 and the matrix is not invertible.
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Example 5.3. Now let us consider a case in which p <= k/2. Look at the 5
5 matrix

0 0 0
0 -1 0 0

0 -1 0 1
0 0 -1 0

10 0 0

Here, k=5 and p=2 as A col(O, O, l, O, 1)=col(1, O,O,O,O). Moreover,
A col( 1, O, 1, O, col(O, O, 1, O, O) E(p, yet the matrix is not invertible, as x4
but 4 > k- p.

Example 5.4. Let us show that the case of k 5 and p 2 is possible. The matrix

-1 -1 2

11-1 1-121At= -1
2 -1 -1

2 -1

is invertible for any value of t. Indeed, p 2 as fit col(O, 0, 1, 1, 0) col( 1, 0, 0, 0, 0).
Regarding E(p), note that fit col( 1, -t 2, -2t 7, -t 2, col(O, O, 1, O, 0).

Example 5.5. Now we show that both xp xk- and xp -xk_p might oc-
cur. Indeed,

while

-1
0

-1
0 -1
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CYCLIC STRONG ERGODICITY IN NONHOMOGENEOUS
MARKOV SYSTEMS*

IOANNIS I. GERONTIDIS"

Abstract. This paper investigates the ergodic behaviour of the vector of means and the covariance matrix
of the grade sizes for a nonhomogeneous Markov system that undergoes a cyclic behaviour, both in discrete
and continuous time. It is shown that the first and second central moments converge to a cyclic family of
multinomial type with the same period, independently of the initial distribution. The regions of cyclically
ergodic distributions are determined as convex hulls of certain points as the recruitment distribution varies.
The rate of convergence to the cyclic distribution is also examined, together with some transient aspects of the
system concerning stability and quasi stationarity. Two numerical examples from the literature on manpower
planning illustrate the theory.

Key words, limiting distribution, manpower planning, nonstationary Markov replacement process, quasi
stationarity, rate of convergence, stability

AMS(MOS) subject classifications, primary 60J20; secondary 92A15

1. Introduction. In recent years there has been a rapidly growing literature on the
asymptotic behaviour of nonhomogeneous Markov systems (NHMS) (see, for example,
Vassiliou 1981 ), (1982), (1984), 1986); Vassiliou and Gerontidis 1985); Tsaklidis
and Vassiliou 988 ); Vassiliou and Tsaklidis 1989 ); and Gerontidis (1990a), 199 ).
These studies extend earlier results in Leslie 1945 ); Young and Almond 196 ); Pollard
(1966), (1973); Feichtinger (1976); Bartholomew (1982); Bartholomew and Forbes
(1979); and Gerontidis (1990b). NHMS were first introduced by Vassiliou (1982) in
order to provide a general framework for a number ofMarkov chain models in manpower
systems.

In an earlier investigation (Gerontidis 991 )), the concept of periodic strong er-
godicity in NHMS, i.e., when the sequence of transition matrices of the associated re-
placement chain converges to an irreducible stochastic matrix with d >- eigenvalues of
modulus 1, was examined in detail. In the present paper, which is a sequel to the above
study, we exhibit a unified treatment of the ergodic behaviour of the vector of means
and the covariance matrix of the grade sizes for an NHMS that undergoes a cyclic be-
haviour, both in discrete and continuous time. Related work appears in Vassiliou (1986),
but we intend to present here an alternative point of view. Our main objective is to
exploit the properties ofthe associated nonhomogeneous Markov replacement chain, an
approach which provides insight not only into the direction into which the structure is
changing, but also into the probabilistic nature of the convergence (by characterizing
cyclic strong ergodicity) in NHMS. In 2 the discrete time case is considered, where it
is proved that for a system that undergoes a cyclic behaviour of period d > 1, where d
is the period of the cycle, the vector of means and the covariance matrix converge to a
cyclic sequence of multinomial type with the same period independently of the initial
distribution. This fact reveals a kind of"cyclic strong ergodicity." The reasoning is based
on the development of the asymptotic theory for products of stochastic matrices in a
cyclic environment. By representing a cyclically ergodic distribution as convex combi-
nation of certain points in k, where k is the number of the states of the system, we

Received by the editors November 27, 1989; accepted for publication (in revised form) November 29,
1990.

? Mathematics Department, University of Thessaloniki, 54006 Thessaloniki, Greece.
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determine the d sets of limiting distributions as convex hulls of these points for varying
recruitment distribution. In 3 some transient aspects of the system during the period
ofa cycle with respect to stability and quasi stationarity are investigated and those quasi-
stationary structures that are stable are identified. In 4 the continuous time analogue
ofthe discrete case is developed, where it is shown that for an NHMS undergoing a cyclic
behaviour ofperiod - > 0, the first and second central moments ofthe grade sizes converge
to a periodic family of multinomial type. Section 5 examines the rate of convergence
problem to the cyclically ergodic distribution and conditions are provided for the con-
vergence to be exponentially fast. Finally, in 6, two examples from the literature on
manpower planning illustrate the theoretical results.

2. Cyclic strong ergodicity in discrete time. For an NHMS in discrete time
with k states (grades), let ffi(t), 1, k, be the expected number of members
in the ith grade of the system at time 0, 1,-.. and in vector notation, i(t)
[ff(t), ik(t)]. Consider also the k k matrix V(t) [vij(t)] with entries being
the variances and covariances of the grade sizes. Define by T(t) the total membership
in the system, which is assumed to be a given function of time, and denote by M(t)
T(t + T(t) the change of the total size in the time interval [t, + ). Also let
po(t) [P01(t), p0k(t)] be the recruitment distribution at time t and denote by
V{po(t) } the covariance matrix attributable to po(t). For a vector a (ai), denote by
Diag (c) the matrix with elements [t3ijai], where iij is the Kronecker delta. It is known
(see, for example, Gerontidis 1991 )) that i(t) and V(t) satisfy the difference equations

(2.1)

and

if(t+ 1)=i(t)Q(t)+M(t)po(t)

V(t+ 1)- Diag {if(t+ 1)}=Q(t)’[V(t)-Diag {i(t)}lQ(t)
(2.2)

+M(t)[V{po(t)} -Diag {po(t) } ],

where

(2.3) Q(t)=P(t)+pk+ ,(t)’po(t)

(prime denotes transposition) is the k k stochastic matrix of the associated nonhomo-
geneous Markov replacement chain (Keilson 1979, p. 41 )). P(t) [po(t)] is the k k
matrix of transition probabilities between the states, i.e., Pij(t) is the probability that
someone who is in grade in the beginning ofthe time interval t, + will be in grade
j during that interval. Also, p + 1(t) [p, + (t), p, + (t) is the vector ofwastage
probabilities from the various states (state k + representing the world outside the
system). Finally, for two integers s, m(s < m) define

Q(s,m) Q(s)Q(s+ )...Q(m)

and Q(s + 1, s) I for any s. Iterating (2.1) and (2.2) and assuming that n(0) is given
(nonrandom) so that V(0) 0, the k k zero matrix, we get

(2.4) i(t+ 1)=n(O)Q(O,t)+ M(z)po(’)Q(’+ 1,t)
’=0

and

(2.5) V(t+ 1) Diag {i(t+ 1)}- Q(0,t)’ Diag {n(O)}Q(O,t)

Z M(r)Q(r+ 1,t)’po(r)’po(r)Q(r + 1,t).
-=0



552 IOANNIS I. GERONTIDIS

The importance ofthe cyclic behaviour was first pointed out by Bartholomew 1982,
p. 71 ), who was concerned with Gani’s 1963 study ofstudent enrollment at the Michigan
State University. There the academic year was divided into three quarters and transitions
took place at the end of each quarter. As Bartholomew (1982) argued, it would be rea-
sonable to assume that for the case study under consideration, the transition and re-
cruitment probabilities are periodic functions of time, i.e., that they are the same in the
first quarter of one year as they had been in the first quarter of the previous year. There
are also several other references supporting the assumption of cyclically varying param-
eters; see, for example, Young 1971 ); Conlisk 1976); Grinold and Marshall 1977, p.
62 ); Vassiliou 1984 ), 1986 ); Davies 1985 ); and Gerontidis (1990a). From Vassiliou
(1986), we borrow the following definition.

DEFINITION 2.1. An NHMS in discrete time undergoes a cyclic behaviour with
period d if and only if P(md + r) P( r), Pk + md + r) Pk + r), and po(md + r)
p0(r) for any m 1, 2, and r 0, 1, .-., d for some integer d > 1, called the
period of the cycle.

In the rest of this section we first develop the asymptotic theory for products of
stochastic matrices in a cyclic environment and later we characterize cyclic strong er-
godicity in NHMS. For an NHMS under cyclic behaviour from (2.3) we get

(2.6) Q(md+ r) P(md+ r) +pk + l(md+ r)’po(md+ r) Q( r).

Define Q(0, d Q(0)Q( )... Q(d to be the "cycle matrix." The following
lemmas show that much of the structure (i.e., the eigenvalues and eigenvectors) of the
sequence Q(s, t) for s 0, 1, , t 0, 1, , (and later to be shown of the system)
is contained in the structure of the cycle matrix Q(0, d- ).

LEMMA 2.1. Ifthe sequence ofreplacement matrices Q( t), O, 1, undergoes
a cyclic behaviour with period d > 1, then for -, r 1, 2, z < r, and m, r O,
1, ..., d- 1, it holds that

(2.7) Q( -d+ m, 7rd+ r) Q( m, d- Q(0, d- Q(0, r).

Proof. We have

Q(rd+ m, Trd + r)

=Q(-d+m)Q(-d+m+ 1)...Q(-d+d- 1)

Q{(z+ 1)d}Q{(-+ 1)d+ 1}. -Q{(-+ 1)d+d- 1}
(Tr " products

Q{(Tr- 1)d} Q{(Tr- 1)d+ 1}. .Q{(Tr- 1)d+d- 1}
Q(rd)Q(rd+ 1)" .Q(Trd+ r).

The cyclic behaviour of the sequence Q(t), 0, 1, i.e., (2.6), implies (2.7). []
For a real matrix A [ao] and a real vector u (uj) we define their norms as

AII max/Z= aol and u maxj u], respectively. In what follows, convergence
of matrices and vectors is assumed with respect to these norms. A stochastic matrix Q
is called strongly ergodic (Isaacson and Luecke (1978)) if it has no characteristic roots
(4:1 of modulus and if is a simple root of the characteristic equation of Q.

LEMMA 2.2. IfQ( O, d- is strongly ergodic with left normalized eigenvector Ud-
corresponding to the eigenvalue 1, then

(2.8) Ur=Ud_lQ(O,r)
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is the left normalized eigenvector ofQ(zd + r + 1, rd + r) and

umQ(rd+ m + 1, rd+ r) Ur,

form, r=O, 1,...,d- 1, m<r, andTr,-= 1,2, ,z <r.
Proof. From (2.7) and (2.8) we have

urQ(’d+r+ 1,Trd+r)=ua_lQ(O,r)Q(r+ 1,d- 1)Q(0,d- 1)-T- 1Q(0,r)

=ua-lQ(O,d- 1)’-TQ(O,r)=ur

and

umQ(rd+ m + 1, 7rd+ r) ua- Q(O, m)Q(m + 1, d- Q(O, d- Q(O, r)

Ur, 1"-’]

If Q(0, d is strongly ergodic with left normalized eigenvector ua- 1, from (2.7)
and (2.8) we get that uniformly in m,

(2.9) lim Q(zd+ m, rd+ r) Q(m, d- ’ua- 1Q(O, r) ’Ur,

where 1- (1, ..., 1). We also provide the following lemma (Isaacson and Mad-
sen (1976)).

LEMMA 2.3. Let {a} be a sequence of nonnegative numbers such that
{ as/ Sq o aq } -- 0 as s -- v. Also let { B } be a sequence offinite matrices converging
to B; then

lim (Boas+Blas_l+...+Bsao)/(aq)=B.s-- q=0

Define nr (nr,i) and Vr (Vr,ij), for i, j 1, k, r 0, 1, d- 1, to be a
sequence of vectors and matrices with double index notation. The following theorem is
the main result of this section, which characterizes ergodic cyclicity in NHMS.

THEOREM 2.1. Consider an NHMS in discrete time such that the vector ofmeans
and the covariance matrix of the grade sizes satisfy the difference equations (2.1) and
(2.2), respectively. Assume that the system undergoes a cyclic behaviour with period d >
1, i.e., P(md + r) P( r), pk + md + r) pk / r), and po(md + r) po( r) for any
m 1, 2,... and r O, 1,..., d- 1. Suppose further that limt-o T(t) T < c
and M( >= O, for O, 1, 2, i.e., the system is always expanding. IfQ(O, d
is strongly ergodic with left normalized eigenvector ua- corresponding to the eigenvalue
1, then for any initial distribution,

(2.10) lim ff(sd+ r+ )=/r + 1( (X))-’- Tur

and

(2.11)

where

lim V(sd+r+ 1)= Vr+l() T[Diag(ur)-UrUr],

Ur=Ua_lQ(O,r), r=0,1, ,d-1.

Proof. Without loss of generality, let sd + r. Since Q(0, d- is strongly
ergodic with left normalized eigenvector ua-1, from (2.9) we get

(2.12) lim n(O)Q(O,t)= lim n(O)Q(O, sd+ r)= n(0) l’Ur T(O)ur.
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Denote by U(t) the sum on the fight side of (2.4). The cyclic behaviour of the system
together with (2.7) implies

sd+

U(t) U(sd+ r)= , M(z)po(’)Q(" + 1,sd+ r)
’=0

d-ls-1, M(hd+ m)po(hd+ m)Q(hd+ m+ 1,sd+ r)
m =0h=0

(2.13) + M(sd+ m)po(sd+ m)Q(sd+ m+ 1,sd+ r)
m=0

d-ls-1, M(hd+m)po(m)Q(m+ 1,d- 1)Q(0,d- 1)s-h-lQ(O,r)
m=0h=0

+ m(sd+m)po(m)Q(m+ 1,r).
m=0

Since limt T(t) T < oo and M(t) is nonnegative, we have that

lim m(t)= lim [T(t+ 1)-T(t)]=0.

This ensures that the second term on the fight side of (2.13) goes to zero as s oo. It
is sufficient to look at

d-ls-1

lim U(sd+r)= lim M(hd+m)po(m)
s--+ O h O

Q(m+ 1,d- 1)Q(0,d- 1)s-h-’Q(O,r)
(2.14) a-s-

lim M(qd+m)po(m)O(m+ 1,d- 1)
s" m O q 0

sL, M(hd+ m)Q(O,d- )s-h-
Q(O,r).

h 0 ES-q= om(qd+ m)

The assumption limt_ T(t) T(0) + Z= 0 M(h) < implies that
sd+

M(md+r)< M(h)< T- T(0)< c.
m=0 h=0

Thus the bounded nonnegative series, m(md+ r),
m=0

are convergent. From Lemma 2.3 we get

(2.15) lim
m(hd+ m)Q(O,d- 1) -h

s-" h 0 sq=OM(qd+m)
From (2.14) and (2.15),

d-1

(2.16)

r=0, 1, ,d-l,

rUd_ .

lim U(sd+r) , , M(qd+m)po(m)l’ua_Q(O,r).
S.-O0 m=Oq=O
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Since p0(m) 1’ 1, for rn 1, 2, we have

(2.17) po(m)l’ua_Q(O,r)=u, r=0, 1, ,d-1.

Then from (2.16 and (2.17 ), we get

(2.18) lim U(sd+r)= , M(q)Ur={T-T(O)}ur,
q=0

and from (2.4), (2.12), and (2.18),

(2.19) lim ff(sd+r+l)=r+l(o)=T(O)ur+{T-T(O)}ur=Tur.

We can similarly show that
sd+

lira M(r)Q(r + 1,sd+ r)’po(r)’po(r)Q(r + 1,sd+ r)
(2.20) s-, =0

{T-T(O)}UtrUr
and

(2.21) lim Q(O, sd+ r)’ Diag n(0) } Q(O, sd+ r)= T(O)urUr.

Finally, from (2.5), (2.19 ), (2.20), and (2.21 ), we arrive at (2.11 ). [3

Remark 2.1. Relations (2.10 and (2.11 show that the system is cyclically strongly
ergodic and the limiting first and second central moments of the grade sizes are of mul-
tinomial type with size T and probability vectors Ur, for r 0, 1, ..., d- 1.

A matrix A [aij] is said to be nonnegatively invertible ifA -1 exists and has non-
negative elements. We also need the following lemma (Seneta 1981, p. 30)).

LEMMA 2.4. Let A be a nonnegative square matrix and let be the largest eigenvalue
ofA. The matrix (I- A is nonnegatively invertible ifand only ifa > .

Consider the stochastic k-simplex

k{qlq>-_O, ql’=l }
(where 0 (0, 0)) of the k-dimensional Euclidean space . Geometrically, K
has dimension k 1, being a subset in the positive orthant of the (k )-dimen-
sional hyperplane

k-={qlql’= 1}
contained in K. For a set A denote by { A its convex hull. Let q(t) rT(t)/T(t) be
the relative structure of the system at time and qr n-r / / T, r O, 1, d 1.
Denote by &C’r(d) the set oflimiting distributions qr, obtained as the vectors ofthe sequence
po(i), 0, 1, d- 1, are varying over k, for r 0, 1, d- 1. From (2.10)
and Lemma 2.2,

.qr(d){qrlqr=qrQ(r+ 1,d+r),qrk}, r=0, 1, ,d- 1.

The following result determines these sets.
THEOREM 2.2. As the sequence of vectors, po( i), O, 1, d- 1, varies over, the set .r(d) of limiting distributions qr is that subset of characterized by

the property

(2.22) q’r(d)=- {qrlqr>=qrP(r+ 1,d+ r),qrr},
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whereas the boundary of.q’r( d) is the convex hull ofpoints with vertices ofthe normalized
rows of

[I-P(r+ 1,d+ r)] -, r=0, 1, ,d-1.

Proof. Since qr is the left normalized eigenvector of Q(r + 1, d + r) corresponding
to the eigenvalue 1, from (2.3) we get

d+r

(2.23) qr=q II [P(i)+p+ l(i)’po(i)l
i=r+l

where

=qP(r+ 1,d+r)+x(d),

2a-ld-I
x(d)=q , I-I Sij(J) >=0, r=O, l, ,a- l,

i=1 j=0

with So(j) P(j), &(j) Pk+ l(j)’Po(j), j O, 1,..., d- 1; and the sequence
of indices io, i,..., ia- is evaluated from the binary representation of the index i.
Thus (2.23) implies (2.22). We next determine the boundary of (2.22). The matrix
P(r + 1, d + r) is substochastic, so that [I- P(r + 1, d + r)] is nonnegatively invertible.
From (2.23) we get

(2.24) qr=xr(d)[I-P(r+ 1,d+r)] -1, r=0, 1, ,d- 1.

By setting/z, (d) ei[I- P(r + 1, d + r)]-1 ’, where e; is the row vector with in the
ith position and 0 elsewhere, (2.24) becomes

ei[I-P(r+ 1,d+ r)] -qr x(d)ri(d)
i= Iri d)

where x(d)u (d) >- 0, 1, k, and from (2.24), Y. ik= X, (d) U, (d) 1, r 0,
1, d 1. Thus for a given sequence Po(j), j 0, 1, d 1, the vector qr has
been represented as a convex combination of {u(d)-ei[I- P(r + 1, d + r)] -,

1, k}, r 0, 1, d- 1. As the vectors Po(j),j 0, 1, d- range
over , qr ranges over all points in the convex hull with vertices ofthe normalized rows
of I P(r + 1, d + r) -1, r 0, 1, d 1. Suppose conversely that tr is an element
of c{t(d)-lei[I- P(r + 1, d + r)] -1, 1, ..., k}. Then there exists a set of
(nonnegative) weights fr(d) If (d), f(d) ], f(d) 1’ 1, such that

k ei[I-P(r+ 1,d+ r)] -1

i(d) r=O, 1, ,d- 1.
= z, (d)

By setting y(d) fri(d)/u(d) > O, 1, ..., k, andyr(d) [y(d), ..., y[(d)],
we get

4[I-P(r+ 1,d+ r)] yr(d)>-O

and thus (2.22) is valid, i.e., r E r(d) for r 0, 1, d 1. if3

3. Transient behaviour within the cycle. In this section we investigate the transient
behaviour of the system during the period of a cycle with respect to stability and quasi
stationarity. These are two concepts of central importance in the study of populations
(see, for example, Feichtinger (1976), Vajda (1978), Bartholomew (1984), Bartholomew
and Forbes (1979), and Vassiliou 1981 ), (1984)). In what follows, for an NHMS in
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discrete time that undergoes a cyclic behaviour, we are going to identify those quasi-
stationary structures that are stable. This type of characterization was first addressed in
Gerontidis (1990a) for the system with given input, with time-dependent growth factor
under the continuous time formulation.

DEFINITION 3.1. An NHMS is a-stable during the sth cycle for s 0, 1, ..., if

(3.1) (sd+r/ 1)=a(sd+r), r=0, 1, ,d- 1,

where a is the stable growth factor per unit time.
DEFINITION 3.2. An NHMS under cyclic behaviour ofperiod dhas a quasi-stationary

(or maintainable (Forbes (1971 ))) relative structure q during the sth cycle for s 0,
1, if

(3.2) q(sd+r)=q(sd), r=0, 1, ,d- 1.

If a structure ff(sd + r) is stable at the sth cycle, it is also quasi-stationary since

ff(sd+ r+ a(sd+ r)
(3.3) q(sd+ r+ q(sd+ r),)=ff(sd+r+l)l’ aff(sd+r)l’

for r 0, 1, d- 1, s 0, 1, .... Conversely, the quasi-stationarity property does
not necessarily imply the stability of ff(sd + r) in the sense of( 3.1 (Feichtinger 1976 )).
It is thus ofinterest to characterize stability in quasi-stationary NHMS, which undergoes
a cyclic behaviour. The following theorem is the main result of this section.

THEOREM 3.1. An NHMS that undergoes a cyclic behaviour ofperiod d has an a-

stable structure during the sth cycle, s O, 1,
(i) For a > 1, ifand only if it is quasi-stationary with initial structure given by

(3.4) n(0) M(O)po(O)[aI-Q(O)] -1

and expansion sequence oftheform

(3.5) M(sd+ r) M( r)otsd,

where

(3.6) M(r)=M(O) w(O)olr
w(r)

with w(r) po(r)[aI- Q(r)]-ll ’, r 0, 1, d- 1, andM(O) a given constant.
(ii) For a 1, if and only if M(r) 0 and if(r) is the left eigenvector of Q(r)

corresponding to the eigenvalue 1, for r O, 1, d- 1.
In proving Theorem 3.1 we need the following lemma.
LEMMA 3.1. For a quasi-stationary NHMS undergoing a cyclic behaviour ofperiod

d, relations (3.4) and (3.5) are equivalent to

(3.7) (sd+ r)=M(r)asdpo(r)[aI--Q(r)]-l,

whereM(r) is as in 3.6 with a > 1,forr=0, 1,...,d- 1, s---0, 1,..-.
ProofofLemma 3.1. Let (3.7) hold; then by setting s 0 and r 0, we get (3.4).

Since the system is quasi-stationary from (3.7), we have

(3.8)
po(r+ 1)[aI-Q(r+ 1)] -1 po(r)[aI-Q(r)] -1

po(r+ 1)[aI-Q(r+ 1)]-11’ po(r)[aI-Q(r)]-ll
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for r 0, 1, d- 1, and from (2.1) and (3.5)-(3.8),

M(sd+ r)po(sd+ r)

rT(sd+ r+ )- ff(sd+ r)Q(sd+ r)

M(r+ 1)aSCpo(r+ 1)[I-Q(r+ 1)]-’

M(r)Sapo(r)[cd- Q(r)] -IQ(r)

po(r+ 1)[cI-O(r+ 1)]-1
M(O)w(O)osa+r o

w(r+ 1)

w(O) +M(O)
w(r)

o rpo (r).

P(r)[cI-Q(r)]- }w(r)
Q(r)

Postmultiplying both sides by 1’ together with (3.6), we get (3.5). The converse, i.e.,
that (3.4) and (3.5) imply (3.7), can be proved by induction. []

Proofof Theorem 3.1. (i) Assuming stability from (2.1) and 3.1 ),

(3.9) (sd+r)=M(sd+r)po(r)[I-Q(r)] -1.

By setting r 0 and s 0 in (3.9), we get (3.4). Combining (3.1) and (3.9) we have

M(sd+ r+ )po(r+ )[cI-Q(r+ )]-1 =M(sd+ r)po(r)[cI-Q(r)] -.
Postmultiplying both sides by 1’ gives

w(r)
M(sd+r+l)=cM(sd+r), r=0,1 d-1 s=0,1

w(r+ 1)

from which (3.5) follows, by means of (3.6).
Assume now that the system is quasi-stationary and that (3.4) and 3.5 both hold.

Then by Lemma 3.1, relation (3.7) is also valid, giving

ff(sd+ r)[ aI- Q(r)] M( r)a*apo( r)

M(sd+ r)po(r),

from which we get stability.
(ii) The proof in this case is similar to that in Feichtinger (1976) and is omitted

here. rq

4. Ergodic cyclicity in continuous time. In this section we are going to develop the
continuous time analogue .of the discrete time result derived in 2. For an NHMS
in continuous time (Gerontidis (1990a)), define r0(t) to be the intensity of transition
from grade to j, for i, j 1, k and in matrix notation R(t) [rij(t)]. Also let
rk + (t) rl,k + (t), r, + (t) be the row vector of loss intensities from the vari-
ous states. Then zig(t) rib(t) + ri, + (t)po(t) is the total force of an to j transition
(of any kind) and

(4.1) Z(t)=R(t)+ r+ (t)’po(t)

is the intensity matrix of the associated nonhomogeneous Markov replacement pro-
cess with all row sums equal to zero. We assume that for any >= O, f zii(11) dH <, 1, k, (Iosifescu (1980)) and sup { IIz(t)ll, 0 -< < } < . Denote by
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Q(s, t) the stochastic probability matrix associated with Z(t), having the product inte-
gral representation

(4.2) O(s,t) I-[ [I+Z(x)dx].
X=S

T(t) is now a given continuous function of time; define M(t) dT(t)/ dt to be the rate
ofincrease (expansion) ofthe system. For an expanding system following the conditional
argument described in Gerontidis (1990b) for the homogeneous, case, we can show that
if(t) and V(t) satisfy the integral equations

(4.3)

and

if(t) =n(0)Q(0,t)+ M(s)po(s)Q(s,t) ds

V(t) Diag {ff(t)}-Q(O,t)’Diag {n(O)}Q(O,t)
(4.4) f0 M(s)Q(s,t)’po(s)’po(s)Q(s,t) ds.

DEFINITION 4.1. An NHMS in continuous time undergoes a cyclic behaviour with
period - > 0, if and only ifR(t + -) R(t), rk+l(t + ’) rk+(t), and po(t + ’)
po(t) for any >_- 0 and some real - > 0, called the period of the cycle.

For a system in continuous time undergoing a cyclic behaviour, from (4.1) we get

Z(t+-)=R(t+-)+ r+ (t+z)’po(t+-) Z(t)

and

(4.5)
OQ(O,t + ’=) Q(O,t + -)z(t).

Ot

Since Q(0, t) is also a solution of (4.5) the theory of differential equations with periodic
coefficients (see also Gerontidis (1990a)) implies

(4.6) Q(O,t + )= Q(O, -)Q(O,t)

and

(4.7) Q(O,n-)=Q(O,-) n.
Defining

[I-Q(0,-)]"
B=-- =-ln Q(0,-),

=1

where In (.) is the logarithm matrix function (Cuthbert (1972)), we get that

(4.8) C(t) exp (-tB)Q(O,t)

is nonsingular, stochastic, and periodic of period -, with the property C(0) C(z) I.
From the Chapman-Kolmogorov equation, we have

Q(O,h + t’) Q(O,h)Q(h,h + t’)

and for h + t’, this is

(4.9) Q(h,t) Q(O,h)-lQ(O,t).
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Theorem 1.4 in Dollard and Friedman 1984, p. 9) states that the matrix Q(0, h), 0 -<
h =< t, is nonsingular; thus Q-(0, h) always exists. From (4.8) we get that

(4.10) Q(0, t) exp (tB)C(t).

Substitution of (4.10) into (4.9) gives

(4.11) Q(h,t)=C(h) -1 exp {(t-h)B}C(t).
Define Q(0, z) to be the "cycle matrix." The following lemmas are the continuous time
analogues of Lemmas 2.1 and 2.2.

LEMMA 4.1. For any 0 <= h < < it holds that

(4.12) Q(h,t)=O(x,r)Q(O,r)t(t-h)/J-Q(O,r),

where 0 <= x, r < r, and [. is the lowest integerfunction.
Proof. Without loss of generality, let h mr + x and sr + r, for 0 =< x, r < r,

m, s 0, 1, m < s. Using (4.7) and (4.11 we get

a(mr+x, sr+r)=Q{mr+x,(m+ 1)r}a{(m+ 1)r, sr}a(sr, sr+r)

=C(x)-l exp {(r-x)B} exp {(s-m-1)rB} exp(rB)C(r)

O_.(x, T)Q(O, T)s- m- 1Q(0, r). [-1

LZMM, 4.2. If Q(O, r) is strongly ergodic with left normalized eigenvector u(O)
corresponding to the eigenvalue 1, then

u(r)=u(O)Q(O,r)

is the left normalized eigenvector ofQ(m- + r, sz + r) and

(4.13) lim Q(mz+x, sz+r)=Q(x,-)l’u(O)Q(O,r)= l’u(r)

uniformly in x, O =< x < r < z, m, s O, 1,...,m<s.
The following theorem characterizes cyclic strong ergodicity in NHMS in continu-

ous time.
THEOREM 4.1. Consider an NHMS in continuous time such that the vector ofmeans

and the covariance matrix satisfy the integral equations (4.3) and (4.4), respectively. Let
us also assume that the system undergoes a cyclic behaviour with period - > 0 and that
limt-. T(t) T < and M(t) is nonnegative and monotone nonincreasing. If
Q(O, -) is strongly ergodic with left normalized eigenvector u(O) corresponding to the
eigenvalue 1, then whatever the initial distribution,

lim ff(sz + r)= r((X3 )-’- Tu(r)

and

lim V(s-+r)= Vr() T[Diag {u(r)}-u(r)’u(r)],
S--3

where

u(r)= u(O)Q(O,r), 0=<r<z.
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Proof. We provide an indication of the proof. Let sr + r and denote by W(t)
the integral of (4.3). The cyclic behaviour of the system together with (4.13) implies

lim W(t)

s-olim W(sr + r)= Jirn_. M(x)po(x)Q(x, sr + r) dx

=Jirn M(mr+x)po(x)Q(x,r)Q{O,(s-m- 1)z}Q(0, r) dx
m=0

(4.14) + lsirn M(sr + x)po(x)Q(x,r) dx

rsl sl M(mr +x)Q(O, "1") s-m-1

--J_.irn
q=0

M(qr+x)po(x)Q(x,r)
m=0 S-oM(qr+X)q Q(O,r) dx

Proof. From (4.1) and (4.2) we get

r+r

]-i {I+R(t)dt} -1,
t=r

{ T- T(0)} u(r).

The rest of the proof follows from that of Theorem 2.1.
Remark 4.1. Relation (4.14) is a multidimensional generalization ofthe key renewal

theorem result in a cyclic environment.
Let &t’(r) be the family of limiting distributions q(r) rTr(
THEOREM 4.2. (r) is the set characterized by

{
r+r

,(r)-- q(r)lq(r)>-q(r) 1-I [I+R(t)dt],q(r)
t=r

where

moreover, r( r) is the convex hull ofpoints with vertices ofthe normalized rows of

O<=r<r.

r+r

q(r)=q(r) I-I [1+ {R(t)+rk+ l(t)’po(t)}dt]
t=r

r+r

=q(r) I] [I+R(t)dt]+y(r),
t=r

r+r

I-I [I+R(t)dt]
t=r

is substochastic and yr( r) >= O, 0 <= r < r.

5. Rate of convergence to the cyclic distribution. In this section we will investigate
the important question ofthe rate at which the system converges to the cyclic distribution.

M(mr+x)po(x)Q(x,r)l’u(O)Q(O,r) dx= M(x) dxu(r)
=0
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In fact, we intend to provide conditions under which if(t) and F(t) converge to their
limits exponentially fast. Rates of convergence for the first and second central moments
of the grade sizes for the discrete time case have been studied in Vassiliou and Tsaklidis
(1989), whereas in continuous time, the strongly ergodic case is treated in Gerontidis
and Vassiliou (1990).

DEFINITION 5.1. The matrix A (t) converges to the limit matrix A exponentially
fast, if there exist constants c > 0 and > 0 such that

IIA(t)-AII <c.exp (-/3t), t>=0.

The following lemma provides conditions on the transition matrix of a cyclic con-
tinuous time Markov process to converge to its limit exponentially fast.

LEMMA 5.1. Consider a cyclic nonhomogeneous Markovprocess with intensity matrix
function Z(t) such that Z(t + r) Z(t) for some r > 0 and any >= O. Assumefurther
that Q(O, r) is strongly ergodic with limit matrix Q*. Then there exist constants c > 0
and > 0 such that for any 0 <= h < <

(i) Ifh [h/r]z, then

]lQ(h,t)-Q*Q(O,t-[t/r]r)]l <c.exp {-[(t-h)/r]r}.
(ii) Ifh > [h/z]r, then

IIQ(h,t)-Q*Q(O,t-[t/r]r) < c.exp {- X([(t- h)/r]- )r},
where [. is the lowest integerfunction.

Proof. (i) Supposethath=mzandt=sz+r, 0 =< r< z, m, s 0, 1,..-,s>=
m. Since Q(0, z) is strongly ergodic, there exist constants c > 0, > 0 such that

IlQ(mr, sr + r)-a*Q(O,r)]l IIa(mr, sr)-Q*llllQ(O,r)ll(.1)
< c .exp {- X(s- m)r}.

(ii) Without loss of generality, let h mz + x and sz + r, for 0 =< x, r < r, m,
s 0, 1, s > m. From (5.1), since Q* is a row constant matrix, we get

[IQ(mr+x, sz+r)-Q*Q(O,r)[I <- [IQ(x,r)IIl[Q{(m+ 1)r, sr}-Q*[[llQ(O,r)[I

< c.exp {-(s-m- 1)r}.
Rewrite (4.4) by using double subscripts and setting the elements of V(t) in vector

form as follows

v(t) ff(t)J- n(0)J{ Q(O,t) x Q(O,t) }(5.2)

M(s){po(s)po(s)} {Q(s,t)Q(s,t)} ds,

where v(t) is a k-vector corresponding to V(t), po(s) po(s) is the k-direct product
vector and Q(s, t) Q(s, t) is the k k-direct product matrix as defined in Peace
1965, 19. 322). Jisak k--matrix, the ith row ofwhich has in the {(i- )k + i}th
column and zeros elsewhere. Postmultiplying a k-vector by J has the effect of expanding
it to a k-vector by inserting zeros in positions labelled (i, i’) for which 4 i’. Note that

JII 1o We shall also make use of the following norm properties.
(i) p0 po po =< 1, Po stochastic vector.
(ii) Q Q Q* Q* --< 2 Q Q* II, Q, Q* stochastic matrices.
We now provide the main result of this section, which characterizes exponential

convergence of if(st + r) and v( sr + r), 0 <-_ r < r.
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THEOREM 5.1. Assume that for an NHMS in continuous time that undergoes a
cyclic behaviour with period - > O, (t) and v(t) satisfy the integral equations (4.3) and
(5.2), respectively. Assumefurther that

(i) Q(O, r) is strongly ergodic with limit matrix Q*.
(ii) M( t) is nonnegative and limt M(t) 0 at an exponential rate.

Then if(st + r) and v(sz + r), 0 <= r < r, converge to their limits exponentiallyfast.
Proof. There exist constants c > 0, u > 0 such that for any >= 0,

(5.3) IM(t)] <c exp (-t).

Let sz + r. Since Q(0, z) is strongly ergodic with limit Q*, by Lemma 5.1 we can
choose constants Co > 0 and 0 < < u such that

(5.4) IIQ(m-+x,s-+r)-Q*Q(O,r)ll<coexp{-(s-m-1)’}.

The cyclic behaviour of the system together with 5.3 ), (5.4) implies

(.)

, M(mr+x)po(x)Q(mr+x, sr+r) dx+ M(sr+r)po(x)Q(O,r) dx
=0

M(mr+x)po(x)Q(x,r)Q*Q(O,r) dx
=0

=< Z M(m- + x) lll Q(mz + x, s" + r) Q*Q(0, r)II
m=0

+ IM(mz+x)llla*Q(O,r)ll dx
m=s

+ M(s + x) dx < c* (r) exp (- Xs-),

where

c*(r) =--c[, Co [1
{ 1- exp(-,-)}_exp{(- )-}

exp (,-)+ 2 exp( ur)] > 0, 0<r<-.=

From (5.3) we get f M(u) du < c/ so that there exists limt T(t) T, say, and
from Theorem 4.1, lims i(s- + r) ffr( ), 0 _--< r < ’. Finally, from (5.3)-(5.5),

(5.6) ff(sz + r)-/r( )ll < c(r) exp (- sz),

where c(r) {c011n(0)ll / c*(r)}, for 0 =< r < z. From (5.2), (5.4), (5.5), and (5.6)
we get

v(sr + r) vr( )1[ < 3 c(r) exp Xs- ), 0 =< r < -. []

Remark 5.1. The assumption < u has for ff(sz + r) and v(sz + r), 0 -< r < -, the
effect of following the rate by which Q(0, r) converges to Q*. Accordingly, the best
possible rate of convergence of the strongly ergodic matrix Q(0, -) to its limit Q* is
given by the second largest eigenvalue o of Q(0, -) (Isaacson and Luecke (1978)).

6. Two illustrative examples. In this section we illustrate the previously derived
theoretical results with two examples from the literature on manpower planning. Consider
a hierarchical manpower system with five grades, grade 5 being the top and grade the
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bottom. Assume further that the system undergoes a cyclic behaviour with period d 3
and basic data

0.4 0.3 0 0 0
0 0.5 0.2 0 0

e(3t) 0 0 0.6 0.2 0
0 0 0 0.7 0.1
0 0 0 0 0.9

0.5 0.2 0 0 0
0 0.6 0.2 0 0

P(3t+l)= 0 0 0.7 0.1 0
0 0 0 0.7 0.2
0 0 0 0 0.9

0.5 0.3 0 0 0
0 0.5 0.3 0 0

P(3t + 2) 0 0 0.6 0.2 0
0 0 0 0.7 0.2
0 0 0 0 0.9

for 0, 1, .... Then the three sets of limiting distributions &t’r(3), r 0, 1, are the
convex hulls of points with vertices Wrm, m, r 0, 1, 3, i.e.,

0.111 0.068 0.102)
0.166 0.127 0.190)
0.517 0.182 0.301)
0 0.446 0.554)
o o 1.ooo)

w(3) (0.582 O. 137
Wo2(3) 0 0.517

eo(3)__- c Wo3(3)=( 0 0
w(3)=( o o
w(3)=( o o

0.124 0.062 0.112)
0.170 0.112 0.200)
0.504 0.167 0.329)
0 0.456 0.544)
0 0 1.000

wl(3) (0.557 0.145
w(3)=( 0 0.8

e,(3)-- w,3(3)=( 0 0
w(3)=( o o
w(3) 0 0

0.127 0.066 0.111)
0.170 0.109 0.331)
0.499 0.170 0.331)
0 0.470 0.530)
0 0 1.000)

w(3) (0.569 0.127
w22(3) 0 0.543

&t,z(3)_-cg w3(3)=( 0 0
w(3)=( o o
w(3) o o

In continuous time, the internal transitions ofa hierarchical manpower system with
four grades may be modeled by the intensity matrix

o
R(t)=

0 0

0 0

0 0

3 sin2 0

-{l+sin2( t)} 2sin2( t)
0
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whereas losses can occur according to the wastage vector

rs(t)=[3cos2(t), 2 cos2 (t), cos= (t)’ cs2 (/1,.,t/j
which are periodic with period r 1.5. For a recruitment policy determined by po(t)
Po 1, 0, 0, 0), Z(t) is also periodic with the same period and Q(0, 1.5) is strongly
ergodic with left normalized eigenvector u(0) (0.404, 0.054, 0.176, 0.366). For an
initial structure n(0)=(950,650,300,100) and expansion given by M(t)=
100 exp (-2.5t), we have limt--,oo T(t) 2040. Applying Theorem 4.1 and simulating
the system, we found that whatever the initial distribution, n(t) and v(t) converge to
periodic limits with period r 1.5 and some limiting values:

o.o(C )= (824.9, 110.2,358.4,746.5),

ffo.3(o)= (877.7,277.8,261.8,622.7),

fro.6 (o) 306.1,618.6,407.2, 708.1 ),

rio.9(o) 90.6,362.1,615.8, 971.5 ),

ti.2(o )= (345.8,200.5,494.1,999.6),

and

Vo.o(O (491.4, -44.5, 144.9, -301.9, -44.5, 104.3, 19.3, -40.3, 144.5,

19.3,295.4, 131.1, -301.9, -40.3, 131.1,473.4),

Vo.3 (o)=(500.1,- 199.5, 112.6,-267.9, 119.5,240.1, -35.6, -84.8, 112.6,

-35.6,288.3, -79.9, -267.9, -84.8, -79.9,432.6),

Vo.6(o (260.2, -92.8, -61.1, 106.2, -92.8, 431.0, 123.5, -214.7, -61.1,

123.5,326.0, 141.4, 106.2, -214.7, 141.4, 462.3 ),

Vo.9(o (86.6, 16.1, -27.3, -43.2, 16.1,297.8, 109.3, 172.4, -27.3,

109.3,429.9,-293.3, -43.2,- 172.4,-293.3,508.9),

/)1.2(O (287.2, -34.0, -83.7, 169.4, -34.0, 180.8, -48.6, -98.2, -83.7,

-48.6,374.5, -242.2, 169.4, -98.2, -242.1,509.8),

with ff.5( rTo.0( and v.5 (oz) V0.o(C ). Thus the limiting first and second central
moments ofthe grade sizes are ofmultinomial type with size 2040 and probability vectors
u(r), 0 _-< r < 1.5.

Acknowledgment. The author would like to thank the referee for his constructive
comments, which improved the presentation on an earlier version of this paper.
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AND MINIMAL REALIZATIONS*
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Abstract. This paper presents the theoretical background relevant to any method for producing
a tridiagonal matrix similar to an arbitrary square matrix. Gragg’s work on factoring Hankel matrices
and the Kalman-Gilbert structure theorem from systems theory both find a place in the development.

Tridiagonalization is equivalent to the application of the generalized Gram-Schmidt process to
a pair of Krylov sequences. In Euclidean space proper normalization allows one to monitor a tight
lower bound on the condition number of the transformation. The various possibilities for breakdown
find a natural classification by the ranks of certain matrices.

The theory is illustrated by some small examples and some suggestions for restarting are evalu-
ated.

Key words. Lanczos algorithm, linear systems theory, tridiagonal form, minimal realizations

AMS(MOS) subject classifications. 65F15, 93B10, 93C75

1. Introduction and summary. No one has presented a finite algorithm that
is guaranteed to compute a tridiagonal matrix similar to an arbitrary given square
complex matrix while avoiding huge intermediate quantities. Section 2 presents a
brief sketch of the history of these attempts, along with a parameterization of the
possible tridiagonals.

This paper describes theoretical results that are relevant to any method for pro-
ducing a tridiagonal representation. In particular, the exceptional parameter values,
for which the reduction fails, fall into two classes that we call curable and incurable.
Cures come with acceptance of a block tridiagonal form. One impetus for this study
was the desire to explain the intriguing observation of Taylor, in his dissertation [26],
that incurable breakdown is a blessing in disguise because every eigenvalue of the
tridiagonal matrix at breakdown is an eigenvalue of the original matrix despite the
failure to find any invariant subspace. A satisfactory explanation comes from the
canonical structure theorem of linear systems theory and we thank J.W. Demmel for
pointing out that we had actually rediscovered that theorem. However the main goal
of this essay is to provide the "right" setting for discussing any attempt to produce a
stable algorithm for a tridiagonal representation.

Tridiagonal matrices are associated with three-term recurrence relations and with
systems of orthogonal polynomials. The literature on these classical topics is vast. An-
alysts have studied the moment problem, control theorists have studied the sequence
of impulse responses for time-invariant linear dynamical systems, and approximation
theorists have studied continued fractions. The focus of all these studies is quite
different from our goal of reducing a matrix to tridiagonal form but, as indicated
above, some of their results help us to answer our questions. To keep this essay to
a reasonable length, we have refrained from pointing out connections to the moment
problem and to orthogonal polynomials. However, the recent interest in polynomials

Received by the editors January 29, 1990; accepted for publication (in revised form) October
29, 1990. This paper was completed while the author visited the Numerical Analysis Group of the
Oxford University Computing Laboratory, Oxford, U.K. This work was partially supported by Office
of Naval Research contract N00014-90-J-1372.

Department of Mathematics and the Computer Science Division of the Electrical Engi-
neering and Computer Science Department, University of California, Berkeley, California 94720
(parlett@math.berkeley.edu).
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orthogonal with respect to an indefinite inner product and to the associated modified
moment problem can be thought of as an ascent of the same mountain range that we
approach, but by a different route. Matrix factorizations arrived late on the mathe-
matical scene but surely deserve a place alongside the traditional problems mentioned
above. A few recent references are [14], [3], [11], and [18]. We do point out some
connections with [14] in the final section.

Much of the theory is pure linear algebra and is independent of norms and angles.
For this reason, at the risk of seeming pedantic, we make a distinction between C.n
(complex column vectors) and its dual space (, of linear functionals on Cn (row
vectors). In this setting, the Gram-Schmidt (GS) process is seen as a method for
producing a basis in (n and a dual basis in C,n. This approach is standard in control
theory and although numerical analysts seem to favor the term bi-orthogonal over
dual, the notion of angle (and hence right angle) is not needed for theoretical purposes.
Nevertheless, a plain vector space is an inadequate setting for numerical analysis. A
norm is needed to distinguish bad bases from good ones. In 10 we show how to
monitor the condition number of the similarity transformation when Euclidean space
is an appropriate setting.

The perspective we have reached, after several revisions, is indicated in the follow-
ing synopsis of the rest of the essay. After a little history, 2 shows the representation
of the class of similar tridiagonals by vector pairs and also urges the use of a pair
(b, ), with symmetric tridiagonal and 2 diagonal, rather than a single matrix
-1. Section 3 presents the GS process, GS factorization, and a new extended
GS algorithm to overcome breakdown. Section 4 presents the basic ideas of systems
theory and the associated Hankel matrices H(1) and H(). The rank of H() and
those of related Krylov matrices give a nice characterization of the exceptional vector
pairs. That is the end of the preparation. Section 5 discusses triangular factorization
of Hankel matrices and the fundamental result for successful reduction: the three
pencils (Hn(1), Hn()), (B, In), and (n, n) are equivalent. Here B is the given n n
matrix. In different words this result says that tridiagonal reduction is equivalent
to the GS process applied to two Krylov sequences. The next two sections concern
failure. Section 6 presents Gragg’s result on block triangular factorization and men-
tions the interesting result of Kailath and his coworkers on Schur complements in
Hankel matrices. Section 7 explains Taylor’s observation and shows that incurable
breakdown at step j occurs only when (j, j) is a so-called minimal realization of
the transfer function associated with the "initial" vectors. Section 8 is a table that
summarizes the theory and 9 presents some small examples. Section 10 shows that,
with proper normalization, the matrix reveals the condition number of the trans-
formations. It follows that, in all cases, there is a straightforward algorithm that can
force stability and produce a block tridiagonal -1, each of whose eigenvalues is
an eigenvalue of B. This stable reduction is mentioned in 11, along with comments
of a practical nature that are inspired by the preceding theory. Section 12 puts the
results in perspective, makes connections with other approaches, and points to work
left undone.

Finally, we point out here that a straightforward attempt to explain breakdown
using the Jordan form of B becomes heavily burdened with irrelevant complications.
The geometric approach of the Kalman-Gilbert structure theorem provides just the
right level of abstraction; the controllable, observable subspace is easy to define and
all we need is its dimension. However, a direct attack on the breakdown problem
involves finding a basis for this subspace, explicitly or implicitly, and that can be
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very complicated.

1.1. Notation. With few exceptions we follow Householder notational conven-
tions: i,j,k, 1, m, n for indices; lower case greek for scalars; lower case roman for
column vectors; upper case roman for matrices; script upper case for vector spaces.

In addition,
C denotes the complex numbers, Cmxn the space of m x n complex matrices,
Cn CTM, C,n CXn.
If x 6 Cn then x denotes its transpose and x* denotes (), the conjugate
transpose of x.
The identity matrix In [el, e2,..., en], [en, en-1,’", e].
0 denotes the zero vector in Cn.
N denotes the set of natural numbers.
range (B) denotes the span of B’s columns.

2. Tridiagonal form: History and basics.
DEFINITION. A matrix is tridiagonal if the (i, j) entry vanishes whenever li Jl

>1.
A consequence of Galois’ theory [1] is that there is no finite algebraic procedure for

computing the eigenvalues of an n n matrix, real or complex, in the general case when
n _> 5. Since diagonal and bidiagonal matrices reveal their eigenvalues immediately,
the tridiagonal form is the most compact representation that can be expected from a
finite process invoking the four basic arithmetic operators and the extraction of roots.
It may turn out that this form is too sparse to be achieved in a stable way for the
more difficult cases. Nevertheless, there are infinitely many tridiagonal matrices in
the similarity class of a given matrix and a parametric representation of them is given
later in this section.

Here is a brief history of the search for satisfactory algorithms to reduce a ma-
trix by similarity transformations B --, SBS- to tridiagonal form. In [21] Lanczos
presented his method of "minimized iterations" that applied to real symmetric ma-
trices and self-adjoint linear operators. However, he also showed the natural gener-
alization to arbitrary square matrices and noted that this general process can break
down. Even the symmetric version was sensitive to the effects of roundoff error and
the nonsymmetric version received little serious implementation until the 1980s. In
1954, Givens presented a method for reducing a full n x n rel symmetric (or com-
plex Hermitian) matrix to tridiagonal form using plane rotations and fewer than n3

scalar multiplications. Attempts to generalize this method appeared in [4], [25], and
[21]. Demonstrations and explanations of their instabilities appeared in [28] and [23].
However the search lost its sense of importance in the early 1960s with the general
acceptance of the Householder/QR method [5], [6] as a fast, stable solution to the
nonsymmetric eigenvalue problem for dense matrices. The Householder reduction to
upper Hessenberg form (the (i, j) entry vanishes whenever i-j > 1) requires only
(5/3)n3 multiplications, and the QR phase that diminishes the subdiagonal entries
in positions (i + 1, i) requires about 8n3 multiplications in practice, though infinitely
many in exact arithmetic.

Now consider the fact that the fastest-known way to reduce a full matrix to
tridiagonal form (the Lanczos algorithm) requires little more than 2n3 multiplications,
if it does not break down. So the potential reduction in arithmetic cost from use of
tridiagonal rather than Hessenberg form is about 80 percent (10n3 to 2n3); in the
1960s a factor of 5 was significant. However, no stable version, one that is guaranteed
to avoid huge intermediate quantities, has been found.
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Circumstances have changed since the 1960s. Matrices are often larger and
sparser. New computer hardware has reduced the dominance of arithmetic opera-
tions in assessing speed and cost. Moreover, there are applications for the tridiagonal
form that are independent of the eigenvalue problem (see [27]).

Interest in finding better algorithms has revived in the 1980s and is nicely reviewed
in [7]. Attention has been concentrated on how to recover from breakdown and this
focus is of practical importance. Though breakdown (the vanishing of a denominator)
is rare, near breakdowns are not and they provoke instability. Remedies for breakdown
lead to remedies for instability.

Next we turn to the degrees of freedom present in the reduction to tridiagonal
form.

2.1. Diagonal scaling. If Q-1BQ T, a tridiagonal matrix, and if D is diago-
nal and invertible, then (QD)-IB(QD) D-TD is another tridiagonal matrix simi-
lar to B. T and D-TD are equivalent for theoretical purposes. Note that T(i, i) and
T(i + 1, i)T(i, + 1), i= 1,..., n are invariant under diagonal scaling.

2.2. Reduced matrices. A tridiagonal matrix is reduced if one (or more) of
its next-to-diagonal entries vanishes. Observe that an unreduced n n tridiagonal
T has the property that rank IT- I] can never drop below n- 1. It follows that
the eigenspace of each eigenvalue is one-dimensional. Such matrices are sometimes
called nonderogatory and this property is invariant under similarity transformations.
Consequently, a derogatory matrix (such as the identity I) can never be transformed
to unreduced tridiagonal form.

Derogatory matrices are not "difficult" in any practical sense but the parametric
representation of the tridiagonal forms does break down; a uniqueness property is
lost. The implication of this is that a large class of methods for reducing an n n
matrix are liable to terminate early, having found an invariant subspace, range (Q),
where

BQ1 QIT1, Q1 e CnXm, m < n.

There are infinitely many ways of adding more columns to obtain an invertible Q
(Q, Q2) and

Q-1BQ (To
where the may or may not vanish.

For the eigenvalue problem the occurrence of a split in T is an advantage. For
a theoretical discussion it is not unreasonable to stop with BQ1 QIT1 and regard
this as benign early termination. The possible continuation of the reduction is just a
new problem on a smaller space. This point of view will be taken in what follows.

Note that with a nonderogatory B the tridiagonal representation may split, but
for a derogatory matrix it must split.

2.3. Parametric representation. The following useful result is well known
and is not usually attributed to any one person. It is closely related to the implicit
Q theorem in [10].

THEOREM 2.1. If B Cx is similar to an unreduced tridiagonal T Cx,
i.e., if

Q-IBQ T,
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then Q and T are determined, to within diagonal scaling, by the first (or last) column
of Q and the first (or last) row of Q-1.

An equivalent form of this result is less well known despite the fact that it is more
elegant theoretically and offers practical advantages as well; see 10.

THEOREM 2.2. If B E Cnn admits a representation of the form

P*IQ 12 diag (wl,... ,0)n), 03 - 0, i 1,.--, n,

P*BQ unreduced tridiagonal,

with invertible matrices P and Q, then P, Q, gt, and are determined, to within
column scaling, by the first (or last) columns of P and Q.

Remark. By exercising the freedom to scale columns of P and Q, we can arrange
that

2(i, i + 1) 2(i + 1, i) +, i 1,..., 1.

Thus is symmetric but not necessarily Hermitian.
Remark. The connection between Theorems 2.1 and 2.2 is that

Theorem 2.1 shows that there is a mapping from the projective space, called
CIn-1 (R) C] n-1, of pairs of lines in Cn into the unreduced tridiagonals in the simi-
larity class of B. However, this mapping is partial; not all pairs yield an image. The
emphasis in 6-9 is on the characterization of the exceptional pairs.

If B is nonderogatory then the mapping is densely defined. Later sections
show that certain determinants depending on the pair must vanish if the pair
is exceptional.
If the pair (q, p) maps to T with ql q, Pl P then the same pair would
map to TI with qn q, Pn P, where is the reversing matrix,
(en, en-l,’’’, e2, el). The use of last columns instead of first columns leads
to a map that is isomorphic to the first and will not be mentioned again.
In the light of this parameterization we may distinguish a special class of
methods. The fixed start methods never change ql and Pl. This class is to
be distinguished from those methods that attempt to generalize the Givens
method or to reduce bandwidth and so change column 1 of the current Q and
P at later steps. Unfortunately, known generalizations of Givens reduction
and of bandwidth reduction are also plagued by breakdown and instability.
There is more than one member of the fixed start class because there are
various possibilities for the way in which the unique Q and P are built up.
A proof of Theorem 2.2 is given because it is constructive and introduces the
Lanczos algorithm [21], the earliest of the fixed start methods.

Proof of Theorem 2.2. Let

These tridiagonals are normalized by T(i + 1, i) 1.
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Since fl is invertible, by hypothesis, the governing equations may be rewritten

(2.1) BQ Q-I,

(2.2) P*B=a-IP*.

Knowledge of pl and ql yields directly

Wl pql 7 O, 0/1 pBql.

To start the construction of Q and P equate column 1 on each side of (2.1) and row
1 on each side of (2.2):

q2--q2 -Bq-q
031

P2 PlB Pl,

032 P2q2

0/2 p2Bq2,

are each determined by q and p.
Next assume that (ql,..., qj-1), (Pl,"" ,pj-l), 0/j-1, Wj_l, wj-2 are all known.

Equate columns j- 1 on each side of (2.1), rows j- 1 on each side of (2.2), and
rearrange terms to find that

are each determined by previous quantities. Hence, by induction on j, all columns of
Q and P are determined by ql and p.

A similar argument shows that qn and pn determine Q, P, and
The proof shows that (q,p) is an exceptional pair if and only if, for some < n,

031-bl P+q+ O.

If ql+l 0 and Pl*+l 0 then the algorithm may be continued by redefining ql+ to

be any vector annihilated by p,--. ,p, but not by pt*+, and setting (l + 1, l) 0.

Note that will no longer be symmetric and the dependence of qi, p, i > on ql

and p has been lost. However, the column space of [q,..., qt] is B-invariant.
If qt+l 0, pt*+ 0 but wl+ pt*+qt+ 0 then the breakdown is called

serious; see [29]. Clearly, there is no pair Q, P with the given ql and p that satisfies
both equations in Theorem 2.2. Local changes to pt*+l and qt+l will not suffice.

The important result is that the top unreduced submatrix of every T similar to B
is completely determined, to within diagonal scaling, by the pair of directions (q, pl).
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3. The two-sided GS algorithm. This section presents a familiar process in
an unfamiliar format in order to emphasize the fact that the GS process does not
require an inner product. The extended GS procedure (introduced below), though
natural, appears to be new.

Given a sequence (ul, u2, u3,...) in Cn and a sequence (v, v,, v,...) in the dual
space C.n of linear functionals on Cn, the GS procedure produces a new pair of se-
quences that form dual bases in the associated subspaces. However, in contrast to the
familiar form of the algorithm (when ui vi), two-sided GS can break down.

Two-sided GS Algorithm: (GS)
Input: uiECn n i=1 m,ui O,i 1,...,m;vi C.,vi 0",
Output:

N and qi Cn,pi* C.,n i 1,...,,1 (1 <_ m) satisfying
Pqk 0, i k, and p*qi wi 0, i 1,..., 1.

*(if < m) p+l, q+ with P+lq+ 0. Both, one, or neither of
*P+ and q+ may vanish.

Initialization: "= 1, invar false;
repeat

/:=/+1;
q+l := u+ -i=1 qi(piu+)/wi,

v*P+I V+l -li=l 1+1qi)Pi
$ 0if q+ 0 or p+

then invar :: true; W+l 0;
else w+ :: P+lq+l

until + 1 m or W+l 0

Remark 3.1. In practice, when norms are defined on C’ and C,n, it is advisable
to normalize the output vectors but this feature is not theoretically necessary.

Remark 3.2. If either q+ or P*+I vanishes (or both), we say that the break-
down is benign, not serious. GS may be continued by choosing as q+l any vector

but when neither vanishes wespan{u}=1 annihilated by p,. ,p but not p+l,
have serious breakdown at the end of step I.

The results of the GS will be expressed compactly in terms of the following n
matrices:

Q := [ql,’", q],

together with unit triangular matrices

e d

L [/ij] E C

O

rij 1,

i>j,

i=j,

i<j,

i>j,

i =j,

i<j.
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These definitions give the GS factorizations

(3.1) U QR, V* LP
subject to

P*Q1 diag(wl, , wl) 121.

In practice the modified GS process (MGS) is preferred to GS but MGS is not
appropriate in our application in 5.

It is useful to represent the output quantities Qg, P* in a way that is independent
of the algorithm. There is a unique (oblique) projection Hk onto span(u1, u2,..., uk)
"along" span(v, v,..., v), for each k _< 1. It is readily verified that a convenient
matrix representation is

II Q(PQ)-P.

Moreover,

qk+ (I- Hk)uk+, p+ v+(I- H).

3.1. Extended GS. It is possible to continue GS despite some serious break-
downs by working with several vectors at each step. This has useful applications.
The array dim will hold the dimensions of the diagonal blocks of while b counts the
blocks and counts the columns in P and Q.

Initialization: b := 0; := 0; dim(0) := 1; invariant := false;
repeat

:= + dim(b); b := b + 1;
b-1

qb :-- u v=lQPu;
b-1p :-- v =v

if qb 0 or p 0* then
invariant := true; dim(b) := 0;

else
5 :- 1; Qb :-- (qb); Pb := (Pb);
while b :-- PQb is singular and + 5 _< rn do

b-1:= u+ =Q;P2u+;

*" v+ -Q := [Q, ];
p := [p, ];
5"=5+ 1;

dim(b) 5;
until + dim(b) > m or invariant

This algorithm yields decompositions like the one in (3.1) with Re and L trian-
gular, but now the scalar wi is replaced by a special Hankel matrix i whenever there
is a breakdown. There is more on this in 6.

4. Linear systems and their Hankel forms. Here we describe those parts
of systems theory that are germane to the reduction to tridiagonal form. Associated
with any triple (B,q,p*) with B E C’,q E C,p* C. is a "dynamical system"
that evolves according to the linear laws
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(4.1) &(T) Bx(’r) + qV(T),

where X(T) E Cn represents the state of the system at time T, is its time derivative,
and V(T) (read as upsilon, the greek u) represents a scalar control (or input) variable.
Without loss of generality, it is assumed that x(0) 0. Normally systems theory is
set in Rn, not Cn, but the extra generality comes without penalty. Our system is
called a single input, single output, time-invariant system. An excellent introduction
to the subject is [18].

It is assumed that the state x is only knowable indirectly through the output
function /and the input function v. The connection between the v and the /is most
simply expressed via the Laplace transform

](a) e--f(T)dT,

(4.4) (a) F(a)9(a)

where F is the transfer function

(4.5) F(a) := p*(aI B)-lq

(4.6) E(p*Bkq)/ak+l.
k=O

The series representation is convergent for lal large enough and the coefficients
{p*Bkq}=o are called the Markov parameters or impulse responses of the system.
The triple (B, q, p*) is called a realization of F. In principle, F can be recovered from
complete knowledge of just the input and the output functions via (4.4).

Systems theory examines various questions concerning v,x, and / but the one
that is most relevant for tridiagonalization is the determination of all the realizations
(B, q, p*) that yield a given rational function F or, equivalently, its Markov parameters.
This realization problem cuts across our reduction problem (where B is given, not F)
but the connection is nevertheless illuminating.

The Cauchy-Binet theorem applied to aI- B gives

(aI- B). adj[aI- B] det(aI- B). I

where adj[M] stands for the classical adjugate matrix made up of (n- 1) x (n- 1)
cofactors of M. Thus for a B’s spectrum,

F(a) p* adj[aI B]q/XB(a

where XB(a) is the characteristic polynomial of B. Since both numerator and de-
nominator are polynomials in a, cancellation of common factors is possible and, in
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that event, not every eigenvalue of B will be a pole of F. Thus it is possible to have
a triple (B’, q’, p’*), with B’ E CTM and m < n, giving rise to the same transfer
function F as does (B, q, p*).

DEFINITION. A minimal realization (B, q, p*) of F is a realization in which B has
minimal order (or dimension).

This minimal order is called the McMillan degree of F and of the Markov parame-
ter sequence p*Biq. Clearly, it is of interest to determine the minimal realizations and
one way is to associate with a sequence of Markov parameters the Hankel matrices
(and their quadratic forms):

(4.7) HIk) :- *Bk+i+j-2q] (i,j 1,...,/)

(4.8) #k+l #k+2 (i,j 1,’’’, 1),
#k+2

(4.9) H(k) H).

The Hankel property is that the (i, j) entry depends only on i+j. It turns out that
the rank of H() is the McMillan degree of F. For tridiagonalization, an unfortunate
choice of ql q and pl p may yield rank H() < n but that is not the sole cause of
breakdown in the tridiagonalization process.

The controllable subspace and the observable subspace of the system and the
canonical structure theorem will be introduced in 7. We mention in passing that
systems theory also considers the partial realization problem that arises when only
the first m Markov parameters are known. See [13] for an exhaustive treatment of
this topic.

5. Hankel factorization; equivalent pencils. The two Hankel matrices Hn()
and H(1), defined in the previous section, play a leading role in the analysis of an
attempted reduction of B to tridiagonal form. That is the message of the equivalence
theorems in this and later sections. To discuss the factorization of Hn() and Hn(), the
following four Krylov matrices are needed:

Km(q,S):= [q, Bq,.. ",Bm-iq] C_,nxm.
K(q, B) := K(q, B), the controllability matrix.
Km(p*,B):= Km(p,B*)*.
K(p*, B) := Ko(p*, S), the observability matrix.

Next we list some elementary but fundamental facts.
LEMMA 5.1. For any j N,

H) Km(p*,B)BJKm(q,B),
H() K(p*, B)BK(q, B).

Proof. The (i,k) entry on each side is (p*Bi-1)BJ(Bk-lq).
Note that H(J) is a submatrix of H().
COROLLARY 5.2.

rank [H(j)] _< rank [H()] _< min(rank [K(p*, B)], rank [K(q, B)]} _< n.
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LEMMA 5.3. range[K(q, B)] is the smallest B-invariant subspace of Cn that con-
tains q. range[g(p*,B)] is the smallest B-invariant subspace of Cn. that contains
p*.

Proof. If , is B-invariant and contains q, then it must contain Bq, B(Bq), etc.
Hence, range [g(q,B)] C ,. Moreover,

B range [g(q, B)] range [Bq, S2q, .] c range [g(q, S)]

and so range [g(q, B)] is invariant. Similarly range [g(p*, S)] is invariant too.
Together with n, the following three numbers furnish a complete classification of

the various cases in the mapping (q, p*) -- (,
DEFINITION.

l:--min{j" Hlis singular},

r :- rank [H()],
m :- min{rank[g(p*, S)], rank[g(q, S)]}.

The corollary given above and these definitions yield

l<r<m<n.

It is strict inequalities that lead to early termination in tridiagonalization. An-
ticipating later sections, we can summarize the situation.

m < n yields benign early termination with an invariant subspace. Tridi-
agonalization may be continued in infinitely many ways.
< r m yields serious breakdown that can be cured by permitting block

tridiagonalization.
r < m yields incurable breakdown but a minimal realization of the transfer
function (see 7).

THEOREM 5.4 (Hankel factorization). Let H() H() (B, q, p*). The two-sided
GS process applied to the columns of K(q,B) and the rows of g(p*,B) yields a whole
number and rank matrices Qz, P, and a unit lower triangular matrix Lz such
that

and

Kt(q, B) QtL, Kt(p*, B) LtP*,

H) LzttL,
:= 5*Qt diag(wl,..., wg),

In addition, GS produces ql+l, Pl+l satisfying W/+I Pl+lql+l O.
Proof. Algorithm GS (see 3) applied to K(q,B) and K(p*,B) yields Qz, Pt so

that

Kt(q, B) QtRt, Kz(p*, B) LtP
where Rt is unit upper triangular. By Lemma 5.1

H) gt (p*, B)Kt (q, B)
LzPQtRt
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By the LDU theorem L, fit, R are unique. By symmetry of H), R L. By
definition of in GS, w+l 0, wi - 0, i < 1. [:]

LEMMA 5.5 (tridiagonal form). With the notation of the Hankel factorization
theorem, := P*BQ is symmetric, tridiagonal, and unreduced.

Proof. The characteristic property of Krylov matrices and the output of the GS
process is that, for j < l,

qj e range [Kj(q,B)], qj range [Kj_I (q, B)].

Hence

Bqj e B range [Kj(q, B)] c range [Kj+t (q, B)],
Bqj B. range[Kj_l(q,B)] span(q)= range [Kj(q,B)].

Furthermore, p annihilates Kj+(q,B) for all i > j + 1 and so p annihilates
column j of BQt for all i > j / 1, and so the (i, j) entry of P{*BQt vanishes for
i-j > 1. Similarly, for < l, pB E range [Ki+I (p*, B)] whose null space contains qj
for all j > i + 1. Hence the (i, j) entry of PBQt vanishes for j -i > 1.

It remains to show that is unreduced. By the minimality property of the GS
algorithm does not break down at step j for j < I. Thus Bqj has a nonzero compo-
nent 7 in qj+t when expanded in terms of (qt,q2,"" ,qj+). Since p+t annihilates
ql,q2,’",qj but not qj+, it follows that

Pj+IBqj Pj+lqj+I’Y Wj+17 # O,

By similar arguments,

j<l.

pBqj+l P;+lqj+l )j+l # O, j<l.

First we consider the generic case when K(q,B) and K(p*,B) have full rank n
and the associated system (B, q, p*) is said to be controllable and observable.

THEOREM 5.6 (equivalence theorem, version 1). /f invertible H(n) (B, q,p*) per-
mits triangular factorization

H(no) Lnf]nLn,

then the following pencils are equivalent:

(H(,), H(n)), (B, I), (,,
Here n is the symmetric, unreduced, tridiagonal matrix

n L;1H(n1)n PS(n.

The first and third pencils are symmetric but not necessarily Hermitian.

In systems theory these generic H() are called strongly regular.

Proof. By Lemma 5.1, H() Kn(p*, B)Kn(q,B) and if either Krylov matrix

were rank deficient, then so would be their product. Since H() permits triangular
factorization,
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Thus all the transformation matrices that appear below are invertible:

Hn(1) AHn() Kn(p*,B)(B- AI)Kn(q,B) (Lemma 5.1)
-LnP(B-,I)Q,Lt (GS factorization)
Ln(tn An)Ltn.

Theorem 5.4 yields PQn fn =diagonal, Lemma 5.5 yields PBQn n
tridiagonal, unreduced. Thus Hn(1) LnTnLn and must be symmetric. [:]

Since the pencils (B, I) and (n, fn) are equivalent, flbn has the same spectrum
asB.

To complete the circle of ideas it is necessary to identify the matrix Q, coming
from the GS factorization Kn(q,B) QnLtn with the matrix Q generated in the
proof of Theorem 2.2 solely from the property of producing a tridiagonal form BQ
Q(f-l). This will show that the result in Theorem 5.6 is categorical; that is,
Hankel factorization, explicit or implicit, is the only mechanism for producing the
desired (2b, ft) representation. In other words,

tridiagonal reduction _= Krylov matrices -b GS.

The identification is an immediate consequence of the fact that Qej+ Cj(B)q
where is a monic polynomial of degree j. To see this, note that BQ Q(f-)
implies that

Bq q+ q- q((j,j)/wj) / qi_(w/w_ ), j 2, n 1.

Thus, if qj Cj_ (S)ql, qj- -2(S)q, then q+l (B)q, for j 2,..., n- 1.
But ql 0(B)q, and q2 Sq- q((1,1)/wl) (B)q, and the princi-
ple of induction establishes the polynomial representation. In matrix terms Q
Kn(q,B)R- for some unit upper triangular R. Similarly, P* fQ- satisfies
P* L-1K(p, B) for some unit lower triangular L. Finally

f- p*Q- L-1Kn(p,B)Kn(q,B)R- L-1H(n)R-1
and the uniqueness of triangular factorization shows that R must be the matrix Lt
from Theorem 5.6.

Before proceeding to cases of failure to produce a tridiagonal form (n, fn), we
repeat that the case

l=r=m<n

is essentially like the one above. Either qt+ or Pl*+I generated by GS vanishes and it is
only necessary to replace the zero vectors by suitably chosen nonzero vectors to ensure
continuation of GS until step n. However, Tn will be reduced. It may be preferable
to stop with (2t, gtt). Although this pencil is not equivalent to (B,I), nevertheless,
when qt+l 0, it follows that

range Kt (q, B) range K(q, B),

an invariant subspace. It follows that (, f) is equivalent to (/, It) where/ is the
restriction of B to the invariant subspace. Not only is every eigenvalue A of f- an

eigenvalue of B, but right eigenvectors are explicitly given by Qgv where v fg vA.
We will not consider this case in any more detail.
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6. Block tridiagonal form. This section examines those exceptional cases when

H() has full rank n but does not permit triangular factorization. In the terminology
of the previous section: < r m n. This is serious breakdown and there is no
tridiagonal form (, f) with the given parameter values q and p*. In the language of
system theory, Hn() is said to be regular but not strongly regular.

A natural way to persist with the starting vectors and obtain a sparse representa-
tion of B is to accept a block tridiagonal representation. The smaller the blocks, the
better, and it is of interest to describe the most refined representation that is possible.
This was done in [12] and the result may be found more easily in the definitive paper
[13], where the authors give ample references to related earlier work. Here is our
description of Gragg’s result.

DEFINITION. Let (1), (2),..., t(k) be the sequence of index values j such that

HJ) is invertible. These are the degree indices of H(). Let t(0) 0.

Under our assumption on H(), (k) n for some k _< n.
THEOREM 6.1 (block triangular factorization). The most refined block triangular

factorization of H() is

H(o) LL

where fl 1 122 k 0o, and 12j is a nonsingular right lower triangular
Hankel matrix of order t(j) (j- 1). Here (k) rank H() n. Moreover,
columns (j) + 1 to (j + 1) of L-1 have unit lower triangular Toeplitz structure, for
j 0,...,k- 1. However, the entries of below the secondary diagonal are not
uniquely determined by H()

An j of order 3 has the form

[]0 0 71"3

0 71"3 71"4
7V3 7r4 71"5

’3 #0, (r4, r5 not unique).

In [1_4] the irregular orthogonal polynomials are chosen so that each 2i is a mul-
tiple of I, the reversal matrix, i.e., r4 7r5 0 in the matrix above. In general,
the Schur complement of H) in H() is not a Hankel matrix so the only surprising
feature of Theorem 6.1 is the Hankel structure of the flj and the structure of L-1.
The extended GS algorithm of 3 is intimately connected with the factorization.

We will not present a proof of Theorem 6.1. Instead, we offer some further
discussion. The reduced matrix that remains to be processed after j steps of triangular
factorization is called the Schur complement of the leading principal j j submatrix.
Surprisingly, neither [13] nor [16] discuss Schur complements in nankel matrices. One

be that the Schur complement of H) in H() is not a Hankel matrixreason may
although it does possess an interesting structure. Kailath and his coworkers have
studied these Schur complements in the course of their work on displacement rank.

THEOREM 6.2 (Schur complements). IfH) is invertible then its Schur comple-

ment H() in H() exists and is triangularly congruent to a Hankel matrix

H() LHL<J>

where L is unit lower triangular and Toeplitz.
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The reader is referred to [22] for proofs that use the bilinear forms associated with
matrices. Matrices with the structure shown in Theorem 6.2 are called quasi-Hankel
by Kailath.

Applying these results to Gragg’s result (Theorem 6.1) shows that a leading prin-
cipal submatrix of these Schur complements is actually of Hankel form. In fact, we
can give a realization of this Hankel part in terms of the so-called Lanczos vectors,
which are the columns of Q and P in the GS factorizations

K(q, B) QLt, K(p*,B) LP*.

Referring to the diagonal blocks fh in Theorem 6.1, we have the following useful
result:

Let dj+ (j + 1) (j). The leading principal submatrix of order dj+ of

H() is(())

"j+l :-- H() (qj+,P;+l, B)d:i+x

This is the first invertible submatrix of the Schur complement. Note that

qj+l (I- IIv(j))BV(J)ql. Here II is the GS projector defined in 3.
The hypotheses of Theorem 5.6 may now be weakened.
THEOREM 6.3 (equivalence theorem, version 2). Let H() H() (B, q, p* ). If

rank [H()] order of B n, then the following pencils are equivalent:

where f is block diagonal as given above and

L-1H(nl)L-t P*BQ

is symmetric block tridiagonal with structure conformable to ft. The block sizes in ft
are minimal. The off-diagonal blocks of are null except in the lower right entries.

The proof of this theorem is analogous to the proof of Lemma 5.5 and will be
omitted. The only difference is that in extending Lemma 5.5 the phrase "Bqj-1 E
range [K]" must be replaced by "range (Bqj-1) c range [Kj]" since q-I is now a

matrix. The structure of ft and is shown at the end of this section.
Although the theorems extend readily to block form, the elementary sequential

process of 2 (the Lanczos algorithm) for computing T and ft will not suffice alone
when the block sizes vary. For example, let the jth (block) row of be

(0 0 B. A. B+ 0 0), A. ( (d. d. Bj C_,dj dj-

where

dj := u(j)- u(j 1)

and let

Q C,ndj.

Then equate the jth (block) column on each side of

B0 Oa-l/’, /5*B a-1/5
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to find

and

STlj+lPj+l-1 S*j+I P;B Aj;1P; Sj;1._lP;_l E Cdjn.

At the jth step of the process the right sides are known but Qj/I,j/I,Bj/I,
and P]+I are not. Moreover, if dj+l > dj these right sides are not sufficient by
themselves to determine any of the unknowns. This is a manifestation of the lack of
uniqueness in Theorem 6.1. More work must be done with the matrix B to continue
the computation. Nevertheless, the extended GS process (3) can determine the blocks
Q1, Q2,’", and P,P,... and these, in turn, determine T and . At each step the
block sizes are minimal subject to the constraint that PQj be invertible.

These ideas lead to the look-ahead Lanczos algorithm that was presented in [25].
The practical defect of this method is that the sizes of the blocks are not known in
advance and so dynamic allocation of storage is desirable for the blocks A and Bj of. However, FORTRAN does not permit such an arrangement. We say more about
these ideas in 11.

This section has shown that breakdown corresponding to < r n can be cured
by accepting block tridiagonal representations.

6.1. The structure of and f.

Q := [ql,Bql,B2ql,q2, Bq2,q3,Bq3, B2q3,B3q3],
P := [p, B*p, B*2p,p2, B*p2,P3, B’p3, B*2p3, B*3p3],

The diagonal blocks of are Hessenberg Hankel matrices. The off-diagonal blocks
each have a single nonzero entry in the lower right position whose value is equal to
the other nonzero entries in its antidiagonal: By reversing the order of the rows
in each block, we see that for each a E C, T- a is a Hessenberg matrix. Thus
its determinant and the derivatives with respect to a may be evaluated rapidly and
stably by Hyman’s recurrence. See [24].
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7. Incurable breakdown and minimal realizations. In this section we con-
sider the general case and face up to the situation when H() H()(B, q,p*) has
rank r < n(= order of B). Recall that r is the McMillan degree of the transfer
function p*(aI B)-lq. A classical result of Kronecker (see [16]) states:

if rank [H()] r then Hr() is invertible.

It follows that a (block) triangular factorization of H() must stop when t has
r rows. With r < n the output pencil (, gt) is not equivalent to (B, I). Moreover,
(B, I) need not be equivalent to (H(n1), H(n)); the breakdown is incurable.

It is of interest to express r in terms of geometric quantities that are directly
related to B, q, and p*. This expression is a byproduct of the canonical structure
theorem of linear systems theory. See [9] and [19]. The rank of H()(B, q, p*) is the
dimension of any controllable, observable subspace of the system (B, q, p*).

THEOREM 7.1 (minimal realization theorem). Given B, q, and p* there is a maxi-
mally refined block tridiagonal-diagonal pair (, t), not unique, such that (f-, el, e)
is a minimal realization;

p*(aI B)-lq el*(aI a-l")-lel for all a 9g B’s spectrum.

Every eigenvalue of-1 iS an eigenvalue of B.
At first glance it is surprising, and pleasing, that incurable breakdown yields such

a rich harvest of eigenvalues despite (, t) not being equivalent to the restriction
of (B,I) to any B-invariant subspace of Cn. At second glance it is annoying, but
interesting, that from the matrices Q E Cnxr and P E Cnr that yield f P’Q,
T P*BQ there is no direct way of computing eigenvectors of B that belong to
eigenvalues of f-. This is because there are no invariant subspaces of B in the
range of Q and P. The recent paper [2] shows how to append columns to P and Q
to obtain bases for K:(q, B) and K:(p, B*).

Next, we give a brief summary of the canonical structure theorem. See [18] for a
full account.

Recall from 4 that the linear system under consideration is

ic Bx + qv, x(O) O,

p’x, v(O) # o.
There are four special subspaces of Cn associated with the system.

K(q, B) := range of K(q, B) Sc,
the controllable subspace. It is the smallest B-invariant subspace containing
q.
Af(p*, B) := null space of K(p*, B) So,
the unobservable subspace, the largest B-invariant subspace annihilated by
p*.

The analysis to follow holds for any complements in Cn of these two subspaces.
However, there is an obvious choice of complement in each case.

Af(q*, B*) := null space of K(q*, B*)
the unobservable subspace for the dual system (B*,p,q*), the largest B*-
invariant subspace annihilated by q*.
l(p,B*):= range ofK(p,B*)= So,
the controllable subspace for the dual system, the smallest B*-invariant sub-
space containing p.
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Remark 7.1. The controllable subspace should be called the reachable subspace
because it consists of all the states x that can be obtained at a given time by suitable
choice of the scalar function v(t). On the other hand, A/’(p*, B) is well named since
it consists of the states that yield v/= 0.

Remark 7.2. From the abstract point of view, the introduction of the last two
subspaces is the only occasion when we invoke the antilinear mapping v* , v to
transform a linear functional in C,n to a vector in Cn. This device puts all the
important spaces into Cn.

By taking the intersection of these four subspaces in an appropriate order a canon-
ical block structure for B is revealed. The subscripts 5 and 5 signify uncontrollable
and unobservable, respectively.

Sco := JV’(p*, B) /C(q, S),
Sco :=/C(q, B) A/C(p, B*),
Se := Af(p B cI Af q B*
,Seo :- .N’(q*, B*) lC(p, B*).

Clearly,

Also,
8c and Sc Sc @ Sco are B-invariant,
Seo and 8o --8co @ 8eo are B*-invariant.

The controllable, observable subspace So is not invariant under B nor under B*.
By taking, in order, any bases for the four subspaces listed above, a new repre-

sentation B for B is obtained that is block upper triangular.

11 12 J013 J14 10 J022 0 J024 F-1BF
0 0 J33 B_’34
0 0 0 B44

and the starting vectors have the following representation:

/(1 /-- 0
F-lq’

0
F*p.

0

Remark 7.3. It appears to be traditional in systems theory to invert the order of
Se and ,.qeo. This has the advantage of putting the bad subspace Se in final position,
but the disadvantage of forgoing the block triangular form dear to the hearts of matrix
theorists.

The form of and i5 reveals the final result

F(a) p*(aI- B)-lq (i52)* (aI 22)-102.
The system (]22, 2, (i52),) is a minimal realization of the transfer function F. More-
over,

H() (q, p*, B) H() (2, (152),, 122)
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and

rank[H()] dim 8co.

In systems theory we start from the Markov parameters and seek a minimal
realization. To obtain a tridiagonal representation, we start with B and seek q and
p* to ensure that (B, q, p*) is minimal.

We now give the interpretation of the canonical structure theorem for the reduc-
tion of (B, I) to a more condensed form. Consider a method that builds up Q and P
one column at a time. Suppose that serious breakdown occurs with

djq-I := P;q-lqj+l O, qj+l O, P;+I 0".

Rank [H()] is not known but the following dichotomy holds. Either

(7.1) p+lS’q:+l O, , O, 1,..., n j 1,

in which case p*j+lBqj+l 0 for all and rank [H()] j. The current matrix

pencil (j, fj) is a minimal realization of the transfer function and every eigenvalue
of gt-1 is an eigenvalue of B, or

(7.2) 5 min( p+iS-lqj+ 0} <_ n- j

and another step of (block) tridiagonalization may be taken with block size 5. No
eigenvalue of t-j is an eigenvalue of B, although some could be close.

This dichotomy is the content of the mismatch theorem in Taylor’s dissertation
[26]. Incurable breakdown occurs only when a minimal realization has been found.
The word mismatch indicates that the eigenvalues associated with q and the eigenval-
ues associated with p* are not the same sets. In other words, ,co is neither (q, B)
nor (p, B*), but a proper subset.

8. Summary table. Given B E CnXn, q E C", p* Cn.,

H() := [p*Bi+j-2q], i,j 1,2,..’,

:= min{" H( is singular},

r := rank [H()],
m := min{rank[g(q, B)], rank[g(p*, B)]}.

There is a unique pair (, ) with

K(q,B) QLt, K(p*,B) LP* (by GS).
gt diag (o21,..., (Ml) P*QI,

H) LL (triangular factorization),

H) LLt, (i,i + l) (i + l,i) =wi+l, i= l,...,l-1.

The eigenvalues of (, ft) will be called Ritz values. In Table 8.1 the phrase
"invariant subspace" is an abbreviation for the assertion that either the column space
of Kl(q, B) or the row space of Kt(p*, B) is invariant under B. Recall from 5 that

l<r<m<n.
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TABLE 8.1

Description

Benign early termination

Incurable breakdown

Curable breakdown

Case Invariant
subspace

Yes

No

No

Ritz
values

Each 0 E spec(B)

Each 0 E spec(B)

No spec(B)

Generically equality holds throughout and (, D) is equivalent to (B, I). Recall
that spec(B) denotes the spectrum of B.

When < r there is a (block) tridiagonal/diagonal pair (, f) of order r such
that each 0 E spec (B). If and only if r m then at least one of range K,.(q, B),
range Kr (p*, B) is B-invariant.

9. Examples. To benefit from the examples it is preferable to work out both the
computed quantities (Q, P*,...) and the associated theoretical ones (H(), g,...).
This has been done in Example 9.1, but only the bare essentials are given in Exam-
ple 9.2. All the relevant inequalities for l, r, and m are covered.

Example 9.1. Tridiagonalization with initial vectors (q, p*) breaks down incurably
at the end of step 1. Nevertheless, the 1 x 1 reduced pencil (5, 1) delivers an eigenvalue
of B.

1 2 3

B- 0 5 0
0 0 7
0 0 0
1 3 13
1 5 25K(q,B)-
0 0 0
0 0 0
O 1 0
0 0K(p*,B)-
0 25 0

1 5
5 25

H() 25

6 1
8

q-
0

9 0

Q=
0
0

P= 0

125

(1,5,25, .,-),

,Sca span(e ), -co span(e2 ),
,.ea span(e3), ,Seo span(e4),

[5], t [1].
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TABLE 9.1
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Case

(i)

(ii)

(iii)

(iv)

(v)

(vi)

Starting vectors

q elp el

q e2p e2

q e3p e2

q e3,p el

q edp el

q=p=el +e2 +e3 +e4

Markov parameters

10000...

10000...

01000...

00100...

00010...

43210...

111

112

023

033

044

244

Example 9.2.

O 1 0 010 0 1 0
0 0 0 1
0 0 0 0

In Table 9.1, case (i) yields benign early termination since ql is an eigenvector.
Case (ii) yields incurable breakdown after one step with T [0] and this
reveals an eigenvalue but no eigenvector.
In cases (iii), (iv), and (v) the reduction cannot begin and H() does not per-
mit triangular factorization. The extended algorithm breaks down incurably
after one block step revealing 2, 3, or 4 eigenvalues, respectively.
Case (vi) suffers curable breakdown at step 2. The extended algorithm yields

4 -1/4-5/16 0 I
a4= 0-1/4 0 0

0 0 1 -2 0 0 0 1
0 1 -2 I 0 0 I -2

The pair (2, 2) gives no useful information about B. The Markov param-
eters of the system (B, q3,p) are (0,1,-2,1,0,...). Although (4,t4)is
equivalent to (B, I), it is less informative than (B,/) but does have smaller
bandwidth! Note that the gt4 is not unique. The one shown here is produced
by the extended Gram-Schmidt algorithm of 3 but another good choice puts
the (4,4) entries of T and to -3 and 0, respectively.

10. Monitoring the condition number. For some applications it is meaning-
ful to enrich Cn with the Euclidean inner product (v, w) := w’v, w E Cn, v Cn. In
this setting it is appropriate to normalize all the auxiliary vectors {qi} and {pi) so
that

IIqll = :- (qi, qi)= (pi,pi)= Ilpll =--- 1, all i.

Let O’min(X denote the smallest singular value of X. Let

IlXll max
u#0
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the spectral norm.
THEOREM 10.1. If the columns of Q and Pj are unit vectors and if PQj

t diag(tl, 2,"’, tk), then

Then

Proof. There exist unit vectors u E C Civ E such that

Qv UO’min(Q).

min O’min(’i)_
l<i<k

IIP * Ilu m  ,_
V/ O-min(Qj).

The first inequality uses

k k

II  v( )II min 0"2min(i) v(i) 2

l<i<k
i--1 i--1

and v(i) denotes the ith set of entries in v.
relations

The last inequality makes use of the

IIP ll IIP P ll )max(P;Pj)

_
trace (PPj)= j.

When i is 1 1, then ffmin(-i) Iil. In any cause the quantities 11-11]-are readily computed during or after reduction. When the matrices Qj and Pj are
built up column by column and normalized, it is necessary to compute the quantities
]lrill, IIsll, i 1,...,j. The vectors ri and s are defined in the proof of Theo-
rem 2.2. Despite the extra storage required we advocate keeping wi, Ilril], I]sll, and
( pBqi. The resulting tridiagonal matrix is then defined by

(i,i) , (i,i- 1)= []ri]lovi, (i- 1, i)= IIsl[wi,
f diag (w,. ., w).

The point is that all the stored quantities give information directly relevant to the
stability of the transformation. It is valuable to know whether a small value (i, i- 1)
comes from a small wi or a small Ilrill.

10.1. A stable reduction. In the block reduction algorithm that would pro-
duce the pair (, t) of 6 there is no need to insist on the lower triangular Hankel
form for the blocks

fi= 0
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When the setting of Euclidean space is appropriate, we can select a tolerance tol
and require that

amin(i) _> to1, all i.

Under this restriction the algorithm will produce in all cases the most refined pair
(r, r) that satisfies the following conditions:

1. (r, r) is a minimal realization.
2. (:rmin(Qr)

_
tol/x/, (rmin(P) _> tol/x/.

This is a satisfactory method insofar as it extracts as much useful information as
possible from the choice (q,p*). It is not satisfactory insofar as this most compact
structure is not known in advance and examples can be constructed in which T, and
r will be of maximal bandwidth. See case (v) in Table 9.1.

11. Comments on implementation.

11.1. Preconditioning for fixed start methods. We know of no way to
choose starting pairs (q,p*) that are guaranteed not to be exceptional. In some
applications, e.g., when a sequence of close matrices must be analyzed, good choices
for the pair may be known. In the absence of such additional information our theory
suggests that q and p* should be chosen at random from a uniform distribution.

In practice there is merit in having a graded matrix with large entries near
the top of the matrix. When 5b has such a structure it is easier to find the eigen-
values of (, fl) in a roughly monotonic order (by decreasing absolute value). These
considerations suggest that

q-- BY(random), p* (random)*Bv, u > 1,

should be preferable to random vectors. On the other hand, each application of
B devoted to a starting vector can be regarded as a waste of a step in tridiagonal
reduction. Yet an attractive feature of choosing > 1 is that it forces K:(q, B)
and K:(p, B*) c n(B*). This is essential when B is not just a matrix but an operator
with unwanted infinite eigenvalues, as can occur in generalized eigenvalue problems.

We have used 1 in the symmetric case and advocate the same policy here. It
is easy to implement and seems to keep breakdowns at bay but we have no theoretical
justification for it.

11.2. Stable reduction to block tridiagonal form. When the Euclidean in-
ner product is appropriate, then the idea (in 10) of controlling the condition number
of Q and P may be combined with the block reduction of 6. Thus we suppose that
Ilqill- IIP II- 1, all i, and there will be diagonal positive definite scaling matrices Dq
and Dp. The new matrices Qj and Pj will satisfy

new j PQj DpjDq

where j is the Hankel matrix discussed in 6.
A suitable lower bound tol on mini min(i) may be selected. If e denotes the

roundoff unit, then a value such as e1/2 is a natural choice. Then the Lanczos algorithm
may be applied in the normal way. However, if, at the end of step j, the new Lanczos

forvectors qj+l and pj+l satisfy wj+ Pj+lqj+l <tol the algorithm uses B qj+l
qj++l and p+lB for P++I until

O’min[H)(B, qj+l,P+l)] >_ tol.
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The and Ft resulting from this strategy differ from the convenient "symmetric
Hessenberg" form by matrices of small norm. This should facilitate the solution of
the auxiliary problem (- AFt)u 0.

For determining eigenvalues alone it is the ratios IWi+l/Wil 1/2 that matter. While
these quantities and the lai/wil remain bounded by a small multiple of IIBII the
reduced pair (Tj, gtj) is completely satisfactory.

11.3. Local change to the starting pair. If serious breakdown occurs late in
the reduction to tridiagonal form, then a restart with a new (random) starting pair
amounts to a complete write-off of the expenses of the first attempt. Geist, Lu, and
Wachspress, in [8], have studied a compromise in which the cost of reduction with
the new pair is very small compared with the initial reduction. However, the theory
developed in this essay shows that there are limitations on this technique. Recall the
four indices that characterize the realization: l, r, m, and n.

The limitation is that, although may be increased (which is good), both r and
m either remain the same or decrease.

To justify these comments we describe briefly the way that Geist, Lu, and Wach-
spress carry out the reduction. They perform a sequence of explicit similarity trans-
formations on B; at step j, row j and column j of the current matrix are put into
tridiagonal form. Let T be the j j tridiagonal obtained at the end of step j and
suppose that serious breakdown is detected with B(j+ 1, j) 0, B(j, j / 1) - 0. Their
remedy is to apply an elementary similarity transformation on the first two rows and
columns of the current array. The transformation matrix is of the form

0 )oi - l 1
and brings nonzero values into position (3, 1). This bulge in the tridiagonal form is
chased down the matrix, from (3, 1) to (4,2) to (5, 3) ..., in a way that is familiar
to those who have studied the symmetric tridiagonal QL algorithm. The cost of this
chasing procedure is a small multiple of j and the result is a new value in position
(j + 1, j). If the new value is also tiny, then the whole procedure may be tried again.

We claim:
1. The recovering procedure is equivalent to replacing ql by ql-q2 Oql+TBq,

while leaving Pl unchanged.
2. Let (v) span(v, Bv, B2v, .). Then

((OI + rB)ql) {(OI + rB)(B)ql: ranges over all polynomials}
C K:(ql).

Thus

(K;(p)) fl ((0I + B)ql) C ((p) fl K:(q)) 8co,

and the new values of m and r (see 8) cannot be increased and may decrease.
3. H{_) (Oq + rBq, p*, B) OH}_) (q, p*, B)+rlH,_)I (q, p*, B).

Thus the new H}_)I need not be singular.

12. Conclusion. The last few sections may have deflected the reader’s attention
away from the big picture so we take the opportunity to recapitulate the main points.
Although the canonical structure theorem supplies the right decomposition for under-
standing incurable breakdown, yet linear systems theory is not itself relevant. The
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matrix B is given and, once the vector q and linear functional p* are chosen, then the
"moment" matrix H() is fixed and it determines the numbers and r while B, q, and
p* determine m. See 5 for definitions.

In the generic case r m n and tridiagonalization succeeds although
it need not be stable. However, 10 shows a natural way to monitor the condition
number of the transformation and this greatly improves the situation because some
of the algorithms proposed for reduction hide the onset of instability by using drastic
but hidden scaling of the columns of P and Q to force Pj*Q,j Ij.

In the nongeneric case, there is always a block triangular factorization of H()

with minimal sizes for the diagonal blocks. We have, in effect, lifted Gragg’s block
form back to the GS procedure to produce our extended GS algorithm, which shows
how to continue the algorithm by working with several vectors simultaneously.

This is not the only way to overcome a curable breakdown. Gutknecht’s approach
in [14] may be described briefly in the following way. Recall that before breakdown
occurs gk(q) QkLk and, with L-1 := (i), for j < k,

j+l

qj+l KkLk-tej+l (Bi-lql),j+l,i Cj(B)ql
i--1

where

j+l

Cj(t) j+l,i ti-1 )j+l,j+l 1
i=1

is a monic polynomial of degree j and is sometimes called the jth (generalized) Lanc-
zos polynomial. The {j}1k is called a sequence of formal orthogonal polynomials.
The proper L2 inner product function (f, g} is replaced by an appropriate linear func-
tional on the pointwise product f g. The three-term recurrence connecting standard
orthogonal polynomials extends to this more general setting--in the absence of break-
down. Gutknecht shows how to define polynomials k+1, k+2,’’" (and hence rows of
L-1) after each curable breakdown in such a way as to preserve as much as possible
of the standard recurrence relations. As mentioned in 6 the result is equivalent to
choosing L, whenever there is freedom, to make the diagonal blocks fti in Theorem 6.1
antidiagonal, i.e., all zeros except along the secondary (NE-SW) diagonal.

By accepting blocks that are larger than minimal size given in 6, it is straightfor-
ward to set an upper bound on the condition number of Q and P and then to compute
the most refined block tridiagonal form (2, ft) consistent with this bound. Neverthe-
less triangular factorization cannot proceed beyond the effective rank of H() because
the Schur complement of Hr() vanishes. It is at this stage that the Kalman-Gilbert
theorem can be invoked to show that (r, ftr) is a minimal realization of B, q, p*. In
other words, for some conformable r-vectors and i5, and for all a in the resolvent
set,

*(ff ar r)-1 0 p*@r I B)-lq.

It is this transfer function approach that shows immediately that each eigenvalue of
2b, f is an eigenvalue of B.

For specialists in large eigenvalue problems, it is unnerving to have a solution A
to Bz zik without knowledge of an appropriate invariant subspace. To algebraists
who invoke the characteristic polynomial, this absence of z is a natural state of affairs.
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Our approach stops with a minimal realization but there are further questions to
be asked. If r < m then how is it possible to append further columns qr+l, qr+2," or
further functionals p’r+1, P’r+2, to obtain bases for the controllable and observable
subspaces? This problem is addressed in [2]. Their idea is to modify the Lanczos
algorithm a little.

After incurable breakdown at step r the remaining pair qr+l, P+I is used to
generate more vectors according to

qr+i+ (I- Hr)Bqr+i, p++ p+B(I H),

until linear independence is lost. The new q’s span qco and the new p’s span qeo. The
final space Se must be obtained, if needed, by more primitive means. It is the null
space of the matrix

(p,’",pr, P+I,’",Pm, q+,"’,qt)*

obtained by appending the new p’s and q’s to the columns of Pr. The extra coefficients
generated by these modifications permit the calculation of the canonical form in 7
and with it the remaining eigenvalues and all the eigenvectors.

Although the moment matrix H() is an essential theoretical tool it is not available
in practice nor indeed are the Krylov matrices K(q,B) and K(p*,B). From the
practical point of view the essential, impressive insight of Cornelius Lanczos was
to recognize that Bqj is preferable to BJql, and pB to pBY, for the purpose of
computing Q, P, T, and

Plenty of questions remain unanswered. Is it advisable to put more effort into
the choice of ql and p ? Is it better to restart after an early serious breakdown or
to continue with a block tridiagonal output? What are good ways to compute, or
update, the partial eigensolution of the reduced problem (- Agt)s 0 ? Can the
residual error bounds presented in [17] be used for terminating the reduction when
only a few eigenpairs of B are wanted? How should we compensate for the effect of
roundoff error?

This paper sought to provide a good framework for looking at reduction to tridi-
agonal form.
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Abstract. The theory of the "unsymmetric" Lanczos biorthogonalization (BO) algorithm, which
has so far been restricted to an essentially generic situation (characterized by the nonsingularity of
the leading principal submatrices of the associated moment matrix or by the existence of a full set of
regular formal orthogonal polynomials) is extended to the nongeneric case. The "serious" breakdowns
due to the occurrence of two orthogonal right and left iteration vectors xn and Yn can be overcome.
For an operator of finite rank N the nongeneric BO algorithm, which generalizes the look-ahead
Lanczos algorithm of Parlett, Taylor, and Liu [Math. Comp., 44 (1985), pp. 105-124], terminates
regularly in at most N steps, except when a very special situation depending on the initial vectors
occurs; but even then the algorithm produces in at most N steps a block tridiagonal matrix whose
blocks are either small or sparse and whose characteristic polynomial is the minimal polynomial of
the restriction of the operator to an invariant subspace.

Formulas are also derived for a nongeneric version of the corresponding linear equation solver BIO-
PES (brief for BIOITHOPES or Lanczos/ORTHOIES). The whole theory is developed as a consequence
of known corresponding results on formal orthogonal polynomials and Pad approximants, for many
of which new and simpler derivations are given.

Key words. Lanczos algorithm, biorthogonalization algorithm, BO algorithm, BIOPES, bicon-
jugate gradient algorithm, formal orthogonal polynomial, recurrence, Pad approximation, continued
fraction, quotient difference algorithm, qd algorithm
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Introduction. Both in the Lanczos biorthogonalization (BO) algorithm [24] (the
application of which to solving linear systems is often called Lanczos/ORTHORES and
will be named briefly BIORES here) and in the closely related Lanczos biconjugate
gradient (BCG) method (BIOMIN or Lanczos/ORTHOMIN) [25], [8] a "serious break-
down" unrelated to roundoff may occur before an invariant subspace of the matrix
(or a solution of the linear system) has been found. The same is also true for BIODIR
(or Lanczos/ORTHODIR). The premature breakdowns in these algorithms are due to
the fact that the algorithms are well defined only in the generic case where certain
determinants are different from zero. Likewise, the related qd algorithm [40] for com-
puting the eigenvalues of a tridiagonal matrix or the poles of a rational function is
well defined only in this case, although Rutishauser suggested some rules for filling
the gaps in a qd table with zeros and oc-symbols and Draux [7] has since justified
and further specified such rules.

The orthogonality properties of the (finite) sequences of Krylov space vectors
generated by the BO and BCG algorithms are paralleled by orthogonality properties
of sequences of polynomials. However, if the matrix is not positive definite, the un-
derlying "inner product" may be indefinite; only in the generic case can we assume
that none of the constructed polynomials is orthogonal to itself. It is well known
that such sequences of formal orthogonal polynomials are the denominators of Padd
approximants lying on a diagonal or a staircase of a Pad table and that these Pad
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approximants are also the convergents of continued fractions. In fact, Rutishauser
[40] mentioned these connections already, and he presented his progressive qd algo-
rithm both as a process for generating a sequence of continued fractions belonging
to the various descending staircases in a normal Pad table and as a special case of
his LR algorithm for generating a sequence of similar matrices, which under certain
assumptions converges to a diagonal matrix exhibiting the eigenvalues.

In contrast to the breakdown problems of the algorithms mentioned above, Pad(

theorists are used to dealing with nonnormal (i.e., nongeneric) Pad(! tables containing
square blocks of size greater than 1. The corresponding sequences of formal orthogonal
polynomials have been discussed by Struble [44], Gragg [13], Nuttall and Singh [32],
Draux [7], Gragg and Lindquist [14], and Stahl [42], [43]. These sequences have already
come up implicitly in the Pad and continued fraction theory, in particular in Magnus’s
(diagonal) P-fractions [26], [27], which are the continued fractions associated to the
distinct entries on a diagonal of a nonnormal Pad table. The recurrence relations for
these formal orthogonal polynomials lead in a straightforward way to the generalized,
nongeneric BO algorithm.

In an analogous way there are the nongeneric BIOMIN (BCG) algorithm and
nongeneric extensions for the many other related algorithms and constructions: to
the nongeneric BIOMIN algorithm now corresponds a pair of block bidiagonal matrices
L and R which are the factors of a particular block LU decomposition of the block
tridiagonal matrix T associated to the nongeneric BO algorithm. L and R contain
the recurrence coefficients for a generalized staircase sequence in the Pad( table, and
these coefficients also specify a staircase P-fraction. The nongeneric (progressive) qd
algorithm can then be introduced either as a block LR algorithm applied to block
tridiagonal matrices of a particular structure or by contractions and expansions of
P-fractions.

For the generic case these connections are reviewed in a companion paper [15],
which also lists many more references to related work. In contrast, the present paper
is the first in a series in which the theory for this whole circle of ideas is extended to
the nongeneric case.

In 1 of this first part we compile the relevant material on formal orthogonal
polynomials (FOPs) and Pad approximants. In view of later applications to a back-
ward qd algorithm the Pad( table is defined (as in [47]) in a half-plane instead of a
quadrant. The quite detailed presentation of the material in this section is justified by
the importance it has for the understanding of the later sections and the subsequent
parts. In 2 the (formal) orthogonality properties of the FOPs are used to derive
the recurrence formulas for these FOPs and formulas for computing the coefficients
in these recurrences. The existence of these recurrences was established by Struble
[44] with an amazingly brief argument. But they are also a direct consequence of the
standard recurrence formula for continued fractions applied to Magnus’s P-fractions
[26], [27]. Another short derivation was given by Nuttall and Singh [32]. The recur-
rences, together with the underlying Pad theory results, were also derived in detail
in Draux’s monograph [7], but his formulation and proof of the recurrence formula
alone require 20 pages, plus some 50 pages of preliminary material. In contrast, our
proof (of Theorem 2.7), which is similar to the one in Gragg and Lindquist [14], takes
only two pages and should be easy to understand. Moreover, we emphasize the con-
structive aspects, which have not found much attention so far. Actually, our results
are also more general since in view of the numerical application to the Lanczos pro-
cess we allow in the needed "inner" iterations the generation of a polynomial basis
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by some other, arbitrary three-term recurrence formula (or by an even more general
procedure), while the other authors had used the monomial basis. (For the Lanczos
process this means that in case of a "serious" breakdown we proceed for a few steps by,
say, Chebyshev iteration instead of Jacobi iteration until the next orthogonalization
step can be completed.)

In 3 we present matrix .formulations of the results of 2. For the case of the
monomial basis the two most relevant results have first been alluded to in a few lines
by Gragg [13, p. 222]; in a system theory framework they come up in Gragg and
Lindquist [14]; one of them also appears in Draux [7].

In 4 we then turn to the application of the results of 2 to the nongeneric
Lanczos BO algorithm and the corresponding linear system solver BIORES. The first
one is actually an immediate consequence of those results (or the corresponding matrix
results) and of the well-known connections that are valid in the generic case. Hence we
believe Gragg [51] to have known this so far unpublished algorithm ever since he wrote
[13]. Also Taylor [45] and Parlett, Taylor, and Liu [38] introduced, with their look-
ahead Lanczos (LAL) algorithm, a mathematically essentially equivalent procedure,
although their derivation, analysis, and implementation followed other lines, and most
details were restricted to 2 2 block pivots. In particular, one of Taylor’s merits is
the very surprising "Mismatch Theorem," which for a finite rank operator means
that even in the case of an "incurable" breakdown, i.e., when the process does not
terminate, it produces in finitely many steps a divisor of the minimal polynomial of
the operator.

The application to linear systems is quite straightforward, although it seems to be
new. For BIORES we give as in the generic case [15] an unnormalized version, which
does not threaten to break down due to the possible singularity of a restriction of the
operator to one of the generated Krylov spaces.

It is not yet known whether this nongeneric theory will have much impact on the
numerical computation of eigenvalues of nonsymmetric matrices since the occurrence
of exact "serious breakdowns" seems to be very rare in practice (Parlett [52]) and the
numerical difficulties with the Lanczos process are rather due to other effects [33], [34],
[36], [37]. However, the situation is different when these ideas are applied to solving
linear systems of equations Az b. Then it is not so important that the implicitly
constructed sequence of residual polynomial ends with a minimal polynomial of some
Krylov subspace. It suffices to find a polynomial whose modulus is sufficiently small on
the spectrum of A (or, rather, on the pseudospectrum of A [46]), but it is important
to generate such a polynomial in a stable way. There is hope that the nongeneric
theory will be useful here, because it allows us to replace an unstable situation by a
nearby degenerate stable one.

Finally, some remarks about the notation: C, Z, N, N+ are, respectively, the
sets of complex numbers, integers, nonnegative integers, and positive integers. m
denotes the set of complex polynomials of degree at most m, :P is the set of formal
power series (with complex coefficients), and the set of formal Laurent series. The
actual degree of a polynomial p is denoted by Op. A formal Laurent series f in z
satisfies f(z) O+(zm) if it contains only terms Ckzk with k >_ m, and likewise
f(z) O_(zm) if the series contains only terms k _< m. We write f(z) =- O+(zm)
and f(z) =_ O_(zm), respectively, if additionally Cm 0. A rational function is said
to be of type (m, n) if it can be represented as p/q with p E Pm and q E Pn (q 0). It
is of exact type (m, n) if m and n are smallest possible. The set of rational functions
of type (m, n) is denoted by Tm,n. If r 7,,n has exact type (#, ), the nonnegative
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integer 6 := min(m #, n v} is called the defect of r in 7,,n. If 6 > 0, r is called
degenerate.

We have aimed at using consistent notation over the several parts of this work,
and to adhere to at least some of the standard notation in the field. Unfortunately,
the standard notation from the several areas that play a role here is incompatible: In
orthogonal polynomials, the polynomials of the first kind are usually called Pn, those of
the second kind q,, while in Pad6 approximation, essentially the same polynomials are
often denoted in just the opposite way. Further inconsistencies exist, e.g., with respect
to the variable used (z or z-1) and the notation for the recurrence coefficients for these
polynomials in orthogonal polynomial theory, Pad6 approximation, and continued
fraction theory. Moreover, even in the closely related areas of the Lanczos algorithm
and the conjugate gradient method, the names and/n are used for two related
but fundamentally different pairs of coefficient sequences. Hence, inevitably, not every
reader can expect to find his favorite notation.

Note on recent related work. While this paper was being worked out, several
other people also turned to the subject of curing serious Lanczos breakdowns. Parlett
[35] extended the LAL algorithm, thus essentially obtaining what we call the non-
generic BO algorithm. As in [38], [45] the argumentation is based on the "two-sided
block Gram-Schmidt process" and avoids the formal orthogonal polynomials. He also
gives an elegant account of the relation to the partial realization problem of system
theory and discusses in particular the genericness of termination without breakdown
and the case of incurable breakdown. His paper is an excellent complement to ours.
The relations of the nongeneric Lanczos process to systems theory are also the sub-
ject of a paper by Boley and Golub [5]. Moreover, Boley [3] derived a version of the
nongeneric BO algorithm from the block Gram-Schmidt biorthogonalization process
and, as in Golub and Gutknecht [10], he discusses the connection to the moment and
the modified moment problem. In addition, he explores the application to weighted
checksum error correction schemes. (An extended version of his notes is published
as [4].) Independently from all these people, David Young’s student Joubert, start-
ing from [19], [22], [38], developed in his thesis [21] a version of the nongeneric BO
algorithm and combined it with BIODIR to obtain a nongeneric BIODIR algorithm
for solving linear systems. He also discussed in detail the breakdown conditions for
BIORES, BIOMIN, and BIODIR (a subject also treated in a different way in [15]), and
proved that termination without breakdown is a generic situation with respect to
complex initial vectors, but not necessarily with respect to real initial vectors. For a
summary of his results, see [20].

Although we have been aware of the possibility of deriving the nongeneric Lanczos
algorithm directly via the Gram-Schmidt biorthogonalization process, we have chosen
to use the orthogonal polynomial approach since we believe that

(i) for dealing with Krylov space vectors, and in particular for discussing the
nonsymmetric Lanczos algorithm, the polynomial formulation is the most
appropriate, since it allows us to replace one or even two sequences of vectors
by one sequence of polynomials containing all the essential information;

(ii) the connections to Pad6 approximation and the moment problem yield addi-
tional insight;

(iii) the polynomial approach is the key to the (bi)conjugate gradient squared
methods [15];

Added in revision.
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(iv) the Pade! and continued fraction connection is also a key to the qd algorithm
and to the superfast Hankel solvers [15].

1. Formal orthogonal polynomials and Pad approximants. Given a com-
plex sequence (k}=o, let the linear functional (I)0 7) C be defined by the values
it takes on the monomial basis

0(z := (k e

DEFINITION. Pn E gn (n >_ 1) is a normalized true nth .formal orthogonal poly-
nomial (of the first kind) (FOP1) with respect to (I)0 if P is monic of degree n and

Oo(PP,) 0 (p -P, is called a regular FOP1, if it is uniquely determined; otherwise it is called a
singular FOP1 [7]. Po(z) :=- 1.

Note that it is not required that (I)0(Pn2) 0. In general, a true nth FOP1 need
not exist for all n. We will later define deficient FOPls for those n where no true
FOP1 exists.

In view of various relations we want to explore, we generalize the above situation
slightly and consider a whole family of sequences of FOPls.

After replacing {k}=0 by a doubly infinite series {k}=_, a linear functional
(I)z :P - C can be defined for each Z by

(1.1) bz(zk) Ck+t (k e N).

An nth true FOP1 with respect to (I)t is denoted by Pt;n. By definition, Pt;n is monic
and satisfies

(1.2) (I)t(pPt;,) 0 (Vp e T’n-1).

Again, we set /;0(z) := 1. Of course, it is assumed that t 0 for some k Z.
For simplicity, we deal first with the case _> 0 only, where we can assume Ck :---- 0 if
k < 0. Consider the formal power series

(1.3) f(z) := Z CkZk"
k--0

Since z’Pt;n(Z-) is a polynomial, the product f(z)zP;n(Z-1) is also a formal power
series. If

n

then

(1.5) ) z’.
i=0 j=0

2 Concerning notation, we stick with the traditional one of writing zk instead of (.)k, although
the latter would allow us to distinguish the monomial from its value at z.
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Now with (1.4) and in view of the definition (1.1), condition (1.2), written down for
p(z) zk, k 0,..., n- 1, yields a homogeneous system of n linear equations in
n / 1 unknowns:

n

(1.6) i+j-n rz;j,n 0, i + n,...,/+ 2n- 1,

or

The following well-known result follows immediately.
THEOREM 1.1. A FOP1 Pz;n exists if and only if (1.6) has a solution with rt;n,n

1. It is regular (i.e., unique) if and only if the n n moment matrix

(1.7) M;n

+ +._
+ + +.

Cz+- Cz+ Cz+-
is nonsingular.

By (1.6) the coefficient of z in (1.5) vanishes for i 1-t-n, , 1-+-2n- 1. Therefore,
(1.5) becomes

(1.8a) f(z)znPl;n(Z-1) Pl+n-l,n(Z) + O+(zl+2n),

with

(1.8b) Pl+n--l,n(Z) iTj-n 7rl;j,n Z

=0 j=0

a polynomial of degree at most n / 1.
In order to further investigate the FOP1 P; we will now relate it to a Pad

approximant of f.
DEFINITION. Given f E IP, m E N, and n N, an (m, n) Padd form of f is any

pair (p, q) e tom >< 1on with (p, q) (0, 0) for which

(1.9) f(z)q(z)

The corresponding rational function rm,,, p/q is called (m, n) Padd approximant. If
r is also a solution of

(1.10) f(z) r(z) O+(zm+n+l),

we call it a true (m, n) Padd interpolant. Otherwise, we say that it is a deficient Pad(
approximant.

By definition, rm,n P/q is determined via the linearized confluent rational in-
terpolation problem (1.9). While this problem always has a solution (as we will see
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in a moment), the corresponding nonlinear confluent rational interpolation problem
(1.10) may have no solution r e Tm,n.

By comparing (1.8a) and (1.9) it becomes clear that with

(1.11) n/: (2:--1

the pair (Pl+n--l,n, ql+n--l,n) E l+n--1 i)n is an (l +n- 1, n) Pad(! form of f. On the
other hand, if (p, q) is any (/+n-l, n) Pad form of f, then setting Pt;n(z) := zq(z-1)
yields (1.8a), which, as a restriction for Pt;, e :Pn is equivalent to (1.2). Hence, Pt;n
so defined is a true nth normalized FOP1 with respect to if and only if it has
exact degree n and is monic. This is the basic relationship between FOPls and Pad
approximants. In the above derivation, n > 0 is assumed. If n 0, the linear system
(1.6) is void. But since we have set P;0 := 1 and since q(z) -= 1 for a normalized
(m, 0) Pad fraction, the basic relation persists.

Given f, m, and n, every (m, n) Pad form can be constructed by solving the
linear system (1.6) with / n 1 m, i.e., := m n + 1, and defining, for any

7l"
nnontrivial solution { t;j,n}j=0 of (1.6),

(1.12) q(z) r;j, zn-3 p(z) :-- i+j-n r;i,n z*;
j=0 =0 j=0

cf. (1.4), (1.11), and (1.8b). Note that the system (1.6) determines the coefficients of
q, while p is then determined by q.

The discussion of the Pad forms and of the related question of existence of
FOPls is often based on a lengthy discussion of the linear system (1.6), its possible
rank deficiency, etc. Since it is a Hankel system, proofs can be worked out much easier
in term of polynomials and formal power series, however. This approach has been
applied in [17] to the more difficult Newton-Pad6 approximation problem (or, ratio-
nal interpolation problem), where Hankel matrices are replaced by divided difference
matrices.

In our opinion the most important basic result is the following one on the general
form of Pad6 forms [12].

THEOREM 1.2. Given f 7a, m N, and n N, the general solution (p, q)
m X Pn of (1.9) is

(1.13) (P, q) (Zam,nW, za(tm,nW),

where m,n i)m and m,n 7an are uniquely determined, relatively prime polynomi-
als; m,n (0) 1, a :- am,n is a fixed integer with

0 _< a _< 5 := 5m, "= min{m- Om,, n- O(lm,n},

and w 7_ is arbitrary.
Hence, there always exist (m, n) Padd forms (p, q), and they all yield the same

rational function (Padd approximant) rm,n := P/q m,n/(lm,n.
Note that the Pad(! form itself is never unique. It is unique up to a scalar factor

if and only if ti a.
Several well-known corollaries of this result can be derived easily.
COROLLARY 1.3. The (m, n) Padd approximant rm,n --m,n/m,n is a true Padd

interpolant if and only if a 0 in (1.13).
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COROLLARY 1.4. The homogeneous linear system (1.6) has rank n- + a, i.e.,
row rank deficiency - a.

COROLLARY 1.5 (Characterization Theorem). A rational function r p/q E
nm,n with defect :- min(m- Op, n- Oq} is the (m, n) Padd approximant of f if
and only if

(1.15) f(z) r(z) O+(zm+n+l-5).

COROLLARY 1.6 (Block Structure Theorem). (i) A rational function r

(r O) of exact type (#, ) is a Padd approximant of f { T,v if and only if

(1.16) f(z) r(z) O+(zt*++A+I)

for some A N. If the latter holds, r is the (m, n) Padd approximant rm,n of f for
all pairs (m, n) in the square

(1.17) {(m, n); #<m<#+A,

but for no other pair.a

min{m- #, n- /} and
Then, in (1.13) there holds 0,, #, 0(1,,,,, ,

(1.18) a max{0, m + n it A},

so that

(1.19) - a min{m- #, n- , # + A- m, + A n}.

(ii) If f is itself rational, say, of exact type (#, ), then r,,n f exactly for all
(m, n) in the quadrant {(m, n); m _> it, n _> }. Moreover, in (1.13), OPm,, it,

OOm,n //, (5 min{m , n- }, and a O.
(iii) The function r 0 with exact type (-, O) is a Padd approximant of f 0

if and only if f(z) O+(zk) for some k > O, and then rm, 0 exactly for all (m, n)
in the half-strip {(re, n); 0 m < k, n N}. Then, in (1.13), m,n O, Om,n 1,
5 n, and a m{O,m + n + l k}.

COROLLARY 1.7 (Definition by Optimality). The (m, n) Padd approximant rm,n
is, among all r m,=, the one for which

(1.20) f(z) o+
holds .for the largest possible k Z.

According to the Block Structure Theorem, Corollary 1.6, the Padd table, which
contains as (m, n) entry the (m, n) Pad(! approximant of f, is made up of square
blocks of distinct rational functions. Following Gragg [12] we let the m-axis point
downwards and the n-axis point to the right. Then, for each block, the position (it, )
of the upper left corner indicates the exact type of the approximant. On the border
of the block 5 a holds, which means that the Pad form is unique up to a common
scalar factor there. On and above the antidiagonal, a 0 holds, so that the function
r is a true Pad interpolant there, while below the antidiagonal, r is a deficient Pad
approximant. (Some authors say that the Pad approximant does not exist there [1].)

3 Note that A is assumed to be maximal by definition of O+.
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There are two exceptions to these finite square blocks: If the zero function is a
Pad approximant, then its block is a half-strip. If f is itself rational, there is an
"infinite square block," since in the whole quadrant {(m, n); m _> #, n _> } the Pad
approximant is r f.

The extension to the functionals (I)t with < 0 is easy after adapting the Pad
construction to formal Laurent series with finitely many terms with negative index.
More generally we can define the (one-sided) Pad( approximant of an arbitrary formal
Laurent series [47, 2].4

DEFINITION. Given f E , m E Z, and n N, divide f into two pieces according
to

f(z) zm-n+I(f-(z) -t- f+(z)),

where

m--n oo

(1.21b) zm-n+lf- (Z) := E d/)kZk zm-n+lf+ (z) := E d/)kzk
k=-cx) k=m-n-F1

and let r+ "= p+/q be the (n- 1, n) Pad approximant of f+ P. (If n 0, then
r+ := 0.) Then define the (m, n) Padd approximant of f by

rm,n(Z) := zm-n+l(f-(z) + r+(z)).

It can be checked easily that in the case f P this definition is consistent with
the previous one. The function rm,, of (1.22) belongs to the set

(1.23) 7:.m,n "= zm-n+l (P+/- -F Tn-l,n),

where P+/- := {f e :; f(z) O_(z-)} is the space of "coanalytic" formal power
series. The exact type (#, ) of rm,n is defined by setting equal to the exact degree
of q (assuming p+ and q relatively prime) and # equal to the index of the highest
nonvanishing term in the formal Laurent series of zm-n+l(f-(z)q(z)+ p+(z)). The
zero function has type (-cx), 0), but there are other functions with type (-cx, ) for
some > 0, e.g., f(z) (...+z-3 +z-2 +z-I)+ 1/(1-z), which can be represented
in every space nml (m Z) [47, Ex. 2.2]. Two functions in two spaces of type (1.23)
are considered equal if the formal Laurent series, which are obtained by expanding
the terms from Tn-l,n into a power series, are identical.

With these definitions the Characterization Theorem (Corollary 1.5), the Block
Structure Theorem (Corollary 1.6), and the Definition by Optimality (Corollary 1.7)
remain valid if 7m,n is replaced by m,n, and m N by m Z. In part (i) of the
Block Structure Theorem the assumption r 0 is replaced by # -cx), and the
statement there concerning (1.13) requires an adaptation of Theorem 1.2 and of the
notion of a Padd form. The latter could indeed still be used to define rm,n. Basically,
we just have to replace Pm by 75m := 7m,O := zm+l’P+/-

"= {f ,-,; f(z) O_(Zm)}.
DEFINITION. Given f , m E Z and n N, an (m, n) Padd form of f is any

pair (p, q) Pm X P, (p, q) (0, 0), for which

(1.24) f(z)q(z) p(z) O_t_(zm+n-F1).
4 The following paragraphs are not so important for the understanding of the Lanczos algorithm.

Readers who are just interested in the latter may assume 0 and Ck 0 if k < 0, so that m n- 1,
f- 0, f+ f, and r+ r; using this setting they can then proceed to Theorem 1.8.
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Note that any second member q of an (n- 1, n) Pad(! form of f+ is a second
member of an (m, n) Pad form of f, and vice versa. In fact, in view of (1.6), q only
depends on 1, 1+1,"’, ld-2n-1.

The Pad table now occupies the right half-plane {(m, n);m E Z, n N},
and there are three possible exceptions from the finite square blocks of the modified
Corollary 1.6: If f(z) O+(zk) for some k Z, then rm,n 0 in the quadrant
{(m,n);m < k, n e N}. Iff e 7m,n for some (re, n) and the exact type off
is (#, ) with # -cx), then rm,n f in the quadrant {(m, n);m >_ #, n >_ };
however, if # oc, then rm,, f in the half-plane {(m,n);m Z, n >_ }.
Of course, the Block Structure Theorem also requires some modifications concerning
these exceptional cases. However, in our application here we could always assume that
i 0 for i < l, since the Pad approximant r+ of f+ is what really matters. Hence,
we essentially have the situation f E :P discussed before. But for the future discussion
of the backward qd algorithm it is necessary to introduce Pad approximants for all
(m, n) Z x .

Let us now return to the formal orthogonal polynomials defined by (1.1). We now
allow that < 0 and, using the coefficients Ck from (1.1), we set in accordance with
(1.21)

(1.25) f(z) := CkZk.

For fixed Z an nth FOP1 Pt;,, which is defined as a monic polynomial of degree n
satisfying (1.2), is now linked to the (1 +n- 1, n) Pad approximant of f L: in a way
analogous to the special case f P, > 0 treated before. The formulas (1.4), (1.6),
(1.8a), and (1.11) remain valid, while in (1.5), (1.8b), and (1.12) the lower bound 0
for has to be replaced by

Since P;n (n _> 1) is supposed to have exact degree n, we need in view of (1.11)
an (n- 1, n) Pad6 form (p+, q) of f+ with q(0) 0 or, equivalently, an (l / n- 1, n)
Pad6 form (p, q) of f with q(0) 0. Hence, Pt;n exists if and only if a 0 in Theorem
1.2 (applied either to f+ (with m :-- n- 1) or to f (with m :-l+ n- 1)), and there
is a unique monic Pt;n if and only if a 5 0. Also note that 5 equals the amount
by which n surpasses the next smaller index for which P;n is unique, i.e., regular.
Summarizing, we get the following theorem.

THEOREM 1.8. Given f F, Z, and n N+, there exists a true nth FOP1
Pl;n if and only if the index pair (m, n) :- (1 + n- 1, n) lies either in an infinite
nonzero block or on or above the antidiagonal of a finite square block or a zero block
of the Padd table of f, i.e., if and only if f has a true (m, n) Padd interpolant. P;n
then has the general form

(1.26)

where /bt;(z) z-(tm,(z- is monic of degree n- , m,n i8 the normalized
denominator of the (m, n) Padd approximant, and W(z) zbw(z-1) is an arbitrary
monic polynomial of exact degree 5. Moreover, t;n Pl;n, where nj denotes the
largest integer less than or equal to n for which a regular FOP1 .for exists. (Hence,
5 n-nj.)

P;n is regular (i.e., unique) if and only if the pair (m, n) lies on the upper or the
left border of a finite or infinite square block of the Padd table. If P;n is regular, then
W(z) =_ 1 in (1.26).
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As antidiagonal of the zero block we understand the line { (m, n) E Z x N; m/n
k- 1} if f(z) =_ O+(zk). If rm,n O, then Pl;n(z) P;0(z) 1 and OW n
in (1.26). According to this theorem, for fixed l, the true FOPls P;n, as far as they
exist, are essentially the denominators of a diagonal sequence (r+n-l,n)n=O of Pad
approximants, and the existence and uniqueness of a P; depends only on how this
diagonal intersects with the blocks of the table (cf. Fig. 1).

From Theorem 1.8 it also follows that the determinant of the n n moment matrix

M;n defined in (1.7) is nonzero if and only if the index pair (m, n) :- (1 / n 1, n)
lies on the firs :ow or the first column of a finite or infinite square block of the Pad(!

table. Hence, the zero pattern of the so-called c-table, whose (m, n) entry is this
determinant, reflects the block structure of the Pad table [12, Thm. 3.2].

O O

0 0

o o

o o

o o

o o

0 0

o o

o o o

o o o

Io

o

o o

oJo oJo o o o

o o o o o o o

o o o o

o

o

0 . 0 0 0 0 0 0 0

0 o . o o o o o o

0 0 0 0 0 0 0 0

oo
0 0 0 0 . 0 0 0 0

m

FIG. 1. The location of regular (large circles) and singular (small circles) true FOPls Pl;n in
the Padd table of f. At the top of the table there is a zero block, on the right side at the bottom is
an infinite square block. The entries with deficient FOPls are left blank. One diagonal is dotted.

Theorem 1.8 suggests that we extend the definition of FOPls in the following way
to those values of and m where no true FOP1 exists.

DEFINITION. If for some n there exists no true FOP1 with respect to (, and
if nj is the largest integer less than or equal to n for which a regular FOP1 exists,
then any polynomial P;n(Z) :-- W(z)Pl;n(z), with W 7)_n monic, is called an
nth normalized deficient FOP1 with respect to (I)l.

Draux [7] calls these polynomials quasi-orthogonal. Our choice of the attribute
deficient is based on their relationship to deficient Pad approximants stated next.
These deficient Pad approximants are, on the other hand, special cases of deficient
rational interpolants [16]. In view of Theorem 1.2 the following addition to Theorem
1.8 then holds.

THEOREM 1.9. Given f , Z, and n N+, a FOP1 Pn Pl; is deficient
if and only if the index pair (m, n) := (1 + n 1, n) lies in the Padd table of f below
the antidiagonal of a finite square block or a zero block, i.e., if and only if f has a

deficient (m, n) Padd interpolant. Pt; then has the general form (1.26), where again
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/;n(Z) P1;nj(Z) zn-5m,n(Z-1) i8 moTtic of degree n- , (tm,, is the normalized
denominator of the (m, n) Padd approximant, and W(z) zw(z-1) is an arbitrary
monic polynomial of exact degree .

Ho eve , iI is de  i nt, := := is the
member of an (m, n) Padd form of f To obtain such a second member we would have
to restrict the degree of W to - a in (1.26), where

(1.27) a=n-[nj+l+nj-1]2
>0.

Here nj denotes the largest integer less than or equal to n for which a regular FOP1
exists, nj+ is the smallest integer greater than n .for which a regular FOP1 exists,
and [xJ denotes the largest integer not greater than x. (Again,

For fixed we now have a complete set of FOPls, and the following is a useful
reformulation of Theorems 1.8 and 1.9.

THEOREM 1.10. For fixed l, let 0 no < n < n2 < be the indices for which a
regular (and, hence, unique) FOP1 Pn :- P;n exists. (If f+ is rational, then there are
finitely many regular FOPls Pnj, j 0,..., J, and we set ng+l :- oc. Otherwise,
we set J := oc.) Then, for all n E N, the FOPls Pn := Pl;n have the form

(1.28) P,(z) "= Wn-n(z)P,(z) ifnj <_ n < nj+

with Wn-n an arbitrary monic polynomial of exact degree n- nj. Further, if we
let

(1.29) hj := n+l n, hj :=
2

there holds for nj <_ n < nj+l, j N (cf. Fig. 2)
(i) Pn is a true FOP1 if and only if nj <_ n <_ nj + hj;
(ii) Pn is a regular FOP1 if and only if n nj
(iii) Pn is a singular FOP1 if and only if nj < n <_ ny + hj
(iv) Pn is a deficient FOP1 if and only if nj + hj < n < nj+l.
Formal orthogonal polynomials of the second kind do not play as important a role

in numerical analysis as the FOPls. But they ought to be mentioned for completeness
and for symmetry reasons. Moreover, most results for them are obtained nearly for
free.5

DEFINITION. The .formal orthogonal polynomial of the second kind (FOP2) Ql;n
associated with an nth FOP1 Pt;n is

(1.30) Q;() .= (P;n() P;n(Z) )
where (I)t, as before, acts on polynomials in z.

LEMMA 1.11. Ql;n (n >_ 1) is a polynomial of degree at most n- 1,

n--i

(1.al)
i=0

5 Those readers who are only interested in the Lanczos process may find it sufficient to know that
the FOP2s are related to the numerators of the Pad approximants, and may want to skip to the
last paragraph of this section.
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l+nj-1

+h+l

m

nj--
n

#=/+nj-1

m

v n v+A
|o

o hj
"..

n

FIG. 2. The indices of the entries on the lth diagonal of the Padd table, where this diag-
onal crosses the block containing the (l + nj 1, nj) Padg approximant, whose denominator is

P(/).

whose coejficients Xl;i,n are obtained from those of Pl;n according to

n

(1.32) X;i,n +j-i-l;j,n, i 0,’", n 1.
j=i+l

Qt;n has exact degree n- 1 if and only if # O. Moreover, Qt;0 0.
Proof. [6, p. 10]. Since (i zi)/( z) - + i-2z +... + z-2 + z-, we

get

P;n()- P;n(Z) 7l;n,n(n-1 -- n-2Z .- -- zn-2 -- zn-l)+ r;_,(-= + -az +’" + z-a + z-=)
+"" + ;,( + z) + ;,.

Applying (Ih on both sides yields (1.32).
In analogy to (1.11) let us set

n--1

(1.33) Pl+n--l,n+ (z) zn-lQl;n(Z-1) ’-l;i,nzn-l-i
i--0

If we assume that P;n is a true FOP1, the comparison with (1.8b) shows that
+Pt+n-I, pt+_,n if 0 and Ck 0 for k < 1. More generally, zlpl+n_l,n+ (z)

pt+n-,(Z) if Ck 0 for k < 1. Setting m :--- + n- 1 and recalling the definition
of rm, for f E : (cf. (1.21a, b) and (1.22)), we notice that Pm,,+ coincides with p+
there. Hence, P+m,/qm,n is a representation of r+, namely the one normalized by
qm,n(O) 1. Consequently, in view of (1.13), (P+m,n, qm,n) is a Pad form of r+. (Note
that a 0 since Pt;n is a true FOP1.) Hence, we get the following theorem.

THEOREM 1.12. Let P;n be any normalized true FOP1, and let Qt;n be the
associated FOP2. Then, with m "= l+n-1, the pair (P+m,,, qm,n) defined by (1.11) and
(1.33) is an (n-l,n) Paddform off+ with the property that qm,n(O) 1. Conversely,
any such normalized Padd form of f+ yields an nth FOP1 and an associated FOP2.
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Moreover, any such Padd form yields the (m, n) Padd approximant of f in the .form
(1.22) with

(1.34) r+(z) P+m’n(z) z-lQ ;n(z-1)

In view of Theorems 1.2 and 1.8 we can further conclude that Ql;n l;nW is,
in the sense of definition (1.30), associated with Pz;n ;nW if the latter is a true
FOP1. This follows here in an indirect way. However, in 2 we will give a direct proof
based on the definition (1.30) and the orthogonality property of the FOPls alone, and
we will see that this relation extends to deficient FOPls.

COROLLARY 1.13. The FOP2 Q;n associated with the FOP1 P;n of (1.28) is

where (;(z)"- Q,, is associated with ;, P;.
It then follows in turn that Theorem 1.12 is also valid for deficient FOPls if we

replace (P+m,, qm,n) by +(z P,,n, z qm,,) in the statement of the theorem.
A natural question is whether the FOP2s are also in a certain sense orthogonal,

i.e., whether there holds a relation analogous to (1.2) for Q;n. The answer, which is
given in Theorem 2.3 below, is ey to find once the following lemma is established.

LEMMA 1.14. Assume f has only at most finitely many tes with negative
index, i.e., f(z) zk](z) holds for some k e Z, where ] e P, ](0) O. Let g
be the reciprocal series of ]. Then (p, q) is an (m, n) Padd fo of f if and only if
(q, z-kp) is an (n, m- k) Paddfo of g e P.

Proof. Equation (1.24) for (p, q) e m P is equivalent to g(z)z-kp(z)- q(z)
O+(z-k+n+) for (z-kp, q) e Pm-k Pn, since f(z) O+(zk) implies p(z)
O+(z).

Since according to Theorem 1.12 (and its extension to deficient FOPls) a FOP2
Qz;n is essentially the numerator of the (n- 1, n) Pad4 approximant of f+, we can
apply the lemma to Ql;n in order to get the following theorem.

THEOREM 1.15. Assume that ;n (n 1) is a nth FOP1 with respect to the
functional defined by (1.1), and that either 0 and k := or Cz+
Ck- =0, eke0- Let

(1.36) 0 + + +...

be the formal power series, which is reciprocal to Ck + Ck+iZ + Ck+2Z2 +’" Then,
Qt;n has exact degree n- k + 1 and leading coefficient Ck 1/0(k), and

(za+npl;n(z-1), z.+-+-Q;(z-)),

with a given by (1.27), is an (n, n- k + 1) Padd .form of gk. Consequently, with
respect to the linear functional P --, C defined by

,/,() (i )(1.38) V(z)

-Qz;, is a normalized (n- k + 1)th FOP1.
The first pair of true FOPs with index n > 0 is at n n :- k- q- 1, and there

holds Qz;n (z) =_ Ck. In particular, n 1 if and only if O.
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Moreover, .for n >_ nl, Q; is regular, singular, or deficient if and only if P;n has
the respective property.

Proof. What remains to be said is that, under the above assumptions, f+(z)
1 + l+lz +..- O+(zk-), so that the numerator of the Pad fraction (1.34) has at
0 a zero of exact order k l, which means that Q;n has exact degree n- k + 1.
Consequently, in (.37), which by Lemma .14 is an (n, n- k + l- 1) Pad6 form of gk,

the factor z corresponds exactly to the one in (1.13). Hence, by Theorem 1.8, the
polynomial Q;n, when renormalized to be monic, is a true FOP1 if and only if a 0.
By inserting z 0 in (1.36) and (1.37), it is seen that Q;n has leading coefficient

Ck 1/0(k)- Moreover, Pl;n is unique (i.e., regular) if and only if Qg;n is unique.
Finally, the statement about the first pair of true FOPs follows from the fact that
r+=O=O/lifl<_m<k,i.e.,ifO<n=m-l+l<k-l+l.

Since the regular FOPls/;n (of respective exact degree nj) are in a one-to-one
correspondence with the regular FOP2s Q;n (of respective exact degree nj-k+l-1),
the gaps hj nj+l nj between the degrees are the same for both sequences; there
is only a constant difference k- + 1 in the degrees. Note that Q;n(Z) =- 0 for
no=l<_n<n.

Later we will make the substitution "= z-1 and consider Pad approximants at
cx) of the function

(1.39) F() -1f(-1) Ck-k-
k=O

We will call r(1/) an (m, n) Padd approximant ofF() at oc if r(z) is an (re, n) Pad
approximant of F(z-) zf(z), at 0. Hence, instead of f(z) we consider essentially
zf(z) whose Pad table is obtained by shifting the one of f down by one row, thus
introducing a zero row at the top of the classical Pad table occupying the quadrant.
While the FOPs generated by the functional D0 yield the Pad approximants on the
superdiagonal {(n- 1, n); n E N} of the ead table of f, they correspond to the Pad
approximants on the main diagonal of the Pad table of z(f(z)), which we may also
consider as the ead table of F at cx. Note, however, that r(1/) (as a function of )
does not generally have type (m, n) if m n. In 4 we will define the functional D0
such that the corresponding FOPls are the polynomials that are implicitly generated
by the unsymmetric Lanczos process.

2. Orthogonality and recurrence formulas of formal orthogonal poly-
nomials. Given the functional (I) of (1.1) for some fixed l, in 1 we have defined
normalized formal orthogonal polynomials Pn =/; for each n E N. As in Theorem
1.10, we let 0 no < n < n2 < <ng (where J can be finite or infinite) be
the indices for which Pn is regular, i.e., unique. Then all the other P have the form
(1.28) with Wn-n monic of degree n- nj. Now, for simplicity, we choose a fixed
sequence {Wm}m=O of monic polynomials Wm 7)m to be used in the sequel for this
purpose. Then (1.28) specifies one FOP1 P for each n. In this section we discuss
the orthogonality properties of the sequence {Pn} and deduce from them a recurrence
formula, which also holds with different initial values for the sequence {Q} := {Qt;}
of associated FOP2s.

By definition, a true FOP1 is orthogonal to all polynomials of lower degree. It
may, however, be orthogonal to itself. The following theorem shows that this happens
whenever a FOP1 corresponds to a Pad approximant which lies in the Pad( table of
f (given in (1.25)) above the antidiagonal of its block. On the other hand, deficient
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FOPls, which lie below the antidiagonal, are not orthogonal to all polynomials of
lower degree.

THEOREM 2.1 (orthogonality of FOPls). For a FOP1 Pn with nj <_ n < nj+l,
the following holds:

(i) Ifj < J and eitherj > 0 or f(z) 7 O+(zl+), i.e., ifthe (1-9n 1,n) entry
of the Padd table of f lies on the upper or the left border of a finite square block, then

(2.1a) el(pP,) 0 (/p e fi--1),

(2.1b) @(zaP,) # O,

where

(2.1c) t := 2nj n + hj 1 nj + nj+l n 1.

In particular, if n nj, then

(2.2) nj + hj 1 nj+l 1,

and therefore hj can be determined as
(2.3)
h min{k N+; (z’+-iP,) # O} min{k N+; Ot(Wk_(P,)) # 0}.

(ii) If j J < oo, i.e., if the (1 + nj 1, ny) entry is not the zero function and
lies on the upper or left border of an infinite square block of the Padd table of f, then
Ot(pPn) 0 for any polynomial p and any n >

(iii) If the (1 +nj 1, nj) entry is the zero function, so that necessarily j nj O,
PHi(Z) =- 1, and f(z) =_ O+(zk) for k := nl + > l, then the relations (2.1a) and
(2.1b) hold with := nl -n- 1, which is in accordance with (2.1c).

Remark. Since n + t 2nj + hj 1 the degrees n and belong to entries on the
(l + n- 1, n) diagonal of the table that lie symmetrically about the antidiagonal of
their block, which must be a finite or a zero block (cf. Fig. 2).

Proof. (i) Assume that (2.1) holds for n nj and some , i.e., that for P;n P
the orthogonality relation (1.2) holds up to the degree t- 1, but not for p(z) zn.
Then (1.6) holds exactly up to + nj + t- 1, and in (1.8a) the last term becomes
O+(zt+n+). In view of (1.11) there holds therefore for the linearized error:

(2.4) f(z)ql+n-l,n (Z) Pl+n-l,n (Z) =-- O+(zl+n+).
Conversely, this "identity" obviously implies (2.1).

Because the (1 + nj 1, nj) entry lies in the first row or column of its block, there
holds a 0 in (1.13), and when (2.4) is divided by ql+-l,n, the order of (2.4) is
not changed. The comparison with (1.16) then yields

+ nj + t #j + j + Aj + 1.

We claim that this is equal to + 2nj + hj 1, so that, under the assumption n nj,
the formula coincides with (2.1c). Two cases must be distinguished (cf. Fig. 2):
If the (1 + nj 1, nj) entry lies in the first column of its block, then nj uj and
+ nj 1 + hj j -9 Aj -9 1, while, if it lies in the first row, then + nj 1 #j

and nj + hj uj + Aj + 1. In both cases, adding the two respective equations yields
the claimed identity.
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Finally, if n increases from nj to nj+l 1 and Pn is defined by (1.28), it is clear
from the linearity of (I)t that , as implicitly defined by (2.1a) and (2.1b), decreased
at the same rate. Hence, the formula (2.1c) for is valid for all n.

(ii) If the (1 / ni 1, nj) entry lies on the border of an infinite block, then the
left-hand side of (2.4) is identically zero, and by the arguments used at the beginning
of the proof of part (i), (2.1a) holds for arbitrary t if n nj. If n > nj, we split p
into Wn-nj times 15, and obtain t(Pn) 0 for arbitrary i5.

(iii) In the case of a zero entry we must clearly have j nj 0 and nl k-l/ 1,
and there holds for n--no 0

f(z)zPo(1/z) f(z) =_ O+(zk) =_ O+(znl+l-),

which is equivalent to (1.6) holding up to nl + 2 exactly and to (1.2) holding
up to degree n 2.

The following result, which can be found in [7, Propri6t6 1.17, p. 49] and [14,
Thm. 2], is now an easy consequence of Theorem 2.1.

COROLLARY 2.2. Under the assumptions of part (i) of Theorem 2.1 and the
convention n <_ n < ni+l, n <_ n < n+ holds

(2.5) (l(P,’Pn) 0 if i j
or i--j and n -n < nj - nj+ 1,

and, for some nonzero 6j independent of n nj and n’ n,

(2.6) (I(Pn’Pn) -: 6 0 if i j and n’ -t- n nj -t- n+ 1.

If j and n + n >_ nj + nj+, no statement can be made in general about the
vanishing of l(Pn’ Pn).

Proof. Condition (2.5) follows directly from (2.1a) and (2.1c): If/ j, then
either n < ni _< n or n < ni <_ n; if i j, then n < t. Similarly, the nonvanishing
of (P,Pn) in (2.6) follows from (2.15) and (2.1c). The fact that the value only
depends on j is a consequence of all Pn being monic, (2.5), and the linearity of (I):

(2.7) 5j t(znJ+-P) (zh-Pn2). 0

In 3 we will prove that by choosing the polynomials Wm in (1.28) appropriately
(namely, in a preliminary unknown way dependent on j), we can make (I) (Pn’, Pn) 0
when i j and n + n _> nj + nj+l.

Theorem 2.1 allows us to give a complete, direct proof of Corollary 1.13.
Proof of Corollary 1.13. By definition, Q is associated with Pn. If ng < n <

nj+, we obtain from (1.28)and (1.30)

In the last step we have used the fact that p(z):- [Wn-nj ()- Wn-, (z)]/(- z) is
a polynomial of degree n nj 1 < nj+l nj 1 _< n+l 1, so that Ot(pP 0
according to Theorem 2.1.
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In view of Theorem 1.15 the orthogonality results of Theorem 2.1 and Corollary
2.2 have an analogue for the associated FOP2s.

THEOREM 2.3 (orthogonality of FOP2s). For j 1,..., J let Q, be the un-
normalized FOP2 associated in the sense of (1.30) with the regular FOP1 P,. For
nj < n < nj+l let Pn and Qn be defined by (1.28) and (1.35), respectively. Define k
and k as in Theorem 1.15. Then .for j 1,..., J there holds in case (i) of Theorem
2.1,

(pQ) o (Vp e p_+_),

(2.8b) # o,

where t is again defined by (2.1c), while, in case (ii) of that theorem, k(PQn) 0 for
any polynomial p and any n >_ nj. (In both cases Qn has exact degree n- k + 1.)

COROLLARY 2.4. Except when j 0 the statement of Corollary 2.2 remains
valid if Pn and Pn’ are replaced by Qn and Qn,. (The constants 5 have new values

5 obtained by replacing Pn by Qn and by in (2.7).)
There are some other immediate conclusions from Corollaries 2.2 and 2.4 that

may be worth formulating.
COROLLARY 2.5. (i) A FOP1 Pn Pt;n is orthogonal to all polynomials of lower

degree but not orthogonal to itself if and only if the corresponding (1 + nj 1, nj entry
lies in the Padd table of f on the antidiagonal of a finite or a zero block.

(ii) Pn is orthogonal to all polynomials of lower or equal degree if and only if the
(1 + nj 1, nj) entry lies above the antidiagonal of a finite or a zero block or in an

infinite nonzero block.
(iii) Pn is not orthogonal to all polynomials of lower degree if and only if the

(1 + nj 1, nj) entry lies below the antidiagonal of a finite or a zero block.
(iv) Except when n < nl, i.e., when the (l + nj 1, nj) entry lies in a leftmost

block, statements (i)-(iii) also hold for the FOP2s Qn and formal orthogonality with
respect to k.

COROLLARY 2.6. For every n E N there is a polynomial of degree at most n which
is with respect to orthogonal to all polynomials of degree less than n.

At first sight, Corollary 2.6, which is due to Struble [44], seems to contradict the
existence of deficient FOPls. However, the point is that the degree of the polynomial
may be less than n, which is not allowed for an nth FOP1. In fact, if we are in
case (iii) of Corollary 2.5, then < n, and P is a polynomial fulfilling the claim of
Corollary 2.6.

Now let us turn to the recurrence formulas. By definition (1.28) the polynomials
Pn with nj < n < ni+l are easily generated from the regular FOP1 Pn. Moreover,
they can be computed recursively. For example, if Win(z) zm, then

(2.9) Pn+l(Z) zP(z), ni <_ n <_ ny+l 2,

while, if the polynomials Wm are chosen to satisfy a three-term recurrence,

w w(z) e

(with Wo(z):-= 1, W_l(z): 0, 0W "-0), then clearly

(2.11) P,+l(z) (z aw w_)P,(z) ,_, Pn- (z), nj < n < nj+l 2
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There remains the question of whether the regular FOPls Put satisfy a similar
three-term recurrence formula. A brief (somewhat sketchy) direct proof of such a
formula, namely recurrence (2.17) below, was first given by Struble [44].6 As we will
see in a later part, its existence also follows readily from the P-fraction representation
of f, which is due to Magnus [26], [27]. The result also appears in Nuttall and
Singh [32, Lemma 3.5], Gragg and Lindquist [14, Thm. 2], and, in a less appealing
formulation, in Draux [7, pp. 54-56]. Once the orthogonality relations (2.1a-c) have
been established, the derivation of this three-term recurrence for (Pn g}i=0 (g -< cx))
is, in fact, quite easy.

First, these polynomials, since they are monic of respective degree ni, clearly
satisfy a recurrence

(z) (wh (z) to. (z)Po(z)

with ti,i E 7:’h-1, i 0,... ,j. Let us multiply this relation by z’+k (k 0,... ,hi
1; 0,... ,j) and then apply the functional (I)l. Since ni + k _< ni+l 1, the
left-hand side becomes 0, and we obtain for each pair (k, i) a linear equation for the
polynomials ti,i (i.e., for their coefficients)"

(2.12) E (I)l(z’+k ts,i Pn.) (z"+k Wh Pn)
s--O

(k-0,...,hi-1; i---0,...,j).

For the right-hand side there holds, in view of (2.14-c) and (2.2),

--0 if i<j-1,
(z’+k Wh Pn) 0 if j 1

0 if i-j- 1
and k

_
hi-1 -2,

and k-- hj_ 1,

and on the left-hand side we obtain likewise

-0 if i<s,
(z’+k ts,i Pns) 0 if i s

-0 if i=s
and k + Ot,i <_ h 2,
and k + Ot,i h 1.

Therefore, the system reduces actually to a coupled pair of systems, one homogeneous,

o=0(z’+ t, (k=O,...,hi-1; i=O,...,j-2
and k 0,..., hi_l 2; i j 1)

i- i-consisting of -i=o hi 1 ni 1 equations for the j polynomials {ts,i}s=o with
total degree of freedom ni, the other inhomogeneous,
(2.14)

P8 (l(Zni+kWhj P,j (k O, hi 1; i j=o ’(z’+t,
andk=hi_l-1, i=j-1)

consisting of hi / 1 ni+ -ni / 1 equations (giving a total of ni+l and containing
additionally the polynomial ti,i with hi free parameters (giving also a total of ni+).

The main point is now that the full system and its homogeneous part are trian-
gular, and that therefore all but one of the unknowns appearing in the homogeneous

6 The author is indebted to Walter Gautschi for this reference.
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system are zero. In fact, first let i 0, and assume that t0,j : 0. Choose k such
that k + Oto,j h0 1. Then t(zno+k to,j Pno) 0 according to (2.1a-c) and (2.2).
But in (2.13) this contradicts the equation with index pair (k, 0), hence, t0,j 0.
Next make the induction assumption t0,j tl,j ti-l,j 0 (i <_ j- 1). Re-
peat the argument with k satisfying k + Oti,j hi 1 and with the (k, i) equation.
Again it follows that ti,j 0, except that in the case i j- 1 there is no equation
for k by-1 1, so that tj_l,j could be a nonnull polynomial of degree 0, i.e., a
constant. Conversely, for any such constant,

(2.15) to,j(z) -- tl,j(Z) ----’’’ tj--2,j(Z) 0, tj--l,j(Z) e C

is a solution of the homogeneous system (2.13), and this must also be its general
solution. Inserting this into (2.14) and replacing ty-15 and ty,j by j (a constant)
and ay (a polynomial), respectively, reduces (2.14) finally to

(2.16a) j(l(znj-lpnj_l) (l(Znj-1 Wh Pn),

(2.16b)
+ k- 0,...,hi 1,

i.e., to an individual linear equation for the constant and a system of hj linear
equations for the hj coefficients of aj. By (2.1a-c) and (2.2) the (I)-values in (2.16a)
are not zero, hence/ is uniquely determined and nonzero. If the polynomial aj is
written in ascending powers of z, the coefficient matrix in (2.16b) is in view of (2.1a-
c) and (2.2) lower right triangular with a constant nonzero antidiagonal. Hence, the
solution of (2.16b) is uniquely determined also. Summarizing, we get part (i) of the
following theorem.

THEOREM 2.7 (recurrence formula). (i) The regular FOels Pn, j O,’",J
(<_ oc), satisfy a three-term recurrence

(2.17) Pnj+l (z) (Wh (z) aj(z))Pn (z) jP,j-1 (z), j 0,..., J 1,

with initial values Pn-1 (z) :=- O, Pno (Z) :--= 1, 0 := 0, where {Wm}=o is an arbitrary
prescribed sequence of monic polynomials of respective degree m, {fly J-}j= is a sequence
of uniquely determined nonzero complex constants obtained by solving the single linear
equation (2.16a), and {aj J-}j=l is a sequence of complex polynomials of respective degree
Oaj < hi, which are the uniquely determined solutions of the linear system (2.16b).
hj := nj+ nj is determined by (2.3).

(ii) The regular FOP2s Qn, j 1,...,J (<_ oc), also satisfy the three-term
recurrence (2.17) with the same coefficients aj and j, but restricted to j > 0 and
with the initial values Qo(z) :=-- O, Ql(z) :=_ dpk.

Proof of part (ii). Subtracting (2.17) from the same relation with z replaced
by , then dividing by - z and applying (I)t yields on the left-hand side Qn+I (z).
On the right-hand side we apply the same trick as in the proof of Theorem 2.3.
The most critical term is Ot(PPn) with p(z) [Wh() Whj(Z)]/(- z), where
Op hj 1 < nj + hj 1 , since nj > 0 because of the restriction to j > 0. [:]

For special choices of the basis {Wm} additional information can often be given.
We treat the case of practical interest where {Wm} satisfies a three-term recurrence
(2.10). Then (2.11) holds, and likewise

zPn+l-1 (z) Wh (z)Pn (z)
__

OlhW_ 1Pnj+ "- hW-IPn+1-2
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After inserting the expression obtained from the recurrence relation (2.17) here for
Whj (z)P,j (z), and representing there aj in terms of the polynomials Wm we obtain
the following corollary.

COROLLARY 2.8. Assume that the prescribed polynomials Wm satisfy the three-
term recurrence (2.10) and let

h -1

(2.19) aj(z) as,W(z).
s--O

Then, in terms of the FOPls Pn defined in (1.28) the recurrence (2.17) becomes

wPn+, (z) (z ah-l,j a_l)Pn+l-1 (z) (ahj-2,j + h_l)Pn+-2(Z)
(2.20) --Oh-3,jPn+-3(Z) oo,jPnj (z) jP,_, (z),

j=O,...,J-1,

while .for n < n < nj+l, j 0,..., J 1, the polynomials Pn satisfy the recurrence

(2.11). The same recurrences hold.for j 1,..., J 1 for the associated FOP2s Q,
which satisfy (1.35).

Recall that Corollary 2.8 covers the basis Wm(z) z" as the special case where

CmW /mW --0 (Vm e N)in (2.10). In this case, the linear system (2.16b) for the
coefficients of the polynomial aj becomes a lower right triangular Hankel system.

The linear system (2.16) for j and the coefficients of aj can be replaced by an
equivalent one obtained by left multiplication with a nonsingular matrix. In fact, we
will see later that the nongeneric Lanczos algorithm makes use of such an equivalent
formulation. Recall that (2.16) just means that

(2.21a)

(2.21b) ajPn - jPn_ WhPnj -k zn+k, k O, hj 1,

where _L denotes (pseudo-)orthogonality with respect to the indefinite bilinear "inner
product" : (p, q) -- Ot(pq). Since zn-l_kP, it follows from (2.21a) that (2.21b)
also holds for k -1. Moreover, by (2.1) and (2.2), the left-hand sides of (2.21a) and
(2.21b) are orthogonal to any polynomial p E Pn-2 anyway. Hence, on the right-
hand side, the monomials znJ and zn+k (k 0,..., hj 1) can be replaced by any
other polynomials of the same degree. A natural choice, which is also made use of
in the Lanczos process, is to replace them by Pn- and Pn+k (k 0,"" ,hj 1),
respectively. This has in particular the effect that the terms with flj in (2.16b) vanish.
This modification can be understood as a left-multiplication of the system by a lower
(right) triangular matrix and transforms the coefficient matrix of (2.16b) into another
right triangular matrix:

(2.22b) Ot(ajP,+kPnj) = Ot(Pn+kWhPn), k O,...,hj 1.

Moreover, since WhPnj is a linear combination ofzP+_, Pn+I-, Pn+--2, ",

P and all these polynomials except the first one are orthogonal to Phi-l, we can
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replace the right-hand side of (2.22a) by [l(zPnj_lPnj+l_l). In (2.22b) this simpli-
fication does not apply, but we can substitute WhjPn according to (2.18) if (2.10)
holds.

THEOREM 2.9. If (2.10) holds, the linear system (2.16a, b) .for computing the
polynomial aj and the constant for the recurrence (2.17) can be replaced by the
equivalent linear system

(2.23a) jOl(Pn_lPn_l) [l(zPrt:_lPrt:+l_l),
(aP.+P.) (zP.+P.+_) a_ (P.+P.+._)

(2.235) w3h-lO*(Pn+Pn+-2), k 0,’", hj 1,

consisting also of a single equation for and, if aj is expressed as in (2.19), of a
ght lower tdangular system for the coecients as,j of aj. If (2.10) does not hold,
(2.23a) and (2.22b) are valid.

3. Matrix interpretations. As is well known, any three-term recurrence of the
form (2.10) gives rise, after introducing the row vectors

(3.1) w := [W0, W, ..., W] (m e N)

and the tridiagonal matrices

1

to a sequence of vector-matrix relations

(m E N),

For n nj+l 1, i.e., for computing Pn+, we have the relation (2.20). Together
these two relations lead immediately to the following result.

from which it is seen that every zero of Wm+l is an eigenvalue of TmW, and the vector
Wm(z) evaluated at such a zero is a corresponding left eigenvector. In case of a zero of

W(m-1)multiplicity # > 1 differentiation of (3.3) shows that the vectors wm (z),. , (z)
are corresponding principal vectors. Hence, TW is nonderogatory, i.e., all its eigen-
values have unit geometric multiplicity [49, p. 15].

For the following it is important that these connections still hold if the recur-
rence includes further previous iterates and the tridiagonal matrix becomes an upper
Hessenberg matrix [49, p. 426].

For those n where a regular FOP1 does not exist, we assume again that Pn is
defined by (1.28), and that the prescribed sequence {Wm} satisfies the three-term
recurrence (2.10). (An arbitrary monic sequence {Wm}, for which a more general
recurrence than (2.10) is valid, could also be used; the necessary modifications are

straightforward.) Since (2.10) implies (2.11), which is valid for n < n < ny+l 2,
there holds
(3.4)
z[P, (z), ..., P+-2 (z)] [P= (z), ..., Pnj+x_2(z)IT_2 + [0, ..., 0, Pn+l- (z)].

+ [o, ..., o, e
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THEOREM 3.1. For some fixed l, let {P,} and {Q,} be the FOPls of (1.28)
and the associated FOP2s, and let {Wm} satisfy (2.10) (possibly with (wm wm
0, Vm E N). Moreover, define the infinite row vectors

(3.5) P "--[Po, P1, ], q :-[Qnl, Qn+l,... ],

and the infinite unreduced block tridiagonal upper Hessenberg matrices

(3.6a) H---

or

Ao B
Co A B2

CJ-1 Aj

Ao B1
Co A B2

C A2 ".

il

(3.6b) H

in case J < x or J oc, respectively. Here, for 0 <_ < J,

A1 B2

C A

B2

Wh-2 Ohi -3,i

h,-1 nt- Ohi-2,
1 c_ + Ch-1#

(0,i

TWh-I -" (h-3,i

Olhi -2,i
Ohi- l,i

[0, .-., O, 1]

are square matrices of respective order hi, which in the case where hi 1 reduce to
Ai [ao,i]; moreover, for 0 < i <_ j < J,

o...oA
0 0 0 0

(3.8) Bi [0, ..., O, 1]

0 0 0 0

and

0 0 1 1
0 0 0 0

(3.9) Ci-1 := [0,..., O, 1]

0 0 0 0

CJ-1 Aj
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are rectangular rank-one matrices of size hi-1 hi and hi hi_, respectively. For

Aj TW :=
1 a2

w ""

j=J<oc,

(3.10)

is the infinite tridiagonal matrix of the three-term recurrence (2.10) and Bj is the
hj_l oc zero matrix.

Then,

(3.11) zp(z) p(z)H,

and

(3.11’) zq(z) q(z)H’.

Moreover, if

(3.12) Pn :--[P0, P, "", Phi (n e N),
qn :--[Q, Qnl+l, ..., Qn] (n

_
nl),

and if nn denotes the principal submatrix of order n + 1 of H, then there holds for
n O, 1,...,

(3.13) Zpn(Z) pn(z)Hn q-[0, ..., 0, Pn+l(Z)]

while, if Htn is the principal submatrix of order n nl + 1 of H, there holds for
n hi, nl q- 1,...

(3.13’) zqn(z) qn(z)H + [0, ..., 0, Qn+I (z)].

The matrices Ai are so-called comrade matrices [2]. If the polynomials W, do not
satisfy a three-term recurrence, but a general recurrence involving Wo, W,..., Wm-1,
these matrices are instead general unit upper Hessenberg matrices (cf. [29], [30]). 7

The relations (3.13) and (3.13’) lead by the standard argument mentioned before
(cf. [7, pp. 94-96]) to the following corollary.

COROLLARY 3.2. The zeros of the polynomial Pn+ are eigenvalues of Hn, and
the vectors pn(Z) evaluated at these zeros are corresponding left eigenvectors. In case

of a zero z of multiplicity # > 1, the vectors p(z),..., p(t-)(z) are corresponding
principle vectors. (Here, in Pn, the prime denotes differentiation.) The matrix Hn is
nonderogatory, i.e., all its eigenvalues have unit geometric multiplicity.

The analogue holds for Qn+, Hn, and qn(Z).
The following explicit formulas are valid:

(3.14) P(z) det(zI H) (n e N),

(3.14’) Qn(z) Ck det(zIn-nl Hn) (n _> n),
7 The author is indebted to Gene Golub and Mark Kent for these three references.
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where In denotes the unit matrix of order n + 1, and where k nl + 1.
The formulas (3.11)-(3.13’) lead to interesting matrix relations if the polynomials

P are represented in a basis, say, the monomial basis. We first let

z(z) :-(1, z, z2, .)

and

0

(a.1) S’= 1 0

Still assuming fixed, we define the infinite unit upper triangular matrices

(3.17) P :=

1 71"/;0,1
1

71"/;0,2
71"/;1,2

1 ".

1 7rk;0,1 71";0,2
1 T’k;1,2

whose elements in the (n + 1)th column are the coefficients of Pn P;n and
-1Q=_,, -1Q;,_=1 respectively (cf. (1.4) and Theorem 1.15). The diago-
nal elements of P and P! are all 1 since the polynomials Pn and -1Qn-, are monic.
Using this notation we can now write zz(z) z(z)S and

(3.18) p(z) z(z)P, zp(z) z(z)SP,

(3.18’) q(z) z(z)P’, zq(z) z(z)SP’,

so that (3.11) and (3.11’) become

(3.19) z(z)SP z(z)PH, z(z)SP’ z(z)P’H’.

Each component of the row vectors that are claimed equal in these relations is a poly-
nomial and hence the matrices containing the coefficients must be equal: SP PH
and SP P!H!. By looking at the principal submatrices we obtain relations corre-
sponding to (3.13) and (3.13’). We summarize the result as the following corollary.

COROLLARY 3.3. Under the assumptions of Theorem 3.1 there holds

(3.20) SP PH, SP’- P’H’.

Furthermore, if S, Pn, and Hn are the principle submatrices of order n + 1 of S, P,
and H, then

(3.21) SP PnH +

71"/;0,n+1
?F;l’q-1

[0,’’" 0, 1]

7fl;n,nq-1
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Likewise, if Pn and Hn are the principle submatrices of order n- n + 1 of P’ and
H then

7rk;o,n-nl+
k;1,n-n+l

(3.21’) Sn_nPn- PnHn + [0, ..., 0, 1].

7rk;n-n,n-n+l

Another important matrix interpretation is immediately obtained from Corollaries
2.2 and 2.4.

THEOREM 3.4. Let p and q be defined by (3.5), and let (I)/(pTp) and @k(qTq) be
the infinite matrices obtained by elementwise application of l and @k, respectively,
to the infinite rank-one matrices pTp and qTq. Then

(3.22) (Ih(pTp) D

and

(3.22’) k(qTq) D’,

where D and D are block diagonal matrices,

(3.23) D := block diag [Do, D1,’" ], D’ := block diag [Di, D,... ],

with square blocks of size hj (j 0, 1,..., J and j 1, 2,..., J, respectively), which
are symmetric right lower triangular matrices of the form

(3.24) Dj.... Dj....
.." . .." .

with 5j := Ot(PnjPn+-l) # O, 5} k(QnQn+-l) # O, and with the stars
denoting possible nonnull entries. If Win(z) zm, Dj and Dj are Hankel matrices.

If J < , Dj and D are the infinite zero matrix, and g O.
Moreover, let P and P be the unit triangular matrices of (3.17), and let M and

M be the infinite moment matces of the functionals and k,

(3.25) M := @+2 M’ := k)

The coefficients /(k) defined in Theorem 1.15.) Thenare

(3.26) pTMp D,

and

(3.26’) (P’)TM’p’ D’.
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Hence, if R p-1 and R := (P)-I are the unit upper triangular matrices
which contain in their columns the coejCficients of the monomials when expressed as
linear combinations of the FOPls and the FOP2s, respectively, then

(3.27) M RTDR

and

(3.27’) M’-(R’)TD’R

are symmetric block LDU decompositions ofM and M’, respectively.
As we mentioned before, for the case Win(z) zm, the recurrence for the FOPls

is due to Struble [44] (although he did not specify how to compute the coefficients),
but the matrix decompositions of the left-hand side equation in (3.20) and (3.26) and
the structure of the matrix H of (3.6a, b) are, for that case, first briefly mentioned
without proof in Gragg [13, p. 222]. Ten years later, (3.26) was also given in the
monograph of Draux [7, p. 92], who derived it too from his analogue of our Corollary
2.2. In view of Gragg’s early discovery of these results, the following definition seems
justified.

DEFINITION. A matrix of the form specified by (3.6)-(3.10) is called a Gragg
matrix.

As we know there is some freedom in choosing the singular and the deficient
FOPls, namely, the polynomials Wm in (1.28) can be chosen arbitrarily. There is the
question of how this freedom can be taken advantage of to achieve special properties.
So far we have concentrated on the simplest choice Wm(z) zm and on the one where
a three-term recurrence holds. We now show that for fixed j these polynomials can
be chosen in such a way that for nj + nj+l

_
n + n’, nj < n < nj+l, nj < n’ < nj+l,

the "inner products" (I)(PnPn’ ((P,’ Pn) take an arbitrary prescribed value, e.g.,
0. Draux has a similar result, which, however, is unclearly stated [7, p. 75-76]. We
start with a matrix theoretic lemma. Recall that a matrix W is called persymmetric
if it is symmetric about its antidiagonal.

LEMMA 3.5. Let D (k,l)k,l--lh be a nonsingular lower right triangular matrix

of order h, and let ) denote the antidiagonal matrix with the same antidiagonal
elements. Assume that no sum of any two of these antidiagonal elements vanishes.
Moreover, let J be the antidiagonal unit matrix, so that for any h x h matrix A,
reflection at the antidiagonal yields (JAJ)T JATJ.

Then, there exists a uniquely determined unit upper triangular matrix W
h(OJk,l)k,l_ such that

(3.28) D (JWJ)bTw
is a decomposition of D into a unit lower triangular, an antidiagonal, and a unit
upper triangular matrix, the two triangular matrices being related by a rotation.

If D is symmetric, W is persymmetric, so that

(3.29) D wTIW.
In particular, if D is a Hankel matrix, then W is a Toeplitz matrix. More specif-

ically, if

(3.30a) 5k, T]k-}-l-h-1, 1 <_ k <_ h, 1 <_ <_ h, k 4- > h,
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then

(3.30b) wk, X-k, 1 <_ k < <_ h,

and the two polynomials

h-1 h-1

(a.al) () := , (z) .= z
k=0 k=0

are related by

(a.a) u(z) [(z)], o()u(0)

which means that x(z) is the partial sum of degree h- 1 of the power series of
x/(z)/(o).

Proof. The proof is constructive, namely, by establishing algorithms for comput-
ing W and x. Equating the (m, /)-element in (3.28) yields

h

(3.33) m,l=-Oh.+.l_m,kh/l-k,kk,l=
k=l k=h+l-m

Oh+l-m,k h+l-k,k Ok,l

For m + < h, both sides are clearly zero. For m / h + 1, we obtain the condition
5h+l-t,t w2 5h+1-,, which is satisfied by choosing wt,t := 1 1,... h. Then, for1,1

1,..., h- 1, there results the recurrence

(3.34)
1

h+l+i-l,l dl-i,k O3k,l h+l-k,kOl-i’l :--
h+l-l,l or" hA-l+i-l,l-i k--l-i+l

--i + 1,...,h,

which can be used to build up W codiagonal by codiagonal, since the denominators
on the right-hand side cannot vanish by assumption.

If D is symmetric, it is seen that Wh+l_l,h+l+i_ Ol_i,1, SO that JWJ WT,
which turns (3.28) into (3.29). Moreover, if D is Hankel and (3.30a, b) holds, and if we
make the induction assumption that wk,t Xt-k for 1 < k <_ < h, 0 < k < i- 1,
then (3.34) becomes

This value only depends on i and can therefore be called Xi. Consequently, since

X0 wt,t 1, there holds for 1,..., h- 1,

i--1- 2x + x. x-. x. x-..
g]0

m=l m=0

For the polynomials y(z) and x(z) of (3.31), this is exactly the coefficient relation
equivalent to (3.32).
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Keeping still fixed we now let (Pn} be a particular sequence of (monic) FOPls,
say, the one defined by

(3.36) Pn(z) := zn-nJPn(z) if ny _< n < nj+l.

(Recall that the regular FOPls Pnj are uniquely determined by (I)l.) In addition, we

consider another arbitrary sequence {/5,} of FOPls for the same functional l and
the associated sequence {Q,} of FOP2s. They have the form

(3.37) /5(z) := Wn(Z)Pn(Z), On(z):= w,(z)Q,(z) if ny _< n < ny+l,

where wn is now an arbitrary monic polynomial of exact degree n- ny. Consequently,
if written in matrix-vector notation, the four sequences p, ), q, 1 are related by

(3.38) 15 pW, 1 qW’

with

(3.39) W := block diag [W0, Wl,." ], W’ "= block diag [Wl, W2,... ],

where, for j E N, the hy x hy matrices Wy are unit upper triangular. They can be
chosen arbitrarily, thus reflecting the freedom in choosing wn. If we allow that the
sequence {Pn} does not necessarily consist of monic formal orthogonal polynomials,
and we want to do that here in view of later applications, then the matrices Wy
are arbitrary nonsingular upper triangular. If we denote by ), ’, I:I, I=Y, , I’ the
matrices belonging to the new sequences, we readily obtain the relations

(3.40) ) PW, 15’= P’W’,

(3.41) I:I W-IHW,

(3.42) b WTDw, I’= (w’)TD’W

For the blocks/j, ty, (y in I=I and ’ we conclude in view of the special structure
of By and

(3.43)
02n

where 02n denotes now the leading coefficient of w. For the blocks y of I and I’
we have simply

(3.44) by W’DWy.
Now we are ready to prove the following theorem.
THEOREM 3.6. For j 0, 1,..., J- 1 let .)y be any symmetric hy hy matrix

of the .form given in (3.24), with 6y := Ot(PnPn+l-1), and let )j 0 if J
Then there is a monic sequence {/bn} of FOPls such that (I)t(T) := block diag

In particular, there is such a sequence {/5} for which j is the antidiagonal
matrix with elements 5y (j 0, 1,..., J- 1), and the corresponding transformation
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matrices Wi in (3.39) are Toeplitz matrices whose elements can be computed according
to (3.30)-(3.32), with

(3.45) r(mj) "= Ol(Pn+mPn+l-1), 0 < m <

where {Pn} is the sequence of (3.36).
Proof. First let be the block diagonal matrix whose diagonal blocks )i are

antidiagonal hi x hi matrices with elements 5i, and let D be given by (3.22) with p
{P,} defined by (3.36). The blocks Di of D are Hankel and have the same constant
antidiagonal as i" Hence, by Lemma 3.5, applied to each diagonal block, there is a

set of unit upper triangular transformation matrices Wi such that Di
j 0,.--, J- 1. (Wj can be chosen as an arbitrary infinite unit upper triangular
matrix.)

Likewise, if D satisfies the assumptions of the theorem, there is by Lemma 3.5
another set of unit upper triangular matrices i, such that )i bjj. The

block diagonal matrix 4-1W, whose blocks are r-lWj, then yields
with the claimed property.

4. The nongeneric Lanczos biorthogonalization algorithm and nonge-
neric BIORES. Let A 7-/--+ 7-/be a bounded linear operator that maps a separable
real or complex Hilbert space 7-/into itself. A real operator is treated here as a special
case of a complex one, hence, we assume that in general the scalars are from C. Then
7-/is isomorphic to either 12 or CN (for some N), and if expressed in an orthogonal
basis, 7/is represented by an infinite or a finite square complex matrix. We denote
the standard inner product in 7-/by (., .> and the formal inner product based on an
operator B (instead of the identity) by <., .>B, but besides that we use common matrix
notation: I1.11 for the norm in 7-/, AH for the adjoint operator of A, X for the complex
conjugate operator, AT (X)H for the transposed, and IIAII for the spectral norm
of A.

Given x0, y0 E 7-/, the Schwarz constants or moments of A with respect to x0
and Y0 are normally defined by Ck := (Y0, Akx0> (k E N). We use the slightly more
general definition

(4.1) Ck := (y0, AkX0)B := (y0, BAkx0> (k e N),

where B 7-/ is a bounded linear operator that commutes with A. (The three
most relevant cases are B I, B A, and B A-1.) Since A and B are bounded,
I}1 < IlY0111[x01111BII IIAl[k; hence, the power series

(4.2) F() := k-k-i

k=0

in - converges at least for I1 > IIA]], while the series

(4.3) f(z)
k=0

converges at least for ]z] < 1/]]AI[. A fortiori, F and f are analytic functions for
]] > ]]AI] (including x) and Iz] < 1/IIA]] respectively. Inserting (4.1)into (4.2) and
summing up the Neumann series

(4.4) I q- -IA -f- -2A2 -1- (({I A) -I,
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we obtain

F(() (Yo, ((I- A)-lxo)a,

which means that F() is the first Schwarz constant for the resolvent (I- A)-1.
According to (4.4) the resolvent exists and is bounded at least for I1 > [IA[I, while
the spectrum A(A) of A is of course contained in the closed disk

If A has finite rank, then F() is a rational function of order VF

_
rank(A)

vanishing at oc, i.e., a rational function of type (VF 1, YF). This holds in particular
when A is a finite matrix. If A, x0, and Y0 are real, then the moments Ck are real,
and F()-

Starting from two vectors xo, Yo 7-/ satisfying (yo, xo)a ?t 0, the classical
(generic) Lanczos biorthogonalization (BO) algorithm [24], [25], [39], [18], [15] gener-
ates two sequences (Xn - --}=0 that n 1,}=0 and {y such for 0, 1,

(4.6a) x, E/C,+ "= span (xo, Axo, A2xo, Anxo),

(4.6b) Yn E :n+ span (Y0, AHy0, (AH)2y0,""", (AH)ny0)

and

=0 if m?tn,(4.7) (Ym, Xn)B 0 if m n.

Equations (4.6a, b) mean that Xn and y are chosen from two families of nested Krylov
subspaces generated by A, x0 and AH,y0, respectively; and according to (4.7) the
sequences {xn} and {Yn} are formally biorthogonal with respect to the formal inner
product (., .)a, which is a true inner product if B is hermitian positive definite. For
simplicity, we generally use the terms "orthogonal" and "biorthogonal," when we
actually mean "formally B-orthogonal" and "formally B-biorthogonal."

The maximum length of the sequences depends on A, x0, and y0. In fact, (4.6a,
b) and (4.7) imply that

(4.8) Xn

and

(4.9) Xn -J-B

Clearly, once ]C ]C+1 or :n :,+, the process must terminate with v n.
In the first case, ]C, is the maximum Krylov subspace of A generated by x0, and it
is an invariant subspace of dimension v of A. In the other case, the analogue holds
for AH and Y0. However, it is well known that when A is nonhermitian or when
it is hermitian, but Y0 : x0, the process may break down before one of these two
situations occurs, because for some n all x, and y, satisfying (4.8) and (4.9) may
be orthogonal to each other so that we cannot fulfill the second line of (4.7). It is
this "serious breakdown" that is addressed, explained and overcome in this section by
introduction of the nongeneric BO algorithm.

Every pair xn and Yn satisfying (4.64, b) can be represented as

(4.10) x, P,(A)xo, y, P(AH)yo,
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where P, and P are polynomials of degree at most n. The degree is exactly n as long
as (4.8) holds. But even beyond that, we may assume without restricting generality
that the degree is exactly n, since when ]Cn 2C,+1, then Anx0 is a linear combination
of x0,... ,An-ix0. (This is clearly true for the first n where ]Cn ]Cn+l, and the
linear combination then carries over to all subsequent indices. The coefficients in this
linear combination are in fact those of the minimal polynomial of the restriction of
A to its invariant subspace K:,.) Assuming (4.10) with polynomials of exact degree
n we thus take care of (4.6a, b) and fulfill (4.8) as long as possible. Moreover, the
condition (4.9) transforms into

(4.11a) <y0, hkp(A)xo>B 0, k 0,...,n- 1,
(4.11b) <y0, AP(A)xo> 0, k 0,...,n- 1,

where the bar indicates complex conjugation of the coefficients of P.
In accordance with the situation in 1 let us now define on the space :P of formal

power series a linear functional (I)0 by attributing to the monomials the moments

(4.12) (o(zk) :-Ck (y0, Akx0)B (k E N)

as values of the functional. Then (4.11) turns into

(4.13a) (o(Zkpn) O, k 0,’.., n- 1,
(4.13b) o(Zk-) O, k 0,..., n- 1.

Hence, Pn and P are true formal orthogonal polynomials of the first kind with
respect to the functional (I)0. From 1 we know, however, that depending on the values
Ck we may not be able to satisfy (4.13) for all n, even when Ck 0 (Vk). In fact,
whenever the main diagonal of the Pad(! table of F at c has more than one entry
in common with a finite block, then there is a deficient FOP1 Pn on this diagonal
and in this block, and for this P (4.13a) does not hold (cf. Fig. 1). On the other
hand, if P belongs to the top row or the leftmost column of a block, then Pn and
P are unique, and hence equal, up to a multiplicative constant. So far we have not
yet imposed any scaling on x and Yn. Even when uniqueness does not hold, we
could always assume that P P is an nth (monic) FOP1. However, in view of the
practical implementation, we want to be able to choose scale factors for xn and Yn;
we therefore write, instead of (4.10),

(4.14) Xn Pn(A)x0Fn, y n(AH)y0n,
where F and Fn are the scale factors and Pn is still a monic FOP1 of degree n.
(F0 :- F0 :- 1.) Fn may, but need not, be the complex conjugate of Fn. The complex
conjugate values will be denoted by Fn and Fn; but usually we choose real scale
factors anyway. (An exception is the normalized BIORES algorithm, when applied to
a complex system; see below.) We claim that even when (4.13) cannot be satisfied,
(4.14) is in a certain sense the best possible choice for x and y. In fact, from
Theorem 2.1 it follows that (4.13) and hence also (4.11) hold then for k up to - 1,
but not for k- , where

(4.15) nj + nj+l n 1 if nj <_ n < nj+l.

Here (nj J}=0 (J <- ) still denotes the sequence of indices for which the FOP1 is
regular (i.e., unique). For n nj we may choose for Pn any FOP1 of degree n. All are
equivalent with respect to the orthogonality properties, which is what matters here.
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By (4.12) and (4.14), by the commutativity of A and B, and by the linearity of
(I)0 we now obtain a general rule:

(4.16) (y,, Akx,)a ,r,(Yo, Akpm(A)Pn(A)xo)a f---r,&o(zkP,P,)
for translating results from 1-3 to the current situation.

After establishing this link to the formal orthogonal polynomials we can now easily
draw conclusions from 1-3. We only summarize the main results. First, concerning
the orthogonality just discussed, we have the following theorem.

THEOREM 4.1. Let A Tl -- Tl be a bounded linear operator, and let x0, Y0
be two nonorthogonal initial vectors. Define two sequences {Xn}n=0, {Yn}=0 by
(4.14), where Pn is an nth FOP1 for the linear functional io given by (4.12), and
Fn and n are arbitrary nonzero scale factors. Let {nj J}j=o (J <- ) be the sequence
of indices for which P is regular, i.e., for which the nth leading moment submatrix
M0;n, defined in (1.7), is nonsingular. Then, for n < nj (or for all n if J--

(4.17a) xn -LB :,, Y, +/-B

(4.17b) <yn,x>s 0, (ya, x )s # 0,

where n and are linked by (4.15) and where := o(PaPn). If J < cx), then

(4.18) Xn +/-s ,, y -ks , (Vn >_ nj, Vm N+).

Note that we do not exclude the possibility that x 0 or Yn 0 for n >_ nj. On
the other hand, it is conceivable and, as we will see, may in fact happen that (4.18)
holds although xn 0 and y 0.

Next we need to derive from the recurrence formulas for Pn, which were given in
2, an inductive algorithm for computing the sequences {xn} and {Yn}. We assume
from now on that for those n where the FOP1 is not unique we choose as in Theorem
1.10 and 2, P according to (1.28), where {Win} is a fixed monic basis satisfying a
three-term recurrence (2.10), so that (2.11) holds. This recurrence transforms then
into

(4.19a)
wx,+ (Ax, x,cW_w)7+, xn_,_w%+,2

(4.19b)
y,+ (AHyn W WYnan-n) n+l,1 Y,-l,-,gn+l,2,

where

nj

_
n <_ nj+ 2,

ni _< n <_ ni+l- 2,

(4.20a) Vn,i := Fn/Fn-i,

so that in view of F0 F0 1,

(n N,i N),

(4.20b)
(4.20c)

(As mentioned in 2 the case Wm(z) zm is included in (4.19), and, on the other
hand, the general case where Wm need not satisfy a three-term recurrence or where
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the recurrence depends on the block index j is obtained by a straightforward gener-
alization; cf. (3.38).)

Since (2.11) is assumed, Corollary 2.8 and Theorem 2.9 apply. Replacing z by
A or AH in the recurrence formula (2.20), then applying both sides to x0 or Y0,

respectively, and taking care of the scale factors Fn and n yields for j 0,..., J- 1:

Xn+l [Axn+l-1 Xn+l-1 (Oh-l,j + Oh:W_I)] /n+l,1

(4.21a) x+1-2 (ah-2,j + -1)+1,2 Xn+l-3ah-3,j "+1,3

XnOo,j "n+l,h Xn-l ij n+l,hThj-1

Y+I --[AHy,+ -1- h-

(4.21b) Yah+l-2 (Olh:i-2,j + Wh-l) %+,2 Yn+-3h-3,j n+,3

Yn#0,j n#+,h# Yn#_j n#+,h#+h#_

In the ce where hj 1 these two formul simplify to:

(4.22a) x#+ [Ax# x#(o,j + )]#+, x#_j n#+,h#_+,

(4.22b) y#+ [AHy# Y# (0,j + )] n#+, Y#_#+,h#_+
Of course, the sequences (nj } and (hi) are not known in advance. But from (2.3)

we recall that hj := nj+ nj can be determined according to

(4.23) hi := 1

Note that ho 1 since we have sumed that (yo, xo) 0. (This is not at all
important however.)

For the determination of the coefficients in (4.21) we apply Theorem 2.9, which
yields

(a.2a )
kTl

(a.2ab)
s:l

W(y+ (Ax+_ x+_
_

wXn+l-2h-I n+l-l,1)>B
k-- O, 1,...,h 1.

As in Theorem 2.9, these are a single linear equation (hence, an explicit formula) for
the nonzero constant 3j and a lower triangular system (hence, a recursive formula)
for the coefficients c8,y of the polynomial aj(z). If hj 1, the latter system becomes
a single equation, so that we have two explicit formulas:

1 (Yn-l, Axn )B (y,hx)B
:= +

")/n ,h_l (Yn 1, Xn_l )B (Yn, Xn }B

These are the formulas of the classical Lanczos BO algorithm.
This completes the derivation of the algorithm.

ALGORITHM 1 (nongeneric BO algorithm). The vector sequences {Xn}n=0 and
(y}n=0 of Theorem 4.1 can be constructed by an inductive process, which for j
O, 1,..., J (<_ oo) consists of:
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hj-1(i) (xn+kJk=l ,(Ynj+k)k= and hj are defined by concurrently executing
(4.19a), (4.19b), and (4.23); if hj oc, then j J; in particular, if xnj 0 or

Yn O, then hj oo, j J and xnj+k 0 (Vk >_ O) or Ynj+k 0 (Vk >_ 0),
respectively, and the algorithm is said to terminate;

(ii) Once hj has been determined, the nonzero constant is given by (4.24a) and
hi-1the coefficients (s,j}s= are obtained by solving the lower triangular linear system

(4.245);
(iii) xj+ and y,+l are then given by (4.21a, b).
The nonvanishing constants /n,, /n, and the recurrence coefficients (wm andwm

in (4.19a, b) can be chosen freely. Fn and %,i are linked to %,1 by (4.20b), F, and
/, are linked to %,1 by (4.20c).

If hj cx:) (and thus j J < oc) and xn 0, Yn - 0, then we conclude
from the definitions of hj and Yn+k that (yn,Akxn)B 0 (Vk e N). Following
Taylor [45] and Parlett, Taylor, and Liu [38] we call this an incurable breakdown.
Theoretically, there is no reason to continue the computation, but in order to detect
an incurable breakdown we have to compute Xn+k or Yn+k or AkXnj until nd 4- k is
equal to the rank of A, or, if the latter is unknown, equal to any known upper bound
for it.

In the classical (generic) Lanczos algorithm a so-called serious breakdown occurs
whenever the denominator (y,j, x,)B 0 in the formula (4.25) for c0,d vanishes,
but Xn 0 and Yn 0. If, then, hd < oc, Algorithm 1 does not break down, and
therefore the breakdown is called curable. It corresponds to a finite square block in
the Pad6 table of F(1/z), and the cure of Algorithm 1 consists of jumping to the
next block. In contrast, an incurable (serious) breakdown or a termination mean that
the infinite block has been reached. We will return to this relation between the Pad6
table and Algorithm 1 later.

Of course, the formulas of Algorithm 1 become simpler if we choose "n,1 := n,1 "=

1 (Vn), so that F "Yn,i Fn := n,i := 1 (Vn, Vi), but it has been known for a
long time that in practice this may cause overflow or underflow [39], and Taylor [45]
pointed out that it does not suffice to have a common sequence of scale factors for
both vector sequences.

To simplify matters, in practice we can redefine the formal inner product by
(y,x)B :-- yTBx, and then replace AH by AT and delete the conjugation bars in

(4.215) and (4.22b). However, from the theoretical point of view, it is nicer to use
our formulation with AH and yHBx, which reduces to the standard inner product if

w andB I. Furthermore, we may in practice redefine the coefficients
Wtim, so that the corresponding factors "n,i and n,i are incorporated. From the above

formulas or from the corresponding matrix relations below we find expressions for
these redefined coefficients, which are the elements of the matrices Hr andH defined
below in (4.28). In [15] we have chosen this normalization, which is natural from the
point of view of the Lanczos method, while here the basic recurrence coefficients are
those of the (monic) FOPls.

Next, we want to apply the matrix results of 3 to the particular situation we
have now. In (3.11), zp(z) p(z)H, and in its finite-dimensional analogue (3.13),
we must on the one hand substitute A for z and apply both sides to x0, and on the
other hand, substitute AT for z, take the complex conjugate, and apply both sides to

Y0. Finally, we must take into account the scale factors In and In For translating
the orthogonality result (3.22), (I)0(pTp) D, we only need to recall the rule (4.16).
In summary we get the following theorem.
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THEOREM 4.2. Under the assumptions of Theorem 4.1 let

(4.26) Y :-[y0,yl,y2,"’],

r := diag [F0, F1, F2,... ], ’ :- diag [0, 1, 2,""

let H be the block tridiagonal matrix (3.6a, b) and D be the block diagonal matrix

(3.23). Write the infinite matrix with (m, n)-element (ym,Xn)B formally as yHBX,
and define diagonally scaled versions of H and D by

Hr := r- Hr, .= Dr := rDr.

Then

(4.29) AX XHr, AHy Y,

and

(4.30) yHBX Dr.

Moreover, if for n E N,

(4.31) Xn :-- Ix0,xl,’’’,xn], Yn := [Yo, Yl,’’’,Yn],

if Hr;n and H;n denote the principal submatrix of order n + 1 of Hr and H,
respectively, if’r;n and ;n are the (n+ 1, n) elements of these two infinite matrices,8

and if 1T is the last row of the identity matrix of the same order, then

(4.32) AX XnHr;n + Xn+l’)’F;n 1T AHyn Yn’;n + Yn+l’;n InT"

Of course, H, Hr, and H H are diagonally similar to each other.
By noting that all finite diagonal blocks of Dr are nonsingular and, hence,

x0, xl,..., x, are linearly independent for every j < J, we finally come to the fol-
lowing conclusion, which exhibits the theoretical applicability of the BO process to
eigenvalue computations.

COROLLARY 4.3. Ifx 0 (and thus j J), then the columns x0, xl,’",Xn-I
of X,-I are linearly independent and span an invariant subspace of A; hence,
Hr;-l, which is nonderogatory, has the same spectrum as the restriction of A to
this invariant subspace.

Likewise, if y 0 (and thus j J), then the columns y0, yl,’",yn-I of
Yn-I are linearly independent and span an invariant subspace of AH; hence, the
spectrum of Hp;-I is complex conjugate to the one of the restriction of AH to this
invariant subspace.

Theoretically, when this algorithm is applied, the aim is thus to terminate it
either with Xn 0 or Yn 0. Although in practice roundoff spoils everything,
the theoretical question is whether this termination can be guaranteed. Some insight
is gained again by looking at the related Pad6 approximation problem. It must be
emphasized here that the whole outcome of the Lanczos process (except for roundoff
effects) only depends on A and the initial vectors x0 and Y0. The influence of the

s The top left element of these matrices is considered as their (0,0) element.
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initial vectors is twofold: On the one hand, they appear in (4.14) as the vectors on
which Pn(A) and n(AH) act; on the other hand, they also influence the set of FOels
Pn; these FOPls are, however, completely determined by the functions F of (4.5), or
equivalently, by the Laurent coefficients of F, i.e., by the moments Ck. Also the block
tridiagonal Gragg matrix H depends only on the FOPls; hence, all the important
information is really contained in the function F. The process can provide exactly
the eigenvalue information contained in F. If an eigenvalue leaves no trace in F,
we cannot find it, neither by the classical Lanczos algorithm nor by the nongeneric
BO algorithm; in particular, as was already pointed out in Lanczos’ original work
[24], there is no chance to detect the geometric multiplicity of an eigenvalue. (For
the eigenvector information, the situation is more complicated, but the matrices X,
and Y, that are implicitly generated are in practice not used for the eigenproblem;
however, the vectors xn play a role in the application of the process to solving linear
systems of equations.)

For simplicity, let us assume for the moment that N :-- dim 7-/< x) and that A
and B are diagonalizable N N matrices, which we still assume to commute, so that
there exists a common nonsingular (but not necessarily unitary) N N matrix U of
eigenvectors such that

(4.33) AU UD, BU UD,

where D and D are diagonal matrices containing the eigenvalues A1,..., AN of A
and the eigenvalues al,’.’,aN of B, respectively. Then AHu-H U-HD i.e.
the columns of U-H are a set of eigenvectors of AH. Set

(4.34) U [u, u2,..., UN], U-H =: V =: Ivy, v2,’", VN],
and represent Xo in the basis {Uk}, Y0 in the basis {Vk}"

N N

x0 =: y0 =.

k=l k=l

where := [1, 2,’", N]T, := Iv]l, r2,..., N]T. Then, in view of (4.14),

N

(4.36a) xn UPn(D)F urP(),
k-1

N

(4.36b) Yn V-(DH)yn EvknPn(Ak)k,
k-1

and, since vHu I,
(4.37)

N

(ym, Xn)B m’OHpm(DA)DaPn(DA)n mFnE Pm(.’kk)Pn(,’k)mkkk
k--1

which shows that the orthogonality of Ym and xn is reflected by a formal orthogonality
of Pm and Pn with respect to a discrete measure with the masses akkk at the N
points Ak (which need not be distinct). In particular, the initial assumption that
(y0, x0}B 0 is equivalent to

N

(4.38) akkk # 0,
k--1
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and the serious breakdown condition (Yn, Xn)B 0 can be expressed as

N

(4.39) Z P2(Ak)akkk O.
k--1

Moreover, the moments are given by

N

(4.40) (Y0, Akx0)B yHDD aA,
k--1

and the function F of (4.5) can be written as

N

(4.41) F() (Y0, ((I A)-lx0)B ?HD.((I- Dx)-I
Akk--I

Note that if A is hermitian and B hermitian positive definite, and if we choose
Y0 x0 (which one then normally does), then vk uk (Vk), y k (Vk),
Ak e R (Vk), ak > 0 (Vk), and P, Pn (Vn), so that in (4.39), P2(Ak)akk
IP,(Ak)12aklkl2, and thus (yn,Xn)B 0 implies Xn 0. (Actually, y, is then equal
to xn up to scaling.) Consequently, there are no serious breakdowns in this case.

Formula (4.41) makes it clear that the denominator degree of F is equal to the
actual number of terms in the sum after all terms belonging to the same pole have been
taken together in the case of multiple eigenvalues. (Of course, all resulting terms with
residual zero, i.e., vanishing numerator, are deleted.) Again let PF (_< N) denote this
actual denominator degree of F. In view of F(oc) 0 and 0 (y0, x0/B - 0, F has
exact type (F 1, F). If A is nonsingular, 0 is not a pole of F. Consequently,
the function z H F(1/z) zf(z) of z 1/ has exact type (m,F) with m _< F.
From part (ii) of the Block Structure Theorem (Corollary 1.6) we know that the Pad6
table of F(1/z) has an infinite block whose first column lies at n -/]F and whose first
row is row m. If A is singular, F may have a pole at 0, which for F(1/z) becomes
a pole at , and thus the denominator degree of F(1/z) zf(z) is then smaller than
/IF by the order of that pole, but the numerator degree is exactly F. Hence, in this
case the infinite block starts in row PF and in some column n < PF. In both cases the
main diagonal enters the block at column F. Therefore, by Theorem 1.8, PF ng
holds, and P Pnj is the last regular FOP1 for the functional (I)0. Hence, from
now on, we can replace/]F by nj.

From (4.36) it is seen that xn 0 requires that Pn(,k)k 0 (k 1,... ,N),
which just reflects the well-known fact that (under the assumption of diagonalizability)
the so-called grade of x0 with respect to A, i.e., the dimension of the maximum Krylov
subspace generated by A and x0, is given by the actual number of components of x0
belonging to distinct eigenvalues, and that Pn is the minimal polynomial for the
restriction of A to this subspace if x 0. Clearly it may happen that this grade
is larger than nj since in (4.41) the products kk appear, and we cannot guarantee
that k 0 implies k : 0. (Moreover, it is possible that, say, ,1 ,2 /k (k

_
3)

and al + a222 0, so that the two first terms cancel in (4.3s)-(4.41).)
These arguments carry over with some minor modifications to the case where

A is not diagonalizable. In fact, Xn 0 still means that nj nj is the grade of
xo with respect to A and implies that the main diagonal enters the infinite block of
the ead( table of F(1/z) in column ng, which in turn means that F(1/z) has exact
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order nj, and thus F(), which has a zero at c, has exact denominator degree nj.

On the other hand, if the grade of x0 with respect to A is, say, n, then necessarily
xn Pn(A)xoFn 0 and therefore n >_ ng PF. Hence, equality holds here if and
only if xnj 0.

THEOREM 4.4. For a finite rank operator A, Algorithm 1 either terminates at
step nj or encounters an incurable breakdown there. The index nj is bounded by the
rank of A and is equal to the exact denominator degree 2F Of the rational function F
defined in (4.5).

Algorithm 1 terminates with Xnj 0 (or with Yn O) if and only if the grade
of x0 with respect to A (or the grade of Y0 with respect to AH, respectively) is equal
to PF nj.

By a classical result of Kronecker [9, Chap. XV, 10] /YF is also equal to the rank
of the infinite moment matrix M of (3.25) (with 0).

What generally matters for the grade of x0 with respect to A in addition to the
distinct eigenvalues represented by components of x0 is the maximum grade of the
components of x0 that belong to a particular eigenvalue, because it determines the
multiplicity of this eigenvalue in the minimal polynomial. In fact, when it comes to
details, the case where A is not diagonalizable requires some notationally awkward
modifications. In (4.33) D andD then denote the (upper bidiagonal) Jordan canon-
ical forms of A and B. The relations (4.34) and (4.35) remain valid, and in (4.36a,
b), (4.37), (4.40), and (4.41) only, the sums have to be modified. For future reference,
we want to give these sums for (4.40) and (4.41), at least under the assumption that
B D I. For eigenvalue computations this is by far the most important case.
Other particular cases, like B A and B A-1, which play a role for the solution
of linear systems of equations, could be treated analogously.

If S SN denotes the N N downshift matrix (cf. (3.16)) and if for an instant

D is assumed to consist of just one large Jordan block, so that D I+ ST, then

(4.42)
N min{N-j,k} , +j
d=l i=o

(4.43)

N-1

(I- D)-1 (( A)I sT)-1 E ( ")-i-l(sT)i’
i=0

rH(I- D)-f E E (_ ,)i+
j=l i=0

For an arbitrary 3ordan block structure of A we therefore get

N min{O(j),k}

(4.44) Ck= (Yo’AkxI’ =yHD’=E E ()
j--1 i--O

and

(4.45) F() (Yo, (I A)-xo} H(I Dx)-I(
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where O(j) is equal to the absolute difference of j and the column index of the last
column that belongs in D to the same Jordan subblock as column j.

It remains to investigate the incurable breakdown, where xnj 0, Ynj 0, but
(Yng+k,Xnj>B 0 (Vk E N). It was discussed in detail by Taylor [45], who proved the
following, at first sight surprising, result, which was called the Mismatch Theorem in
[38], and which is reexamined and brought into relation with the realization problem
of system theory in Parlett [35].9 The main message of the theorem is that although
we no longer get a basis of an invariant subspace of A, we do get with Pn the
corresponding minimal polynomial and with Hr;n-1 a block tridiagonal matrix whose
characteristic polynomial is Pn.

THEOREM 4.5 (Mismatch Theorem). Assume B I. If incurable breakdown
occurs, i.e., if

(4.46) (Yn+k, Xng)I 0 (’k e N), x=j # 0, y, # 0,

the FOP1 Pn is the characteristic polynomial of the njth leading principal submatrix
Hr;,-i of Hr and the minimal polynomial of an invariant subspace of A.

Proof. Consider the partial fraction decomposition of the function F. In the sum
in (4.45) the terms with equal eigenvalues Aj and equal power of - Aj have to be
brought together:

L (l)
Tl,i

/--1 i--1

Here the outer loop goes over the distinct poles Aj(1), 1,..., L, of F, and the inner
loop takes care of the order of the pole. This order is at most equal to the order (1)
of the largest Jordalt subblock for the particular eigenvalue; to stay in accordance
with (4.45), we assume in (4.47) that this largest subblock is the one with column
indices j(1),... ,j(1 + 1)- 1, i.e., we assume that for each distinct eigenvalue one
largest subblock is among the first L subblocks of the Jordan form. The order of the
subblock is (1) j(l / 1) j(1), but the order of the pole may be smaller, namely,

(4.48) Z(1) :-- max{i; Tl,i :/: 0},

and the order of F is therefore

L

(4.49) nj y -f(1).
/=1

The theorem follows from Corollary 4.3 if we can find another pair of starting vectors
x0, Y0 which yield the same function F, but have the property that the grade of
x0 with respect to A or the one of Y0 with respect to AH is equal to nj, so that
with these new starting vectors Algorithm 1 terminates with Xn 0 or Yng O,
respectively.

By comparing (4.47) with (4.45) it is seen that we may choose x0 and Y0 such
that in the representations (4.35)

(4.50) k =0, k =0 ifk >_j(L+ 1),

9 These paragraphs on the Mismatch Theorem were added in revision to provide a bridge to
Parlett’s paper and to give another interpretation and derivation of the theorem.
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and

(4.51) E j+i-i-- Tl,i,
j=j()

(If there are just L subblocks in D, we set j(L + 1) :- N + 1.) Condition (4.50)
means that it suffices to have components belonging to one maximally large subblock
of each distinct eigenvalue, and (4.51) yields for each such subblock a set of equations
for the corresponding components of x0 and Y0. If the coordinates y were given, each
of the L systems in (4.51) would be a linear left upper triangular Hankel system for
the coordinates - that belong to the same subblock, and vice versa. Since neither x0
nor Y0 is given, we can, for example, choose a solution with

(4.52) j(t)+i-1 0, rS(0+i_l 0 if Z(1) < _< (1) (1 1,...,L),

(4.53) j(t)+z(t)_ # 0 (1 1,...,L),

and with arbitrary /q),... ,j(t)+(t)-2, so that for each a regular left upper tri-
angular Hankel subsystem remains to solve for j(t),"’,-j(t)+(t)-l. From the last
equation of this reduced system we obtain j(t) Tt,(t)/j(t)+(t)-I O. Forming

D andD we see that x0 has grade ng with respect to A, so that xnj 0, while

Y0 has maximum grade with respect to As, so that its grade is equal to the degree
of the minimal polynomial of A. [:]

There are in general many other ways to choose x0 and Y0; in particular, condi-
tion (4.50) is not necessary. In the terminology of system theory the construction in
the above proof yields just one possible minimal realization (cf. [23], [14], [35], [5]).
Uniqueness holds when ng N, but for this it is necessary that A is itself nonderoga-
tory. Our argumentation should make it clear that even when incurable breakdown
occurs, the polynomials Pn constructed implicitly in the nongeneric BO algorithm are
not "bad"; the same polynomials can be generated using another pair x0, y0 that leads
to the most desirable version of termination x,j 0. This is surprising since (4.14)
holds for Xnj and Ynj. If A is diagonalizable, then (1) (1) 1 (1 1,.-., L) in the
above proof; the new pair x0, Y0 that is constructed then yields even Xn Ynj O.

The case B A of the Mismatch Theorem, which has some relevance for the
algorithm BIODIR introduced below, can be treated in the same way. However, our
approach seems to become intractable in the general case of two arbitrary commuting
matrices A and B.

As in the generic case [16] the nongeneric BO process can also be applied to solv-
ing a linear system of equations Az b. In the generic case the resulting algorithm
has been called Lanczos/OtTHORES [19], but in [15] we introduce the briefer and
more appropriate name BIORES, an abbreviation for BIORTHORES. In addition to
the sequences {Xn} and {Yn} we normally generate a sequence {Zn} of approximate
solutions in such a way that Xn is equal to the nth residual b- Az. At least theo-
retically, the aim is to reach Xn 0 for some n, in which case Zn is the solution of the
system. In practice, the method must be viewed as an iterative method and the hope
is that the residuals become sufficiently small. In the case of a nonhermitian matrix
the convergence behavior is still not well understood. The method is a polynomial
acceleration method since the nth residual can be expressed in the form (4.14) with
P a polynomial of degree n. In any such method the recurrence for the residuals



THE UNSYMMETRIC LANCZOS PROCESS, PART 635

can be expressed in matrix form as AX XHr, where Hr is an unreduced upper
Hessenberg matrix with column sums 0. These two conditions mean that the nth
residual polynomial has exact degree n and value 1 at 0. The column sum condition,
which is equivalent to the normalization of the residual polynomials at 0, is the so-
called consistency condition. Here the residual polynomial is FnPn, so that we need
Pn(0) 1/Fn (or, equivalently, we need Hr to have column sums 0).

We first formulate the algorithm and then verify the properties just mentioned.

ALGORITHM 2 (normalized nongeneric BO algorithm for linear systems: normal-
ized nongeneric BIORES). For solving Az b choose an initial approximation z0,
set Xo := b- Az0, choose y0 with (y0,x0)B 0, and apply Algorithm 1 with the
following special settings:

(i) Choose for (4.19a, b) recurrence coe]flcients {mW}=0 and {Wm}m=l such
that the recurrence

(4.54) w -1
(m e N}’+ "- aw +w,,w

w(started with oW := 0 and %w := 1) is well defined, i.e., %+1 # cx.

(ii) For j O, 1,... set

(4.55a) ’n,1 := /nW-nj if nj < n <_/tj+l- 1,

w(4.55b) ")%+1,1 :=- o/ -1 q- flh-l’)’n+l-l,1 q- Olh-i,j/n+-l,i-1
i=1

q- jnj+-l,h+h_-I

(iii) Compute additionally for j 0, 1,...,

(4.56a)
ZnT1 ": [Xn -ZnOW W-n] n+,- Z-n-+,: /f ny n ny+ --2,

Zn+ "= --[Xn+--I + Zn+--i (h-l,j + -1)] nd+,l
w(4.56b) Znd+-2 (hd-2,j + flhd-1) nd+,2 Znd+-3 hd-3,j nd+,3

Zn O,j nj+,hj Znj_ flj n+,h+hj_

The algorithm terminates when nd+ ng and Xn O. Then Zn is the solution

of Az b. If nd+l ng but Xn O, the solution cannot be found and a restart
with another yo is necessary. I for some j, the denominator in the formula (4.55b)
for %+, vanishes, the algorithm breaks down.

Note that and %,1 have been chosen in such a way that with the definition

(4.57) F "= 7
and in view of (4.20b), the rescaled matrices

(4.58) diag [(Fy) -1, (F)-I, ITwdiag [Fy, F,.-.
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and Hr (defined by (4.28)) have column sums 0. The scaling factors n,1 that deter-
mine the factors Fn for Yn can still be chosen independently.

In order to satisfy condition (4.54) we can choose the coefficients (mW and/mW
for (4.19a) according to any standard two-step iterative method such as Chebyshev
iteration or Frankel’s "second-order Richardson iteration" (see, e.g., [41], [48], [50]),
and we could adapt the method from time to time to match the spectral properties of
A as far as they have emerged approximately from the spectrum of the initial sections
Hn, using techniques as in [11], [28], and [31]. As mentioned before, we can also use
any other polynomial acceleration method for this "inner" or "local" iteration; then
the diagonal blocks of Hr generally become Hessenberg matrices instead of comrade
matrices, so that our formulas have to be modified in a straightforward way.

To prove that xn is the residual at zn we make the induction assumption that
Xm b- AZm for m nj-1 and nj _< m _< n. Then, if n <_ n < n+l 1, it follows

b wfrom (4.20b), (4.54), and (4.55a) that b--bcnW nj/n+l,1- n-nj/n+l,2, and thus
by (4.19a) and (4.56a), that

(4.59) (b- Az+l) b + [Ax + Az,w_] %+1,1 + Azn-1/nW_n’)’+l,2
lAx, / xanw_] +1,1- xn-1/w-+l,2 xn+l.

Similarly, for n nj+l 1, (4.55b), (4.56b), and (4.21a) yield the same. Hence, by
induction, it follows that x, b- Az for all n. Note that the argument remains
valid if Xn 0.

Note that aside from any numerical effects there are three causes for an unsat-
isfactory finish: An incurable breakdown due to (4.46), an early termination with
yj 0 and xj 0 (in which case we will restart the algorithm with x0 xs
and a new Y0), and the possible vanishing of the denominator of n+,,1 in (4.55b).
Hence, as in the generic case there is--compared to the BO algorithmMan additional
danger of breakdown due to the last cause. It has nothing to do with any curable or
incurable breakdown of the BO algorithm, but is instead just due to the fact that it
is impossible to observe the consistency condition if Pn(O) O. (This, however, has
to do with how the first subdiagonal in the Pad6 table crosses the blocks; cf. [15].)
As in [15] for the generic case, we suggest here avoiding this kind of breakdown by
using, instead of Algorithm 2, an unnormalized form of it, in which we generate the
sequences {x} and {y} as in Algorithm 1 and compute additionally the values Pn of
the polynomials FnPn at 0 and a sequence {Zn}, using for the latter the same formula
as in Algorithm 2. Whenever [IXnl[/IFnPn(O)] is sufficiently small, we then obtain in
the form zn/(FnPn(O)) a solution with this small residual norm.

ALGORITHM 3 (unnormalized nongeneric BO algorithm for linear systems: un-
normalized nongeneric BIORES). For solving Az b choose an initial approximation
z0, set x0 :- b- Az0, choose Y0 with <y0, x0>B = 0, and apply Algorithm 1 (with
arbitrary nonzero scale factors /n,1, /n,1), computing additionally the vector sequence
{Zn} according to (4.56a, b) and the scalar sequence {Pn} according to

(4.60a) Po :-- i,

W W(4.60b) Pn+l :- -P, n--%+i,1 P,-l-n/n+1,2 nj <_ n <_ ny+1 2,

Pn+ :--- --Pn+,--I (h-l,j -]-o/hW-l)
W(4.60c) -Pn+,-2 (Oh-2,j " hg-1) ’n+,,2 Pn+,-30h-3,j ’-+1,3

--Pn C0,j ")/n+,,h Pn_,j Q/n+l,hj+hj_,
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The algorithm terminates when xn+l 0 (hence, nj+l nj) and Pn+ # O.
Then znj/Pnj is the solution of Az b. If nj+ ng but Xn 0 or Pn O, the
solution cannot be found and a restart with another y0 is necessary.

The relations between the sequences xn and zn, which are relevant for the appli-
cation of the BO process to linear systems, are summarized in the following theorem.

THEOREM 4.6. (i) In Algorithm 2

(4.61) xn=b-Az, n=0,1,2,...

holds.
(ii) In Algorithm 3

(4.62) xn bp Azn, n 0, 1, 2,...

holds.
Proof. Equation (4.61) has already been verified. For (4.62) we have to modify

the previous induction proof slightly by using (4.60a-c) instead of the relations (4.54)-
(4.55a, b).

It may be worth noting that Algorithms 2 and 3 are here formulated for systems
of the form Az b, while for systems given as z Bz + b there exists a more
appropriate alternative formulation.

Acknowledgments. The author is indebted to Adhemar Bultheel and Marc Van
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MATRICES WITH POSITIVE DEFINITE HERMITIAN PART:
INEQUALITIES AND LINEAR SYSTEMS*

ROY MATHIAS

Abstract. The Hermitian and skew-Hermitian parts of a square matrix A are defined by

H(A) =_ (A + A*)/2 and S(A) =_ (A- A*)/2.
It is shown that the function f(A) (H(A-1))-1 is convex with respect to the Loewner partial
order on the cone of matrices with positive definite Hermitian part. That is, for any matrices A and
B with positive definite Hermitian part

{f(A) + f(S))/2- f({A + B)/2) is positive semidefinite.

Using this basic fact, this paper proves a variety of inequalities involving norms, Hadamard products
and submatrices, and a perturbation result for the function f. These results are generalizations of
results for positive definite matrices. Often the quantity

H(A) =--IIH(A-1)-IlI2 IIH(A)-III2
plays the role that 2(A) =- IIAII211A-1112 plays in inequalities involving positive definite matrices.
(11" 112 denotes the spectral norm.) Finally a bound is derived on the backward and forward error in
5, the solution to

(1) Ax b with H(A) positive definite

computed by Gaussian elimination without pivoting in finite precision. This result is analogous to
Wilkinson’s result for positive definite matrices and gives a rigorous criterion for deciding when it is
numerically safe not to pivot when solving (1).
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1. Introduction. Let Mn(C) (respectively, Mn(R))denote the space of n xn
complex (respectively, real) matrices. We call A E Mn(C) positive definite (respec-
tively, positive semidefinite) if A is Hermitian and x*Ax > 0 (respectively, x*Ax > O)
for all nonzero x E Cn. The Hermitian part of A is

H(A) =_ (A / A*)/2

and the skew-Hermitian part of A is

S(A) =_ (A- A*)/2.

Matrices with positive definite Hermitian part have many properties analogous to
those of positive definite matrices. We discuss some of these in this paper.

In 2 and 3 we derive a variety of inequalities for matrices with positive definite
Hermitian part. Most of these involve principal submatrices, condition numbers, or
Hadamard products and generalize well-known results for positive definite matrices.
The two underlying facts are the formula for the Hermitian part of the inverse (Lemma
2.1) and a basic convexity result (Theorem 2.2). The results in 2 are applied in 4.

Received by the editors August 16, 1990; accepted for publication November 1, 1990. This
research was supported by an Eliezer Naddor postdoctoral fellowship in the Mathematical Sciences
from the Johns Hopkins University during the year 1989-90 while the author was in residence at the
Department of Computer Science at Cornell University.

Department of Mathematics, The College of William and Mary, Williamsburg, Virginia 23187
(na.mathias@na-net.ornl.gov).

640



MATRICES WITH POSITIVE DEFINITE HERMITIAN PART 641

In 4 we derive error bounds for Gaussian elimination applied to a matrix with
positive definite Hermitian part in finite precision arithmetic. The leading principal
minors (in fact all the principal minors) of a matrix A with positive definite Hermitian
part are positive and hence a linear system Ax b can be solved by Gaussian elimi-
nation without pivoting. This fact can be exploited in practical algorithms. However,
Gaussian elimination without pivoting can lead to serious element growth, and in
finite precision arithmetic this tends to result in an unacceptably inaccurate solution
(see, e.g., [9, p. 87] for a simple example)^. In [9] the authors showed (under the
reasonable assumption that ILIIUI ILIIUI II) that &, the solution computed by
Gaussian elimination without pivoting, satisfies (A + E)& b where

IIEIIF unv,llH + STH-lSII2,

u is machine precision, and c is a linear function of n. Using this result they argued
that it is safe not to pivot when solving Ax b provided the ratio

IIH + STH-1SII2/11AII2

is not large. (In Lemma 2.1 we show that this quantity is at least 1.) We show that
it is not necessary to make the assumption ILIIUI I]-’llffl II, and thereby give
a sufficient a priori condition for the LU factorization in finite precision arithmetic
(without pivoting) of a positive definite matrix to run to completion with positive
pivots. These results are in 4.

All the results in this paper may be viewed as generalizations of results for positive
definite matrices.

If A is nermitian we use Amax(A) (respectively, Amin(A)) to denote the alge-
braically largest (respectively, smallest) eigenvalue of A. The spectral norm ([1" 112)
and the Frobenius norm (ll" I[F) are defined on Mn by

IIAII2 V/Amax(A*A)= max{llAx[[2 [[xll2 1,x e C}

and

We define IAI =_ [laijl]. We write A - B if B- A is positive semidefinite. If T is
positive definite then we use T1/2 to denote the unique positive definite square root
of T. We will frequently use the fact that for Hermitian matrices A, B E M(C)

/min(A -+- B) >_/min(A) + ,kmin(B)

_
,kmin(A)- IIBllz,

and that for a positive definite matrix A

IlAll [,min(A-1)] -1.

2. Matrices with positive definite Hermitian part. In this section we de-
velop some of the properties of matrices with positive definite Hermitian part, in
particular the properties of the Hermitian part of the inverse of such a matrix. Pre-
vious research on matrices with positive definite Hermitian or skew-Hermitian part
[11], [5], [6], [13] has concentrated on the properties of AA-*, especially interlacing
inequalities for the arguments of the eigenvalues of AA-*. (The eigenvalues of AA-*
all have unit modulus.)
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We start by determining the Hermitian part of the inverse of a matrix.
LEMMA 2.1. Let A have positive definite Hermitian part, and let H H(A) and

S S(A). Then A is invertible and A-1 has positive definite Hermitian part given
by

(2.1) H(A-) (A- + A-*)/2 (H + S*H-S)-,
and we have the inequalities

(2.2) [[A-II2
_

IIH-1112 and [IAII2

_
I[H + S*H-SII2

The first inequality in (2.2) is Problem 4.2.3 in [8].
Proof. Let A H + S satisfy the conditions of the lemma. Since X- + Y-

X-(X + Y)Y-I for any nonsingular X, Y 6 Mn we have

((A- + A-*)/2}- ((g + S)-(2H)(H- S)-/2}-1
(g- S)H-(H + S)
H-SH-S
H + S*H-S.

Taking inverses now yields (2.1).
By (2.1) the first inequality in (2.2) applied to A-1 yields the second, so it suffices

to prove the first. Using the fact that x*Sx is imaginary for any x Cn and that H
is positive definite, we have

[IA-I[[-= min{[[Ax[[2" [[x[[2 1}
_< min{[*Az[ [[z[[2 1}
min{]x*Hx + x*Sx[’]]x][2 1}

<_ min{[x*Hxl ][x[[2 1}
<_ min{x*Hx" I[x[[2 1}

The inequality now follows by taking inverses. [l

From (2.1) one can easily show that for A with positive definite Hermitian part,

(2.3) H(A-)
_

[H(A)] -1.

We will refine this inequality in the next section. One can also use (2.1) to derive the
bound

Amin(H(A-1)) _> [Amax(H)+ IlSll2/Amin(H)]- > O,

which is used in [4] to prove the convergence of a variant of the conjugate gradient
method for solving a linear system Ax b when A has positive definite Hermitian
part.

Define the functions f and gH on the cone of positive definite matrices by

(2.4) f(A) [(A- + A-*)/2] -1 H + S*H-S,

and

as(A) =-[[H + S*H-1S[[2 [[H-[[2,
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where H H(A) and S S(A). We define n2(A) IIAII2IIA-1112 for any nonsingular
A. Note that 2(A) H(A) if A is positive definite. In the next theorem we show
that f is convex with respect to the partial order . Many of the following results
are based on this fact.

THEOREM 2.2. Let f be defined by (2.4) then f is convex with respect to the
partial order -<. That is, .for any A1,A2 6 Mn with positive definite Hermitian part
and any t [0, 1],

(2.6) /(tA1 + (1-t)Az) _-_-< ty(A1) + (1-t)f(Ag.).

Furthermore, suppose that A M, has positive definite Hermitian part and is parti-
tioned as

(2.7) A=( AliA21 A22A12) with All Mk, A22 Mn-k,

and let f(A) be partitioned in the same way. Then
(1) f(A) is positive definite and f(A) f(A*).
(2) f(XAX* Xf(A)X* for any nonsingular X e Mn.
(3) f(Ag.2 A21A{A12) f(A)22.
(4) IIf(A2e AelA{IAI:)II <_ I[f(A)2211.
(5) f(All @ A2)

___
f(A)11 @ f(A)22.

(6) f(A -< f(A).
Proof. To prove the convexity of f we will use the following fact, which is essen-

tially Theorem 7.7.6 in [10]. Let

Xll X12 )X--
Xi X

be Hermitian with Xll positive definite. Then X is positive semidefinite if and only
if

X;2X11X12 X22.

Let Ai Hi + Si 6 Mn be given with Hi positive definite and Si skew-Hermitian.
Then

0 H/l/2 n/-1/2S )(n:/2 H/-1/2S S nli
and hence for t [0, 1]

(H1 1 )(H20t S SH-IsI + (l--t) S SH-Is2
( till + (1-t)H2
(tS1 + (1-t)$2)*

tS1 -b (1-t)Se
tSHIS1 + (1-t)SH-Is2 J

By the criterion above, the positive-semidefiniteness of this last matrix implies

[tS1 + (1-t)$2]* [till + (1-t)H2] -1 [tS1 + (1-t)$2] tSH?IS1 + (1-t)SHIS2,

from which the assertion (2.6) follows.
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The statements (1) and (2) follow immediately from the definitions. To prove
(3) note that (A22- A12AA12)-1 (A-1)22 (see, e.g., [10, 0.7.3]). The norm

inequality in (4) follows from this. To prove (5) let Q be the nonsingular matrix

Ik @ (--Ink) and note that

All @ A22 (A + QAQ*)/2 and f(A) @ f(A)22 (f(A) + Qf(A)Q*)/2.

Now use the convexity of f to obtain the desired inequality:

f(Al @ A22) f((A + QAQ*)/2)

_
[f(A) + Qf(A)Q*]/2 f(A) @ f(A)22.

(6) follows immediately from (5).
We have shown that (2.6) implies (5). It is not hard to show that if f is any

function from Mn to Mn such that f(QAQ*)
then the convexity inequality (2.6) holds if and only if the submatrix inequalty (6)
holds (see, e.g., [7]).

We collect several useful facts about aH in the following theorem. These results
reduce to well-known results if one restricts A to be symmetric positive definite (in
which case H(A)-- t2(A)).

THEOREM 2.3. Let gH be defined by (2.5) and A, B Mn be positive definite
with A partitioned as in (2.7). Then

(1) aH(A) aH(A*) aH(A-) as(cA) for any c > O.
(2) as(A) aH(QAQ*) for any unitary Q
(3) as(A)>_ IIAIIelIA-II a(A) >_ 1.
(4) au(tA + (1-t)S) _< max{au(A),aH(B)} for any t [0, 1].
(5) aH(A + I) <_ as(A).
(6) as(A) >_ aH(A A22) >_ aH(AI).
(7) aH(A) >_ as(A22- A21A1Ai2).
Proof. The statements in (1) and (2) follow immediately from the definitions.

The inequalities in (2.2) imply (3). Since aH(cX) aH(X) for any c > 0 and any
positive definite X, it suffices to prove (4) under the additional assumption

(2.8) )min((A + A*)/2) min((B + B*)/2) 1,

in which case

as(A)--IIf(A)ll and as(B)- IIf(B)llz.

Let C A + B. Then, by (2.8),

,min((C - C*)/2) tAmin((A T A*)/2) + (1-t),min((B -I- B*)/2) 1,

or, equivalently, II[(C + c*)/2]- 112 1. By Theorem 2.2 we have

f(c)

_
tf(A) + (1-t)f(B).

Since f(C) is positive definite, this implies

IIf(C)llu _< Iltf(A) + (1-t)f(B)llu < tllf(A)]12 +
<_ max{au(A), aH(B)}.

Combining this with the bound on II[(C + c*)/2]- 112 gives the result.
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The inequality in (5) is a special case of (4). The second inequality in (6) is
immediate. To prove the first let Q be the unitary matrix Ik @ (--I,--k) and note that

All A22 (A / QAQ*)/2.

The result now follows from (4) and (2). Finally, to show (7), let (A-1)22 be the (n-
k)x(n-k) submatrix in the bottom right corner of A-1. Then (A22-A2AA2)-(A-)22 [10, 0.7.3]. So by (1), then (6), and finally (1) again, we have

aH(A22 A21AA2) aH((A22 A2AAt2)-)
aH((A-1)22) _< aH(A-) aH(A).

We will generalize (4) and (6) in the next section. Note that if A has positive
definite Hermitian part and B is a principal submatrix of A then, combining (3)
and (6), we have a2(B) _< aH(B) <_ aH(A). That is, we have a bound on the 2-
norm condition number of any principal submatrix of a matrix with positive definite
Hermitian part.

Finally we give a perturbation result for the function f.
LEMMA 2.4. Let A T + S have positive definite Hermitian part and let E be

such that

Then

(2.9) Ill(A) f(A + E)II < 61[Ell2 IIH-l]2 liT + S*H-Xll2 6llE1[2 H(A).

Proof. Let elIH-1112 _< 5; then by standard arguments we have

(T eI)- H-1/2(I eH-t)-IH-/2
-< H-/2 (I- ei[H-1l[uI)- H-/2

-’< U-1/2 [(1 + 2lIU-ll2)I] U-/2

(1 + 2lIU-ll]2) U-1.

Let A and E satisfy the conditions of the lemma and set e IIEll2. Then- Define2"

F-(E+E*)/2, G-(E-E*)/2.

impliesThen IIFII2 _< e and IIGII2 _< e. Furthermore, the condition ellS-ll2 _< 5

1 + 2{IH-ll2 _< 2 and (2G*H-G-el) -< O.

So

f(A + E) (T + F) + (S + G)*(T / F)-(S + G)
-< (T + eI) + (S / G)*(T eI)-(S / G)

(T + el) + (1 + 2e[]H-11[2)( / G)*H-I(S + G)
T+ S*H-S + 2eTU- -eI + 2elIU-ill2S*U-S

+(1 + 2e[[H-[12){S*H-G + G’H-IS + G*H-G}
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T + S*H-S + 2elIH-II2{T + S’H-IS} eI

+2{S*H-1G + G’H-iS} + 2G*H-G
f(A) + 2ellS-lll2f(A) + 2{S*H-1G + G’H-IS}
+(2G*H-G-eI)

-< f(A) + 2ellH-ll2f(A) + 2{S*H-G + G*H-S}.

Now we will bound the norm of the final term in this expression.

<_ 11S*H-1/2[[211H-1/2112
eX/IIS*H-ISII211H-I} 2

< ellT +

(For the final inequality we have used the fact that liT + S*H-SII21]H-II2 > 1.)
Thus,

Amax(f(A + E) f(A)) <_ 2elIH-III]H + STH-1SI]2 + 2]]S*H-IG +
6ellg-llllH +

A similar argument shows that

Amin(/(A + E) :(E)) >_ -6elIH-11111H + STH-1SII2.
Combining these two we have the inequality in (2.9). The equality in (2.9) follows
from the definition of H(A).

A simpler approach to bounding IIf(A + E) f(A)ll2 is to bound I]A-x -(A +
E)-II2, then use the fact that f(A)- (A- + A-*)/2. However, this gives an
inequality of the form (2.9), but with H(A) replaced by n/(A). Note that if we
restrict A and E to be Hermitian, then we have a result which is stronger than (2.9):

IIf(A + E)- f(A)lle

regardless of the value of aH(A). However, the bound (2.9) is quite satisfactory for
our purposes since our results in Theorem 4.1, when restricted to Hermitian matrices,
reduce to the bounds proved for Hermitian matrices in [14] (up to a constant).

3. Further inequalities. In this section we prove some additional inequalities
that will not be used in 4. The first is a refinement of (2.3).

COROLLARY 3.1. Let A T + S have positive definite Hermitian part. Then

c[H(A)]- _--< H(A-) -< /[H(A)] -1,

if and only if

(3.2) _< (1 + max{lAI A is an eigenvalue of H(A)-XS(A)})-Z > (1 + min{IA A is an eigenvalue of H(A)-IS(A)})-.



MATRICES WITH POSITIVE DEFINITE HERMITIAN PART 647

Proof. By (2.1) the first inequality is equivalent to

(3.3) all(A)-1 (H(A) + S(A)H(A)-IS(A))-.
It is known that for positive definite X, Y E Mn we have X

_
Y if and only if the

spectral radius of X-Y is less than or equal to 1 [10, Thin. 7.7.3]. Using this fact
and elementary manipulations one can show that (3.3) holds if and only if a is less
than or equal to the right-hand side of (3.2). The proof of the second inequality is
similar. 0

The first inequality in (3.1) is Theorem 2 in [11]. However, the proof there
depended on the fact that A was real; here it does not.

Recall that the Hadamard product of A [aij] E Mn and B [bij] Mn is
A o B [ajbj]. Thus, the results in Theorem 2.2 (5) and Theorem 2.3 (6) may be
stated as

(3.4) f(A o B) -<_ f(A) o B V A e Mn(C), with H(A) positive definite,
(3.5) nH(A o B) < nH(A) A e Mn(C), with H(A) positive definite

where B Jk @ Jn--k (Ji is the matrix of ones). In fact, (3.4) and (3.5) are true
more generally, as is Theorem 2.3 (4). First we will provide some preliminary facts
and definitions.

We call a norm I1" on M monotone if IIAII _< IIBII whenever A and B are
positive semidefinite matrices with A _--< B. We call a norm I1" unitarily invariant if

IIAII IIUAVII if for any A e Mn and unitary U, V e M. A unitarily invariant norm
must be monotone. However, the monotone norm IIAII-- max laijl is not unitarily
invariant. Let I1" be a norm on Mn. Then we define HII.II on the cone of n n
matrices with positive definite Hermitian part by

(3.6) HII.II(A) [[T + S*H-1S[[ ]IH-11[, where H H(A), S S(A).

For x Rn let D Mn denote the diagonal matrix with i, i entry x. Let A
and x, y R, then A o (xy*) DADv. We call a matrix B Mn a correlation
matrix if it is positive definite and its main diagonal entries are all 1. If B Mn is a
correlation matrix and [[. [[ is a unitarily invariant norm then, by [2, eq. (33)] or [3,
Cor. 2], one can show that for any A Mn
(3.7) IIA o B[[ _<

and, by [1, Lem. 2], it follows that for any positive definite H M

(3.8) (H o B)- __
H-1 o B.

We will extend the definition of f to

range S(A) c range H(A), and H(A) is positive semidefinite}Pn {A M
by

(3.9) f(A) H(A) + S(A)*H(A)tS(A).

(A denotes the Moore-Penrose inverse of A (see, e.g., [10, p. 421]).) Note that even
though the function f is not continuous on Pn we do have

f(A) lim f(A + el) for all A
e0
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With this extended definition of f we no longer have Theorem 2.3, but we do have
the inequality

(3.10) f(XAX*) - Xf(A)X* for all X e Mn.

If one restricts A and B to be positive definite, then the following result is Theorem
10.C.3 in [12].

THEOREM 3.2. Let A, B E Mn have positive definite Hermitian part and let I1" II
be a monotone norm on Mn. Then

aull.ll(A + B) <_ max{aHil.ll(A),aHil.ll(B)}.

Proof. The proof is essentially the same as that of Theorem 2.3(4) except that one
uses the matrix convexity of the function g(H) H-1 (see, e.g., [12, pp. 470-471])
on the positive definite matrices to obtain the bound on

THEOREM 3.3. Let A M have positive definite Hermitian part and B Mn
be positive semidefinite. Then

0 f(A o B)

_
f(A)o B.

Proof. Let A, B satisfy the conditions of the theorem. The left-hand inequality is
immediate. Because B is positive semidefinite we may write B -= Aixx with
/i _> 0. So now by the convexity and homogeneity of f and the inequality (3.10)

It appears that the next result has not been observed except in the case where A
is positive definite and B is the correlation matrix Jk @ Jn--k [12, Thm. 10.D.2].

THEOREM 3.4. Let A Mn have positive definite Hermitian part, B Mn be a
correlation matrix, and I1" be any unitarily invariant norm on Mn. Then,

aHII’II (A o B) <_ aHII’II (A).
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Proof. Let A and B satisfy the conditions of the theorem and let I1" be a

unitarily invariant norm. Then, since by the previous result f(A o B)

_
f(A)o B,

taking norms and applying (3.7) we have

IIf(A o B)II <_ Ill(A)o B)II <_ IIf(A)ll.

Let T (A + A*)/2. So, by (3.8) and (3.7),

II(T o B)-II _< IIH- o BII
_

IIH-II
Combining these two inequalities gives (3.12).

4. Computation of the LU factorization. In this section we analyze the
backward stability of the outer product LU factorization algorithm without pivoting
(described below) when applied to a matrix with positive definite Hermitian part using
finite precision arithmetic. We will assume that all matrices are real in this section.

(In this case, (A + AT)/2, the symmetric part of A, is the same as the Hermitian
part of A.) These results generalize those in [14] for positive definite matrices and
the bounds for the exact LU factors of a matrix with positive definite Hermitian part
in [9]. We assume the model of floating point arithmetic in [8, 2.4] and let u denote
unit roundoff.

There are many reasons to avoid pivoting. We will only mention two; see [8] for a
more complete discussion. First, block algorithms [8, 3.2.11] perform better without
pivoting. Second, pivoting will usually destroy sparsity.

Although we consider the outer product LU factorization algorithm, the gaxpy LU
factorization algorithm, with the computations organized in the natural way (e.g., [8,
Algorithm 3.2.4]), computes exactly the same LU factors in floating point arithmetic
as the outer product algorithm. So the results are valid for the gaxpy algorithm also.
The gaxpy algorithm is often preferred in practice (see [8, 1.4.8]) for a discussion
of some of the issues. Block LU factorization algorithms (see, e.g., [8, Algorithms
3.2.5, 3.2.6]) typically will not produce exactly the same computed LU factorization
as (4.1), but one may expect the error analysis to produce similar conclusions since
we have shown in 2 that t2(B)

_
tH(A) for any submatrix of a positive definite

matrix A.
The outer product algorithm that we will consider is

(4.1)

for k 1 to n- 1
for j k + 1 to n

ajk ajk/akk
for i k + 1 to n

aij aij ajkaki
end

end
end

It runs to completion provided that at the kth stage akk O. The algorithm overwrites
A with U and the strictly lower triangular part of L.

THEOREM 4.1. Let A E Mn(R) have positive definite Hermitian part, and let
H H(A) and S S(A). Then L and U, the exact LU factors of A, satisfy

ILl IUI IIF -- nllH + ’TH-’II2.
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Let u be machine precision. If

(4.3) 24n3/2aH(A)u <_ 1

then the LU factorization algorithm (4.1) runs to completion and the computed factors,
L and (], satisfy

(4.4) II- al[F 7un3/211H + STH-1SI]2.

Proof. Let A be positive definite and partitioned as

(4.5) A=( AliA21 A22A12) A22EMn-1

and let . A22 A21A11AI2. Given a matrix X, let X1 denote the first column of
X, and X(1) denote the first row of X (note X(1) is 1 x n).

First we will prove the following inequalities, which will be used several times:

(4.6) IIAl[ _< Al11[H + STH-1SI]2 and IIA()l[ _< AJ[H + STH-SIIu.
It suffices to prove the first inequality as the second inequality is the first with A
replaced by AT Note that

A1 (H + S) [(H/2 + SH-/2)(H/2)]I (H/2 + SH-/2)(H1/2).

Also, because S is skew-symmetric, we have A HI + S HI and hence

/./1/2 1/2H1/2l[1 [[ (H ) H All.

So, combining these two results, and using the skew-symmetry of S for the final
equality, we have

We prove (4.2) by induction on n (it is also proved in [9] in another way). Let L
and U be partitioned in the same way as A.

ILl IU[ IIF
< ILxl IU<I>I IIF / IL221 IU221 IIF
--< ILll 11211 IU<x>[ 112 / (n- X)llf(A)ll2
< lIA/A11112 IIA<I>ii2 / (n- 1)IIf(A)II2
G [IH + STH-1SII2 / (n- )IIg / STH-iSII2

n[[T + S*H-S[I2.

We have used the induction hypothesis for the second inequality, Theorem 2.2 for the
next, and (4.6) for the last.
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We now consider floating point arithmetic with precision u. Let ], and/) be the
computed LU factors. Again we will use induction on the order of the matrices. It is
clear that the assertions are true when n 1. After one step of the LU factorization
we have computed

L1 fl(A1/Al) L1 + F, f() U(), A fl(A22 L21]21) 2 -- E,where E and F satisfy the componentwise bounds

(4.7) IEI _< u(IA221 + IA2A2/AIII) + 2ulA2A2/AI,
(4.8) IFI <- ulL ulA11/A

(We have used u2 _< u to obtain the bound on IEI.) Note that by (4.6) and the fact
that A21 is a submatrix of A we have

IIA2/v/AIII22 <_ IIA/x/-IlI <_ IIH + STH-1SII2
Similarly,

Thus

IIEIIF
_

ull IAI [IF + 3ull
ulIAIIF +

<_ uV-IIH / STH-slI + 3ullH + STH-SI2
4ullH + STH-1 sii2,

which implies

(4.9) IIEII2 IIEIIF 4uIIH+STH-SlI2.
It i8 immediate from (4.8) and (4.6) that

(4.10) IIFII2 ullH+
First we will show that if H(A) 0 and the condition (4.3), then the LU factor-

ization runs to completion with positive pivots. Our proof is by induction. The case
n 1 is immediate. Assume that A M(R) h H(A) 0 and that A satisfies
(4.3). We will show that + E Mn- h positive definite Hermitian part and also
satisfies (4.3). To do this we must compute a bound on aH(A + E).

min([A + A]/2)(1 --4UaH(A)).
Now u8ing Theorem 2.2(4) and Lemma 2.4 for the second inequality, and the bound
on IIEII= for the third, we have

(4.11) II(A)II(1 + 12UH(A)).
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Combining these two bounds, and then using the fact aH(-) _< aH(A) (Theorem 2.3)
yields

H(Z-[-E) _< gH()(1 + 12uVgH())(1--4UX/aH())-1

_< all(A)(1 / 12uv/-aH(A))(1- 4ux/aH(A))-.
We can now show that + E satisfies the condition (4.3)"

24UaH( + E) < 24u(n--1)a/:aH(A)1 / 12ux/’-daH(A)
1 4u.v/-daH A

1< 24u(n--1)a/:aH(A)(1 12uva,(A))(1 -4u/-daH(A))
124uLn--1)3/2aHLA) 16ux/aH(A)

n-1 124un3/2aH(A)v/(n--1)/n
n 1- 16ux/-dag(A

n-1< v/(,- )/,
n- 16unvfdag(A

n-1<
n- 16un3/2aH(A)

<1.

Thus we have shown that if A satisfies (4.3), then so does A + E M_, and hence
by induction the finite precision LU factorization will run to completion with positive
pivots.

Finally, we show that under the same condition (4.3), we have (4.4). Using
the inductive hypothesis, the bound (4.11), and the condition (4.3) (for the third
inequality), we have

II,r) (7. + E)IIF _< 5(n-1)/11f(i / E)II
< 5u(n’-l)al=(1 + 12x/-UaH(A))IIH + S’TH-lSlI2_

5u(n--1)3/2(1 --k 1/2n)]]H + ,.,TH-I,..qll 2
5u(n--1)V/- v/(n-1)/n (1 + 1/2n)IIH + STH-SII2

_< 5u(n- 1)v/(1 1/2n)(1 + 1/2n)llg + STH-iSII
<_ 5u(n-1)x/llU T STH-1SI[2.

Also,

IILlr(1) LIU(1)IIF -IIFU()IIF_
IlFIlullg(1)llu

<_ ullH + sTH-1SI[2.

We now combine these bounds to obtain (4.4)"

I11(1) LIU(1)IIF 112222 L2U2211F
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[ILl’r(1)- L1U(1)[[F + [[L2222 [[F
_< [[glO(1) L1U(1)[[F + [[L2222 ( + E)[IF +
< x/u[IH + STH-1S[[2 + 5x/-(n- 1)[[H + STH-1S[[2

+ 4uv/[[H + STH-1S[12
<_ 5n3/2u[[H q- STH-1 S[[2.

COROLLARY 4.2. Let A E Mn(R) have positive definite Hermitian part and
suppose that the condition (4.3) holds. Then the computed LU factors of A satisfy

(4.12) I]] I[ ][F _< n[1 + 30un3/2g(A)] Jig + STH-1S[[2.

Proof. By Theorem 4.1 we have r A + E and

I]E[[2 _< lIE[IF < 5un3/2[[H + STH-1SII2.
So, by the first part of Theorem 4.1, and then Lemma 2.4, we have the desired bound:

ILl I1 I1 < ILl

<_ nllf(A / E)II2
<_ nllf(A)ll / nllf(A / E) f(A)ll
<_ nlln + STH-1s112 + 6nlIEII2H(A)
<_ nlln + STH-SlI2 + an(Sun3/211n + STH-XSlI2)e;H(A)
< n(1 / 30un3/2H(A))liB /

Now consider a linear system Ax b with H(A) positive definite. Let L and
be the LU factors computed by algorithm (4.1), let ) be the computed solution to
ry b, and let the solution to Lz ). Then combining the bound (4.12) with [8,
Thm. 3.3.2] we know that (A + E) b where

IIEII2 _< nu(3 + 5n + 150un3/2e;H(A))llH + STH-XSII2 / O(u2)
(4.13) ,,.(a)IIn + STH-1SII2 + O(u2).
Thus we have a rigorous a priori upper bound on the backward error of the solution
computed without pivoting. Using the fact that if Ax b and (A + F)y b, then
(se, .., [0, . (.S.7)])

(4.14) [Ix YI[2 < [[E[[2[IA-l[[2
Ilxl12 1-IIEII211A-II2’

one can derive an a priori upper bound on the relative error in the computed solution

Now let us compare with pi, the solution computed by Gaussian elimination
with pivoting, in order to decide when it is worth pivoting. From [8, (3.4.3)] we have

(.15) IIEp,II2 _< nu(3- / 5n2p)llAII / O(u2) nu,llmll2 / O(u2),

where p is the growth factor. Ignoring the factors On,u,n,n(A) and fl,p the ratio
of the bounds i (4.3) and (4.15) is n / :TH-:II/IIAII _> 1. Thus if the ratio
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IIH/STH-1SII2/IIAII2 is not large it is reasonable to expect that & is not significantly
worse that piv from the standpoint of backward error or relative error (in view of
(4.14)). This is of course a heuristic because the inequalities (4.13) and (4.15) are
worst case bounds. First we will show that IIAII ’ IIH/STH-SII does not imply that
one will obtain as accurate an answer without pivoting as with pivoting. Consider
the contrived example

1 + 1/ee 0 0 )A 0 1 l/e
0 -1/e 1

Then IIAll2 IIH + STH-SII2, but for small e > 0 solving Ax b with pivoting will,
in general, produce a considerably more accurate solution than without pivoting,
while, on the other hand, a large value of IIH / STH-SII2/IIAII2 does not imply
that Gaussian elimination without pivoting will give significantly worse results. For
one thing we only use IIH + STH-SII2 to DousEd Jl I] I1 liE, but the fact that

IIH + STH-SII2 is large does not imply that ILl IVl liE is large. This is in contrast
to the case when A is positive definite when we have

IIAII2 ILl IUI liE <_ nllAII2.

Also, a large value of I]1 I1 lie need not imply a large relative error. Both these
points are illustrated by the numerical example in 3 of [9].

Acknowledgment. I am grateful to Izchak Lewkowicz for pointing out an error
in the proof of Lemma 2.1.
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Abstract. It is shown that no QR-like algorithm exists for symmetric arrow matrices, i.e., for
matrices whose elements vanish, except those on the diagonal and in the first row and column.
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1. Introduction. The QR algorithm

(1.1)
Tk-1 --akI =: QkRk (QR decomposition),

Tk := RkQk + akI

for computing the spectral decomposition of a symmetric tridiagonal matrix T To
is well known [3], [6]. The algorithm computes a sequence (Tk}= of symmetric
tridiagonal matrices similar to T converging to a diagonal matrix. Appropriately
chosen shifts ak can increase the rate of convergence from linear to cubic [6, p.154].

It is also well known that for symmetric matrices, the band structure of a matrix
is preserved by the QR algorithm. It remains an open question as to which matrix
structures are preserved using the QR method described by (1.1).

A matrix A is said to be an arrow (or bordered diagonal [9, p.95]) matrix if it has
the form

X X X

X X
A- aij -aji --0 for 1 < < j.

In this paper, we show that there is in general no QR-like algorithm of the form
described by (1.1) which generates a sequence {Tk} of arrow matrices. By QR-like
algorithm, we mean Rk need not be triangular but Qk must be an orthogonal matrix
which is the product of only finitely many Givens rotations. In the classical QR
algorithm for symmetric tridiagonal matrices, Qk is the product of n- 1 Givens
rotations. One step of any practical QR-like algorithm for symmetric arrow matrices
must have complexity O(n), because it is possible to transform a symmetric arrow
matrix into a similar tridiagonal matrix in O(n2) flops [4].

Arrow matrices occur, e.g., in the course of the Lanczos method for solving the
symmetric eigenvalue problem Ax Ax [6]. In the Lanczos algorithm a series of

Received by the editors July 16, 1990; accepted for publication (in revised form) November 20,
1990.
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tridiagonal matrices Tj, j >_ 1, is computed. The eigenvalues of

tend to the eigenvalues of A as j increases (cf. [6] for a discussion). With the last com-
ponent of the eigenvectors of T the convergence of the algorithm can be controlled.
Therefore, the eigenvalues and last components of the eigenvectors of Tjx Ax are
to be computed for all j. Let Ti SjOjS" be the spectral decomposition of T. To
make use of this knowledge in the computation of the spectral decomposition of T+I,
we transform Ti+l similarly into (reversed) arrow form

Aj+I := (Sj 1)TTj+I(Sj ( 1) jS.J)T
-() )jtj

Ojnt-1

Here, j"(J)T is the last row of Sj. The components of the vector js.j) are used to
check for convergence. Parlett and Nour-Omid [7] carefully investigate the solution
of Aj+lX ,x in connection with the Lanczos algorithm.

O’Leary and Stewart [5] have described a similar algorithm to solve the eigenvalue
problem for arrow matrices which arose in an application in molecular physics.

2. Analysis. Our analysis is based on the fact that Tk and Tk-1 are similar by
virtue of Tk TQk Tk-lQk. So, for our investigation, the form of Rk does not matter
at all.

Let A E ]Rnn be a symmetric and Q an orthogonal matrix such that

(2.1) T’-QTAQ

is arrow. Let H be the Householder reflector that maps the first column ql of Q on
a multiple of the first coordinate vector

(2.2) Hql 4-llq1[12e1 -l-el, ql Qel.

For notational convenience we choose the positive sign here. Then Q1 HTQ HQ
has the form

(2.3) Q1 1 Q1.

Note that He1 ql. Since the arrow matrix T QTHAHQ1, the columns of (1 are
the eigenvectors of the (n- 1) x (n- 1) matrix A obtained by deleting the first row
and column from HAH. Therefore we have the following proposition.

PROPOSITION 2.1. The set {t22,’",t,m} is uniquely determined by the first
column ql of Q. []

The eigenvalues of A can be arranged arbitrarily on the diagonal of T.
Now let A itself be an arrow matrix:

a D D diag(dl,..., dn-1).
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We assume that A is irreducible, meaning that di dj, i j, and that a has no
zero component. Any arrow matrix can easily be transformed into irreducible form
by a deflation procedure analogous to the one used in rank-one modified eigenvalue
problems for symmetric tridiagonal matrices [1], [5]. The determinant of A- AI
satisfies the equation [9, p. 95]

det(A )I) n-1 2

det(D- M)
c- ,-

dio

from which the interlacing properties

(2.4) ,i < di< i+l, 1 N i < n,

for the simple eigenvalues 1 < < n Of A follow immediately. (Here we have
sumed that the di are arranged in increing order.)

Now, le Q be orthogonal such that

(2.g) := QrAQ
fi

diag(,...,

is again arrow. If is irreducible and 1 < < -1, we have

(2.6) i < di < i+l, 1 N < n.

Combining (2.4) and (2.6) and setting d0 -, d +, we get the inequalities

di-1 < i < di+l, 1 n-1.

om (2.5) we have that AQ Q, so that Aqi+l iqi+l + aq. If ai 0 for
some < n, then qi+ is an eigenvector of A.

rther, if q is orthogonal to an eigenvector u of A corresponding to A, then
A di and u q!+l for some i. In the extreme ce where ql itself is an eigenvector
of A, 0 and A becomes diagonal.

We now turn to the actual point of interest. To that end, we sume that Q
in (2.1) is the product of a finite number of Givens transformations,

m

Q J(Pk, qk, Ok), Pk < qk.

k=l

Then, because

J(1, k,)J(i,j,O), k < j k,
J(i,j,#)g(1, k,) J(1, i, al)J(1,j,a)J(i,j, aa), k e {i,j},i < j,

we can rewrite Q in the form

The angles o/1, o2, O3 are obtained by computing the Givens QR decomposition of a
3 3 matrix [3, p. 214]. As

J(1,j,O)J(1, ,cp), j < k,
g(1,j,))g(1, k,) g(1,j,+O) j k,

J(1, k, al)J(1,j, a2)J(k,j, a3), j > k,
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we can proceed in a similar way to get the representation

Q H J(1, k + 1, v) H J(P’ q’ )’ 1 < p < q.
k-1 k--n

The first product determines the first column ql of Q. As the Householder matrix H
in (2.2) has the same first column as Q, we have

n--1 m**

U H J(1, k + 1, z) H J(p*, q*, O*), 1 < p* < q*.
k-1 k--n

Thus

Q H J(p*, q*, 0*)
\k--n

Q1 has the form (2.3), Q1 1 @ Q, where Q diagonalizes the matrix A obtained
by deleting the first row and column from HAH. That means that A with unknown
eigenvalues has been diagonalized with finitely many Givens rotations or equivalently
that the n- 1 unknown roots of the characteristic polynomial of have been computed
with a finite number of rational and root operations. According to Galois’ theory, this
is possible if and only if n- 1 _< 4 [8, p. 190]. Therefore we have the following theorem.

THEOREM 2.2. Let A E ]Rn’, n > 5, with unknown spectrum. Let q el,

IIql12 1, be a normalized vector. Then it is not possible to construct by finitely
many Givens rotations an orthogonal matrix Q with first column q such that QTAQ
is arrow. D

As a consequence of this theorem and our initial considerations, we have the
following corollary.

COROLLARY 2.3. There is no QR-like algorithm for irreducible arrow matrices

of order greater than 5. D
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A SHERMAN-MORRISON-WOODBURY IDENTITY FOR RANK
AUGMENTING MATRICES WITH APPLICATION TO CENTERING*

KURT S. RIEDELt

Abstract. Matrices of the form A + (Vl + W1)G(V2 4- W2)* are considered where A is a
singular matrix and G is a nonsingular k k matrix, k

_ . Let the columns of V1 be in the
column space of A and the columns of Wl be orthogonal to A. Similarly, let the columns of V2
be in the column space of A* and the columns of W2 be orthogonal to A*. An explicit expression
for the inverse is given, provided that WWi has rank k. An application to centering covariance
matrices about the mean is given.

Key words, linear algebra, Schur matrices, generalized inverses
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The well-known Sherman-Morrison-Woodbury matrix identity [1]"

(A + X 1G x2T)-1 A -1 A-1X I(G-1
__
X2TA-1X 1)-x2TA1 -1

is widely used. Several excellent review articles have appeared recently [2]-[4]. How-
ever, (1) is only valid when A is nonsingular. In this article, we consider matrix
inverses of the form A + X 1G X 2

T where the rank of A + X 1GX 2
T is larger than

the rank of A.
We decompose the matrix X into V + W 1, where the columns of V are

contained in the column space of A and the columns ofW are orthogonal to it. We
denote the column space of A by M(A ). Similarly, we decompose X 2 into V2+W 2,

where the columns of V 2 are contained in the column space of A and the columns
of W 2 are orthogonal to M(A *) The Moore-Penrose generalized inverse will be
denoted by the superscript +. We denote the k x k matrix WW by B and define
C _-- W i(WWi)-1. We will require B to be nonsingular. However, the rank of
the perturbation k can be significantly less than the size of the original matrix. We

*C I Finally, the projection operator onto thenote that VW- 0andW - k.

column space of W satisfies W iB -1W W 1C C 2W .
THEOREM 1. Let A be an matrix of rank 1, 1 < , V and W be k

matrices and G be a k k nonsingular matrix. Let the columns of V E M(A
and the columns ofW be orthogonal to M(A ). Similarly, let the columns of V 2

M(A*) and the columns of W 2 be orthogonal to M(A*). Let B =_ WWi have
rank k. M(W1) M(W2). The matrix,

_--A+(VI+Wl)G(V2+W2)*

has the following Moore-Penrose generalized inverse:

*A + -A+V C* (G + ++--A + C2V2 +C2 +V 2A V 1)C 1"

Received by the editors July 12, 1990; accepted for publication (in revised form) February 19,
1991. This work was supported by U.S. Department of Energy grant DE-FG02-86ER53223.

Courant Institute of Mathematical Sciences, New York University, New York, New York 10012
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We denote the transpose of a matrix A by A T and the hermitian or conjugate transpose by
A*.
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Proof. We recall that the Moore-Penrose inverse is the unique generalized inverse
which satisfies the following four conditions [5, p. 26]"

(a)+ ,
(b) gt+t+ t+,
(c) (n+), +,
(d) (t+t)* t+t.
The identity is verified by direct computation,

tiff+ AA+ AC2VA+ -AA+V1C +AC2(G + +VA+V1)C
+(v +Wl)G(V +W)*A + (V +W)G(V +W)*CVA +

-(V +W)G (V +W)*A+VC
+(V +W 1)G (V + W)*C (V *A+V )C*
+(V +W)G(V +W)*C+C 1"

Since W 2 is orthogonal to A *, we have AW 2 0, WA+ 0, and VW2 0,
which simplifies the previous expression to

,A +2+AA+ AA+VlCl ++(Vl+Wl)GV2
(VI+W1)GWC2VA+-(VI+W1)G VA+V1C

+(V1 + W1)GWC2VA+V1C +(Vl +W1)GWC2G+C 1.

This expression may be simplified using GW C 2G +C C , GW C 2V
GV, and AA+V1 =V1 to

22+ -=AA + /W1C*

and clearly condition (c) is satisfied.
The corresponding identity for + _-- A +A + C 2W requires the decompo-

sition to satisfy A+Wl --0 WA 0 VWl 0, and V2A+A V2. In
addition, the matrix G must satisfy C 2G +CW1G C 2 and V 1CW1G
V G. These requirements guarantee that conditions (a), (b), and (d) are also satis-
fied. ]

Remark. The conditions that G and WW have rank k may be replaced by
the somewhat weaker but more complicated conditions that GW C 2G +C C ,
GWC2V =GV, C2G+CWlG =C2 and V1CW1G =V1G.

Note that the generalized inverse in (2) is singular and tends to infinity as W
approaches zero. Thus (2) does not reduce to the (1) as the perturbation tends to
zero. When the perturbation of the column space of A is zero, i.e., V 0, Theorem
1 simplifies to

(3) +=A+ + CG +C1.
When A is a symmetric matrix, the column spaces of A and A are identical.

Thus, for the case of symmetric A and Ft, Theorem 1 reduces to Theorem 2.
THEOREM 2. Let A be a symmetric matrix of rank 1, 1 < , V and W

be k matrices, and G be a k k nonsingular matrix. Let V E M(A and the
columns ofW be orthogonal to M(A). Let B -_-W *W have rank k. The matrix

_--A +(V+W)G(V +W)*
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has the following Moore-Penrose generalized inverse:

(4) fI+=A + CV*A + -A+VC +C(G++V*A+V)C *.

For concreteness, we specialize the preceding identities to the case of rank one
perturbations. In this special case, k 1, and V and W reduce to/ vectors vi
and w. In the nonsingular case, (1) reduces to Bartlett’s identity [6]. It states for an
arbitrary nonsingular/ g matrix A and g vectors vi,

(5) (A + vlv2*) -1 A -1 (A-lv)(v2*A -)
(1 + v*A-vl)

In this case, Theorem 1 reduces to the analogous result for an arbitrary singular
matrix A with a rank one perturbation which contains a component perpendicular to
the column space of A. Noting that G 1 and C wi/Iwi[2, Theorem 1 simplifies
to the following result.

THEOREM 3. Let A be an matrix of rank , < , and vi, wi, i 1, 2 be
vectors. Let vl e M(A) and w be orthogonal to M(A), and v2 e M(A *) and w2

be orthogonal to M(A *). Assume w2 is parallel to w and wi O. Let

=_ A + + +
The Moore-Penrose generalized inverse is

(6) fl+ A + w2v*A + A +VlWl* W2Wl*
lw .l lw l

/
lw l lw .l

This generalized inverse is singular and tends to infinity as 1/Iwlllwel, as w
approaches zero. Thus (6) does not reduce to Bartlett’s identity.

The projection operator onto the row space of f is

WiWi*Px A+A
Iwl

The symmetric version of Theorem 3 was originally developed and applied by the
author in his statistical analysis of magnetic fusion data [7]. To estimate the regression
parameters in ordinary least squares regression, the sum of the squares and products
(SSP) matrix needs to be inverted. We apply Theorem 3 to determine the inverse of
the SSP matrix in terms of the inverse of the covariance matrix of the covariates.

We decompose the independent variable vector x into a mean value vector 2 and
a fluctuating part &. Thus the ith individual observation has the form

xi " + 5ci.

Let X denote the n data matrix whose rows consist of x/T and let : be the centered
data matrix whose rows consist of &T.

We assume that some of the independent variables xk have not been varied. Thus

* is singular.
The inverse of the uncentered sum of squares and crossproducts matrix X*X can

now be expressed in terms of the Moore-Penrose generalized inverse of the centered
covariance matrix :*:. We decompose a multiple of the mean value vector x/ into
v + w, where v E i(*) and w _L i(*:). The data matrix has the form

X*X :[*: + n,’2,T :l.*: + v + w v + w
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Thus we have rewritten X*X in a form appropriate to the application of Theo-
rem 3.

In conclusion, the application of these matrix identities requires the decomposition
ofX into the orthogonal components V andW {. Thus our theorems are most useful
in situations where the decomposition is trivial.

Acknowledgments. The helpful comments of the referees are gratefully ac-
knowledged.

Note added in proof. A first order approximation to the matrix identity given
in Theorem 1 in the limit of small perturbing matrices is given in equation (3.24)
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Abstract. It is proven that the two apparently different approaches in domain decomposition,
namely the Schwarz-type overlapping domain algorithms and the Schur complement-type nonover-
lapping algorithms, are essentially the same: for any given Schwarz algorithm there corresponds a
Schur complement algorithm, with a particular preconditioner, which produces the same iterates on
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irregular regions, in Advances in Computer Methods for Partial Differential Equations,VI, R. Vichn-
evetsky and R. Stepleman, eds., IMACS, 1987, pp. 317-322] can be applied to a related Schwarz-type
iteration. This paper gives a different proof using a new characterization of the two algorithms as
two different methods for solving the reduced interface problem, which also allows immediate gener-
alizations to other more complicated domains with more than two interior interfaces.

Key words, domain decomposition, Schwarz alternating procedure, Schur complement precon-
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1. Introduction. Domain decomposition for solving elliptic partial differential
equations has been a very active area of research in the past several years [10], [5]. A
main motivation has been the potential of parallelism. This type of algorithm is also
ideally suited for local adaptive mesh refinement, exploiting fast solvers on regular
subdomains and coupling different mathematical models in different subdomains.

There are two main approaches to decomposing the domain. The first is to use
overlapping subdomains that cover the original domain. Variants of the Schwarz
alternating procedure are then used to compute the solution iteratively via solving
subdomain problems [13], [14], [15], [16]. The second approach is to decompose the
domain into nonoverlapping subdomains by interfaces. The original problem is then
reduced to an equivalent one defined on the interfaces, and solved by some iterative
procedure (such as fixed point iteration and the preconditioned conjugate gradient
method), usually with some sort of preconditioning [1], [3], [4], [9], [11], [12].

At first sight, these two approaches do not seem to be related.. In fact their
research directions have been proceeding in a parallel but noninteracting fashion.
One of the main purposes of this paper is to bring to light the surprising fact that the
two approaches are identical under certain conditions. To the best of our knowledge,
this insightful observation was first made by Bjerstad and Widlund [2], when they
mentioned to Chan that a result of Chan and Resasco [7] concerning the convergence
rate of a Schur complement-type iteration for domains with two interfaces also applies
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to a corresponding Schwarz-type iteration. Subsequently, Bjcrstad showed Chan a
sketch of a proof of the equivalence of the two iterations for this decomposition.
In this paper, we give a different proof based on a new characterization of the two
algorithms as two different methods for solving the reduced problem for the interfaces.
More important, the new characterization allows the immediate generalization of the
equivalence of these two types of iterations to more complicated domains with more
than two interior interfaces (such as T-shaped and C-shaped ones). Some of these
generalizations will be discussed in this paper.

For simplicity we shall first restrict our attention to cases where the original
domain is decomposed into overlapping subdomains with two artificial interior
interfaces, say, F4 and F5, such as the three examples in Fig. 1. Note that the
domain in Fig. l(c) is L-shaped. Now consider reducing the original problem on Ft
to an equivalent one on Fa and F5 (in the discrete case this can be accomplished
by formally performing block Gaussian elimination to eliminate all the other interior

unknowns). We can think of this reduced problem as a block 2 2 system with the
unknowns ua on Fa and u5 on F5. Our proof is based on three simple observations:

1. Schwarz’s (overlapping) procedure corresponds to a block Gauss-Seidel iter-
ative procedure for solving this interface problem.

2. The Schur complement (nonoverlapping) approach corresponds to further
eliminating one of the unknowns (say, u4) and solving the reduced prob-
lem in u5 alone by a fixed point iteration with an appropriate diagonal block
splitting (or preconditioner).

3. A simple lemma in linear algebra that says that the two ways of solving the
block 2 2 system in (1) and (2) above produce identical iterates.

2. Formulation for two interfaces. We shall follow the formulation and no-
tation used in [7]. Consider the linear system arising from a discretization of a linear
elliptic problem Lu f on any one of the domains in Fig. 1, where L is a linear
elliptic second-order partial differential operator. We assume that the interfaces de-
couple the unknowns in the interior of neighboring subdomains (for large stencils the
interfaces may have to consist of more than one grid line). If we order the unknowns
corresponding to gtl, gt2, and "3 before those corresponding to F4 and F5, we arrive
at a linear system

where

(1) A

AI 0 0 A14 0
0 Ae 0 A24 A:
0 0 Aaa 0 Aa
A4 A42 0 A44 A45
0 A52 A3 A54 A55

and u (Ul, t2, u3, u4, u5)T, f (fl, f2, f3, f4, f5)T. By eliminating the unknowns
Ul, u2, and u3 in (1), we obtain the following reduced problem in u4 and u5:

where

M4 A44 A41A-llA14 A42AA24,
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(b)

(c)

FIG. 1. Domain decomposition with two interior interfaces.

M5 Ah A2AA2 AaAa1Aah,
g4 fa A41Ai-1 fl A4eA1re,
g f AAfe AaAfa.

As we shall show in the next two sections, the Schur complement and Schwarz
algorithms can be viewed as two different ways of solving (2).

3. Schur complement domain decomposition. In this section we briefly de-
scribe the Schur complement algorithm for solving (1). The approach is to solve a
reduced problem on one interface (say, Fh), which divides the domain f into two
subdomains (in this case ft12 fl U F4 U Ft2 and ft3). This reduced problem, which
we shall denote by

(3) CDu5 =ph,

is in fact the system obtained from (1) by taking the Schur complement of A55 in A.
For a given vector v defined on Fh, the matrix-vector product Chv can be computed
via solutions of the original problem on f12 and t3. Given a preconditioner Q for
C5 (or equivalently a splitting C5 Q + (C5 Q)), we can then define the following

We shall use the notation tij...k to denote the union of i U gtj U... tk and all the interfaces
between the subdomains.
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iteration for solving (3):

Qw - (Q C)w + p.
The particular preconditioner Q of interest here is that proposed in [4], which takes
Q to be the exact interface operator on F5 for the domain ’23 ’2 [-J F5 (-J -3. In
our notation this corresponds to Q Mh. We emphasize that if -23 is rectangular
and L has constant coefficients, then M5 can be inverted efficiently using fast Fourier
transforms on F5 [9].

Note that (3) can also be derived by eliminating the unknown u4 in (2), which
yields

C5 M5 (A54 A52A21A24)Ml(A45 A42AA25).
Thus the Schur complement method described above can also be viewed as a method
for solving the interface system (2), which proceeds by first forming the Schur comple-
ment system for u5 and then performing an iteration on this system with the diagonal
block M5 as a preconditioner. This is precisely the formulation used in [7] and it will
be used later to relate to the Schwarz iteration.

4. Schwarz domain decomposition. In this section we shall briefly describe
the Schwarz algorithm and relate it to a particular block Gauss-Seidel iteration for
solving (2).

The classical Schwarz algorithm can be summarized as follows:
1. Start with an initial guess on one of the interfaces, say, u5 on Fh.
2. Solve the problem Lu f on t12 using the boundary conditions u u on

F5 together with the original boundary condition on the rest of the boundary.
3. As part of the solution from step (2), obtain a guess u4 on F4.
4. Solve the problem Lu f on t23 using the boundary conditions u u4 on

F4 together with the original boundary condition on the rest of the boundary.
5. As part of the solution in step (4), obtain a new guess for u, which completes

one iteration of the method.
It can be easily verified that u4 is obtained by solving the following subproblem

of (1):

(4) 0 A22 A24 u2 f2 A25u
A41 Aa. A4a u4 f4 A45u

Thus u is the solution to the Schur complement system of (4)"

Mau4 :f4 d45u da dlf m4edl fe
Similarly, u is obtained from

Rearranging the above two equations, we have

Mau4+(A45 Aa2 0A2 A25)u5 g4,

(A54 A52A2A24)u4 4- MhU gh.

Referring to (2), we can see that the Schwarz iteration is precisely a block Gauss-
Seidel iteration for the 2 2 two-interface system.
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5. The equivalence of Schur complement and Schwarz. We have now
shown that the Schur complement algorithm and the Schwarz algorithm are two differ-
ent iterative methods for solving the interface system (2). We shall next give a simple
lemma in linear algebra, which states that these two apparently different iterations
produce identical iterates.

LEMMA 5.1. Consider the block 2 2 linear system

and its solution by the following two iterations with the same initial guess y yO
1. (Schur complement) yl

__
D-I(CA-ByO + g CA-f),

2. (Block Gauss-Seidel) x A-(f By),y - D-t(g Cx).
Then the two iterations produce exactly the same iterates for y.

Proof. Eliminate x in the second algorithm.
We have therefore proved the following theorem.
THEOREM 5.2. Starting with the same initial guess on F5, the Schwarz algorithm

(as defined in 4) and the Schur complement algorithm with the preconditioner M5
(as defined in 3) produce the same iterates.

Remarks. 1. The choice of F5 over Fa for the Schur complement algorithm
is arbitrary. A similar equivalence result would hold if Fa had been chosen. The
equivalent Schwarz iteration is the same as before except now we start with an initial
guess on F4. Moreover, since the ordering of the blocks does not affect the convergence
behavior of the block Gauss-Seidel iteration for the 2 2 system (2), the two choices
have effectively the same convergence rate (more precisely, for an iteration of one
starting with a given initial guess, there corresponds an initial guess for the other
iteration such that the same iterates are produced). In other words, for the Schur
complement algorithm, it does not matter which of Fa and F5 we use to decompose
the domain. This slightly sharpens and generalizes a similar result in [7].

2. When L is self-adjoint, the Schur complements C5 and M5 are symmetric and
positive definite and the iteration (4) can be accelerated using conjugate gradients.
From the equivalence result, it follows immediately that the Schwarz iterative proce-
dure, considered as an iterative method for u5, can be accelerated in the same way
and will yield identical results.

3. While the convergence behavior of the two algorithms is the same, their costs
per iteration could be different. For the Schwarz algorithm, each iteration requires
solves on two overlapping subdomains, which implies two solves on the overlapped
region in each iteration step, whereas for the Schur complement algorithm only two
nonoverlapping solves are required. The cost of implementing the preconditioner is
extra for the Schur complement algorithm. However, for a large class of elliptic oper-
ators on rectangular domains, with appropriate boundary conditions, this only costs
two FFTs on the interface [9]. Therefore, for these problems the Schur complement
algorithms are more efficient. In effect, the analytical information built into the pre-
conditioner alleviates the need for solving the problem over the overlapped region
twice.

4. Since the two algorithms are the same, theoretical convergence results for one
immediately apply to the other. For example, the shape and mesh size independent
convergence results for the Schur complement algorithm on L-shaped domains estab-
lished in [7] automatically apply to the corresponding Schwarz iteration. On the other
hand, the many nice characterizations (variational and via the maximum-principle)
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(a) (b)

FIG. 2. Domain decomposition with three interior interfaces.

for the Schwarz iteration [13], [14] often allow an easy derivation of the theoretical
results [6].

5. The type of boundary conditions for the original problem on f does not matter
since the equivalence result is proved for any discretization of the problem having the
form (1).

6. Extensions to geometries with more interfaces. The characterization of
the Schwarz and Schur complement algorithms in terms of two different iterations for
solving the interface system (2) allows immediate generalizations of the equivalence
result to geometries with more than two interior interfaces, such as T-shaped and
C-shaped domains. We shall consider a few examples here.

Consider the domains in Fig. 2, with overlapping decompositions resulting in
three interior interfaces. In particular, consider the T-shaped domain in Fig. 2(b).
Proceeding as before, we reduce the problem to a block 3 3 system coupling the
three interior interfaces F5, 1"6, and 1"7. Treating two of the three interfaces as a
block, we can view this as a block 2 2 system to which Lemma 5.1 can be applied.
For example, if we group F5 and 1"6 together, then a block Gauss-Seidel iteration
starting with an iterate on 1"7 would correspond to a Schwarz iteration involving
the overlapping domains 123 and f24. The equivalent Schur complement algorithm
would correspond to using 1"7 to decompose f into two subdomains f4 and 123
and using as preconditioner on 1"7 the exact Schur complement of 1"7 in f24. This
particular preconditioner was used in [9]. Note that the Schur complement algorithm
requires only solves on 4 and 123.

By interchanging the role of 1"7 and F5 U 1"6 above, we can obtain another set of
algorithms. The Schwarz algorithm is defined on the same overlapping subdomains
as before except that now we start the iteration on F5 J 1"6. The equivalent Schur
complement algorithm solves the reduced problem for 1"5 td 1"6 with a preconditioner
corresponding to the exact Schur complement of 1"5 U1"6 in 123 (such preconditioners
have been derived in [8]). This particular Schur complement algorithm requires solves
on 24, 1, and -3.

Altogether, there are six sets of possible algorithms for T-shaped domains corre-
sponding to three ways of grouping the 3 3 interface system into 2 2 ones and two
orderings for performing the Schwarz iteration.

There are still more possibilities. For example, we can perform a block Gauss-
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(b)

(c) (d)

FIG. 3. Domain decomposition with four interior interfaces.

Seidel iteration on the 3 3 interface system directly without first regrouping it into
a block 2 2 one. Starting with iterates on I6 t.J FT, for example, we can update in
sequence the iterates on Fb, I6, and I7. The corresponding Schwarz iteration first
does a subdomain solve on f12, followed by a solve on f23, and finally a solve on

f24. The equivalent Schur complement algorithm corresponds to solving the reduced
interface problem on I6 t2 I7 with a preconditioner corresponding to a block Gauss-
Seidel splitting of the interface system. This requires the inversion of the exact Schur
complements of F6 in -23 and F7 in f24.

Generalizations to overlapping decompositions with more interior interfaces are
similar. Figure 3 gives some examples of domains with four interfaces. Consider in
particular the domains in Figs. 3(a), 3(b), and 3(c). The reduced interface problem is
now block 4 4 because there are four interior interfaces. Regrouping this into a block
2 2 system, say, with 16 t2 I9 in one group and I7 t2 I8 in another group, we obtain
a Schwarz iteration involving the overlapping subdomains -234 and ’12 [-J ’45. The
equivalent Schur complement algorithm divides f by F6 t3 F9 (or F7 t2 F8) and solves
the reduced interface system for I6 t2 19 with a block diagonal preconditioner, one
block corresponding to the exact Schur complement of 16 in ’12 and the other block
corresponding to the exact Schur complement of 19 in f45. This particular Schur
complement algorithm was also considered in [7]. There are many other variants,
such as block red/black ordering for grouping the interfaces, but we shall not discuss
this further here.
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Finally, we emphasize that the remarks in 5 also apply to decompositions with
more than two interfaces.
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are studied. A two-stage multisplitting method is presented that reduces to each of the others in
particular cases. Conditions for its convergence are given. In the particular case of a multisplitting
method related to block Jacobi, it is shown that it is equivalent to a two-stage method with only one
inner iteration per outer iteration. A fixed number of iterations of this method, say, p, is compared
with a two-stage method with p inner iterations. The asymptotic rate of convergence of the first
method is faster, but, depending on the structure of the matrix and the parallel architecture, it takes
more time to converge. This is illustrated with numerical experiments.
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1. Introduction and preliminaries. O’Leary and White [9] introduced the
multisplitting method for the parallel solution of linear systems of equations of the
form

Ax b,

where A is an n n matrix and x and b are vectors. Lanzkron, Rose, and Szyld [6]
analyzed the convergence of two-stage methods for the solution of the same system. In
this paper, we study the relationship between these two methods, also analyzing rates
of convergence and relative costs in specific examples. Numerical experiments that
illustrate our findings are presented. Further, for illustrative purposes, an algorithm
combining the two methods is given.

A matrix T is nonnegative, denoted T _> 0, if it has nonnegative elements. The
representation A M- N is called a splitting of A if M is nonsingular; it is called a
regular splitting if M-1 _> 0 and N _> 0 [11]; and it is called a weak regular splitting if
M- _> 0 and M- N _> 0 [10]. i splitting A M N is convergent if p(M- N) < 1,
where p(T) denotes the spectral radius of T. Thus, if the splitting A M- N is
convergent, then iterative methods of the form

(1) M- M-xi+ Nxi + b

are convergent for any initial vector x0. It is well known that if A- _> 0, every weak
regular splitting of A is convergent [1]. We denote by I the identity matrix.

DEFINITION 1.1 [9]. Let A, Mk, Nk, and Dk (k 1,... ,K) be n n matrices.
Let Dk >_ 0 be diagonal. Then (Mk, Nk, Dk) (k 1,..., K) is called a multisplitting
of A if
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(i) A Mk Nk, k 1,..., K, is a splitting of A;
(ii) ,k Ok I.
Given an initial vector x0 and a multisplitting of A, the multisplitting iterative

method is defined by

(2) x+l yDkM[INkx +yDkM[b.
k k

The solution of the different linear systems

(3) Mk.y v

in (2) can be solved by different processors in a parallel environment. This fact makes
these methods particularly attractive.

O’Leary and White [9] have shown that if for k 1,..-, K, A Mk Nk is
a weak regular splitting of A satisfying A- _> 0, then the multisplitting method
converges for any initial vector x0; see also Neumann and Plemmons [8]. Examples
of multisplittings can be found in these references and in White [13].

If the diagonal (masking) matrices Dk have only zero and one entries, the method
(2) corresponds to the (parallel) block Jacobi method [11]. The splittings A Mk--Nk
are then the same as A M- N, since only the nonzeros corresponding to nonzeros
of Dk are relevant. We are mainly concerned about this case in this paper; see
also 3. We note that there is then no overlap between the groups of variables that
are modified in the fractional steps of the algorithm; see (3). In 4 we make some
observations for some cases when there is overlap. The dichotomy between overlap
and nonoverlap is similar to that of the Schwarz additive algorithm in the context of
domain decomposition methods; see, e.g., Dryja [3] or Dryja and Widlund [4] and the
references given therein.

Thus, in the nonoverlap case, the processors have to be synchronized between
the formation of iterates x and x+. A discussion of chaotic multisplitting methods
(with overlap), where synchronization is not required, can be found in [2].

Two-stage methods, also called inner/outer methods, consist of using a splitting
within a splitting; i.e., given a splitting A M- N, let M B- C and perform,
say, p "inner" iterations [6]. Thus the resulting method is

(4)
p-1

Xi+l (B-IC)Pxi + y(B-1C)’iB-(Nxi + b).
j=0

2. Two-stage multisplitting. A simple unification of the two methods de-
scribed in 1 is considered where each splitting A Mk Nk of the multisplitting
method can itself be a two-stage method. The discussion in this section is general in
the sense that no assumption is made on the form of the matrices Dk.

DEFINITION 2.1. Let A, Mk, Bk, Ck, Nk, and Dk be n x n matrices. Let
Dk 0 be diagonal. Then (Mk, Bk, Ck, Nk, Dk (k 1,..., K) is called a two-stage
multisplitting if

(i) A Ma Na, k 1,..., K, is a splitting of A;
(ii) ,k Dk I;
(iii) Mk Bk Ck, k 1,..., K, is a splitting of Mk.
The two-stage multisplitting algorithm is as follows:
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Given the initial vector x0.
For --0, 1, 2,... until convergence.

For k-- 1 to K
Yk,o xi
For j 0 to p- 1

Bkyk,j+l CkYk,j - Nkxi + b
Xi+l -k Dkyk,p

Clearly, this algorithm reduces to the multisplitting method (2) when p-- 1 and
to the two-stage method (4) when K 1. In the analysis of the convergence of the
two-stage multisplitting algorithm, we use the following

LEMMA 2.2 [6]. Given a nonsingular matrix A and T such that (I- T)-I exists,
there exists a unique pair of matrices M, N, such that T M-1N and A M- N,
where M is nonsingular. These matrices are MT A(I- T)- and NT MT A.
The splitting A MT NT is the (unique) splitting induced by T.

Lanzkron, Rose, and Szyld [6] have shown that if the "outer" splitting A M-N
is regular and the "inner" splitting M B- C is weak regular, then the two-stage
method (4) is convergent for any initial vector x0 and for any value of p. Moreover,
under these conditions, the splitting induced by the iteration matrix

(5) Tp I- (I- (B-C)P)(I- M-N)

is a weak regular splitting. They also present an example where the outer splitting is
weak regular and there is no convergence for certain values of p.

THEOREM 2.3. Let A- >_ O. Let A Mk- Nk be a regular splitting, and let
Mk Bk --Ck be a weak regular splitting for k 1,..., K. Then, the two-stage
multisplitting method is convergent for any initial vector xo and any value of p.

Proof. For a fixed k, and for any value of p, the splittings A Mk gk and
Mk Bk- Ck define a (convergent) two-stage method and induce weak regular
splittings A Mk,p- Nk,p. The two-stage multisplitting method reduces then to the
multisplitting method (2), where this collection of induced weak regular splittings is
used in Definition 1.1(i), and is thus convergent for any initial vector x0.

We remark that the preceding discussion can be easily generalized to allow the
inclusion of the nested iterative methods described in [6].

3. A comparison of some block methods. Consider a partition of the n
variables as (1,... ,n} S U=Sk, where Sk has nk elements. Let the diagonal
matrices Dk

_
0 (k 1,..., K) be such that Dk,i 1 if i E Sk, and zero otherwise.

This implies in particular that -k Dk I. Let Ak DkADk, and let Ak be the
nk nk matrix with nonzero entries coinciding with those of Ak. If A is an M-matrix
[1], [11], the splitting A M- N, where M k Ak, is a regular splitting. This is a
standard device; and with this splitting, the method (1) is the block Jacobi method,
with its inherent parallelism. Let Ak Bk- Ck (k 1,... ,K) be weak regular
splittings. Using the structure of the matrices Dk, we can "assemble" the matrices

Bk and Ck in the obvious way and obtain a weak regular splitting of M B- C,
where Bk DkBDk has the same nonzeros as Bk.

The two-stage method (4) with these matrices corresponds to a block method in
which the same number, say, p, of "inner" iterations is performed in each block (the
case of different values of p for different blocks has been studied in [6]). If p 1, this
two-stage method is equivalent to the multisplitting method (2), where Mk Bk and
Nk Ck + N (k 1,..., K). The special case of A B C being the splitting
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corresponding to the SOR method was treated (with and without overlap) by White
[12, 4].

In a parallel implementation of these methods, it is assumed that a different
processor solves for the variables in different sets Sk. In the absence of communication
delays between processors, p (outer) iterations of the multisplitting method take more
work than one iteration of the two-stage method with p "inner" iterations. The
difference is p- 1 matrix times vector products with the matrix N; see (4). It is
therefore natural to compare the convergence properties of these two methods. In the
next section we study their asymptotic rate of convergence, while in 3.2 we report on
some numerical experiments. We show that if Tp is the iteration matrix of the two-
stage method with p "inner" iterations, then p(Tp) >_ p(T1)p, i.e., this multisplitting
method (one inner iteration) is asymptotically faster. Nevertheless, we show that
there are problems for which, because of the communications delay and the sparsity
structure of N, p > 1 will give faster convergence.

3.1. Asymptotic convergence. In the comparison of the asymptotic conver-
gence of the block methods just described, we use the following result, proofs of which
can be found in [6] or [7]; conditions for strict inequalities of the spectral radius are
also presented in the latter reference.

THEOREM 3.1. Let A M- N -1 be convergent weak regular splittings
such that 1-I >_ M-1, and let x and z be the nonnegative Frobenius eigenvectors of
T M-1N and 1I-11, respectively. If

(6) > 0

or if Nx >_ 0 with x > O, then p(T) >_ p().
We present now our main theoretical result. It applies to any two-stage method,

and in particular to the case where M k Ak, Ak DkADk, and Ok

_
0 (k

1,..., K) are diagonal matrices with zeros and ones such that k Dk I, i.e., to the
multisplitting in question.

THEOREM 3.2. Let A-1 >_ O. Let A M- N be a regular splitting and let
M B-C be a weak regular splitting. Let Tp be the iteration matrix of the two-stage
method with p "inner" iterations. Then p(Tp)

_
p(T1)P.

Proof. By Lemma 2.2 the matrix Tp in (5) induces the splitting A MTp NTp,
where

MT, M(I- (B-1C)p)-1 B(I- B-1C)(I- (B-1C)p) -1.

The iteration matrix of the multisplitting method in question is

H T [B-I(C + N)]p.

It induces the splitting A MH NH, where

(8) MH A(I- H)-1 B(I- B-I(c -+- N))(I- (B-I(c + N))P) -1.

We will use Theorem 3.1. As shown in [6, Thm. 4], condition (6) is directly satisfied
for NT, It remains only to show that M > M,-1 We have thatrp

M,-1 (I- (B-1C)P)(I- B-1C)-IB-1T,

p-1

E(B-1C)iB-1,
i-0
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(I- (B-I(c -b N))P)(I- B-I(C q- N))-IB-p--1

(B-I(c + N))iB-,
i=O

where we have used the identity

pml

R) R’.
i--0

Since B- _> 0 and N >_ O, B-1N >_ O. Therefore, B-(C + N) >_ B-IC and the
theorem follows. [:]

3.2. Practical considerations. The two-stage methods with p > 1 do have a
significant advantage on parallel architectures with nonuniform memory access times:
the inner iterations can be accomplished with references exclusively to memory that
is "local" to that processor. Examples of architectures that fall into this class are
the BBN GP1000, the BBN TC2000, Intel hypercube computers, and the CRAY-
2. Parallel computers with cache memory that is local to a processor can also take
advantage of these two-stage splitting methods if the data necessary to accomplish the
inner iterations can be stored in the cache. Examples of architectures that fall into
this class are the Encore Multimax and Sequent Symmetry computers. The two-stage
methods can gain an advantage from this data locality only if the number of outer
iterations necessary to converge to a solution decreases as p increases. As we have
shown in Theorem 3.2, asymptotically, the two-stage method is slower. Therefore,
there must be some "optimal" number of inner iterations p, which would depend on
the architecture and the matrix in question.

To briefly demonstrate the practical advantages of using p > 1 inner iterations on
parallel processors with nonuniform memory access times, we ran two experiments on
the BBN TC2000 multiprocessor. To perform the experiments, we modified a parallel
block iterative code to use the block Jacobi method as the outer iteration, inducing
the splitting A M- N, and the point Gauss-Seidel method as the inner iteration,
inducing the splitting M B- C. In each experiment the number of processors
varied from 1 to 32 and the number of inner iterations was increased until no further
decrease in execution time was observed. The iterations were stopped when the ratio
of the norms of the residual and the right-hand side was less than 10-6

In the first experiment, a matrix generated with a nine-point cross stencil on a
64 x 64 grid was used. All the unknowns in a grid row were grouped into a block,
resulting in 64 blocks of size 64 x 64. The right-hand side was constructed by setting
the right boundary of the grid to ls and the other boundaries to 0s. An examination
of the results in Fig. 1 shows that a clear advantage is gained when p is increased. We
have included in the same graph the number of outer iterations needed for convergence.
Of course the number of outer iterations is independent of the number of processors.

In the second experiment, a matrix of order 1280 with a semi-bandwidth of 20
was used. The off-diagonals inside the band were -1, and the elements in the ith
diagonal position were (-ji aij [) -b 2. The matrix was partitioned into 64 20 x 20

Note: In order to significantly reduce the number of outer iterations as p increases, as many
of the larger elements in A as possible must be included in B. To simulate this, we used the
following stencil on the grid: A(i, i) 9.02, A(i, q- 1) A(i, q- 2) A(i q- 1, i) A(i q- 2, i)
-2.24, A(i, -b gridsize) A(i, q- gridsize 2) A(i -b gridsize, i) A(i q- gridsize 2, i) -0.01.
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blocks. The right-hand side consisted of ls in every 64th position and 0s in every
other position. In this experiment, the reduction in the number of outer iterations
as p increases was not large; therefore, the possible advantage to be gained from
increasing p, if any, was small. The results are given in Fig. 2.

4. The effect of overlap. The asymptotic results of Theorem 3.2 apply only
to a specific class of multisplittings. The same theory does not extend easily to other
cases. The question arises then if the conclusions of 3.2 can also be observed in more
general multisplittings. In particular, is it true that when there is overlap, p > 1 inner
iterations is still more advantageous? Also, if this is the case, how does the order of
the variables affect the efficiency of the method? This last question was studied in a
recent paper by White [13].

The experiments in this section were devised to explore these questions. The
matrix used corresponds to a nine-point discretization on a 256 x 256 grid (n 65536).
The coefficients associated with a row on the grid are: -1/6, -1/3, 1, -1/3, -1/6.
We have considered blocks of size 2048 corresponding to 8 rows of 256 nodes, and an
overlap of 256 nodes, i.e., one row of overlap.

TABLE 1

Effect of the order of the variables.

Inner Iterations Ordering 0 Ordering 1 Ordering 2
1 320 (531) 314 (509) 339 (551)
2 211 (276) 211 (267) 223 (283)
4 165 (152) 169 (149) 174 (153)
8 162 (94) 172 (94) 172 (94)
16 207 (69) 219 (68) 222 (69)
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The experiment reported in Table 1 illustrates the effect of different orderings
when overlap is used. We have used 16 processors of the BBN TC2000. In each
column, the time in seconds is given first and then in parentheses is the number of
(outer) iterations. Ordering 0 is the natural ordering. Ordering 1 is numbering the
overlapping rows first. Ordering 2 is numbering the overlapping rows last. It can
be readily observed that (a) p > 1 can indeed give better results, as in the case
described in 3, (b) fewer outer iterations are needed when numbering the overlap
first, as in the case studied by White [13], and (c) the effect of the ordering diminishes
dramatically as the number of inner iterations is increased. We should point out that
the timings for orderings 1 and 2 can be improved by using more sophisticated code
for the reordering portion of it.

In Fig. 3 we report on an experiment with the same matrix, using ordering 1,
with different number of processors, with and without overlap. It is interesting to
observe that for p less than the "optimal" value, the nonoverlap case is faster while
the situation is reverse for p larger. At the same time, there is little difference between
the two cases near the "optimal" value. For completeness we report that the number
of outer iterations in the nonoverlap case are: 549, 303, 186, 135, and 114, for 1, 2,
4, 8, and 16 inner iterations, respectively. Those for the overlap case are given in
Table 1.

5. Concluding remarks We have compared, in the case of (outer) block Ja-
cobi, a two-stage method and a corresponding multisplitting method for the parallel
solution of linear systems. Based on the asymptotic rate of convergence, the first
method appears to be slower. On the other hand, the savings in communication be-
tween processors makes the two-stage method more competitive for a certain range
of p, the number of inner iterations. The same situation was observed in two-stage
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multisplittings with overlap.
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STABILITY OF A METHOD FOR
MULTIPLYING COMPLEX MATRICES WITH
THREE REAL MATRIX MULTIPLICATIONS*

NICHOLAS J. HIGHAMt

Abstract. By use of a simple identity, the product of two complex matrices can be formed
with three real matrix multiplications and five real matrix additions, instead of the four real matrix
multiplications and two real matrix additions required by the conventional approach. This alternative
method reduces the number of arithmetic operations, even for small dimensions, achieving a saving
of up to 25 percent. The numerical stability of the method is investigated. The method is found to
be less stable than conventional multiplication but stable enough to warrant practical use. Issues
involved in the choice of method for complex matrix multiplication are discussed, including the
relative efficiency of real and complex arithmetic and the backward stability of block algorithms.

Key words, matrix multiplication, complex matrix, Strassen’s method, Winograd’s identity,
numerical stability, error analysis, level-3 BLAS

AMS(MOS) subject classifications. 65F05, 65G05

1. Introduction. How many real multiplications are required to multiply two
complex numbers? In view of the familiar identity

z (a + ib)(c + id) ac- bd + i(ad + bc),

the answer might appear to be four. However, it is possible to make do with three
multiplications, because

(1.1) z ac bd -{- i[(a -{- b)(c -{- d) ac- bd].
This formula was suggested by Peter Ungar in 1963, according to Knuth [14, p. 647].
That three multiplications (or divisions) are necessary for evaluating z was proved by
Winograd [17].

Ungar’s formula does not rely on commutativity, so it can be generalized to matrix
multiplication, as noted by Fam [10]. Let A A1 + iA2 and B B1 + iB2, where
Ay, By E lRnn, and define C C1 +iC2 AB. (We concentrate on square matrices,
although everything we say extends easily to rectangular matrices.) Then C can be
formed using three real matrix multiplications as

T1 A1B1, T2 A2B2,
(1.2) C1 T1 T2,

C2 (A1 + A2)(B1 + B2) T1 T2,

which we will refer to as the "3M method." This computation involves 3n3 scalar
multiplications and 3n3 + 2n2 scalar additions. Straightforward evaluation of the
conventional formula C AIB1 A2B2 +i(AIB2+A2B1) requires 4n3 multiplications
and 4n3- 2n2 additions. Thus, the 3M method requires strictly less arithmetic
operations than the conventional means of multiplying complex matrices for n k 3,
and it achieves a saving of about 25 percent for n k 30 (say). Similar savings occur
in the important special case where A or B is triangular.
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It is rare in matrix computations to be able to produce such a clear-cut com-
putational saving over a standard technique, and the 3M method therefore deserves
careful consideration for practical use.

Since an increase in speed is often accompanied by a loss of numerical stability, it
is important to investigate the behaviour of the 3M method in the presence of rounding
errors. Doubts about the stability are raised by the comment of Knuth [14, p. 647]
on a variation of (1.1) (see (2.7)): "Beware numerical instability." We investigate the
stability in 2 and show that the 3M method is stable in a certain sense, although it
does not match the stability properties of conventional multiplication.

In 3 we offer some guidance on the choice of method for multiplying complex
matrices.

This work was motivated by the knowledge that the 3M method is being used in
Fortran routines CGEIS and ZGFJS in IBM’s ESSL library. The 3M method is also
used by routines of the same name in Cray’s UNICOS library [5]. All these routines
form complex matrix products by using Strassen’s fast matrix multiplication method
[15] to evaluate the real matrix products in (1.2). Although the ESSL documentation
warns about potential instability of Strassen’s method [13, p. 344], it contains no
comment on the stability of the 3M method itself.

2. Numerical stability. A simple example reveals a fundamental weakness of
the 3M method. Consider the computation of the scalar

z x +iy-- (0 +i/0)2 02 1/02 + 2i.

Suppose we use floating point arithmetic with unit roundoff u. If y is computed the
usual way, as y 0(1/0) + (1/0)0, then no cancellation occurs and the computed
has high relative accuracy: I- Yl/lYl-- O(u). The 3M method computes

( 1)( 1)_02 1
y-- 0+ 0+ 02.

If 101 is large this formula expresses a number of order 1 as the difference of large
numbers. The computed will almost certainly be contaminated by rounding errors
of order u02, in which case the relative error is large: I-Yl/lYl O(uO2) However, if
we measure the error in relative to z, then it is acceptably small: I-Yl/Izl- O(u).

This example suggests that the 3M method may be stable in a weaker sense
than conventional multiplication. In the rest of this section we establish the stability
properties in a precise form, for general n.

For the error analysis we assume that the floating point arithmetic obeys the
model

fl(xopy) (xopy)(l+ 5), 151 < u,

fl(x +/- y) x(1 + a) 4- y(1 +

where the latter equation allows for possible lack of a guard digit in addition and
subtraction. Standard analysis (analogous to that in [11, p. 66], for example) shows
that if A,B E ]Rn’ and we compute C fl(AB) by conventional multiplication,
then

(2.1) IO- ABI <_ nuJAllB[ + O(u).
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Here, I" denotes the operation of replacing each matrix element by its absolute value,
and the matrix inequality is interpreted componentwise.

Now we consider the product C1 / iC2 (At + iA2)(B1-4-iB2) for n n complex
matrices, as in 1. Using (2.1) we find that the computed product from conventional
multiplication,

satisfies

fl(AiB A2B2 + i(AB2 + A2B)),

(2.2) Ix --Cll <_ (1 + 1)u(IAIIBI + IA2IIB2I) + O(u2),
(2.3) 12 -C21 <_ (n + 1)u(IAIIB21 + IA211Bll) + O(u2).

It is easy to verify that, apart from the factors n+ 1, these bounds reflect the sensitivity
of the product AB to perturbations in A and B of the form Aj Aj / AAy, where

For the 3M method C1 is computed in the conventional way, and so (2.2) holds.
It is straightforward but tedious to show that C2 satisfies

12 C21 < (n + 4)u[(IA11 + IA21)(IBI + IB21)
(9..4)

+IAI]Bll / IA211821] / O(u2).

Two notable features of the bound (2.4) are as follows. First, it is of a different
and weaker form than (2.3); in fact, it exceeds the sum of the bounds (2.2) and (2.3).
Second and more pleasing, it retains the property of (2.2) and (2.3) of being invariant
under diagonal scalings

C AB -- DAD2. DBD3 DICD3, Dj diagonal,

in the sense that the upper bound AC2 in (2.4) scales also according to DAC2D3.
(The "hidden" second-order terms in (2.2)-(2.4) are invariant under these diagonal
scalings.)

The disparity between (2.3) and (2.4) is, in part, a consequence of the differing
numerical cancellation properties of the two methods. It is easy to show that there
are always subtractions of like-signed numbers in the 3M method, whereas if A, A2,
B, and B2 have nonnegative elements (for example), then no numerical cancellation
takes place in conventional multiplication.

We can define a measure of stability with respect to which the 3M method matches
conventional multiplication by taking norms in (2.3) and (2.4). We obtain the weaker
bounds

(2.5) 112- 6211 <_ 2(n / 1)ullAIlllBIl / O(u2),
(2.6) I1 CII _< 4(n + 4)ulIAIIIIBII + O(u:).

Combining these with an analogous weakening of (2.2), we find that for both conven-
tional multiplication and the 3M method, the computed complex matrix C satisfies

cll c ullAIl llBIl + O(u2),

where cn O(n).
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Our findings can be summarised as follows. The 3M method produces a computed
product C whose imaginary part may be contaminated by relative errors much larger
than those for conventional multiplication (or equivalently, much larger than can be
accounted for by small componentwise perturbations in the data A and B). However,
if the errors are measured relative to IIAIIIIBII, which is a natural quantity to
use for comparison when employing matrix norms, then they are just as small as for
conventional multiplication.

We conclude this section with several further comments.
(1) It does not seem possible to improve the stability of the 3M method by

"tinkering" with the basic formula. The symmetric formula

(2.7) z a(c + d) (a + b)d + i[a(c T d) + (b- a)c],
mentioned by Knuth [14, p. 647] as an alternative to (1.1), is "worse" in the sense
that either of the real and imaginary parts can be relatively inaccurate. Of course,
by adapting formula (1.1) we can arrange that only the real part be of questionable
accuracy.

(2) The 3M formula resembles Winograd’s identity for computing the inner prod-
uct of vectors x, y E ]Rn. The identity is [16], for even n,

n/2 n/2 n/2

+ +
i--1 i--1 i--1

Setting n 2, we have

(2.9) xTy (Xl "- y2)(X2 -" Yl) XlX2 YlY2"

For comparison, the 3M formula (1.1) uses the identity

(2.10) xTy (Xl -- X2)(Yl - Y2) XlY2 X2Yl

to compute the imaginary part of z. Although they look similar, formulas (2.9) and
(2.10) have quite different stability properties, because (2.9) exploits commutntivity
(y2x2 x2Y2 nd y2y yY2), while (2.10) does not. Thus only (2.10) permits
the generalisation where the xj and y are matrices. On the other hand, Winograd’s
identity can be used to trade half the multiplications for additions in a matrix product
AB (this being the main application of Winograd’s identity), but the analogue of
(2.10) for n-vectors cannot be employed in this fashion.

A further difference is that (2.9), and more generally (2.8), is numerically unstable
in the sense that the best available normwise error bound is of the form

(.1) I(x) 1 <- (1111o + I111o) + O(u),

which can be arbitrarily weaker than the bound

Is Z(x  ) c  ll ll ll ll +
which holds for conventional multiplication (and for (2.10)).

The instability of Winograd’s identity was first pointed out by Brent [4], who
proves a bound of the form (2.11). He shows that the instability can be overcome by
scaling x and y so that I]xlloo IlYllo before applying the identity.
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(3) To put the stability of the 3M method into perspective it is worth noting that
it is at least as stable as Strassen’s method. The best available bound for Strassen’s
method for forming C AB, where A, B E ]Rnn, is [12]

I1 CIl <_ f(n, no)ullAIlllBIl + O(u2),
where f(n, no) ’ nn(n/no)3"6 and where no _< n is the threshhold such that con-
ventional multiplication is used for matrices of dimension no or less. Thus Strassen’s
method satisfies a normwise bound only, and has a potentially much larger constant
in the bound than the 3M method.

(4) It is straightforward to show that if the 3M method is implemented using
Strassen’s method to form the real matrix products, then the computed complex C
satisfies

II CII _< 6(f(n, no) + 4)ullAllllBII + O(u2).
In other words, the 3M method combined with Strassen’s method has the same sta-
bility properties as Strassen’s method alone.

(5) We have done numerical experiments in MATLAB to confirm the theoretical
analysis. Our experience is that for "random" matrices the 3M method is quite
likely to produce a computed answer of similar quality to that from conventional
multiplication. (The same is true for Strassen’s method; see [12].) However, it is
easy to generate examples where instability occurs--for example, by generalizing the
example at the beginning of this section.

3. Practical considerations. What method should we use to multiply complex
matrices? If the best possible accuracy is required, or if execution time is not a
primary concern, then the multiplication should be done in the conventional manner.
When implementing conventional matrix multiplication in Fortran, we have the choice
of splitting the computation into its real and imaginary parts at the beginning, as is
necessary to apply the 3M method, or of using "complex arithmetic," which effectively
means resorting to real arithmetic only at the scalar level. These two approaches carry
out the same (real) arithmetic operations in different orders, and so satisfy the same
error bounds (2.2) and (2.3). The choice of which approach to use can therefore be
guided by considerations other than accuracy, such as the relative efficiency of real
and complex arithmetic implementations, which depends on various factors, including
memory reference time, the overhead of invoking complex arithmetic routines, and the
intrinsic costs of real and complex arithmetic. The relative efficiency can vary greatly
between machines and compilers. The LINPACK manual [8, p. 1.25, Appendix B]
reports the execution times of CGEF/t (complex LU factorization) and SGEF/t (real LU
factorization) for the LINPACK test sites (21 computing environments). For n 100,
the ratio "CGEFA/SEFA" varies between 1.64 and 8.98, with an average of 4.31.

If a faster multiplication is desired, the most promising possibilities involve the
3M method and Strassen’s method. Recent experience with Strassen’s method on real
matrices has shown that on certain machines it can produce useful speedups for n in
the hundreds [1], [2]. If the computing environment is such that complex arithmetic
is implemented very efficiently, it may be best to use Strassen’s method alone in
complex arithmetic. For example, in experiments in Algol-W on an IBM 360/67,
Brent [3] found that a complex matrix multiplication took less than three times as
long as a real matrix multiplication, for both the conventional method and Strassen’s
method. Thus it is probably not worth using the 3M method in this environment.
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The evidence quoted above from the LINPACK manual suggests that in many
Fortran environments complex arithmetic will exceed real arithmetic in cost by a
factor of more than three. In such situations it is appropriate to use the 3M method
in conjunction with Strassen’s method, as is done in the ESSL library [13] and the
UNICOS library [5], and as is discussed at the end of 2.

A prominent source of Fortran 77 matrix multiplication routines is the level-3
basic linear algebra subprograms (BLAS3) [9]. The BLAS3 specifications define what
each routine must do but not how it must do it. Thus there is freedom of imple-
mentation, subject to the requirement of retaining numerical stability. One of the
main uses of the BLAS3 is as modules in block algorithms for solving linear equation
and eigenvalue problems, for example, in LAPACK [6]. Two important questions in
this context are whether the block algorithms remain backward stable when they are
built upon BLAS3 operations satisfying bounds of the form (2.12), and, if they do,
whether the backward error results are sufficiently strong for a given application. In
joint work with Demmel [7], we have shown that a wide class of block algorithms
satisfy a backward error bound of the form (2.12) if the BLAS3 themselves satisfy
(2.12). In combination with the work here, this provides motivation for preparing
complex BLAS3 routines based on the 3M method combined with Strassen’s method.

Acknowledgement. I thank Des Higham for his helpful comments on the manu-
script and Phuong Vu for pointing out reference [10].
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Abstract. A tight bound is given on the speed of convergence of Newton’s method with optimal
scaling for the polar decomposition of a nonsingular complex matrix. Necessary and sufficient condi-
tions are then derived that tell when an approximation to the optimal scaling value will give better
results than the unscaled Newton method. For the related matrix sign problem, it is shown that
optimal scaling requires complete knowledge of the eigenvalues of the original matrix. Because this is
impractical, a family of scaling methods that are optimal with respect to partial eigenvalue informa-
tion is derived. This family includes optimal scaling as well as a "semioptimal" scaling method based
on the dominant eigenvalues of the matrix and its inverse. Semioptimal scaling can be implemented
using the power method and it gives nearly optimal performance on a set of test problems. These
test problems also show that a variety of other commonly used scaling strategies, including spectral
scaling, determinantal scaling, and 2-norm scaling, can result in unduly slow convergence.

Key words, polar decomposition, matrix sign function, Newton’s method, optimal scaling
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1. Introduction. The polar decomposition of a nonsingular complex matrix A
of order rn is a matrix pair (U, H) such that U is unitary, H is Hermitian and positive
definite, and A UH. If A has a singular value decomposition, A PEQH, where
P and Q are unitary and E- diag(al,..., am) with 0 < am <"" <: al, then [7]

(1) U pQg, H QEQg.

However, it is more efficient to compute the polar decomposition using scaled Newton
recursions of the form

(2) H -1An+l -(7nA, + (’’nAn ), A0 A, ’)’n > 0.

For ’n suitably chosen [7], [10], An -- U, and H can be found from H UHA. In the
next section we give convergence bounds supporting the empirical observation that
Newton’s method with optimal scaling,

%- CllAll2/llAll2,
converges very rapidly, even when A is ill conditioned with respect to inversion. Here
I1" 112 denotes the matrix 2-norm.

In practice, the optimal scaling factor n must be approximated and this raises
the question: how bad can the estimate be before it is better to use the unscaled
( 1) Newton method? A simple analysis (Theorem 2.6) shows that this question

est if and only if 2n < st < 1. Followinghas an elegant answer: it is better to use "n
this, we consider three scaling methods; the first uses power method estimates of

IIAnll2 and ]1A1112 based on the work in [5]. This method gives good results but its
inherent uncertainty has led to other methods such as the one suggested by Higham
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[7] based on approximating the 2-norm by the geometric average of the 1-norm and
the cx-norm. This method works well and is closely related to the third method based
on a Frobenius norm approximation of the 2-norm. This "Frobenius" scaling always
gives better results than the unscaled Newton method (Lemma 2.7). Numerical tests
on all three of these methods suggest that they are nearly optimal for most problems.

Analysis of Newton’s method for the polar decomposition uses the fact that the
matrix recursion (2) can be reduced to scalar recursions for the singular values of An.
The convergence of the singular values to 1 then determines the rate of convergence
of An to the polar factor U. For the matrix sign function the same is true of the
eigenvalues of An and their convergence to +1, but the conditioning of the associated
eigenspaces can affect convergence at least for the first few iterations.

If A has no eigenvalues on the imaginary axis, the sign of A, denoted by sgn(A),
is the limit of the sequence

(An -F A-1) Ao A.(3) An+l
By using nilpotency arguments, we show in Lemma 3.3 that once the eigenvalues of
An have converged, the overall convergence of An to sgn(A) will be complete in at
most log2(m + 1 more steps where m is the order of A. This places a well-defined
limit on the effects of ill-conditioning and allows us to concentrate on the problem of
choosing the scaling factors for the matrix recursion,

(4) An+l 1/2(nAn + (’)’nAn)-1), Ao A, ’Tn > O,

to optimize the convergence of the eigenvalues to +1 (see [1]).
An optimal scaling stategy is described in Theorem 3.6, but requires complete

knowledge of the eigenvalues of An. Since this is impractical, we have developed a
family of scaling methods that are optimal with respect to incomplete eigenvalue in-
formation. The simplest of these methods uses only the two eigenvalues corresponding
to the dominant eigenvalues of An and its inverse. This method, which we refer to as
"semioptimal" scaling, gave nearly optimal performance in numerical tests.

For the purposes of completeness, we also considered other suboptimal methods,
including "spectral" scaling,

(5) ")’n- V/P(A’I)/p(An),
where the spectral radius p(M) of a square matrix M, is the maximum modulus of
its eigenvalues:

p(M) =-max{[,kl ,k e A(M)}.

Spectral scaling is asymptotically optimal as the eigenvalues of An approach the real
axis (Theorem 3.4). However, if the eigenvalues of An are near the imaginary axis,
then this method can result in unduly slow convergence (see Example 1).

Another commonly used method is "determinantal" scaling

det
which has the tendency to bring the eigenvalues to the unit circle and then to the real
axis (see the comments prior to Example 1). Unfortunately, determinantal scaling
is not asymptotically optimal. This is clearly seen in Example 2. We also tested a
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variety of other scaling strategies, including the 2-norm scaling method of Barraud
[2] and a scaling method based on the Frobenius norm.

In the following, we will assume for the purposes of analysis that all arithmetic
operations are performed exactly; this allows us to separate convergence effects from
those of roundoff.

2. Polar decomposition. For A PEQH, the sequence generated by (2) sat-
isfies An PEnQH, where n diag(an), a(mn)) and

l(’)’no’n) -(’no’n))--l), 1 < j < m.(8) o’(jn+l)-
This means that the rate of convergence of An to U is determined by how quickly the
singular values of An converge to 1"

(9) [[An U[[ [[PnQ" PQ[[ I[2n

Although an), a(mn) are the singular values of An, their ordering may be scrambled
by (8). Because of this, we will use the special notation,

(10) 8n) :-- (Tmax(An) 8(mn) amin(An).

Define Vn by

(11)

We now need three elementary facts about Newton’s method. For x in (0, +(x))
let

(12)

Then

(13)
(14)
(15)

f(x) 1/2(x + l/x).

f" (0,-t-cx) --+ [1,
f(x)- f(1/x),

or 1 _<x] _<x2

An immediate consequence of (9) and (13) is that

(16) I[A, Ull 
This gives the following practical error bound.

LEMMA 2.1. For An defined by (2) and n >_ 1,

(17)

1 __< f(Xl) __<

n>l.

Proof. By (13), all of the singular values of An are greater than or equal to 1.
Combining this with (16) gives

IIA, -Ullu s’)- 1

<_ 8n) 1/8n)

IIA, A HII .
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Remark 1. Since An and AH are available at each step, the bound in Lemma
2.1 is very convenient. It also provides a dependable assessment of the error because

(18) sn) 1/sn)
1 -t- 1/sn) -, 2,sn) 1

which implies that

(19) IIAn AHII2 --, 2.

The next result shows that if A is of order m, then the optimally scaled Newton
method converges in at most m steps. (See [10] for a discussion of the optimality of
the scaling value given by (11) for polar decomposition.)

LEMMA 2.2. For /n defined by (11), Ak U where k is the number of distinct
singular values of A.

Proof. The effect of the scaling is to make the largest and smallest singular values
reciprocals of each other:

O.max(/nAn)--- V/8n)/8( (rmin(/nAn) )Is
with the other singular values between these extremes. These reciprocal singular
values then map to the same value by (14), which is also the largest singular value
of An+l by (15). Thus the multiplicity of the largest singular value increases by 1 at
each step until it is equal to k, which happens at the end of step k- 1. At the start
of the kth step, all of the singular values are equal and scaling takes them collectively
to 1, which completes the convergence by (16).

2.1. Speed of convergence bounds. Lemma 2.2 is a nice result, but its de-
pendence on the dimension of A obscures the fact that convergence is rapid no matter
what the dimension of A is. This speed results from the relation

_(n--t--I)
_____

_Iv/ n)81 2
s

for sn) large, which moves sn) quickly to a neighborhood of 1 where the quadratic
convergence of Newton’s method comes into play.

By (16), we only need to measure how quickly the largest singular value sn) goes
to 1. Assume that A has been prescaled so that IIA-1112 1; we may do this without
loss of generality because the sequence An generated by (2) and (11) is invariant with
respect to such prescaling. From (13), we know that the smallest singular value of An
is greater than or equal to one, so n (sn)s(mn)) -1/2 _< (sn)) -/2. Thus,

and

l (/sn)+ 1/s))

(20) Xn+ 1/2 (-n + 1/Vf), x0 s),
by (15). We can conclude that if
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then

(21) 1 <_ s) _< x.

In this section, we obtain bounds on how quickly xn in (20) converges to 1. The
main idea is to work with numbers c c(n) > 1, which map into 1 + l/c, after n
steps of (20):

(22) xn 1 + 1/, Xo .
For example, a(1) 4 since Xl 1/2(V+ 1/x/) 1 + 1/4. If we let S {x > 1"

Xn <_ 1 / l/x}, where xn is given by (20) with x0 x, then it is not hard to show
that a(n) sup(x x e Sn}.

THEOREM 2.3. Let c(n) satisfy (22) and suppose that IIAII211A-1112 <_ c.
Then in n steps the error is less than or equal to 1/

(23) IIA, UII2 <_ 1/c.

Proof. As in the proof of Lemma 2.1, prescale A so that s) IIAII211A-1 ll2. By
(21) and (22), s’) <_ Xn 1 + 1/a. Hence, IIAn- UII2 s)- 1 <_ 1/a by (16). [:]

The proof of this theorem is short because all of the difficulty has been hidden in
the numbers a(n) satisfying (22). In particular, (22) is an implicit relation on a that
is rather complicated; a can be found numerically, but this does not give us much
insight into the problem. Instead, the next theorem gives a very sharp lower bound

THEOREM 2.4. For n >_ 3, a(n) > (8:/:/4)
Proof. See Appendix 1 for the proof.
Table 1 illustrates this bound.

TABLE 1
Lower bounds on a(n).

82("/2) a(n)n 4

3 89.59 95.33

5 3.2 104 5.1 104
7 4.1 109 1.5 1010

Because Theorem 2.4 does not depend on the dimension of A, it also applies to
infinite-dimensional operators. Let W be a Hilbert space with inner product (., .), and
let {q} and {p} be two complete orthonormal bases for W. For any linear operator
L on W, define the norm of L by IILII2 sup{I]Lxll2 Ilxl12 1}, where the vector
norm is induced by the inner product, i.e., Ilxll (x,x) for any x e W. Let A be
a linear operator on W such that Aqi aipi where 0 < rmin ------ inf(ai} < amax
sup{hi} < +Cx. For any such A define the scaling factor -I(A) (amaxamin)-1/2.
Then the sequence

An+l 1/2(’Y(A)An + (/(An)AHn -1)

is well defined and converges to U where Uq p.
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THEOREM 2.5.
case, if

If A has only k distinct singular values then Ak U. In any

82(n/2)

then

4
[[An -UI[2 _<

82(,/. for n >_ 3.

Proof. The first assertion has the same proof as Lemma 2.1 and the second follows
from Theorems 2.3 and 2.4. [:]

2.2. Approximate optimal scaling. In practice, the optimal scaling value
7n (IIAIlI2/IIAnlI2) 1/2 is not known exactly and some approximation must be
used, which leads us to ask how scaling inaccuracies affect convergence. There are
two distinct cases for this problem, depending on whether or not some of the singular
values are far from 1.

As per the remarks following Lemma 2.2, the principal benefit of optimal scaling
occurs in the "initial phase" in which any large singular values are rapidly brought to
a neighborhood of 1. Fortunately, the effect of scaling errors in this phase is minimal
(see the discussion following Theorem 2.6 below). After this, in the "terminal phase,"
quadratic convergence to 1 takes place but the increase in speed over the unscaled
Newton method is only marginal. At the same time, the sensitivity of the convergence
to small scaling errors increases, as seen by Theorem 2.6 below. Because of this, the
standard approach to handling this problem is to switch to the unscaled Newton
method ( 1) when An is sufficiently close to U; for example, see the algorithm of
Higham in [7]. This "switching" problem can be stated in the following form. Which
scaling values - give better convergence than the unscaled Newton method? The next
theorem answers this question.

THEOREM 2.6. Let An+I() (/An + (/An)-H)/2. Then for / > 0 and n >_ 1,

(24) IIAn+l(,y) Ull 2 IIAn+l(1) Ull 2

if and only if

(25) 7n
2 <- 7 -< 1,

where Yn is the optimal scaling factor given by (11).
Proof. See Appendix 1 for the proof. D
Because n -- 1, inequality (25) shows that the margin of acceptable error in the

approximate scaling factor narrows, in both an absolute and relative sense, as the
singular values of An approach 1 in the terminal phase.

In order to illustrate the above, let us suppose that we can estimate the optimal
scaling value to within a multiplicative factor f:

1
(26)

In this case, we should use the approximate scaling value in preference to 7 :’ long
as f _< 1/Tn because this is equivalent to (25). In this case, the speed of convergence
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in the initial phase (in which we use the estimated optimal scaling value) is controlled
by the sequence

+

Subsequently, in the terminal phase when f _> 1/Tn, the speed of convergence is just
that of the regular unscaled Newton method. An analysis of this combined method
can be given as in Theorem 2.4, but for brevity we will simply consider a representative
example. Under optimal scaling, if IIA011211A-1112 101, then convergence is complete
in 7 steps as per the results in Table 1. For approximate optimal scaling, in which
the scaling factor is determined to within, say, 50 percent (i.e., f 2), 10 steps
are needed. This can be seen by using the sequence generated initially by (27) with
x0 101 and then switching to the unscaled Newton method when f 2 _> V-
This is encouraging because an increase from 7 to 10 steps is negligible compared to
the 38 steps that the unscaled Newton method requires for this problem. (For all
numerical problems considered in this paper the iterations were terminated after the
error, as measured by Lemmas 2.1 and 3.1, was less than 10-1.)

We now examine aspects of convergence for three practical scaling strategies. The
first involves estimating the 2-norms of An and A by the power method [5]. For
a square matrix M and a starting vector v0, let vk MHMvk-1 and set Pk(M)
([[Vk[12/[[Vk_l[[2) 1/2. Then

(28) Crmin(M _< Pk(M) <_ Crmax(M), k _> 1.

Moreover, Pk(M) [[M[12 as k increases provided v0 is not perpendicular to the
singular vector space of M corresponding to the largest singular value of M. Because
of roundoff effects we may assume that this condition is satisfied; see [5] for a discussion
of this point. This suggests that we define a sequence of estimates of 7n by

(29) ’7 (P(A-I)/P(An))/2.

For n >_ 1, the singular values of An are greater than or equal to 1, which when
combined with (28) gives

(3O) ]IA-IlI/IIAnll 72n <_ 1/llAnll (amin(A’l)/]lAnll) 1/2 <__ ,Tkn.

Thus if we agree to let ,k min{1, 7n}, then the n satisfies (25) and so must give
better convergence than the unscaled Newton method.

Based on the theory of the power method [14], the asymptotic convergence of

7
k to 7n should be linear. However the indeterminancy in this procedure has led to

the search for other methods of approximating 7n. For example, Higham [7] suggests
using the scaling factor

(31) nl,Oo ([IAII[[[A[[o )
:/4

and gives the bounds

If m1/2 < 1/%1, then by (25),-"yn should be used in preference to 7 1. However,
(25) may be satisfied when this rather restrictive requirement is not met. Higham
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[7] has found empirically that scaling with "n is effective until An is within, say, 1
percent of U.

This brings us to the third scaling method, which is closely related to Higham’s
scaling procedure but is easier to analyze with regard to the switching problem. To
motivate this method, consider the problem of finding - .yF, which minimizes
I[’An-(/An)-H IIF where II’[IF denotes the Frobenius matrix norm [6]. (Compare with
the 2-norm error bound in Lemma 2.1.) By using the relation IIMII2F Tr(MHM)
we find that

(33) %F_
IIallF

om IImlIF//- _< IImll2 _< IImlIF, we have 1/m1/4 _< 7;F/% <_ ml/4, which has the
same form as (32). The next lemma shows that this "Frobenius" scaling method is
always better than the unscaled Newton method.

LEMMA 2.7. For n >_ 1, " <_ 7F <_ 1.
2Proof. Since Ilmll (m) +... + (m), we hve

+... + _1 /

(a4) = + +
where aj denoges the jgh singular value of An. This gives 7n <_ 1 because 1 _< a _<

_< el. Also,

(a5) ’n 1/(alO’m) _< 1/o’1-- ma -< ’’/n’

which completes the proof.
Numerical tests on a wide variety of problems indicate that there is little difference

between the performance of optimal scaling, the power method, Higham’s scaling, and
Frobenius scaling. Even for extreme problems with only two distinct singular values,
the spread between these methods is small compared to the unscaled Newton method.
For such an example, with ]IAI]211A-l[]2 1012 and m 20, optimal scaling took two
steps, the power method took four, while Higham’s method and Frobenius scaling
required six and seven steps, respectively. The unscaled Newton method took 45
steps. This also illustrates our general finding that Higham’s method is as good as or
slightly better than Frobenius scaling, which leads us to suspect that an analogue of
Lemma 2.7 may be true for -1,o in (31)"}’n

3. Matrix sign function. For polar decomposition, the convergence of New-
ton’s method is determined by the convergence of the singular values to 1 as in (16).
For the matrix sign problem, the same can be said of the convergence of the eigen-
values to +1. However, the conditioning of the associated eigenspaces also affects
convergence, at least in the initial stages of the iteration. In order to give more sub-
stance to these remarks, assume that A has no eigenvalues on the imaginary axis
and define S sgn(A) to be the limit of the unscaled Newton sequence (3). Let
A have Schur form A Q.QH where Q is unitary and the tilde over a matrix is
used to indicate that the matrix is upper triangular. Since the inverse of an upper
triangular matrix is again upper triangular, the sequence An in (3) has Schur form
An Q7tnQH. The same applies to the scaled sequence (4).
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The use of the upper triangular tilde notation is convenient because the equivalent
Schur form of formulas such as (3) or (4) can be found by simply inserting tildes over

the appropriate matrices. From this we see that the eigenvalues {n),... ,)} of
An are the main diagonal entries of -n and satisfy the scalar recursions,

(.36) Aj(n+l) 51 (’YnAn) + (TnAn)) -1)’ 1 _< j _< m.

For fin real and positive, it can be shown that An) - sgn(A0))if and only if 1,
where sgn(z) 1 if Re(z) > 0 and sgn(z) -1 if Re(z) < 0. The decoupling of the
main diagonal elements in (36) means that the eigenvalue convergence is independent
of the upper triangular entries of An. These entries reflect the nonnormality [6] of
An. This raises the question of how deviation from normality affects the convergence
of An to S and whether overall convergence will occur at the same rate as that of
the eigenvalues. The next three lemmas explore this problem; the first gives practical
error estimates similar to those of Lemma 2.1 for the polar decomposition.

LEMMA 3.1. For the scaled Newton method (4), let An S + En. If An is close
enough to S so that IIEnl]211SII2

_
1/2, then

(37) I]An Sl] 2 <_ IIAn A1]]2

and

(38) IIAn Sl[2 < IlA2 Ill2.

Proof. From the definition of S, we have that S2 I and S-1 S. Moreover, S
commutes with A A0 so it must also commute with each An in (4). Using this and
some algebra we find that

(39) En (An AI)(I + EnS)(2I + End)-1.

Thus for IIEnll llSll2

(40) IIEII2

which proves (37). The relative error bound (38) can be proved in a similar fashion
(see [11]). [:]

Remark 2. As n increases, the error bound in (37) gives a reliable estimate of the
true error because

IIA. Slle 1
(41) ]IAn-AI]e 2

by (39). The fourth and fifth columns of Table 2 give a comparison of the exact error
and the estimate in (37) for a particular problem.

In order to illustrate the effect that eigenspace ill-conditioning can have on the
convergence of the unscaled Newton method, consider an example suggested by an
anonymous reviewer of this paper. If An is a Jordan block with ones on the main
diagonal as well as the first superdiagonal, then the eigenvalues have converged to 1
but overall convergence is not complete because sgn(An) I An. Problems of this
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type were considered by Barraud [2], who showed that the asymptotic convergence is
quadratic. However, a more general approach to the ill-conditioning problem allows
us to conclude that any delays in overall convergence due to ill-conditioning are minor
(i.e., the number of extra steps is at most logarithmic in the order of the largest Jordan
block).

LEMMA 3.2. For the unscaled Newton method (3), let An S + En. Then

(42) An+l S / AIE/2
and

(43) A2n+l I - E2n A-IE3n -}-(AIE/2)2.

Proof. Use (3) and the fact that An, En, and S all commute for the proof. [-I

Equation (42) shows the quadratic convergence of the unscaled Newton sequence
with possible ill-conditioning entering via the term A. Since A S-1 S, the
norm of S can affect the asymptotic convergence. (See [8] for a discussion of how
the norm of S determines the "asymptotic" conditioning of the matrix sign function.)
It is interesting to note that the term A is missing from the principal part of the
error term in (43); this proves useful when we turn to the problem of estimating the
dominant eigenvalues of A, and A1. Another consequence of this lemma is that
once the eigenvalues of An have converged, the overall convergence of An to S will
be complete in no more than log2(m + 1 extra steps as shown below. This places a
well-defined limit on the convergence effects of ill-conditioning.

LEMMA 3.3. For the unscaled Newton sequence (3), if An has eigenvalues 1 for
some value of n, then An+p S for 2p >_ m.

Proof. Since the matrix 2-norm is invariant with respect to unitary similarity
transformations, we need only consider the co_nverge_nce _of the upper triangular Schur
sequence n where A, QinQH. Now if An S + En and the eigenvalues of n
have converged, then E must be strictly upper triangular and hence is nilpotent of
order m, i.e., /m 0. This means that /n2 is nilpotent of order m/2, or the next
highest integer if m is not divisible by 2. The same is true for/n+l because by (42),
n+l /2/2. (Note that and /n commute since n and commute.)
Continuing in this way shows that E+p is nilpotent of order m/2p or the next higher
integer if m is not divisible by 2p. Thus for 2p

_
m, En+p is nilpotent of order 1 and

so must be 0. D
Remark 3. By working with the Jordan form instead of the Schur form we can

actually show that in Lemma 3.3, An+p S for 2p

_
r where rh is the order of

the largest Jordan block of A. However, the bound in Lemma 3.3 is more reliable
numerically because of the sensitivity of the Jordan structure with respect to small
perturbations.

In order to illustrate Lemma 3.3, suppose that A0 is an 80 80 Jordan block
matrix with ones on the main diagonal, as discussed above. Then A7 S because
27 >_ 80; by actual computation we also have A6 q. This shows that the bound
in Lemma 3.3 can be attained. However, for most problems the effect of even large
ill-conditioning is not as pronounced as this because once the eigenvalues get close
to =t=l, then/, is "nearly" nilpotent of order h _< m. Thus the reduction of/n+i
proceeds in a manner similar to the above proof at the same time that the eigenvalues
are completing their convergence. This overlap means that by the time the eigenvalue
convergence is complete, the norm of the error should also be near 0 and very few
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additional steps should be needed. In order to test this numerically we set up a series
of matrices of the form

(44) A D + T,

where D diag(A1,..., Am) with T strictly upper triangular. This allowed us to see
how convergence in the normal case T 0, compared to the nonnormal case T 0.
For example, Table 2 gives the results of taking m 80 and letting the eigenvalues
Aj be chosen at random in balls about +/-1, respectively, of radius 0.75. The upper
entries of T were then taken randomly in the interval [-1,1], and subsequently rescaled
to attain the desired ill-conditioning as measured by the norm of S. Tests of this
type support the idea that, except for extreme cases such as the large Jordan blocks
discussed above, the number of steps needed for convergence is largely determined
by the initial distribution of the eigenvalues with the conditioning of the associated
eigenspaces playing a secondary role. Note in that Table 2 the final convergence of
the ill-conditioned problems (columns 3 and 4) is much faster than just quadratic,
which reflects the nilpotency reduction described above. The last column of Table 2
gives the values of IIAn A-[12 and was included to test the error estimate (37) in
Lemma 3.1. Comparing columns 4 and 5 we see that this estimate is excellent even
when the assumption IIEnlI211SII2 <_ 1/2 of Lemma 3.1 is not satisfied.

TABLE 2
The effect of ill-conditioning on convergence .for matrices with the same initial eigenvalues.

Iteration Error for Error for Error for Est. error for
number 11S112-- 1 [[S[[2- 103 11S112-- 106 1[S[[2-- 106

1 3.8 x i0 2.6 )< 103 2.7 x 106 3.1 x 107

2 1.0 x 100 9.8 x 105 1.3 x 107 1.5 x 107

3 1.0 x 10-1 4.9 x 105 5.5 x 106 9.8 x 106
4 1.8 x 10-3 2.6 x 105 1.0 x 106 2.0 x 106
5 9.2 x 10-7 3.9 x 102 8.8 x 102 2.0 x 103
6 3.9 x 10-13 2.4 x 10-4 5.0 x 10-4 1.0 x 10-3

7 < 10-16 < 10-16 < 10-16 < 10-16

If the eigenvalues of An are all real, then there is an immediate correspondence
between selecting the best scaling constant for the matrix sign problem and selecting
the best scaling constant for the polar decomposition. Barraud [2] has shown that in
this case, the eigenvalues converge in a finite number of steps under spectral scaling.
Combining this with Lemma 3.2 and Theorem 2.4 gives the following.

THEOREM 3.4. If the eigenvalues of A are real and nonzero then under spectral
scaling, Ak+p sgn(A), where k is the number of distinct eigenvalues of A and p is
any integer greater than or equal to log2(m). In any case,

82(n/) 4
if n_>3 and p(A)p(A-)_<4 thenp(An-sgn(A))_< 82(n/2).

Proof. Under the assumption that the eigenvalues of A are real, the scalar relation
(36) subject to (5) has exactly the same form as the relation (8) subject to (11), except
that the eigenvalues may be negative whereas the singular values are always positive.
However, this has no effect on the convergence arguments used to prove Theorem 2.5,
so those arguments can be applied to the matrix sign function, as long as we take care
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to replace the matrix 2-norm with the spectral radius. This establishes the spectral
radius bound and shows that the eigenvalues of the sequence in (4) converge in k
steps. By Lemma 3.2, the overall convergence of An to sgn(A) is complete in p more
steps because (5) reduces to the unscaled Newton method when all of the eigenvalues
are at +1. B

It is somewhat surprising that this theorem can be used to show that with the right
scaling, convergence for arbitary real matrices need never take more than m+log2 m+1
steps.

THEOREM 3.5. Let A be a real mxm matrix with no eigenvalues on the imaginary
axis. Then there exist scaling constants .for the sequence (4) such that An sgn(A)
:for p <_ m + log2 m + 1.

Proof. Suppose that A has p real eigenvalues and p2 complex conjugate eigen-
value pairs, where pl -{- 2p2 m. Let the first scaling factor be - 1/p where one
of the complex conjugate eigenvalue pairs is of the form pe+. After scaling and
taking one Newton step, this pair is mapped to the real eigenvalue cos(0) and has
multiplicity at least 2. Repeating this procedure shows that in at most p2 steps all
of the eigenvalues can be made real and the number of distinct eigenvalues is then
at most k p + p2 because of the doubling up of multiplicity on the previously
complex eigenvalues. By Theorem 3.4, p + P2 + log2 m + 1 more steps will give con-
vergence under spectral scaling. Thus the total number of steps needed is at most

Pl + 2p2 + log2 m + 1 m / log2 m / 1. B
Remark 4. The same proof shows that if A is complex, then with the proper

scaling, convergence need not take more than 2m/log2 m+ 1 steps. See also [9], which
discusses rational eigenvalue assignment techniques that can be used to map all of the
eigenvalues of A to =t=l in one step provided that the eigenvalues are known. In this
case the total number of steps for overall convergence would be at most log2(m + 2.

3.1. Optimal and suboptimal scaling. Since the overall convergence is deter-
mined in the main by the convergence of the eigenvalues, we now turn to the problem
of selecting the scaling constants /n in (4) to maximize the rate of this "spectral"
convergence. If d(x) is the distance from x to sgn(x), then we define the optimal
scaling constant / to be that positive real number that minimizes maxj d(,n+)),

1)where An+ is given by (36). This optimal scaling constant depends on how the
distance function d is defined. In general, the Euclidean metric de(x) --Ix- sgn(x)l
is not the best choice because d(xo) d(1/xo) unless x0 :t:1, whereas both x0 and
l/x0 map to the same point, Xl (X0 -{- l/X0)/2 under Newton’s method, and so are
essentially equidistant from sgn(x0). (See [1] for a discussion of this point.)

A more appropriate metric can be derived from the observation that if s sgn(x0)
and x (xo + 1/xo)/2, then

(Xl 8 X0 8

X -r- 8 Xo nt- 8

This suggests that we work with the "Cayley" metric, which is the modulus of the
appropriate Cayley transform of x:

x- ll/Ix / 1[, Re(x) > O,d(x) Ix + ll/Ix- 11, Re(x) < O.

In this case, the reciprocal values x0 and 1/xo are equidistant from sgn(x0) and
d(xl) d2(x0). The problem of finding the optimal scaling constant " when An has
complex eigenvalues is addressed in the following theorem.
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THEOREM 3.6. Let A.n) +pjeiO,, where pj > 0, 1Ojl < r/2; 1 <_ j <_ m. Then

(45)
1 (p_cosO-pjcosj)p,-p p, co--i Joos 

.for some pair i and j. If j, then we interpret (45) as / 1/pi.
Proof. See Appendix 2.
This description of the optimal scaling factor is somewhat frustrating for several

reasons. First, it requires that all of the eigenvalues of An be known, which is al-
most never the case. Second, even if we did know all of the eigenvalues, it is not
clear whether a simple procedure exists for finding the indices and j such that (45)
holds. (A procedure based on exhaustive testing over the index pairs was used for the
numerical examples below.) Finally, the lack of a simple expression for the optimal
scaling value means that it is much harder to make precise statements about how
scaling inaccuracies affect convergence, such as when an approximate optimal scaling
value will give better convergence than the unscaled Newton method. However, when
all of the eigenvalues are real (which is approximately the asymptotic case), direct
analogues of Theorem 2.6 and Lemma 2.7 apply with the 2-norm being replaced by
the spectral radius and the singular values replaced by the moduli of the eigenvalues.

If only some of the eigenvalues of An are known, then the best scaling factor
that can be determined from this limited knowledge will have the form of (45) except
that the indices i and j vary only over the known eigenvalues. This is easily seen by
applying Theorem 3.6 to a matrix of smaller order whose spectrum consists of the
known eigenvalues. Thus we have a family of scaling methods that includes at one
extreme optimal scaling and at the other a semioptimal scaling method that utilizes
only two eigenvalues of An. This latter method consists of estimating the dominant
eigenvalues of An and A via the power method [12]-[14] and then selecting the
best scaling value as in Theorem 3.6. From the remarks following Lemma 3.2, we
see that it is generally better to use the power method on A2n and (AI)2 rather
than An and A1 because both A2 and (AI)2 approach S2 (S-)2 I as n
increases. This approach to normality means that the power methods of [12] are
especially appropriate; see Appendix 2 for MATLAB routines that implement these
techniques. As an illustration, suppose that

[1 x](46) An- 0-1"

Then applying the power method to just An can work poorly when x is large whereas
using A2 works well since A2 I.

Remark 5. By estimating the eigenvalues in this way and then keeping track of
them from step to step via (36), we could optimize over an increasing set of eigenvalues
until we were working with the entire spectrum. However, it is not clear how small
inaccuracies in the eigenvalue estimates propagate under (36) when the eigenvalues
are originally near the imaginary axis. Moreover, as the number of eigenvalues in the
optimizing set increases, the work involved in finding the optimal scaling factor goes
up rapidly.

For completeness in the following, we compare semioptimal scaling with other
suboptimal scaling methods such as spectral scaling (5). For this method and all the
others except optimal scaling, when the estimated error I]An AIIF was less than
0.01 the unscaled Newton method was used.
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Since the eigenvalues of AN approach the real axis as n increases, spectral scaling
is asymptotically optimal. The following theorem shows that when the eigenvalues of
A are reasonably near the real axis this scaling strategy works well.

THEOREM 3.7. Assume that the eigenvalues of A lie within an angle of
of the (positive or negative) real axis. For spectral scaling,

32("/2) 2
if P(A)p(A-1) -< 2 then p(A, sgn(A)) _<

32(,/2).

Proof. A more general version of this theorem can be proved by first defining
a a(n, ) such that if all the eigenvalues lie within an angle of the real axis and
if p(A)p(A-1) <_ , then p(A- sgn(A)) _< 1/a. We can then proceed in much the
same manner as in the proof of Theorem 2.4, but we will omit the details. [:]

In order to compare this with Theorem 3.4, write

32(+/) (32)
2(/:) 92(/:) 82(/-)

2 2 2 4

Thus two extra steps in Theorem 3.7 give the same effect as that seen in Theorem
3.4.

In spite of the above, if the eigenvalues of A cluster along the imaginary axis,
spectral scaling can actually be slower than the unsealed Newton method even in
the normal case, as seen in Example 1 below. Because of this, we also consider the
commonly used determinantal scaling method given by (7), which has been suggested
by several authors [1], [4] in various forms. The rationale behind this method is
that since the determinant of a matrix is equal to the product of its eigenvalues, the
geometric average of the eigenvalues of- detA

"In n is equal to one. This is significant
because if z0 has modulus 1, say z0 ei, then one step of Newton’s method takes
z0 to the real axis, zl (eie + 1/eie)/2 cos0. Thus, determinantal scaling has a
tendency to move eigenvalues to the unit circle and then to the real axis. This effect
is seen in Example 1, in which determinantal scaling is nearly optimal. Moreover,
.et is easily computed during the formation of A1.

Unfortunately, determinantal scaling is not asymptotically optimal, i.e., -det in"In
(7) is not equal to the value in (5) as the eigenvalues approach the real axis. This
defect is clearly evident in Example 2 below, in which all of the initial eigenvalues
are clustered at +/-1 except for one outlier x. If we take m large enough so that

Ixl 1/m Idet Anl 1/m is near 1, then determinantal scaling is effectively the same as
Newton’s method with no scaling, and convergence will be slow.

In addition, we also tested Higham scaling (31), Frobenius scaling (33), and the
2-norm scaling suggested by Barraud [2], [3],

(47) S= [[AI[[

Since these three methods all gave results that were similar, we will report only on
the Barraud 2-norm scaling for the following examples.

Example 1. Let A Dd-T as in (44) with Aj +/-l+/-1000(j/m)i for 1 _<
j _< m with i --. Table 3 gives the number of steps needed to ensure that
I[An A1[12 _< 10-1 for six different scaling methods with the upper entries of T
uniformly and randomly distributed in the interval [-1, 1].
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TABLE 3
Steps to convergence for Example 1 with eigenvalues parallel to the imaginary axis.

Order Opt. Semioptimal Determinantal Spectral 2-norm No
of A scaling scaling scaling scaling scaling scaling

10 15 15 16 18 18 25
20 15 16 16 24 22 25
40 15 16 16 26 28 25

Example 2. Let A D / T as in (44) with A1 x and Aj 1 for j 2, 3,-.., m.
For m 20 and x 1000, the determinantal scaling factor is near one as described
above and gives slow convergence compared to the other methods. For complex
outliers, this pattern is even more pronounced, as seen in Table 4.

TABLE 4
Steps to convergence for Example 2 with eigenvalues clustered at =1=1 with one outlier at x.

Outlier T Optimal Semioptimal Determinantal Spectral 2-norm No
x scaling scaling scaling scaling scaling scaling

1000 0 2 2 13 2 2 15
I000 Pndom 7 8 13 8 9 15

1+1000i 0 3 3 22 8 8 25
1+1000i Random 7 9 22 15 15 25

TABLE 5
Steps to convergence for Example 3 with random eigenvalues.

Order Optimal Semioptimal Determinantal Spectral 2-norm No
of A scaling scaling scaling scaling scaling scaling

10 7 8 9 8 8 13
20 9 9 10 9 9 14
40 9 10 10 10 10 16

The next example shows that for random matrices, all of the scaling methods con-
sidered here are nearly optimal, with the exception of the unscaled Newton method.

Example 3. Let A D/T as in (44) with eigenvalues A +/-x +/- iy where x and y
are randomly and uniformly distributed in the interval [0, 100]. The results are given
in Table 5 with the upper entries of T uniformly and randomly distributed in [-1, 1].

4. Conclusion. Optimally scaled Newton’s method for the polar decomposition
converges very rapidly, regardless of the dimension of the problem (Theorem 2.5). It
has been shown (Theorem 2.6) that approximate optimal scaling strategies provide
better results than the unscaled Newton’s method if and only if the approximate
scaling factor lies between the square of the optimal factor and 1. This condition is
always satisfied by optimal scaling approximations based on the power method as well
as by the Frobenius scaling method (Lemma 2.7).

For the matrix sign function, optimal scaling is more complicated and complete
knowledge of the eigenvalues of A is required (Theorem 3.6). Because this is imprac-
tical, a family of scaling methods has been derived that is optimal with respect to
partial eigenvalue knowledge. This family includes optimal scaling and a semiopti-
mal scaling method based on the dominant eigenvalues of the matrix and its inverse.
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For the set of test problems considered, semioptimal scaling gave nearly optimal per-
formance but analytical bounds relating the convergence under semioptimal scaling
with that under optimal scaling are still needed. The test problems also show that
commonly used methods based on determinantal scaling and spectral scaling can be
unduly slow.

5. Appendix 1. In this section we give the proofs of Theorems 2.4, 2.6, and 3.6.
We first need a technical lemma.

LEMMA 5.1. For n >_ 1, (n / 2) _> 4c2(n) 3
Proof. Let/ map into ( ((n) in one step of (20). That is, 1/2 (x/-/ 1/v/-),

and

(48) 4(2 _>/ 2(2 / 22V/’- 1/c2 1 _> 4(2 3

Let x0 and define Xl,X2,... by (20). Since xl c, n more steps of (20) gives
Xn+l 1 + 1/c by (22). One more step gives

xn+2 1/2(V/1 + 1/c + 1/V/1 -t- 1/c)----r(1/c).

Standard calculus arguments show that

r(z) r(O) / r’(O)z / r"()z2/2 <_ 1 / z2/8,

for0 < z < 1 and some0_<_< z. Thusxn+2_< 1+1/(8(2) _< l+l/by (48).
Since xo , this implies that E S,+2. By the remarks following (22) and (48),
442(n)- 3 <_ _< a(n + 2). D

Proof of Theorem 2.4. We have already seen that a(1) 4. If x0 15 then
x2 < 1 + 1/(15), which means that 15 < a(2). Similarly, a(3) > 95. By the preceding
lemma,

a(no + 2) _> 442(n0) 3 3.9942(n0) + (a2(no)/lO0- 3) _> 3.9942(n0)

for no _> 3. Applying this twice gives a(no + 4) >_ (3.99)344(n0) and in general,

1
+ >

Let n no + 2k. Then

1 (3.99((no))2(-o)/2_>

For odd n _> 3, use no 3 and c(3) >_ 95 to get

c(n) _> --.(379.05)2("-3)/
82n/21 ((379.05)2-1.5)2/ 1

>--(8.16)2/ >
3.99 3.99 4

For even n _> 3, use no 4 and c(4) _> 1286 to get

(n) _> 1(5131.14)2(,-4)/ 1 ((5131.14)2-.
3.99

)2/2 -> 1 )8.462/ >
82/

3.99 4

This completes the proof of Theorem 2.4.
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Proof of Theorem 2.6. Since n >_ 1, the singular values of An satisfy 1 _< S(mn) _<
<_ sn). For convenience we will omit the superscripts on these singular values.

Denoting the largest singular values of An+l(9/) by 1 we find that

(49) 1(9/) (9/sl + 1/(9/s))/2 if 1/(9/s,) _< 9/sl,

and

(50) 1(9/) (9 + 1/(9/s,))/2 otherwise.

For the unscaled Newton method, the largest singular value of A,+I(1) is 1(1)
(Sl + 1/sl)/2. By (17), IIA+1(9/) UII2 1(9/) 1, so we only need to show that
(25) is equivalent to

(51)

Since 9/ (lln-lll2/llnnll2) 1/2, we have that .(9/) is given by (49) if 9/ _< 9/and by
(50) otherwise.

Case 1. Suppose that 9/n _< 9/. Then 9/s _> 9/sl (Sl/Sm)/2 _> 1. For the
Newton function f in (11),-1(9/) f(9/sl) and .1(1) f(sl). Thus, by (14) we may
conclude that for 9/n _< 9/the inequality (51) is equivalent to 9/<_ 1.

Case 2. Suppose that 9/_< 9/n. Then by (50), 1/(9/Sm) >_ 9/sl (Sl/Sm) 1/2 >_ 1.
This gives -1(9/) f(1/(9/s,)). By (14) this means that for 9/ _< 9/ the inequality
(51) is equivalent to 1/(9/s,) _< Sl, which in turn is the same as 9/n

2 1/(sls,) <_ 9/.
Joining the results of these two cases shows that (51) is equivalent to (25). This
completes the proof of Theorem 2.6. [:]

We now turn to the proof of Theorem 3.6. First we need two technical lemmas.
LEMMA 5.2. Let z +/-pc for p > O, I1 < r/2, and set f(9/, z) d2(9/z). Then

9/2p2 29/p cos + 1 Of 4p cos (9/2p2 1)(52) f(9/,z) -p2 + 29/pcos 0 + 1’ 09/ (9/2p2 + 29/pcos0 + 1)2.

Also, if f(9/, Zl) f(9/, z2) for 9/> O, then either Zl +/-Z2 or

1

PlP2 \]P2COS1 Pl cos 2

Proof. The proof is obtained through standard calculus. [:]

LEMMA 5.3. For 1 <_ j <_ m, let fj fj(9/) be nonnegative continuously differ-
entiable functions over 0

_
9/

_
F. Let 9/* be the value of 9/ E [0, F] that minimizes

maxi fy (9/). If 9/* 0 or F then either f (9/*) 0 for some j or fy (9/*) fi (9/*) for
some pair i j.

Proof. If fj(9/*) (9/*) for some j, then we are done. If not, then by
rearranging if necessary, suppose that f1(9/*) min maxj
fj (9/*) for j > 1. By continuity, fl (9/* +5) > f (9/* +5) for all 5 sufficiently small. Thus,
if f (9/*) 0, then there exists a 5 such that
which is a contradiction.

(+)Proof of Theorem 3.6. For Ay given by (36), set fj(9/) d(A+1)) for the

Cayley metric, so that fy(9/) d2(9/An)). Say l/p1 maxj(1/pj). By Lemma 3.1,
f(9/) > 0 if 9/ > 1/pl, so 9/* _< 1/pl. If 9/* 1/pl then (45) holds with i j 1.
Moreover, fj(O) 1 >_ f(1/pl), so 0 < 9/*. Now apply Lemma 3.2 to get (45). This
completes the proof of Theorem 3.6. [:1
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6. Appendix 2. This appendix gives MATLAB routines for computing the sign
of a matrix using semioptimal scaling. For the numerical problems tested in this
paper, we used the values tol-l.0d-10, ns=100, and pm-2.

function [S ,numiter, reldiff] =matsign (A,n, tol ,ns, pm)
Y. This function computes the sign (S) of an nxn matrix A using
Y. Newton’s method with semioptimal scaling. The accuracy of the

Y. solution is controlled by the parameters:
Y. tol relative error tolerance,
Y. ns maximum number of Newton steps, and

pm the number of iterations in the power method.. On return, numiter number of Newton steps taken and
reldiff is an estimate of the relative error in S.
S=A; reldiff=tol+l imethod=O;
for numiter=l :ns,

Y. Invert S and calculate the semioptimal scaling factor.
W=inv (S)
if(imethod==O), factor=scale(S,W,n,pm); S=S,factor; W=W/factor; end

Check relative error.
reldiff=norm(S-W, fro’ ) / ( l+norm (S,’ fro’ ) )

Y. Check switch to unscaled Newton’ s method (imethod=l).
if (reldiff<O.Ol), imethod=l end
s=(s+w)/2;
if(reldiff<=tol), break, end

end

function [factor] =scale (S,W,n,pm)
Y. This function finds the semioptimal scaling factor.

Y. Get estimates of the dominant eigenvalues of S and W inv(S).
v=rand (n, 1) +rand (n, 1) *sqrt (- 1)
for i=1:pm, [dl,v]=power(S,v); end
v=rand(n, 1)+rand(n, 1)*sqrt (-1)
for i=1:pm, [d2 v] =power (W v) end

Y. Calculate the scaling factor.
d2=i/d2; rl=abs (dl); r2=abs (d2) r=rl
c I=real (dl)/rI c2=real (d2)/r2;
z= (rl/r2+r2/rl)/2; g=max(c2/cl, cl/c2)
if(c2<cl), r=r2; end
if (z<=g),

factor=I/r;
else

factor=sqrt ((rl,cl-r2,c2) / ((rl,c2-r2,cl) (rl,r2)) )
end

function [e,v] =power (A,v)
Y. This function uses a variant of the power method to estimate

the dominant eigenvalue of A.
vO=A,(A,v) vl=A,(AvO) vg=A(Avl)
b= [v0 *v0, v0 *vl vl *v0, vl *v1]
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c=-[v0’*v2;vl’*v2] c--pinv(b)*c; v=v2/norm(v2)
e=sqrt (-c (2) +sqrt (c (2) 2-4.c (1)) )/2)
f=sqrt ( (-c (2)-sqrt (c (2) ^2-4.c (1)) )/2)
if(abs(f)>abs(e)), e=f; end
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Abstract. In this paper some results are reviewed concerning the characterization of inverses
of symmetric tridiagonal and block tridiagonal matrices as well as results concerning the decay of the
elements of the inverses. These results are obtained by relating the elements of inverses to elements
of the Cholesky decompositions of these matrices. This gives explicit formulas for the elements of the
inverse and gives rise to stable algorithms to compute them. These expressions also lead to bounds
for the decay of the elements of the inverse for problems arising from discretization schemes.
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1. Introduction. When solving elliptic or parabolic partial differential equa-
tions (pde’s) with finite difference methods, we have to consider tridiagonal (for one-
dimensional (1D) problems)or block tridiagonal (for higher dimensions) matrices. For
developing and studying preconditioners for iterative methods like the conjugate gra-
dient method, it is often of interest to know the properties of the inverse, for instance,
how the elements of the inverse decay along a row or a column; see [13], [14], [17].

Inverses of tridiagonal matrices have been extensively studied in the past, al-
though it seems that most of the results that have been obtained were unrelated and
that many of the authors did not know each others’ results. To mention just a few,
let us cite [1], [2], [5], [6], [18], [19], [24], [26], [29], and [34], where formulas are given
for inverses of tridiagonal matrices and [3], [9], [10], [24], [29], [31], and [32], where
extensions to block tridiagonal or banded matrices are provided.

Closed form explicit formulas for elements of the inverses can only be given for
special matrices, e.g., Toeplitz tridiagonal matrices [19] corresponding, for instance,
to constant coefficients 1D partial differential elliptic equations, or for block matrices
arising from separable 2D elliptic pde’s [3]. We recall that a Toeplitz matrix is a
matrix with constant diagonals.

Basically there are two kinds of papers: the first gives analytic formulas for
special cases; the second gives characterizations of matrices whose inverse has certain
properties, e.g., being tridiagonal or banded.

Historically, the oldest paper we found considering the explicit inverse of matrices
is that of Moskovitz [29] from 1944, in which analytic expressions are given for 1D and
2D Poisson model problems. A very important paper for the inverses of band matrices
is the seminal 1959 work by Asplund [1] in which conditions under which the inverse
of a matrix is banded were given. In the 1960 paper by Bickley and McNamee [10],
formulas were given for the 2D problem and separable equations. In 1969, Fischer
and Usmani [19] gave a general analytical formula for symmetric Toeplitz tridiago-
nal matrices, i.e., for 1D model problems. In 1971, Baranger and Duc-Jacquet [5]
considered symmetric factorizable matrices (whose elements are aibj for i <_ j) and
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proved that the inverse is tridiagonal (this is Asplund’s result) and conversely. In 1973,
Bukhberger and Emel’yanenko [11] gave formulas based on Cholesky factorization for
the inverse of a symmetric tridiagonal matrix. Two 1977 papers, by Bank and Rose
[3] and Bank [4], gave analytic formulas for the inverse of block tridiagonal matrices
arising from separable problems. The 1979 Ikebe paper [24] studied inverses of Hes-
senberg matrices; specialization of this result to tridiagonal matrices gave Asplund’s
results. This result is extended to block tridiagonal matrices when the outer blocks
are nonsingular. In 1979, Barrett [6] introduced the "triangle property" (a matrix R
has this property if Rj (RcRcj)/Rck); a matrix having the "triangle property"
and nonzero diagonal elements has a tridiagonal inverse and vice versa). This result
is not strictly equivalent to Asplund’s result. In one theorem there is a restriction
on the diagonal elements and in the other there is a restriction on the nondiagonal
elements of the inverse. Also in 1979, Yamamoto and Ikebe [34] obtained formulas
for the inverses of banded matrices. Fadeev [18] gave another proof of Ikebe’s result
for Hessenberg matrices in 1981. Another important paper is that by Barrett and
Feinsilver [7]. It established a correspondence between the vanishing of a certain set
of minors of a matrix and the vanishing of a related set of minors of the inverse.
This gave a characterization of inverses of banded matrices; for tridiagonal matrices
this reduces to the "triangle property." In 1984 Barrett and Johnson [8] generalized
the work of Barrett and Feinsilver. Also in 1984, Rizvi [32] generalized the "triangle
property" to block matrices and gave expressions for inverses of block tridiagonal ma-
trices. The 1987 paper by Rbzsa [31] generalized Asplund’s work. In 1986, Romani
[30] studied the additive structure of the inverses of banded matrices, namely, that
the inverse of a 2k + 1 diagonal symmetric banded matrix can be expressed as a sum
of k symmetric matrices belonging to the class of inverses of symmetric irreducible
tridiagonal matrices. In 1988, Bevilacqua, Codenotti, and Romani [9] gave formulas
for block Hessenberg and block tridiagonal matrices with nonsingular outer blocks.

Regarding the decay of the elements of inverses the most interesting papers are
those by Demko [15], in which results are proved for particular banded matrices, and
by Demko, Moss, and Smith [16], which presents results for positive definite banded
matrices. In 1987, Greengard [22] studied the decrease of Green’s functions which is
equivalent to studying the inverse of the 2D and 3D Poisson problems. Eijkhout and
Polman [17] in 1988 exhibited bounds for the inverses of M-matrices, the Cholesky
factors of which are bounded by diagonally dominant Toeplitz matrices. These matri-
ces .arise in the design of block preconditioners (cf. [13]). Also in 1988, Kuznetsov [25]
gave results on the decay of the elements of the inverse for symmetric positive definite
matrices that are used in a domain decomposition method (cf. Meurant [28]).

When no explicit solutions for the elements of the inverse can be found, they
are usually given in terms of solutions of second-order linear recurrences [5], [9], [14].
However, as it was shown in Concus and Meurant [14] for tridiagonal and pentadiag-
onal matrices, these recurrences can be numerically unstable and can lead to trouble
for large problems. In this paper we obtain most of the previously known results as
well as new ones using a unified framework. Simple relationships between elements of
the inverse and Cholesky or block Cholesky decompositions are obtained. This allows
us to obtain analytic formulas and to compute elements of the inverse in a very stable
way, at least when the matrix is symmetric and positive definite. We also provide
estimates of decays of the elements of the inverse. It is clear that most of our results
can be easily extended to nonsymmetric matrices with straightforward modifications.

The outline of the paper is as follows: in 2, we study the tridiagonal case corre-
sponding to one-dimensional pde problems, in particular, simple but precise formulas
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for the decay of the elements of the inverse are given. Section 3 is devoted to block
tridiagonal matrices. We solve the general problem and as a consequence we easily
get formulas for separable two-dimensional elliptic problems. In 4, results about the
decay of the inverse are recalled and it is shown how to obtain estimates for two-
dimensional pde problems.

Throughout the paper, it is supposed that the matrices under consideration are
nonsingular and that their Cholesky decompositions exist. So, the principal minors of
the matrices are also nonsingular.

2. Tridiagonal matrices. We are interested in finding formulas for the inverse
of a symmetric tridiagonal matrix T of order n,

al -b2
-b2 a2 -b3

-bn-1 an-1 -bn
-bn an

As a particularly interesting case for pde’s, the example of a tridiagonal Toeplitz
matrix will be considered:

a -1
-1 a -1

a o o
-1 a -1

-1 a

It should be noted that this latter case has been previously studied by several authors;
see, for instance, [19] and [29]. A good reference for numerical methods for solving
Toeplitz linear systems is [12].

2.1. The general case. It is natural to suppose that bi 0, for all _> 2 (that
is, T is irreducible) as if one of the bi’s is 0, then the problem can be reduced to two
smaller subproblems (for a discussion of this issue, see [6]). Here, the sign is just a
technical convenience and has no specific significance, unless otherwise stated. From
[1], [5], and [18] it is known that there exist two sequences {u}, {v}, i 1, n such
that

UlVl UlV2 UlV3 UlVn

UlV2 U2V2 t2V3 U2Vn

T-1 UlV3 u2v3 u3v3 U3Vn

UlVn U2Vn ?.t3Vn UnVn

This result can also be easily proved with the techniques used in 3. Moreover, every
nonsingular matrix of the previous form (the matrices of this class have been called
"matrices factorisables" in [5]) is the inverse of an irreducible tridiagonal matrix. It
means that to know all the elements of T-1, it is enough to compute its first and last
columns. In fact, it is enough to know 2n- 1 quantities as Ul can be chosen arbitrarily
(note that 2n- 1 is the number of nonzero terms determining T). The second-order
recurrences for computing ui and vi given in [13] can be unstable and can lead to
trouble for large systems, but this problem was already solved in [14]. However, much
simpler formulas can be obtained if {u}, {v} are computed in the following way: let
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us first compute v. The {ui}, {vi} are only defined up to a multiplicative constant.
So, for instance, Ul can be chosen as ul 1. Then let v (vl,..., vn)T; as ul 1
the first column of T-1 is v, so

Tv el

where el (1, 0,..., 0)T.
Because of the special structure of the right-hand side, it is natural to consider a

UL decomposition of T:
T UDI1UT,

with

dl -b2
d2 -b3 d2

".. ".. Du "..
dn-1 -bn

d, d,

By inspection, it is easily seen that

b2+1 i=n-1 1dn an, di ai
di+

With the help of the UL decomposition the linear system for v can be easily
solved.

PROPOSITION 2.1.

1 b2"." bi
v1= -1, vi

dl di-ldi
i 2, n.

Proof. It is clear that solving Tv el is equivalent to solving

1DIUTv- 1 el,

and the proposition follows. D
Let u (u Un)T,... the last column of T-1 is vnu and therefore

vnTu en

where en (0,..-, 0, 1)T. To solve this system, because of the structure of the right-
hand side, it is easier to use an LU decomposition of T:

T LD-1LT

with
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By inspection,

PROPOSITION 2.2.

Un-i
bn-i+ bn

Proof. Clearly,

Solving for u gives the result.
Note that

1DLLTu en.nVn

b2 bn d dn

but dl... d 51-.-5 det T, so u 1, as the values of (vi} were computed with
this scaling.

Together, the preceding results prove the following theorem.
THEOREM 2.3. For the general case,

(T-1),j uivj bi+ bj
dj+l d
&

di+ dn(T- ), uivi 5n

vi, vj>i,

In these products, terms that have indices greater than n must be taken equal to 1.
This gives a computationally stable and simple algorithm for computing elements

of the inverse of T as it involves only Cholesky decompositions that are proved to be
stable when the matrix T possesses enough properties as to be diagonally dominant.

We are also interested in characterizing the decrease of the elements of T- along
a row or column starting from the diagonal element. In [13], it is proved that if T
is strictly diagonally dominant, then the sequence (ui} is strictly increasing and the
sequence {vi} is strictly decreasing. From Theorem 2.3, we have

(T-1)i,j dj+l

(T-1)i,i+l b+l’

and, therefore,

(T-),
dj+l dj+l T_
bj+l bj+l i,j+l.

By induction, the following result is proved.
THEOREM 2.4. IfT is strictly diagonally dominant (ai > bi + bi+, for all i) then

the sequence di is such that
di > bi.

Hence, the sequence To-. is a strictly decreasing function of j, for j > i. Similarly,
we have > bi+l.

Proof. We have
dn an > bn.
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Suppose di+l > bi+l; then

di -ai b2+1 > ai bi+l > bi.

Remark that the theorem can be proved under a weaker hypothesis. Namely, we
can only suppose that T is diagonally dominant (ai >_ bi -Fbi+l) and an > bn, al > b2.
This result was already proven in [13], although not in the same way.

2.2. The Toeplitz case. Here, as an example, the Toeplitz tridiagonal matrix

Ta that was defined in the introduction of 2 is considered. The interesting thing is
that we are then able to analytically solve the recurrences arising in the Cholesky
decompositions. This is given in the following lemma.

LEMMA 2.5. Let

Ci--i

Then, if a 2,

where

rd=
a :}: v/a2 4

are the two solutions of the quadratic equation r2 -ar + 1 O.
ai (i + 1)/i.

Proof. We set

Ci-- fli--l"
Therefore, we now have a recurrence on i:

Ira 2, then

The solution of this linear second-order difference equation is well known (see, for
instance, [23]):

+
From the initial conditions we have co + Cl 0. Hence, the solution can be written as

+1 ri+ );

when a 2, it is easy to see that i + 1, and the result follows. D
This proof explains the difficulties that arise when using the second-order recur-

rences for ui and vi. As r+ > 1, -- oo when i -- oo. On the contrary, ci remains
bounded.

Remark. can be written in the other form,

sinh((i + 1))
ci sinh(i)

sin((/+ 1))
sin(i)

a
where cosh()= if a>2,

a
where cos()= if a<2.
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From this lemma, the solutions of the recurrences involved in the Cholesky decompo-
sitions of Ta can be deduced. When a 7 2, we have

dn-i+l
r_+1 ri+1_

Solving for v the following result is obtained.
PROPOSITION 2.6. For the sequence vi in T1,

Vi r_+ rn__+l
Vi.

Note in particular, that
r/ r_

Vn rn++ rn+l"
It is obvious that for the Toeplitz case, we have the relation

i dn-i+

Solving for u, the following result is obtained.
PROPOSITION 2.7. For the sequence ui in Tg-1,

r+ r_

With these two last results, the expression of the elements of the inverse can be
computed.

THEOREM 2.8. For j >_ i and when a 7 2,

(Ta-1)i,j uivj
(r_ r/_)(r;-j+l rn-j+l)

(r+ r_)(r+1 rn_+1)

where r+ are the two solutions of the quadratic equation r2 -ar + 1 O.
also be written (for a > 2) as

This can

asinh(i) sinh((n j + 1))
with cosh() ;(Ta-1)i’J sinh() sinh((n + 1))

for a- 2, we have

(Ta)_l n j + 1
i,j =i n-- 1

These formulas are similar to the ones in [19], where they were obtained with a
different method.

Regarding the decay of the elements of Tg-1, in this simple case we can obtain
useful bounds. Suppose that a > 2. Then we have

uivj r-J+l--rn_-j+l r;-j+l....
n-j rn-J > r+ > 1

uivj+ r-3 rn__-3 r+
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and

uivj < r-j-1 (1 ri)(1 rn-+)
(1 -r)(1 -rn+l)

where r (r_ /r+ < 1.
From this, the following result can be deduced.
THEOREM 2.9. If a > 2, we have the bound

j>_i+l,

(ra-1)i,j < (r_)J-i(ra-1)i,i V i, /j

_
i,

r_-+
V i Vj >_i+ l.(Ta-1)i’J < 1 r

This implies that the following estimate holds: let e > 0 and e2 > 0 be given:

(ra-1)i’J
_

el if j- i > lge[
ra-1)i,i log r+

(ra-1)i,j
_
2 if j- i + 1 _> log [e2(1 r)] -1

log r+

3. Block tridiagonal matrices. In this section we consider the symmetric
block tridiagonal matrix

Dx -AT
-A2 D2 -AaT

-A,_I D,_ -AT
-A D,

Each block is of order n, although this is not essential for our results.
In the two-dimensional partial differential applications we have in mind, the ma-

trices D will be tridiagonal and the matrices Ai will be diagonal, but this does not
influence the method and the results that will be described in this section.

As an interesting example, the following problem will be considered:

T -I
-I T -I

AT ".. ".. "..
-I T -I

-I T

T being a Toeplitz tridiagonal matrix. This example arises, for instance, from the
discretization of the Poisson equation in a square.

3.1. The general case. To obtain the formulas for the inverse, three different
block factorizations will be used: LU, UL, and a twisted factorization. Let us first
give formulas for the block LU and UL factorizations. Denote by L the block lower
part of A. Then,

A (A + L) A- (A + LT) (E + LT) --1 ( q_ L),
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where A and ] are block diagonal matrices whose diagonal blocks are denoted by Ai
and Ei and are given by block recurrences

A1

A Di A (A-I)-I (Ai)T,
D,,

P D (A+I (+1) Ai+.

A twisted factorization can be defined for each j 2,..., n- 1 as

A ((I) + :)(I)-1 ((I) + T)

where (I) is a block diagonal matrix and : has the following twisted block structure:

-A 0 -Ay+l

where the row with two nonzero terms is the jth block row. By inspection, we have

(I)i Ai, l,.., j- 1,
(I)i Fi, i n,... ,j + 1,

--I T ]-:IAj+I(I)./= D./- A./Aj_ Ay A’+
It should be noted that when we know the LU and UL decompositions, we know the
twisted factorizations for all j’s. So, these twisted factorizations are only a convenience
to obtain simpler formulas.

With the twisted factorization at hand, the block jth column X of the inverse
can be computed in a straightforward way.

THEOREM 3.1. The jth block column X of A-1 is given by

A_l+ A-l+l Aj
--1NiT1 -]jl Aj+l Y]j-bl-l’’" -;1 Aj4-1

These expressions are valid for any block tridiagonal matrix that satisfies our
hypothesis. When matrices Ai are nonsingular, A is said to be proper (cf. [9]); in this
case, the formulas can be simplified. Using the uniqueness of the inverse, we can prove
the following.

PROPOSITION 3.2. If A is proper, then

From these relations, we deduce alternate formulas for the other elements of the
inverse.
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THEOREM 3.3. If A is proper,

Xj-l (AT_IAj-I-1 ATA1)(E-IA ’’’AT- -1jEj ), /= 1,.-.,j- 1,

Xj+l -1(Aj+l+lEj+l+i...A E,)(AA,...A-IA+AI), l= 1,...,u-j.

As before, the elements of the inverse can be computed in a stable way using block
Cholesky decomposition when the matrix is diagonally dominant or positive definite.
These formulas are the block counterpart of the ones for tridiagonal matrices in The-
orem 2.3. They give a characterization of the inverse of a proper block tridiagonal
matrix.

THEOREM 3.4. If A is proper, there exist two (nonunique) sequences of matrices

{Ui}, {V} such that .for j >_
(A-I),i U,VT,

with Ui A-(TAi-1 ATA1 and VT EIAT2 AT-1
j--

In other words, A- can be written as

A-= V3U1T V3U2T U3V3T

"..
YnVlT gnu2T gnu3T

This result was proven using different methods in [9].
If we denote by En the matrix

and Ln ETn I, U (U, Un)T, VT (vT, VnT), we can write the result of
Theorem 3.4 as

A- UVT o E, + VUT o L,,

where o denotes the Hadamard (element by element) product. If we denote by ui the
columns of U and by vi those of V, this can also be written as

n

A-1 E (ltivTi oEn cviltTi o

j=l

This result about the additive structure of the inverse was proved for banded matrices
in [30].

3.2. Separable problems. Here we consider the matrix AT defined at the be-
ginning of this section. This is not the most general problem that can be considered,
but for this case explicit formulas can be given. Because the matrix is persymmetric,
we have
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and
An+j+1) 1,..-,j 1.

With the same methods as in [27], it can be proved that all the Ai’s have the same
eigenvectors as T and hence they commute. In this case, the block recursion for the
diagonal elements in the Cholesky decomposition can be solved:

A --T,

Ai T- (Ai--1) -1

Let A (M) be the diagonal matrix of the eigenvalues of T and Ai the corresponding
one for Ai. Then the following propositions hold.

PROPOSITION 3.5. The following relation holds:

which can be written elementwise as

From this last result and Lemma 2.5, we can compute the values of A.
PROPOSITION 3.6.

(r(j)_)+

where r(j)+ are the roots of r2 + Mr- 1 O. if M > 2 (which is the case for the
Poisson problem), this can be written

,{ sinh((i + 1)j)
cosh(d) -.sinh(id)

Now let A+ and A_ be the diagonal matrices whose diagonal elements are r(j)+
and r(j)_. From Proposition 3.6, we have

Ai (i_+1 AiF1)(A# M_)-I.

Let Q be the matrix of the eigenvectors of all the matrices. Denote

T+ QA+QT, T_ QA_QT;

then
A (T+i+1 T_i+I)(T Ti)-1

Along the same lines as what was done for a tridiagonal matrix, we have the following
theorem.
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THEOREM 3.7. The (block) elements of the inverse are given by

(Ar1),j (T/i/l T_i+1)(T+n-j+ _T_n-J+l)(T+n+l T_n+l)-I (T+ -T-)-1

From these results, it can easily be seen that

-1(AT ), S (T) S_I(T) Sn-j(T) for j _> i,

where Sn(x) is the shifted Chebyshev polynomial of the second kind, that is, defined
for x > 2 as

sinh((i / 1))S(x)
sinh()

with cosh() x/2.

This expression for the inverse was given in [3]. Now we establish relations that will
be useful in the next section. The (simple) roots of the Chebyshev polynomial Sn are

#- 2cos(/7/(n + 1)), l- 1,...,n. Therefore,

n

l--1

As in [20], remark that for j >_ i, S(x) i--I(X) Sn--j(X) is a rational function in x,
so it can be developed in elementary fractions. We write

n

It can easily be seen that

From this expansion, we get an expression for the elements of the inverse in terms of
the zeros of Chebyshev polynomials.

THEOREM 3.8. The (block) elements of the inverse of AT are given by:

n

(Al)i,j Ei (T #,I)-l--1

j>_i.

These results can be extended to more general separable problems, although in
these cases the roots of the involved polynomials are not explicitly known.

4. Decay of the inverse for two-dimensional problems. In this section, the
decay of the elements for two-dimensional pde problems is examined. We recall some
known results and establish new ones. First, the Poisson equation is considered that
is easy to handle, as the inverse is explicitly known. Then we will turn to the problem
of finding bounds for general tridiagonal problems using results from convergence of
iterative methods. Finally, the possibility to numerically compute approximate decays
for certain block tridiagonal matrices is considered.

4.1. The Poisson equation. Because the Poisson equation is an isotropic prob-
lem, it is enough to look at the decay of the elements in one direction of the underlying
mesh, i.e., we can only look at the diagonal blocks of the inverse. This is because a
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FI(. 1. Exact inverse of the Poisson problem matrix.

column (or a row) of the inverse is obtained by putting a Dirac delta function (a "func-
tion" being 1 in one point of the mesh and 0 elsewhere) as the right-hand side. Because
of the isotropic property of the diffusion equation (as the limit of a time-dependent
problem), the right-hand side diffuses the same in both directions. A picture of the
inverse of the Poisson problem matrix for a 5 5 mesh is given in Fig. 1.

If we look more closely at what happens for a row of the matrix, starting from
the diagonal, we obtain what is shown in Fig. 2. This picture has been obtained for
row number 61 in a 121 121 matrix corresponding to a 11 11 mesh.

From the previous section, it is known that

n

(T- #4I) -1
l--1

where

and

cos < 2
n+l

4 -1
-1 4 -1

-1 4 -1
-1 4

Therefore, T- #4I is a Toeplitz matrix with a diagonal element greater than 2. From
2, we know that the elements of the inverses of all these matrices strictly decay away
from the diagonal along a row.

THEOREM 4.1. Let B be the th diagonal block of the inverse of AT and r+ [/] the
positive root of r2 -(4- #4)r- 1 0; then

Bpp >_ min{(r+[1])q_p} q>P.
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FIG. 2. A row of the inverse of the Poisson problem matrix.

Proof. Let (T #4)- 1,

hence
Iq-pl

Bp____2_p > ?=1 aii(r+[/]) (T)pq > min{(r+[1])lq_pl}. 13
Bpq ’]?=1 (i(Tl)pq

This gives a uniform (related to i) estimate of the decay.
Asymptotically, we obtain

Bpq <_ C(h),Bpp
where

C(h) 1 (q p)rh + O(h2).
However, the bound of Theorem 4.1 is a little pessimistic, as shown by the following
numerical example. Consider the linear system from the Poisson equation for n 11.
Figure 3 shows the relative decrease of the elements for a row of a diagonal block and
the bound given by the previous formulas. We see that the slope is correct, but the
values are pessimistic.

4.2. The general block tridiagonal case. Here we consider finding bounds
for the decay of the elements of the inverse of a general symmetric positive definite
tridiagonal matrix corresponding to the discretization of an elliptic or parabolic prob-
lem with a five-point finite difference scheme. The matrix of the problem is

D1 -A2T
-A2 D2 -A3T

*o
-An-1 Dn-1 -AT
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FIG. 3. Bound for the relative decay for the Poisson problem matrix.

0 0 0 0 0

0 0 ? 0 0

0 -_ 0

I-0 0 0 0

0 0 0 0 0

FIG. 4. Five-point finite difference scheme.

In this example, matrices Di are tridiagonal and matrices Ai are diagonal correspond-
ing to the scheme displayed in Fig. 4.

To obtain bounds on the decay of the elements of the inverse, we will follow the
same lines as [15]; see also [16]. Consider solving the linear system

Ax=b

with a Chebyshev first-order iterative method: let x be given and

Xk+l xk + (x (b Axk).

This method converges when A is symmetric positive definite and the coefficients ck
are chosen as the reciprocals of the roots of Chebyshev polynomials.

If ek x xk is the error we have the following bounds (cf., for instance, [21]).
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PROPOSITION 4.2. Let a Amax/Amin be the condition number of A; then

l[ekll maxlek < l[ekll2 < 2( v/---- l )V+I
In practice this method is not used because it is unstable; to be stabilized, special

orderings of the coefficients must be used. However, we will only use it to obtain
bounds on the solution. For this purpose, the previous results can be used to get
bounds on the infinity norm. For the Chebyshev method,

ek Pk(A)e,
where Pk is a kth-order polynomial. From this, it follows that

where N n2.
Therefore, we have also the following proposition.
PROPOSITION 4.3.

Ilek IIo <_ 2n( v/--v/+ 11)
k

To compute the jth column x (or the jth row as the matrix is symmetric) of the
inverse, a system with b ej, where ej (0,..., 0, 1, 0,..., 0)T, must be solved, the
nonzero element being in position j. Now, consider the Chebyshev iterative method
with x -0, so e x.

As x 0, the vector x cne has the same sparsity pattern as e. The idea is
to consider the sparsity patterns of the successive iterates xk. To do this, it is easier
to think in terms of the underlying two-dimensional mesh. Let the mesh points be
indexed by two integers (p, q), and N(p, q) denote the set of neighbouring mesh points
in the five-point stencil centered on (p, q). Then, the following proposition holds.

PROPOSITION 4.4. Let ,(xk) be the set of mesh points corresponding to the spar-
sity pattern of xk. If ,(ej) .(x1) (Pl, ql), then

’(xk) S(xk-) U N(pz,qz).
(pz,qz)ES(xk-l)

Proof It is clear that the sparsity pattern of xk is deduced from the sparsity
pattern of xk- by a multiplication with A. The vector xk-1 can be written as
xk- -] zet, where the index runs across the sparsity pattern of x_. So, the
sparsity pattern we are looking for is the union of the sparsity patterns of Aet for all
in the sparsity pattern of xk-. But the vector Aet is the/th column of A; therefore,
there are at most only five nonzero terms corresponding to the mesh point related to
the/th component and its four neighbours in the five-point stencil. [:l

Remark. This result is not restricted to the five-point stencil and can be easily
extended, for instance, to sparse matrices arising from finite element methods.

The result from Proposition 4.4 is illustrated in Fig. 5, the black points corre-
sponding to the nonzero components in xk.

Let S be the sets of indices S(xk) generated from b e. Regarding the decay
of the elements of the inverse, the following general result holds.
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0 000000 0 000000 0000000 000000
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0 000000 0 00000 0000 00
0 000000 0 000000 0000000 0000000
0 000000 0 000000 0000000 0000000
0 000000 0 000000 000000 0000
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2 3 4
x x x x

S S 2. S 3 S4.

FIG. 5. Sparsity patterns of x1, x2, x3, and x4.

THEOREM 4.5.

IAll <_ 2n( x/--vf+ 11/k m.ax IA j I Vi

Proof. We have ek x xk; when i S], the corresponding components of x
are zero. Hence IAI _< Ilell. [1

The condition i S) is verified, for instance, for mesh points (p, q) satisfying

I(p,, q,) (pC, q )l _> kh,

where h is the mesh size. The last theorem shows that the elements of the inverse
decay as shown in Fig. 1.

Now we specialize to problems arising from finite difference approximations. We
suppose that A is a diagonally dominant M-matrix. Then we have the following result.

PROPOSITION 4.6. When A is a diagonally dominant M-matrix,

1
(A-1)ii _> Vi,

max (A-1)j (A-1) Vi.

Proof. Denote C A-. Looking at the AC product, we obtain

n

k=

because the ask, k i are nonpositive and the cki are positive. Therefore,

which gives the first result. Now, suppose there exists a j i such that maxk Cik

Cj > C; then
n

0 ajkcki ajjcij Z lajklck,.
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By hypothesis, 0 < cki cik < cij, so

But as cj >_ 0 and A is diagonally dominant, this is a contradiction. Therefore the
maximum of the elements of the inverse occurs on the diagonal.

For the Poisson problem we considered in the last section, is explicitly known,

From Theorem 4.5, we know that

2
(1 kTrh)where C(h)

This is a factor of 2/h off from the formula we obtained in 4.1, which can be quite
large. However, this general formula must account for the possible worst case for the
decay.

For a general diagonally dominant M-matrix, we have the following theorem.
THEOREM 4.7. When A is a diagonally dominant M-matrix,

(A-)i. < 2n(V/- 1)(A-)../ + 1

Still, this bound is not very satisfactory when it is compared, for instance, with
the bound obtained for the Poisson problem. In order to obtain more insights into
particular problems, we will specialize to generalized strictly diagonally dominant
matrices.

DEFINITION 4.8. A is generalized strictly diagonally dominant (GSDD) if there
exist a vector s (si) > 0 such that

This also means that there exists a diagonal matrix S such that S-1AS is strictly
diagonally dominant; this is also true for AS.

In particular, strictly diagonally dominant and irreducibly diagonally dominant
(cf. [33]) M-matrices and H-matrices are GSDD.

Now, to obtain bounds, simply consider the Jacobi iteration. Let A D+L+LT,
D being the diagonal part and L the strictly lower triangular part of A,

xk -D-I(L + LT)xk-1 h- D-ej.

Let J(A) -D-(L + LT) be the iteration matrix. Then, we have

e J(A)keo.

Using these definitions, the following result is obtained.
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PROPOSITION 4.9. If A is GSDD, we have

ST, 11ekl <_ IIJ(S-iAS)kllomx[s(A-)j Vj.

We also have the following result.
THEOREM 4.10. If A is GSDD,

(A-)i <_ silIJ(S-AS)klIo mx[s-l(A-)l]
What follows is the problem of estimating IIJ(S-AS)klIo, which is strictly less

than 1 as the Jacobi iteration is convergent for a GSDD matrix. Let B S-AS and, a given (small) positive real number; then we have the following proposition.
PROPOSITION 4.11. For any matrix B and any > O,

IlBkllk <_ p(B) / e,

where p(B) is the spectral radius of B.
Proof. Let B()= p(S)+e B; then

p(B(e)) < 1,

and limk-.o IlBk()ll 0. So, for k large enough, IIBk()ll < 1. As

(p(B) +

the result is proved.
Now note that p(J(S-IAS)) p(J(A)). Therefore, the following theorem holds.
THEOREM 4.12. If A is GSDD, we have

(A-1)ij <_ si[p(J(A)) + ]k mx[s-l(A-)lj] Vi S].

The matrix S or the vector s can be chosen in many different ways. In fact, if A
is an M-matrix and y > 0 is any given positive vector, we can get s by solving

As-- y.

It is clear that by choosing y appropriately s can be made, for instance, close to a vector
e made of ls: there exists e > 0, such that y Ae+e > 0; then s e+eA-le

THEOREM 4.13. IfA is a diagonally dominant M-matrix, there exists such that
p(g(A)) + < 1 and

(A-1)iJ < s[p(j(A)) +]k Vi S].(A-)jj 1 + eA

Proof. Use the previous result and Theorem 4.12.
Remark. If A is strictly diagonally dominant, the factor (sill + eA) ca: be re-

placed by 1.
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FIO. 6. Comparison of the actual decay and the approximation.

If we specialize to the Poisson problem, p(J(A)) cos(rh)
_
1- (r2h2/2). Hence

we get a better estimate than the one given in Theorem 4.5.

4.3. Approximation of the decay for general problems. For general block
tridiagonal problems, the precise value of the condition number of the matrix is usually
not known. The only information we have for some problems is that a O(h-2). So,
it is of interest to be able to compute a numerical approximation of the decay of the
elements of the inverse. We can do this in the following way which mimics the INV
preconditioner defined in [13]. Instead of computing the LU and UL decompositions
as in 3.1, we are going to compute block incomplete factorizations.

Let trid(B) be a tridiagonal matrix with the nonzero elements that are the same
as the corresponding ones in B. Then we define two incomplete block factorizations:

(A+L) A-1 (A+LT) and (E-4-LT) E-1 (E+L),

where A and E are block diagonal matrices whose diagonal blocks are tridiagonal and
denoted by Ai and Ei. They are given by the following formulas:

Ai Di Ai trid[A-_l] (A)T, {E. )T trid[-
D,

Ei Di (A+l Ai+.

We then approximate the diagonal blocks of the inverse by the inverse of the tridiagonal
matrix

Dj- Aj trid[A-__11] A- AjT+I trid[El] Aj+i.

When this tridiagonal matrix is computed and factored, we can obtain numerical
information on the decay of the elements using the method of 2 and 3. This gives
information on the decay along one direction of the two-dimensional mesh. To have
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information in the other direction (if the problem at hand is not isotropic), we can
compute the other block elements with the formulas developed in 3.

Let us now compare the bounds obtained in this way with the actual decay of the
elements on the Poisson problem. Figure 6 shows the actual decay of the elements in
row 61 for a matrix on an 11 11 mesh and the decay of the estimate obtained in the
previous way. It is seen that although the values are not very good, the behaviour of
the curve is quite the same. However, this is a very simple example and this conclusion
has to be checked on more general ones.

5. Conclusions. In this paper, we have exhibited useful relationships between
the elements of inverses of tridiagonal and block tridiagonal matrices and elements
of the Cholesky decompositions of these matrices. In particular, we got very simple
expressions for the elements of the inverse of a block tridiagonal matrix. This allows us
to develop stable algorithms for computing elements of the inverse when the matrix has
more properties, like being diagonally dominant. The characterization of the inverse
allows us also to obtain bounds for the decay of the elements of the inverse.

REFERENCES

[1] E. ASPLUND, Inverse of matrices {aj} which satisfy aj 0 for j > + p, Math. Scand., 7

[2] S. O. ASPLUND, Finite boundary value problems solved by Gren’s matrix, Math. Scand., 7

[3] R. E. BANK AND D. J. ROSE, Marching algorithms for elliptic boundary value problems. I:
The constant coecient case, SIAM J. Numer. Anal., 14 (1977), pp. 792-829.

[4] R. E. BANK, Marching algorithms for elliptic boundary value problems. II: The variable coeffi-
cient case, SIAM J. Numer. Anal., 14 (1977), pp. 950-970.

[5] J. BARANGER AND M. DUC-JACQUET, Matrices tridiagonales symdtriques et matrices factoris-
ables, RIRO, R-3 (1971), pp. 61-66.

[6] W. W. BARRETT, A theorem on inverses of tridiagonal matrices, Linear Algebra Appl., 27

[7] W.W. BARRETT AND P. J. FEINSILVER, Inverses of banded matrices, Linear Algebra Appl.,
41 (1981), pp. 111-130.

[8] W. W. BARRETT AND C. R. JOHNSON, Determinantal formulas for matrices with sparse
inverses, Linear Algebra Appl., 56 (1984), pp. 73-88.

[9] R. BEVILACQUA, B. CODENOTTI, AND F. ROMANI, Parallel solution of block tridiagonal linear
systems, Linear Algebra Appl., 104 (1988), pp. 39-57.

[10] W.G. BICKLEY AND J. MCNAMEE, Matrix and other direct methods for the solution of systems
of linear dijerence equations, Philos. Trans. Roy. Soc. London Ser. A, 252 (1960), pp. 69-
131.

[11] B. BUKHBERGER AND G. A. EMEL’YANENKO, Methods of inverting tridiagonal matrices, USSR
Comput. Math. and Math. Phys., 13 (1973), pp. 10-20.

[12] J. BUNCH, Stability of methods for solving Toeplitz systems of equations, SIAM J. Sci. Statist.
Comput., 6 (1985), pp. 349-364.

[13] P. CONCUS, G. H. GOLUB, AND G. MEURANT, Block preconditioning for the conjugate gradient
method, SIAM J. Sci. Statist. Comput., 6 (1985), pp. 220-252.

[14] P. CONCUS AND G. MEURANT, On computing INV block preconditionings for the conjugate
gradient method, BIT, 26 (1986), pp. 493-504.

[15] S. DEMKO, Inverses of band matrices and local convergence of spline projections, SIAM J.
Numer. Anal., 14 (1977), pp. 616-619.

[16] S. DEMKO, W. F. MOSS, AND P. W. SMITH, Decay rates for inverses of band matrices, Math.
Comp., 43 (1984), pp. 491-499.

[17] V. EIJKHOUT AND B. POLMAN, Decay rates of banded M-matrices that are near Toeplitz
matrices, Linear Algebra Appl., 109 (1988), pp. 247-277.



728 GIRARD MEURANT

[18] D. K. FADEEV, Properties of the inverse of a Hessenberg matrix, in Numerical Methods and
Computational Issues, Volume 5, V. P. Ilin and V. N. Kublanovskaya, ed., 1981. (In
Russian.)

[19] C.F. FISCHER AND R. A. USMANI, Properties of some tridiagonal matrices and their applica-
tion to boundary value problems, SIAM J. Numer. Anal., 6 (1969), pp. 127-141.

[20] E. GALLOPOULOS AND Y. SAAD, Some fast elliptic solvers on parallel architectures and their
complexities, Internat. J. High Speed Comput., 1 (1989), pp. 113-142.

[21] G.H. GOLUB AND G. MEUIANT, Rdsolution numdrique des grands systmes lindaires, Eyrolles,
Paris, 1983.

[22] L. (REENGARD, The rapid evaluation of potential fields in particle systems, MIT Press, Cam-
bridge, MA, 1987.

[23] P. HENRICI, Elements of Numerical Analysis, John Wiley, New York, 1964.
[24] Y. IKEBE, On inverses of Hessenberg matrices, Linear Algebra Appl., 24 (1979), pp. 93-97.
[25] Y. KUZNETSOV, New algorithms for approximate realization of implicit difference schemes,

Soviet. J. Numer. Anal. Math. Modelling, 3 (1988), pp. 99-114.
[26] R. MATTHEIJ AND M. SMOOKE, Estimates for the inverse of tridiagonal matrices arising in

boundary-value problems, Linear Algebra Appl., 73 (1986), pp. 33-57.
[27] G. MEURANT, The Fourier/tridiagonal method for the Poisson equation from the point of view

of block Cholesky factorization, Report LBID-764, Lawrence Berkeley Laboratory, Berkeley,
CA, 1983.

[28] A domain decomposition method for parabolic problems, Appl. Numer. Math., 8 (1991),
pp. 427-441.

[29] D. MOSKOVITZ, The numerical solution of Laplace’s and Poisson’s equations, Quart. Appl.
Math., 2 (1944), pp. 14S-63.

[30] F. ROMANI, On the additive structure of the inverses of banded matrices, Linear Algebra Appl.,
so (9s6), pp. 3-40.

[31] P. RSZSA, On the inverse of band matrices, in Integral Equations and Operator Theory, Volume
10, Birkhiiuser, Boston, 1987, pp. 82-95.

[32] S.A.H. RzvI, Inverses of quasi-tridiagonal matrices, Linear Algebra Appl., 56 (1984), pp. 177-
184.

[33] R. S. VAP(A, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.
[34] T. YAMOMOTO AND Y. IKEBE, Inversion of band matrices, Linear Algebra Appl., 24 (1979),

pp. 105-111.



SIAM J. MATRIX ANAL. APPL.
Vol. 13, No. 3, pp. 729-745, July 1992

(C) 1992 Society for Industrial and Applied Mathematics
004

A UNITARILY CONSTRAINED TOTAL LEAST SQUARES PROBLEM
IN SIGNAL PROCESSING*

K. S. ARUN"

Abstract. The problem addressed here is the determination of the total least squares solution, subject to
a unitary constraint, of an overdetermined, inconsistent, linear system of equations. The problem arises in
many signal processing applications, three of which are briefly presented and studied here. The solution to the
constrained total least squares problem is seen to be the same as the solution to the orthogonal Procrustes
problem.
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1. Introduction. In many signal processing applications, one encounters the problem
of estimating a unitary matrix X in the model AX B, from noisy measurements of
matrices A and B. Entries in matrices A, B, and X may be complex-valued. All three
matrices have the same number of columns, X is square, but A and B have more rows
than columns, so that the system of equations is overdetermined. To account for noise
in the measurements, least squares estimates with and without the unitary constraint
and total least squares estimates have been suggested. Here we address the problem of
finding the total least squares estimate of X subject to the constraint that X be unitary.

In the rest of this section, three signal processing applications are presented where
the aforementioned problem is encountered. Section 2 describes the various solutions
that have been suggested and presents the constrained total least squares solution to the
problem. Surprisingly, the constrained total least squares solution is the same as the
constrained least squares solution. In 3, the results of some numerical experiments on
computer-synthesized data with and without the unitary constraint are reported and
discussed.

1.1. Motion parameter estimation. The problem of estimating the translation and
rotation of a rigid body between two time instants is a problem faced in many computer
vision applications [1], [2]. Noisy measurements Pi and p, 1, 2, N, of the
three-dimensional locations of some feature points on the rigid body are made at the
two time instants, and it is desired to fit the motion model

P Rpi + T__,

where R is a 3 3 rotation matrix, and __T is a 3 translation vector. The rotation
hypothesised is around an axis passing through the origin.

A rotation about the origin is a norm-preserving unitary operation, and so the usual
approach is to find a 3 vector __T and a unitary 3 3 matrix R that minimize the
sum of squares

N

E IlP -_T- Rpi]I 2.
i=l
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The vector-norm used throughout this paper is the usual Euclidean norm. It was shown
3 that if

and

N

m /X

V

N

are the respective centroids of the two sets of three-dimensional points, then the con-
strained least squares estimate flcs ofthe rotation matrix is the solution to the decoupled
problem of minimizing

N

(1) II(p-m’)-R(p,-m)ll 2

i=1

subject to the constraint that R be unitary, and that the constrained least squares estimate
of the translation vector _T is m’- [tcsrn. Thus the problem reduces to the orthogonal
Procrustes problem [4] whose solution is listed in 2.

There is no reason to believe that measurement errors are confined to measurements
p’ from the second frame and that the first frame measurements are noise-free, which is
the tacit assumption in the least squares problem formulation. A more natural formulation
ofthe problem that allows for errors in both frames is the total least squares formulation
5 with a unitary constraint on R as follows. Find a 3 vector _T and a unitary

3 3 matrix R that minimize

N

IIi 2 + I1
i=1

subject to the constraint that

p+6_=R(pi+6__i)+T__ for all i.

To decouple the problem of finding __T from the problem of finding R, note that for a
given R and T, the errors _6i and _} are solutions of the underdetermined linear system

(_,i)(-IIR)
6

=_p-R_p-__T.

The minimum-norm solution to the above system is

i=--1/2 {(p -__T)- RPi} _6 1/2 {RH(__p -__T)-__p,},

where superscript H denotes Hermitian transposition throughout the paper. Therefore,
the cost as a function of R and T is

N

E I[(P-T___)-Rpill 2+ 1/4 IIRI-I(p-T__.)-Pill 2.
i=1

Define q p m’ and qi A__. Pi- m for every i, and the minimization problem once
again gets decoupled. The-stimte cts is the solution to the following constrained total
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least squares problem: Find a unitary 3 3 matrix R that minimizes

N

(2) ] IIi 2 -i- ]1 2

i=1

subject to the constraint that
q + __6 R( qi-t- _i) for all i.

The estimate ct is once again given by m’- ltsm.
1.2. Sinusoid retrieval. The problem of retrieving multiple sinusoids (with closely

spaced frequencies) from estimated covariances is of special interest in a vast range of
signal-processing applications [6 ]-[ 8]. Very often the covariance sequence may have
to be estimated from time-series data, however, it is not uncommon to encounter ap-
plications in which the covariance information is directly available. Such situations arise
in astronomical star beating estimation, interference spectroscopy, and some sensor array
applications. In interference spectroscopy, the problem is the detection of spectral lines
in the intensity distribution P(a) ofan electromagnetic source 9 ], 10 ]. In the classical
two-beam interferometer, the radiation is broken into two beams, and a variable path
difference 15 is introduced in one of the two paths. The two beams are then recombined
and the resultant total intensity (integrated over all wavenumbers a) is measured. This
total intensity varies with the path-difference i as

I(i) P(r)dr+ P(a) cos (2ri)da.
=0 =0

The variable part of the above function is the so-called interference function, which is
obviously also the Fourier transform of the unknown intensity distribution P(r). While
P(a) plays the role of the power spectrum, the observed samples of the interference
function play the role ofthe covariance lags, and the problem is one of retrieving sinusoids
from the covariances.

All sinusoidal signals: y(k) i i exp (jwik), ci[ > 0, 0i distinct, can be generated
by the following zero-input, state-space model:

_x(k+ )= Fx(k), y(k)= h__x(k),

where the model order (the size of the state _x) is equal to the number of complex
sinusoids. The eigenvalues off are of unit magnitude and equal exp (joi), where wi are
the sinusoid frequencies. Information about the complex amplitudes ci is contained in
x(O) and _h. The absolute value of ci is the amplitude and the angle of ci is the initial
phase of the ith complex sinusoid.

When the sinusoids have random initial phases that are mutually uncorrelated, then
the state _x and the output y are wide-sense stationary processes. Using these facts, it can
be shown that the state covariance matrix P E[x(k)x(k)/] is nonsingular and satisfies
P FPF/, and that the output covariance r(m) = E[y(k + m)y(k)I] satisfies

r(m hFmphn for all m.

Here, E denotes the expectation operator; in engineering terms, it is the averaging operator
over an ensemble of realizations. For the above properties to hold, it is necessary that
the initial phases of the sinusoids in y be mutually uncorrelated; i.e., that the ensemble
averages of their pairwise products be all zero. When the initial phases are correlated
(the expectation of some of the pairwise products is nonzero), then the state and
output processes will not be wide-sense stationary, hence E[x(k)x(k)/] and
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E[y(k + m)y(k)tI] will vary with index k. In such cases, for each realization (sample
sequence in the ensemble) ofthe harmonic process, we can define covariances by temporal
averages and use

T

r-- 2T+ k=-T

in place ofexpectation. Then P and r(m so obtained will be a function ofthe realization
studied, but for each realization, they will satisfy the properties listed below:

P will be invertible, P= FPF/, and r(m) hFmph/-/ for all m.

Therefore, with E defined as expectation in the wide-sense stationary case and as temporal
average otherwise, we have the following results.

The Toeplitz covariance matrix constructed from the output covariances,

r(O)
r(1)

R= r(2)

r(n)

r(- r(-2) r(-n)
r(0) r(-1) r(-n+l)
r(1) r(0) r(-n+2)

r(n-1) r(n-2) r(0)

admits the following fatorization:
h
hF

R=OI’= [Phu F-1ph/ F-2Ph/ F-nph/-/].

The number ofcolumns in O and the number of rows in P are equal to the model order,
which is also equal to the number ofcomplex sinusoids superimposed in the signal. Note
that I’ POt/because P FPFU. When the frequencies O) are distinct and every amplitude
is nonzero, linear system theory can be used to establish that the pair (F, h is observable,
so that O has full rank 11 ]. Because P is invertible, I’ also has full rank and consequently
the rank of R is equal to the model order [12 ]. Observe that the ith row of O is hFi- l,
and the ith column of I’ is F-i+ 1phil, SO that F may be obtained by solving the over-
determined system of equations

O1F=O,

where O(O2) is obtained from O by deleting the last (first) row. If F and F are de-
fined in a similar manner by deleting the last and first columns, it can be seen that F
also satisfies

FF2 F l.

To estimate the sinusoid frequencies from covariance data, let the singular value
decomposition (SVD) of the Toeplitz matrix R be R UZV/, where Z contains only
the nonzero singular values. Since R is a Hermitian-symmetric positive semidefinite
matrix, V is equal to U. The dimensions of diagonal matrix Z will equal the rank of R,
which is also the model order, say, p. Different factorizations

O-- UZI/2Q, r Q-II/2vH



CONSTRAINED TOTAL LEAST SQUARES 733

of the Toeplitz matrix are possible, one for each choice of nonsingular Q, and each will
lead to a different state-space realization (they are related to each other by similarity
transformations) of the order-p sinusoidal model as

Here, the superscript L denotes any left inverse. The state-feedback matrix in these co-
ordinates may also be obtained from P as

F= PP,
where the superscript R denotes any right inverse. The frequencies of the sinusoids may
then be found as the angles of the eigenvalues of the F matrix.

It was recently observed that the choice of factor O as UG /2 will make the F-matrix
unitary [13]. This fact is easily demonstrated by noting that because R is Hermitian-
symmetric and V U, this choice makes P On, so that

FFH OfOa(F,F)H OfO20O I.

When there is noise present and the covariances are consequently inexact, the Toe-
plitz approximation method (TAM) of[14] and 12 exploits the rank property of R
and the structure of O and F to robustly estimate the sinusoid frequencies from inexact
covariances. At first, TAM performs an SVD ofR, and retains the p principal components
(i.e., the p largest singular values and the corresponding singular vectors). Let the singular
vectors and singular values after the low-rank approximation be U1, Yl, and V1. Next,
TAM picks O U1Z I/2 and looks for an approximate solution to O1F 02 that minimizes
the sum of squares

(3) IIO1F- O2ll 2

The norm used for matrices throughout this paper is the Frobenius norm. The TAM
estimate is given by

TAM O 02,

where the superscript "f denotes the pseudoinverse. The sinusoid frequency estimates are,
then, the angles of the eigenvalues of ’TAM.

Based on the observation that TAM’s choice of factor O as U1E /2 makes the F-
matrix unitary, it has been suggested that the unitary constraint on F be introduced in
the least squares problem of(3) 13 ]. To be able to use this unitary constraint to advantage,
it is important that the factor O be chosen correctly. Recall that F is unitary (in the noise-
free case), when O is chosen as UE 1/2. For any other choice, F has eigenvalues on the
unit circle, but is not unitary. When the signal has additive white noise tiding on it, U
is unaffected, but all singular values get raised by an additive amount equal to the noise
variance. Hence, in the presence of noise, an estimate of the noise-free U; 1/2 matrix is

=UI(GI-pI) 1/2,

where is the arithmetic average of the small singular values (v +1 and smaller) and I
is the identity matrix of the appropriate dimension. Estimates of O1 and 2 may be
obtained by partitioning (.

Since, in the presence of noise, O1 and 2 are both perturbed, the following
constrained total least squares formulation is natural. Find a p X p unitary matrix F
to minimize

(4) IIAII2+ IIA’II 2
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subject to the constraint that

(O + X)F (O_ +

1.3. Direction finding. The problem of finding the directions of arrival of multiple
radiating sources using a sensor array has attracted considerable attention over the last
decade. The usual assumption is that either the sources or the sensors are narrow-band,
making the problem highly structured. High-resolution algorithms based on eigendecom-
position [15], [16] require storage of array calibration data and are sensitive to miscal-
ibration resulting, for example, from perturbations in the sensor element locations or
sensor gain and phase. Perturbations of the array from the nominal configuration can
be significant when the array is long, especially in a sonar towed-array application. The
ESPRIT algorithm introduced recently 17 mitigates these difficulties by assuming an
array composed of arbitrarily located doublets of sensors with identical (and known)
orientation. The algorithm requires that the two sensors in each doublet be identical to
each other in response, and that the displacement between the two sensors (separation
and angular orientation) be identical for every doublet. It does not require prior knowledge
of the actual locations or responses of the individual doublets, and is therefore more
robust to perturbations in the array parameters.

Assume that the sources are narrow-band and in the far field, so that the wavefronts
impinging on the array are planar. If the signal received at the ith doublet is denoted
(xi, yi), then the received data in the noiseless case is

_y(t) A
s(t),

where s(t) is the vector of p source signals as seen from a reference position, A is the
matrix of array-steering vectors (it depends on array calibration including sensor gain
and phase and doublet locations, but it need not be known), and is a diagonal matrix
ofp phase delays between the doublet sensors, one for each of the p sources.

diag {e-i("/v)dcsi,i 1,2,’’’ ,p} =diag {eJ(2r/x)dcsi,i 1,2,... ,p},

where w is the center frequency of the temporal band, k is the wavelength at the center
frequency, v is the wave velocity, d is the displacement between sensors in a doublet,
and Oi is the direction of arrival ofthe ith source signal relative to the doublet axis. Since
o, v, and d are known, the problem of direction finding is really a problem of estimating
the matrix.

The ESPRIT algorithm exploits the signal structure, especially the fact that the
covariance matrix Rz of_z ideally has rank equal to the number of sources p (assuming
that the sources are not coherent), and that its principal eigenvectors contain information
about the ff matrix. Let the eigendecomposition of Rz be Rz EAE/4, where A has only
the p nonzero eigenvalues. Then partition the EA 1/2 matrix as

EA1/2 (Ox).
It can be shown that Oy Ox, where is similar to and its eigenvalues contain
the direction information 18 ]. These facts are easily seen by observing that Rz has
the structure

A)(PsAnl p,nAnRz=
Ab
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where Ps is the signal covariance matrix. Provided that each of Ps and (A/IA/) has
rank p, then Rz also has rank p and any factorization of Rz where the inner dimension
is p must necessarily be of the form

AQ) AnRz=OF=
AOQ

(Q-P IQ-IPOtAt)

for some invertible matrix Q. If O is partitioned as

then we have OxI, Oy where xI, Q-Q.
In the presence of sensor noise, and when the covariances are estimated from finite

data, Rz will not have rank p, and the number p of sources has to be estimated as the
number of significantly large eigenvalues. The corresponding principal eigenvectors will
not have structure Oy Ox, and so a total least squares solution is used 18 ]. Find
that minimizes

(5) m + A,

subject to

(O+ A). (O+ zx’).

It can be shown that if the sources are uncorrelated with each other (i.e., Ps is
diagonal), then the matrix must be unitary, provided that there is no noise and the
covariance matrix is exact. That is the case, because Ps and will commute with each
other, and F [FxlFy] will satisfy

Fy= Fx.
The choice ofO EA 1/2 ensures that On F, which as in 1.2 ensures that is unitary.
In the presence of noise, an estimate of the noise-free EA /2 is

(=E(A-pI) /2,

where A1 and E1 are composed ofthe p largest eigenvalues and corresponding eigenvectors
of the perturbed Rz and p is the arithmetic mean of the remaining eigenvalues.

When the sources are uncorrelated with each other and O is estimated as above,
the direction-finding problem becomes a constrained total least squares problem. Find

that minimizes

(6) Ilmll=+ I1’11 =

subject to

(O+ zx) (O+ zx’)

and the additional constraint that be unitary.

2. Constrained total least squares. Before we derive the solution to the unitarily
constrained total least squares problem, let us recall the solutions to the constrained least
squares problem and to the total least squares problem. These are methods ofconstructing
approximate solutions to an overdetermined inconsistent linear system AX B. In the
following, it is assumed that A and B each have p columns and more rows than columns.
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2.1. Procrustes problem. The orthogonal Procrustes problem is to find a unitary
matrix X that minimizes the least squares error

IIAX- BII 2

The solution to the above constrained least squares problem is as follows. Let the SVD
of H & B/4A be U2;V/4, where 2; includes all singular values even if they are zero. If A
and B each have p columns, then so will U, 2;, and V. Then the constrained least squares
solution is 19

(7) cs VU/4.

2.2. Total least squares. Here the problem is to find a matrix X that minimizes

+ ’
subject to (A + A)X (B + A’) [5]. The solution to this problem is obtained from the
SVD of the concatenated matrix

(AIB)-

Partition V as

Vbl Vb2

so that Val is p p. Then, the total least squares solution is given by [19], [20]

(8) t,s (V/)-V or ]tls --Va2V-,

provided that Val (likewise Vb2) is invertible. For methods to find the total least squares
solution when Va and hence Vb2 are singular or close-to-singular, the reader is referred
to [21].

2.3. The CTLS problem. The problem here is the determination of a unitary matrix
X that minimizes

subject to (A + A)X (B + A’). To derive the solution to this constrained total least
squares problem, let us obtain an expression for the cost as a function of X. For any X,
the corresponding error matrices A and A’ satisfy

(X/4 -I) (X/4
AH

and the minimum-norm solution (AIA’) to the above system is

(/XIA’)=-1/2(AIB)
-X/ I

(A- BX/4I B- AX),

using the unitary property of X. Therefore, the cost as a function of X is

Trace =.Trace 1/2 (AA/4- BX/4A/4- AXB/+ BB/4) ].
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Therefore, the problem ofconstrained total least squares optimization is really a problem
of finding a unitary matrix X to maximize Trace (B/-/AX ). Coincidentally, the solution
to the orthogonal Procrustes problem of 2.2 also maximizes the same quantity, because

IIAX- BII 2 Trace { (AX- B)(AX- B)/4 } Trace (AA/- AXB/- BX/A/+ BB/)

using the unitary constraint on X.
Thus the solution to the constrained total least squares problem is the same as the

solution to the orthogonal Procrustes problem.

2.4. Discussion. In the classical least squares model, where the cost function is
IIAX B 2, matrix A is assumed to be error free, and only B is considered erroneous.
When there is reason to believe that A is prone to errors and B is error free, a better cost
function to work with is IIBX - All 2. In general, the solution so obtained is distinct
from the least squares solution. However, with the unitary constraint imposed on X, the
new cost is

Trace { (BX/-/- A)(BX/-/- A)/} Trace { BB/-/+ AA/-/- BX/A/- AX/-/B/-/},
which is exactly the constrained least squares cost in the orthogonal Procrustes problem.
Thus with the unitary constraint imposed on the solution matrix, it makes no difference
where the error is modelled as coming from, as long as the minimization criterion is sum
of squares. Thus it seems reasonable to expect that the constrained total least squares
estimate, which assumes that both A and B are equally error prone, will not be different.

It can be shown that the cost function minimized by the (unconstrained) total least
squares approach is

Trace { (AX- B)(X/X + I)-I(AX- B)/},
which is distinct from both IIAX nil 2 and IIA BX - 2, However, with the unitary
constraint imposed on X, the total least squares cost also reduces to the cost function of
the constrained least squares problem.

The fact that the solutions to the constrained least squares and constrained total
least squares problems are the same is both surprising and significant. Some researchers
have suggested that a unitary solution to AX B be obtained from noisy measurements
ofA and B by a two-step approach (see the last paragraph of [22], for instance). In the
first step, (AIB) is replaced by its total least squares approximation (A +/XIB / A’) and
in the second step, the orthogonal Procrustes problem is solved with A +/x and B + A’.
It is now obvious that two SVDs are not needed to construct the constrained total least
squares solution to AX B, and that the first step is redundant.

2.5. Interrelationships. As in 2.2, let the SVD ofH B/A be U2;V/. Recall that
the unitarily constrained total least squares solution to AX B is given by (7) as cls

VU/. Observe that it is also the unitary factor in the so-called polar decomposition of
square matrix H/.

The polar decomposition of a p p matrix M is

M XP

where X is a p p unitary matrix and P is positive semidefinite [23]. It is easily seen
that if M XP is the polar decomposition of M, then M may also be decomposed as

M SX

where S is also positive semidefinite. In fact, we have the relationship S XPX/between
the two positive semidefinite factors.
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The polar decomposition of HH AHB V2;uH is

9 AHB (VUH)UUH clsU2;UH.
Alternatively,

O) AUB V2;VHcls
A similar decomposition of A/B can be made in terms of the standard least squares
solution 2 s ofAX B using normal equations for the least squares solution, which are

11 AHB (AHA)ls.

The first factor A/A is positive semidefinite, as in (10), but the second factor is not
necessarily unitary. There is a similar decomposition ofAUB in terms ofthe inverse least
squares solution ils that minimizes IIBX - All 2:

12 AUB ( ilns) -1 B/B.

In terms of the total least squares solution tls, a decomposition ofAUB is

(13) AHB=(Va,2;2VaH)t,s- ft,s(Vb2,22VI2),
where UZV/is the SVD of (AIB), and the subscripted matrices in 3) refer to the
partitions ofV and 2; as

Vbl Vb2 0 2;2

Here, as in 2.2, Va and 2; are p X p matrices. Just as in (9)-( 12 ), in the decomposition
of 13 as well, the cofactors of are positive semidefinite.

Examining (9)-( 13 for the scalar-unknown case (p ), it becomes obvious that
the three solutions are related to each other by real numbers (say, r, r2, and r3):

.f r :fcs, )ils rz.’cls, .)tls r3.)cls.

In fact, the scalars r and r2 are nonnegative. Moreover, because 2; >_- Z2 in (13), so is
r3. This means that ifone is only interested in the angle ofthe solution (as in the sinusoid
retrieval and direction-finding applications), all four solutions give the same estimate of
angle. Thus, although only the constrained total least squares solution lies on the unit
circle, if the other three solutions are moved radially to the unit circle, they also yield
the same result. Hence, in the sinusoid retrieval and direction-finding applications, if
there is only one unknown, all four methods give identical estimates.

The same cannot be claimed in the multivariable case (p > ). There is no obvious
relationship between either the eigenvalues or the singular values of the four solutions.
In fact, numerical examples in the next section show that the eigenvalues ofthese solutions
can be very different.

2.6. Weighted problems. It is straightforward to show that the solution to the fol-
lowing unitarily constrained weighted total least squares problem

Find unitary X to minimize IIW(XlA’)I[ subjectto(A+A)X=(B+A’)

is also a solution to the unitarily constrained weighted least squares problems

Find unitary X to minimize IIW(AX- B)II,

Find unitary X to minimize
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as long as matrix W has rank greater than p. The common solution is found from an
SVD of B"WnWA. If the SVD of B/W/WA is U2/-/, where the p p matrix 2;

contains all p singular values even if they are zero, then X YU/.

2.7. Computation. The solution to the constrained total least squares problem may
be computed using the Golub-Reinsch SVD algorithm or by the following Newton-
iterative technique. Recall that the desired matrix is also the unitary factor in the polar
decomposition of A"B or of A/W/4WB in the weighted case. The following Newton
iterations proposed by Higham [24],

Xk+l-- 1/2(Xk-"(X /)-1), k=0, 1,2,3,

converge quadratically to the unitary polar factor of the square matrix M. Convergence
can be accelerated by appropriate scaling of the iterate at each step [24 ]. Because the
iterations require only matrix multiplications, inversions, and additions, this approach
may be computationally less expensive than the SVD approach, especially on parallel
multiprocessor architectures.

3. Numerical examples. This section presents a few numerical examples to illustrate
the applicability of the unitarily constrained total least squares problem.

Example 1. In the first example, a 30 2 matrix A was computed from normal
(0, )-distributed, real-valued, independent random numbers. Both A and B AX, for

were corrupted by additive, zero-mean, real-valued, white noise distributed as normal
(0, 0.05 ), and X was estimated from the noisy A, B pair by three methods: least squares
(LS), total least squares (TLS), and constrained total least squares (CTLS or CLS). The
experiment was repeated for 200 independent sets of additive noise, and the bias and
mean square error in the 200 estimates of the first row of X, namely (0, ), are listed in
Table 1.

Example 2. In this simulation, the given data are noisy measurements of the co-
variance lags

r(O)r(1)r(2) r(12)

ofa real-valued, sinusoidal process: r(m) cos (2rfm), f= 0.25. The lags were corrupted
by additive real-valued perturbations independent of each other. The three variants of
TAM using LS, TLS, and CTLS, were employed to estimate ffrom the perturbed lags.
For all methods, a rank-2 approximation was used to estimate O, which was picked as
UI( pl) /2 according to the discussion in 1.2. The experiment was repeated for
200 independent sets of perturbations on the covariances, and the bias and mean square
error in the 200 estimates of ffrom each method are listed in Table 2, for two different

TABLE

Bias Mean square error

LS -1.77 X 10-4 -40.32 X 10-4 1.66 X 10-4 2.12 X 10-4

TLS -1.72 X 10-4 -13.58 X 10-4 1.66 X 10-4 1.99 X 10-4

CTLS -0.95 X 10-4 -0.44 X 10-4 8.76 10-5 6.02 10-9
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TABLE 2

Perturbation distribution: normal (0, 0.05)

Mean
Bias square error

LS 4.85 10-5 3.12 X 10-7

TLS 4.85 10-5 3.12 10-7

CTLS 4.83 10.5 3.09 10.7

Perturbation distribution: normal (0, 0.5)

Mean
Bias square error

LS 7.33 X 10-4 2.34 X 10-4

TLS 7.00 10-4 2.29 10-4

CTLS 6.97 10.4 2.26 10.4

levels of perturbation. When the standard deviation of the perturbation was 0.5, there
were four misses by each method; i.e., for four trials, the estimates of fwere very poor.
The statistics listed above are for the remaining 196 trials.

Example 3. The three TAM-based algorithms were next tested on

r(m)=4.88 cos (27rflm)+0.16 cos (27rfzm), j] =0.145, j=0.125.

Again, r(0), r( ), r(12) were assumed given, but perturbed by real-valued inde-
pendent errors distributed normally with zero-mean. Mean square errors in the estimates
of fover 200 trials are tabulated for various levels of perturbation in Table. 3. When the
standard deviation of perturbations was raised to 0.025, there were 52 misses in the 200
trials by all three methods.

Example 4. Data received by an ESPRIT array composed ofeight co-oriented, half-
wavelength doublets were synthesized for the following scenario. The doublets are located
randomly and have differing gain and phase. Two plane waves are incident at angles

01 0.41-, 02 0.42r.

160 synchronized snapshots (corresponding to different time instants t) are collected of
the sensor data. Source amplitudes s(t) at the 160 time instants are uncorrelated with
each other, and are white, zero-mean, and Gaussian. The standard deviations of the
source amplitudes are, respectively,

A1 10, A2 1;

TABLE 3

Mean square error

Standard LS TLS
deviation of
perturbation f f f j

CTLS

0.001 7.91 10-1 58.6 10-8 7.91 10-l 58.6 10-8 7.58 10- 57.7 10-8

0.002 3.24 10-9 23.3 10.7 3.24 10.9 23.3 10.7 3.11 10.9 22.9 10.7

0.0025 5.16 10.9 36.3 10.7 5.16 10.9 36.3 10.7 4.97 10.9 35.8 10.7

0.005 2.44 10.7 14.3 10.6 2.45 X 10-7 14.3 10.6 2.38 10.7 14.1 10.6
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TABLE 4

Bias Mean square error

01171" 02171" 01171" 02171"

LS 1.48 10-5 3.64 10-4 8.61 10-8 6.65 X 10-6

TLS 1.41 10-5 3.64 10-4 8.53 10-8 6.63 10-6

CTLS 4.56 10-5 3.07 10-4 0.49 10-8 6.33 10-6

100 0)Ps=
0

The 16 160 data matrix [z( )z(2) z(160) was corrupted by 60 independent
realizations ofnormal (0, 0.07 distributed, complex-valued, white noise. The three vari-
ants of the ESPRIT algorithm using LS, TLS, and CTLS, were employed on the 60 data
sets to estimate 01 and 02. Rz was estimated as the temporal average over the 160 snapshots
of the noisy z(k)z(k)H, rank-2 reduction was used and El(A1 pI) 1/2 was used as the
estimate ofO in all methods. The bias and mean square error of the three methods over
the 60 estimates is listed in Table 4.

Note that the imposition of the unitary constraint makes a slight improvement in
the direction estimate (02) ofthe weaker signal and considerably reduces the mean square
error in the direction estimate (01) of the stronger signal. This reduction occurs despite
a substantial increase in bias in the estimate of 01, which means that the standard deviation
from the mean is much lower for the constrained approach than for the others. This
improvement in mean square error is even more pronounced when the signal is made
stronger with respect to the additive noise floor.

The experiment was repeated with everything unchanged except for source strengths:

25, A2 1.

The results are presented in Table 5 (for the same noise level as before). When the noise
standard deviation was raised from 0.07 to 0.70, then all methods missed the weaker
direction (02) completely (their estimates were off by large margins), and the mean
square error in the 01 estimates were as listed in Table 6.

Next, the experiment was repeated with noise standard deviation at 0.07 and
source amplitudes

A1 1, A2 10,

the roles of strong and weak directions having been reversed. The results over 60 trials
are presented in Table 7. Note the improvement in mean square error despite increased
bias in the direction estimate (02) of the stronger signal.

TABLE 5

Bias Mean square error

01/71" 02/71" 01/7I" 02/71"

LS -0.54 10-5 -8.41 10-4 5.04 10-8 1.16 10-5

TLS -0.51 10-5 -8.41 10-4 5.04 10-8 1.16 10-5

CTLS -2.79 10-5 -8.18 X 10-4 0.12 10-8 1.18 10-5
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TABLE 6

LS TLS CTLS

MSE in 0/r 9.75 X 10-7 9.73 X 10-7 8.48 X 10-7

TABLE 7

Bias Mean square error

01/ 02/ 01/71" 02/7r

LS 1.38 10-4 -0.41 10-4 2.30 10-5 3.53 10-7

TLS 1.33 X 10-4 -0.37 10-4 2.29 10-5 3.11 10-7

CTLS -0.32 10.4 1.30 X 10.4 2.27 10.5 1.33 10.7

Example 5. Here, the same scenario as in Example 4 was simulated, with the only
changes being in the directions of the plane waves and the additive noise level. The
directions used to synthesize the data were

01 0.107r, 02 0.147r.

Corresponding source strengths were

A1 10, A2 1.

The data were corrupted by additive white noise distributed as normal (0, 0.07). The
bias and mean square error in the estimates of the two directions over the 60 trials are
presented in Table 8.

If, instead of white noise, the additive noise is colored (moving average):

r(0) 0.05, r( 1)=0.035,

then the results are as presented in Table 9.
Note that enforcing the unitary constraint significantly reduces mean square error

despite increasing the bias. The bias in this approach is caused by the poor quality ofthe
covariance estimate Rz from only 160 snapshots. Recall that the unitary property of
holds only when Re is known exactly. While the SVD-based rank reduction provides
robustness to noise in the data, it does not seem to provide sufficient robustness to
covariance estimation errors. However, the bias in these direction estimates reduces as
the number of snapshots is increased.

Example 6. The purpose of this example is to demonstrate the reduction in bias in
the direction estimates ofthe constrained approach, as the number ofsnapshots available
is increased. The array simulated here is composed ofthree co-oriented, randomly located,

TABLE 8

Bias Mean square error

021"/r 011"/1" 02171"

LS 0.76 X 10-4 -6.08 X 10-4 7.83 X 10-6 3.83 10-5

TLS 0.79 X 10.4 -6.12 X 10.4 7.91 X 10-6 3.83 10-5

CLS -2.62 10.4 -3.56 10.4 0.86 10-6 3.71 10.5
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TABLE 9

Bias Mean square error

01171" 02/71" 01/71" 02/71"

LS 0.78 X 10-4 0.93 X 10-4 3.23 X 10-7 1.65 X 10-7

TLS 0.79 X 10-4 0.92 X 10-4 3.21 X 10-7 1.65 X 10-7

CLS -2.50 X 10-4 3.33 X 10-4 0.66 X 10-7 1.61 X 10-7

half-wavelength, perfectly matched doublets. The doublets have arbitrarily different gain
and phase. Two plane waves are incident at angles

01 0.10r, 02 0.147r.

As before, source signals are uncorrelated with each other, and are white, zero-mean,
Gaussian processes with equal standard deviation A1 A2 1. The data received by the
array is corrupted by twenty independent realizations of normal (0, 0.014) distributed,
complex-valued, white noise. The bias and mean square error in the direction estimates
over the 20 trials are presented in Table 10 for different numbers of snapshots.

When covariance estimation errors are large (possibly because the number of snap-
shots is small), then enforcing the unitary constraint on seems to increase the bias in
the resulting direction estimates. When SNR is low, however, the reduction in variance
dominates over the increase in bias, so that the mean square error is in fact smaller. At
the high SNR end, on the other hand, enforcing the unitary constraint on may do
more harm than good. In many practical direction-finding applications (including sonar),
SNR is generally low, and a large number of snapshots (as many as 10,000 per second)
is available. In such situations, if the sources are, in fact, uncorrelated, use of the unitary
constraint can prove beneficial.

4. Concluding remarks. It was discovered here that the unitarily constrained total
least squares problem that arises in a few signal processing systems has a simple analytical

TABLE 10

Bias Mean square error

01/71" 02/71" 01/71" 02/71"

160 snapshots

tS -0.45 X 10-3 -0.14 X 10-3 1.32 10-5 6.18 10-6

TLS -0.45 10-3 -0.13 10-3 1.32 10-5 6.20 10-6

CLS 1.36 10-3 -1.43 10-3 0.98 10-5 5.83 10-6

1000 snapshots

LS 1.21 l0-3 1.36 10-4 4.55 10-4 2.36 10-4

TLS -1.22 10-3 1.42 l0-4 4.59 l0-4 2.33 l0-4

CLS -0.59 10-3 -1.27 10-4 0.33 10-4 0.15 10-4

1500 snapshots

tS 0.25 10-4 -1.71 10-4 2.81 10-7 2.47 10-7

TLS 0.24 10-4 -1.71 10-4 2.81 10-7 2.47 10-7

CLS -3.77 10-4 1.21 10-4 3.24 10-7 0.77 10-7
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solution, and that the solution is the same as the solution to the orthogonal Procrustes
problem. The applicability of the unitarily constrained total least squares solution to
three problems in motion estimation, sinusoid retrieval, and direction finding was studied.

In the motion estimation problem, the rotation matrix to be estimated from data
is known a priori to be unitary, and the constrained total least squares problem applies
directly. In the sinusoid retrieval problem and the direction-finding problem, the eigen-
values of intermediate matrices F and , respectively, are expected to be on the unit
circle. Current methods for estimating these matrices do not exploit this fact. Instead,
they estimate the matrix without imposing such a constraint and project the eigenvalues
ofthe estimated matrix radially to the unit circle. Here, a scheme was found for indirectly
incorporating the unit-modulus information about the eigenvalues into the matrix esti-
mation procedure. A proper choice of covariance matrix factor O was found to make
the F or matrix unitary in the noise-free situation. In the noisy situation, this factor
O is estimated via an SVD ofthe covariance matrix, and the unitary constraint is enforced
in the process of estimating the matrix from the factor.

While the use of constraints based on a priori information about the signal or its
parameters can improve the quality ofthe parameter estimates from noisy measurements
of the signal, it is well known that their use introduces a different kind of estimation
errormerrors resulting from inappropriateness of the constraint. It makes the estimates
sensitive to any deviation of the signal or its parameters from the constrained model.
For instance, ifthe matrix that needs to be estimated is only near-unitary, and not exactly
unitary, then enforcing the unitary constraint on the estimate can make the solution
incorrect even when there is no noise. In the sinusoid retrieval and direction-finding
applications studied here, deviation from unitariness can occur because of errors in co-
variance estimation. It was seen that this causes the estimates to be biased. Since unitariness
in the direction-finding application relies on uncorrelatedness between sources, the di-
rection estimates obtained by the constrained approach are also sensitive to any correlation
between sources.

Regardless of correlation between sources (or initial phases of the sinusoids) and
covariance estimation errors, and irrespective ofhow the factor O is chosen, the eigenvalues
of the matrix (F or ) are expected to be on the unit circle. This property translates to
unitariness ofthe matrix only when there is no correlation between sources and the factor
O is chosen correctly. If a simple method can be found that directly enforces the unit-
modulus property of the eigenvalues, then the errors caused by source correlation and
covariance estimation errors may be avoided.

For the special case of one unknown (p ), it can be seen that the unit-modulus
property is the same as unitariness, that this does not depend on which factor O is chosen,
and that it is insensitive to covariance estimation errors. Here the unitary constraint may
be enforced without any qualms. However, it was discovered that the solution to the
unitarily constrained total least squares problem in the scalar-unknown case may also
be obtained by taking either the unconstrained least squares solution or the unconstrained
total least squares solution and projecting it radially onto the unit circle.

The unitarily constrained, weighted total least squares problem was also investigated,
and a simple solution was found.

Acknowledgments. Discussions with Professors Bhaskar D. Rao and Shankar Chat-
terjee of the University of California at San Diego, Professor Gene H. Golub of Stanford
University, and Professor Alan J. Laub of the University of California at Santa Barbara
are gratefully acknowledged.
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THE ANALYSIS FOR THE TOTAL LEAST SQUARES PROBLEM
WITH MORE THAN ONE SOLUTION*

MUSHENG WEI

Abstract. This paper presents an analysis of the solutions of the total least squares problem (TLS) AX
B in cases where the matrix (A, B) may have multiple smallest singular values. General formulas for the
minimum norm TLS solutions are given; the difference between the TLS and the LS solutions is obtained; the
error bounds for the perturbed TLS solutions with or without minimal length are deduced. The analysis is useful
especially for rank deficient problems and generalizes previous results of Golub and Van Loan, Van Huffel and
Vandewalle, and Zoltowski. Numerical results for a practical application are also given to verify the error
bounds.

Key words, total least squares, rank deficient, perturbation
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1. Introduction In this paper we use the following notations. Let cmn(Rmn) be
the set of m n matrices with complex (real) entries and C C 1 be the set of m-
dimensional vectors. For a matrix A C n, let A/s C be the (complex) conjugate
transpose ofA (A/= A T when A R n), A + . C m the pseudoinverse ofA, Rank (A)
the rank ofA, R(A) the range ofA, In the identity matrix of order n, mn the m n
matrix of all zero entries (if no confusion occurs, we will drop the subindex), I1" I1" 2

the spectral norm, and I1" IIF the Frobenius norm. Span vl, vn ) denotes the vector
space spanned by v,

The problem of linear parameter estimation arises in a broad class of scientific
problems. It can be described by a linear equation

(1.1a) Ax. b,

where A is the rn n data matrix and b is the m-dimensional observation vector. A and
b are the perturbed version of the exact but unobservable data A0 and b0, respectively,
i.e., the exact relation is

(1.1b) Aox bo.
In the ordinary least squares (LS) approach to 1.1 a), the measurements in A are

assumed to be free of error and all errors are confined to b. This results in the following
equivalent problem:

(1.2) minimize r subject to b r R(A).

The total least squares (TLS) approach to fitting, on the other hand, is appropriate
when there are errors in both A and b. If we rewrite 1.1 a) as

(1.3a) (A,b)
-1

then the TLS approach amounts to considering the following problem:

(1.4a) minimize [I(AA,/b)IIF subject to b- AbeR(A- AA).
AA,Ab
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Golub and Van Loan first gave a mathematical analysis of the TLS problem [2 ].
They also extended the problem to cover the case in which B is an m d (d >=
observation matrix [3]. Then (1.3a) and (1.4a) become, respectively,

(1.3b) (A B)
-I

and

(1.4b) minimize (AA, AB) F subject to B- AB R(A AA).
AA,AB

Van Huffel and Vandewalle [9], [10], [12] investigated problem (1.4b), presented a
detailed analysis, and extended the analysis to cover the nongeneric TLS case. They also
proposed an efficient algorithm to compute the TLS solutions [11]. Zoltowski [17] also
developed an analysis for the problem.

The main tool for solving TLS problems is the singular value decomposition (SVD)
for A and (A, B) (or (A, b) when d ). In this paper we assume that rn n + d. Let
the SVD for A and (A, B) be

(1.5) IQHA"= ,, U"(A,B)V= ,,
respectively, where

=diag(l,...,,) withl ->’’’>--. ->0,
(1.6)

Z diag 0"1, 0" + d with t9" ---- 0"/7 O" + -- O’n + d 0,

and four matrices U, l C m, . C" ’, and V C(" + d) (, + d) are all unitary.
Golub and Van Loan [2], [3]; Van Huffel and Vandewalle [9], [10], [12]; and

other researchers mainly consider the case in which , > a, + 1. This condition guarantees
the existence and uniqueness of a solution to the TLS problem (1.4) [3], [9], [10].
However, in many practical applications, one may encounter the case p > (rp+l

a, +1 for some p < n. In this case, the TLS problem may have more than one
solution. For example, in electromagnetics data processing problems, one has for some
sample rate AT a discrete time series

f= cy exp (lhyAT),
j=l

/=0, 1, ,m+n- 1,

obtained from experimental or computational results, where m > n >= r; ,j and cj- for
< j =< r are the resonance poles and residues to be determined [8]. When applying

Prony’s method [8], [15], one may need to solve a TLS problem that is rank deficient
(also see the example in 5). These TLS problems are more complicated but their
analysis is also important and useful.

In this paper we extend the results in 2 ], 3 ], 9 ], 10 ], 12 ], and 17 in order
to analyze the above-mentioned TLS problems with more than one solution. We deduce
the formulas for the minimum norm TLS solution XTLS, the relationship between the
TLS and the LS solutions, and perturbation bounds of the TLS solutions. In this paper,
we study the TLS problem 1.4b) but all the results also hold for the TLS problem 1.4a),
in which one only needs to set d 1.

Note also that our attention is focused on the algebraic properties and the perturbation
theory for the TLS problem. To simplify the discussion we assume that no scaling or
weighting is needed. Of course, weighting and scaling play an important role in solving
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TLS problems. They affect the singular values ofthe matrices and thus affect the accuracy
of the solutions. It requires a separate paper to handle this matter 17 ].

This paper is arranged as follows. In 2, we discuss various formulas for XTLS; in
3, we compare the TLS solution with the LS solution; in 4, we study the perturbation

bounds for the TLS solutions, with or without minimal length; in 5, we present the
numerical results of a test problem to verify the inequalities; finally, in 6, we make
some concluding remarks.

To complete this section, we list some known results that are necessary for our
discussion (see also, e.g., [3]).

Let G, H C X and the singular values aj. of G and H be arranged in decreasing
order. Then

(1.7) aj(G) j.(H)[ -< ]1G H][ , (G H) for j 1, ..., n.

Let the singular values ofA e Cmx" and (A, B) e Cm(’+d) be as in (1.6). Then
the following interlacing relation holds:

(1.8) a>--i>--_a+d forj=l,’’’,n.

Let the SVD ofA Cm" be given in (1.5). If k -_< r Rank (A) and Ak= 1i7i then by the Eckart-Young theorem,

min a D A Ak k + 1,
Rank (D) k

(1.9)
min A D11F A Ak F .2

Rank (D) k

Let A, B Cm n. Then one has 6 ], 14

(1.10) B+-A+=-B+(B-A)A+ +B+(I-AA+)-(I-B+B)A +.
2. The TLS solutions. In this section, we discuss various formulas ofthe minimum

norm TLS solution in the case where

p> rp+ n+ 1,

with and j the singular values of (A, B) and A, respectively.
An extended CS decomposition [7] can be used to study the TLS problem. For

some integer p _-< n, partition V into the following form:

(2.1) V=( V1, V12) rt

V2 V22 d

p,n+d-p.

Assume that Rank (VI) r _-< p and that dl dt > dt+l --- >= dr > 0 are
the nonzero singular values of VI. Set

C=diag(dt+,’",dr) and S=diag(l-dt2+,-..,/1-d2).

It was shown [7 ] that there exist unitary matrices W, W2, ZI, and Z2 with appropriate
sizes, such that

W2 D21 D22 Z 2
H
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where

Dll =diag (It, C,O(n-r)(p-r)), D12 diag (0t (a+t-p),S,I,-r),
(2.3)

D21 =diag (O(d+t-p)t,S, Ip-r), D22 diag (Id+t-p,--C,O(p-r)(n-r)).

First, we deduce the following result.
LEMMA 2.1. Let A CmE, B Cma, and the SVDfor A and (A, B) be 1.5)"

(7I-IA’= ,, UH(A,B)V= Z.

For some integer p <= n, partition V into theform in (2.1). Then
Both V22 and Vii are offull rank or neither ofthem is offull rank.

(2) ?rp > %+ implies that both Vii and V22 are offull rank.
Proof. The proof is in two parts.
(1) The assertion is obvious from the extended CS decomposition (2.2), (2.3),

because both Vll and V22 have p r zero singular values.
(2) Ifp > trp+ but Rank (Vii) Pl < P, then from the SVD (1.5) for (A, B) and

the partitioning (2.1) for V, we have

(2.4) A=U1Z1V+U2,2V B=U1Z1V+U_ZzVH
22

where U1 and U2 are the first p and the last (rn p) columns of U, respectively,
Zl=diag(l,’..,rp), 2;2=diag(rp+l,’’’,r+). Then from (2.4)
and (1.7),

-j < ffj U V {tl --[ U2 2 V 1t12[l<trj(Ul,lV)+trp+l, j= 1, ,n.

Now Pl < P by assumption, so ag(Ul,lVIl) 0 for j Pl + 1,..., p,..., n.
In particular,

One then gets a contradiction. So Rank (Vl) p. One also has from Lemma 2.1
that Rank (V22) d. This completes the proof of the lemma.

From Lemma 2.1, we can easily obtain the following results.
COROLLARY 2.1. Let the SVD for A and (A, B) be as in (1.5). For some p -< n,

let V be partitioned as in 2.1 ). If Vl (or V22) is not offull rank, then

(2.5) O’p+ d p< O’p+

LEMMA 2.2. Let the SVDfor A and (A, B) be as in (1.5), p <= n be some integer,
and V be partitioned as in (2.1). Then thefollowing two conditions are equivalent"

(2.6) p> fiR+ O’n+d and Vll, V22 are offull rank;

(2.7) ?rp>trp+l

Proof. (2) ). See Lemma 2.1 (2) and note that
2 I. On the one hand, one has AHA(2). Consider matrix AHA a, +

an l) being nonsingu-an+li VI,DV with D diag(a +1,..., Crp +
lar. Then

p Rank (D) >_- Rank (Nil DV Il Rank (V ]1 VIi DV1 (g1 )+) Rank (D),

that is,

(2.8) p Rank(AHA 2 I)O-n+
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On the other hand, by the interlacing (1.8) and the conditions in (2.6), one gets
p+ " 0"n + 1. Then from

AHA-a2,,+II= l?diag(l2,

=l?diag(Z-a2,+l,... .p2_a2.+.0. .0)?H,
with V being an n n unitary matrix, one obtains

(2.9) Rank (AHA-a2,+ lI)=Rank (diag (21-a2,+1, ,p2-a2,+l,0, ,0))=p.

This implies p > a, + 1. []

Remarks. Let us note the following.
Van Huffel obtained results similar to those in Lemma 2.1 and Corollary 2.1
for the case p n [9, pp. 69-70, p. 27, Thm. 1-5].

(2) In Lemma 2.1, the condition p > ap+l cannot be relaxed to ap > ap+l. One
can easily construct a matrix (A, B) such that ap > ap+l, but neither Vii nor
V22 is of full rank.

Next we discuss various formulas of the minimum norm TLS solution XvLs. Van
Huffel [9, p. 30] obtained a formula

XTLS -( V12Q_)( V22Q2 )-1 v12 v 2 ),

where QI and Q2 are the first (n p) and the last d columns of an (n + d p) by
(n + d p) unitary matrix Q such that V22QI . Zoltowski [17] also obtained a
similar formula:

XTLS’----V12V-2-- VllVl(Id- V21V /l -1.

By applying the extended CS decomposition, one can obtain more equivalent formulas.
We first discuss the following case.

THEOREM 2.1. Consider the TLS problem (1.4b). Let the SVDforA and C be given
by 1.5 ). Assume that for some p <= n, conditions in (2.6) (and so in (2.7)) hold. Then
the TLS problem (1.4b) is solvable. Partition V as in (2.1) and let Q Qi, Q2) E

C(n+d-p)(n+d-p) be any unitary matrix with V22Q2 nonsingular, where Q1 and Q2 are
the first n p and the last d columns of Q, respectively; then one correction matrix
AA, AB) satisfying 1.4b is

(2.10) (AA, AB) an+ 1UzQ2((V12Qz)H,(VzzQ.)H).

The minimum norm TLS solution is

(2.11)

x, v i’l + v"21
-Vl2V2(Id- V21V) -l =(AHA- a2,+

-(AHA a2,+lVl2V H +12) (AHB 2
-O-n+ IV12VH22),

with the correction matrix (AA, AB) defined in (2.10) where V22Q1 J.
Proof. By applying the extended CS decomposition (2.2), (2.3), we have

(D]]) +D] D12D2 diag t (d +,- p). SC-1, (5 (. r) (p- r)

with r p. So

(V)+V WI(DHll)+D W=-W1DI2D-2W=-V12V +
22.
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This proves the first formula in (2.11). Because V is a unitary matrix and V22 has full
row rank d, V22V2 Id V2 Vl is invertible. So

V, 2V2 Id V2 V I V12V2 V22V2 + V12 V 2 XTLs
This proves the second formula in (2.1 ). From (2.4) and the condition ap+l

an + d, we have
2 H(2.12a) AHA= gll21gIl-}-a2p+lgl2gH12, AHB= gll21Vl-t-ffp+lg12v22

From the proof of (2.8) and the fact that VI_V2 + Vll V 0,

(2.12b) AtA a2p+ 1I VIIDV AttB Vl(Z2 ap2+ II)V VIIDV I-I
217

2 2with D diag (a2 ap+l, ap2 ap+l) nonsingular. Also note that

(2.12C) (glla?gHll)+=(gHll)+a-2gtl, (VllDVHll)+=(VHll)+D-1V-I
because D, 21 are nonsingular and Nil has full column rank p. Then the third formula
in (2.1 follows from (2.12b) and (2.1 2c), and the last one follows from (2.1 2a) and
(2.12c). The remaining assertions are the consequence of the results in [2 ], [3], [9 ],
and 101. E3

In practical applications, when d > 1, an + 1, an + a rarely coincide. However, if
one considers the TLS problem as an approximation to a true but unknown relation

AoX Bo,

then Rank (Ao, B0) Rank (A0) --< n, so that an + 1, an + d are just the perturbation
of zero. In this case it is realistic to define an error bound e such that all singular values
ai, satisfying [ai an + 11 < e, are considered coinciding with an + 1. For these cases, one
may use the formulas of(2.11 ), but the associated correction matrix may have a Frobenius
norm larger than the minimal value (Z=I a2+i) 1/2, as already pointed out in [9, pp.
31-32 ]. Specifically, we have Theorem 2.2.

THEOREM 2.2. Consider TLS problem (1.4b). Let the SVD for A and (A, B) be
given by 1.5 ). Assume that for some integers p and q, with p <= n and p < q < n + d,

ap> ap+ O.q>aq+l an+d,

and let V be partitioned as in (2.1), in which V22 is offull rank. Ifone picks out XTLS
V I + V then

(2.13)

with

(2.14)

XTLS V + V I Vl V l Id- V2Hl V21) -1

--V12VS--Vl2V2(Id V21V l -1

(A IA V12,Zz V tilz + (A I-IB Vlz,Z v2 ),

AA, AB) U2,2Q2Q V, V2 ), + >= ]I(XA,AB)IIF>= +,

where Q1 and Q2 are the first n p and the last d columns of a unitary matrix Q
(Q, Q2) E C(n+a-p)(n+d-p) with V22Q1 0.

Proof. The proof of (2.13) is exactly the same as that in Theorem 2.1. Assertion
(2.14) is a direct consequence of the results in 2 ], 3 ], 9 ], and 10 ]. E3
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Remark. If we insist on minimizing (AA, AB)[IF, and if for some -_< e =< d,
rp > rp + or, + > r, + + >= >= r + a and r + l, r, + a differ significantly,
then we need to keep the last d e columns of V and pick e columns from the fight
singular vectors associated with rn +l to form an (n + d) d matrix

such that the lower d d matrix W2 is nonsingular. Then a TLS solution can be expressed
as X W1W. This strategy has been suggested in 9, p. 31 ].

3. Comparison of XTLS and XLS In this section, we compare the minimum norm
TLS solution with the LS solution. Because we have already established the formulas for
XTLS, the work is rather straightforward. First, we discuss the TLS problem considered
in Theorem 2.2.

THEOREM 3.1. Consider the TLS problem (1.4b). Assume that the conditions in
Theorem 2.2 hold. Ifone picks out XTLS as in (2.13), then thefollowing hold.

(1) Ifp n, then
2

XTLS-- XLS < O’n +_= IIXTLslI,
fin

(3.1a)

(3.2a)

(3.3)

(2) Ifp < n and Rank A r > p, then
2

= 2 v g%Xw,s- V t22 + NTiS
O"

B-AXTLs < B-AXEs +
an + V u X V212 TLS

O"

Let A; = auv’ and Xp A B; then

XTLs X,, < o- + +v;’x- v" 2o.2
n+l

-2 O.2n+lO’p

2
O’n+B-AXs < liB-AX / VIXTs rg. / /l X,S I1o
O’p

(3.4)

(3.5)

(3) Ifp < n and Rank (A p, then
2

XTLS--XLS < ffn+l IIV "S,, V2 [I--t--
ff

2
O’n+

-2 2
0"p O’n+

2

B AXTLs < I[B AXLs + " +1 V 1XTLS v == II.p
In 3.2a)-(3.4),

V I,12XTLs- V 2H2 v 5

the lastformula in (3.5) holdsfor XTLS 5/= 0.
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Proof. Because XTLS (AHA V,zZVHlz)+(AHB- V1222V2), XLS A+B
(A/4A +A"B, and Xp A -B (A Hp Ap) +AHB, we have from the matrix decomposition
(1.10) that

XTLs--XLs= --((AHA)+--(AHA V,zZZV z)+)(AI-IB VIZzv)
22

(3.6)
-(AHA) + V22 2V

(AHA)+Vlz,(V H X,12 TLS V)+(I A+A)XTLs,

A(XTLs--XLs) (Au)+V2ZZ(v "x V2)12 TLS

and also because (AHpAp) +(ApApH AHA)

XTLs--Xp= --((AHp Ap)+ --(AHA VzVHlz)+ )(AHB

22
(3.7)

_(A Hp Ap) + VlZ 22 V H

(AHpAp)+VlzZ(VXTLs-- V2)+(I-ApAp)XTLs,+

HX Vz)+(A-Ap)XTLs.A(XTLs-Xp) (AtI+ 12 TLS

Furthermore, by applying the extended CS decomposition (2.2) and (2.3),

"X -V=-V +V 12 TLS 22

][Vlz[[=/i-dp2 forp=n and [[V121[=1 forp<n,
(3.8)

v2, / dp2, v

XTLS
Then we have the following results:

Ifp n, then I- A +A and ]1A + /,, so (3. a) immediately follows
from (3.6) and (3.8).

(2) Ifp < n and r Rank (A) > p, then

’r --< O’n +1, A + --, and (I-A +A)XvLs --< IIXTLs II.
O"

Then from (3.6) we get (3.2a).
Note that from (1.7),

a(AUA- V12Z V1H2) __0"j +1

for j l, n and Rank (A/4A Vl2 Z 2V) p. Then

(3.9) II(AHA VIzZV l/)+[[ <
az,(AHA VIZV)= 52-az,+ 1"

So we have

(3.10)

(I-A,Ap)XTLs
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From (3.7), (3.10), and the facts that IIA [I- 1/p and IIA-Apll- p+ n+, the
inequalities in (3.3) follow.

(3) When p < n and Rank (A) p, then we have that (similar to the proof
of(3.10))

2

(3.11) II(I_A+A)XwLs[l< rn+ X, s 11.
O-p O’2n+

So the inequalities in (3.4) also hold. The equalities in (3.5) directly follow
from (3.8). This completes the proof of the theorem. []

For the TLS problem considered in Theorem 2.1, we obtain Theorem 3.2.
THEOREM 3.2. Consider the TLS problem (1.4b) and assume that the conditions

in Theorem 2.1 hold. Then
Ifn+ O, then

3.1 b) X’rLs XLs.
(2) Ifn +1 > 0 and p <= n, then

(3.2b)

2
ffn+l

:2O’p2-- O’n+

2

B AXTIS < B AXt.,s + O’_n -,-,.
Xs

O"p

Proof. The proof consists of the following:
If an +1 0, then from (2.1 ),

XTs (AHA 2 I)+AItB= i-iA + IB= +
-an+l (A A A B=Xs.

(2) Choose a unitary matrix Q (q, qn-p+d) E C(n-p+d)(n-p+d) such that
V22Q (, P)with d d matrix I’ nonsingular. Then from

Bn (A,B)
V22

qJ= rn+l
V22

qj, j= 1, ,n-p,

we obtain

AIIA g12qj) o 2
+ 1( gl 2qj),

(3.12) j=l, ...,n-p.
BIA V2qj) ,

So V2q;(( 1/n+ 1)AVl2qj) are the fight (left) singular vectors ofA associated with
forj= 1,...,n-pand

From this,

B_l_Span {ffp+l, ,u-}.

p
+ -H +B=X,,,(3.13) Xs=A B b-fl)jffB -flvjuj B=Ap

j=l j=l

where

p

Ap E f and Xp Ap
j=l
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Also note that XTLS (A/4A o-2p+ lln)+d/4B and
2(A/4A-o-2+lI)+= Vdiag (( 12-o-p2+ l) -1, ,(p2-o-p+ 1)-,0, ,0)i9/4,

o-p2(3.14) (AnpAp) + I? diag (8;2 ,-- ,0, ,0) I?/4,

I-AAp= f" diag fgp,In_p) /4.

So (I- /ApAp)XTLs 0. Then from (3.7), (3.8), and (3.14),

XTLS --XLs XTLs--Xp=(AHpAp)+Vlzo-Zp+ (-- V-2)
2 (A H (AI-IA 2 I)+XLs,(3.15) o-p+l pAp)+XTLs O-p2 + o-p+l

Ay)+XTLA(XTLs--XLs)--- O’p+

Then the estimates in (3.2b) follow from (3.15). This completes the proof of the
theorem. Vq

Remarks. We note the following
(1) In practical applications, especially in rank deficient problems where

Rank (A/A V122; V l) p and XLS Xp, the difference xTs SLS is
small. However, if XLS :/: X;, then we would expect that XLS is not close to
XLS. In this case, [IXTLs X;[I is much smaller than IIXTLs XLsll when
o- / (( p. So we should pick out Xe as the minimum norm LS solution rather
than XLS. For a detailed discussion of the rank deficient LS problem, see [6 ],
[14], and [15].

(2) Golub and Van Loan [2] obtained similar results for p n and d 1, while
Van Huffel and Vandewalle [8], [12] obtained similar results for p n and
d>=l.

4. Perturbation of the TLS solutions. In this section, we derive the perturbation
bounds for the TLS solutions, with or without minimal length. We begin with Theo-
rem 4.1.

THEOREM 4.1. Consider the TLS problem (1.4b). Assume that the conditions in
Theorems 2.1 or 2.2 hold. Partition V as in (2.1) and let A’ Cm n, B’ Cmxa, and
(A’,B’) (A,B) + E with [[EI[ r _-< (p- o-,+l), andtheSVDforA’, C’ be

(4.1) (’)/4A’I’ ’, (U’)/4(A’,B’)V’= ,’,

where ’ diag (’l, ,) and Z’ diag (o-’l, o-, + j). Partition V’ confor-
mally with V as in (2.1), and replace Vii by V’o. for i,j 1, 2. Define XrLS

)1-1 Then one has thefollowing estimates"((Vtll)H)+(Vt21

(4.2)
I1XTLS X I’LS __w + +1 3 -- 5 XTLs II)

o-p o-n+

N
6(r/+ o-n+ l)]/1 _t_ XTLS 2 N

12(r/+ o-n + l) O-1 XTLS II,
G,-- r+ p-- r+ BII- r+

where the third inequality holdsfor XTLS :: .
Proof. By the perturbation theory of the singular values,

’- >-- -IG ’1-1 ’+l-o-p+ll>(p O-p+I) >0.(4.3) p o-p+ o-p o-p+ p o-p

So V tll and V 2 are of full rank from Lemma 2.1, and the formulas in (2.13) can be
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used for X FLS. Let

.,Yl A- U2Z,zV J B- UzZ,zV tI
22

(4.4)
d’=A’-U2.,2(V]2)H, ’=B’-U,(V22)H.

Then it is easy to check that Xxs and Xs are the minimum norm LS solutions to

(4.5) dX=B, d’X’ h’,
respectively. So Xves + and Xs (’)+’. From (1.10),

Xs-Xs -((’)+-+) + ’)+ -’)
(4.6)

(d’)+(d’-d)Xs+(I-(d’)+d’)Xs+(d’)+(B-B’).
Note that Rank (J) Rank (’) p, ap(J) p- UV p- ap+ ,. Similarly,
( Sop ’)>p p+.

(4.7) I1+11 < (’)+1[ <
O’p-- O’p+ O’p- O’p+

Fuhermore, we have from Xvs n(n)+Xxes that

(4.8)

2(p-- o’p+ I)

(I- (3’) +3’)XTLS (I-- (3’) +3)(3 3’)/4(/4) +XTLS,

IIi’-i =< [[A’-AII + [[U:zY,2VI2[I + US;5(V’_)II =<2(n+ ap+ ),

I1’-11 -< 110’-Ol[ / U=zV / U(V2)"ll =< 2(rt + ap+ ,).

Substituting these into (4.6), one obtains

11Xs-Xs =< (A’)+ 1111A’-AII Xs

ffp-- ffp+

This is the first inequality of (4.2). Applying the Schwartz inequality we get

(4.9) 3+ 5 XvLs -<- /34( + 11XvLs 2) _--<6/1 + Xves 2.

From this, the second inequality of (4.2) follows. For any y E Cm,
yHBBy yHB(V2V + V2V2)BHy

yHB(V21V + V22Q2QV2)B/4y,

where Q2 is the same as in Theorem 2.1 with V22Q1 . So we get I].B[] 2 _-< ]IBV21]I 2 +
BV2Q2 ]12, and then

(4.10) Ilgll =< BV2, + ]IBV22QzlI.

On the other hand, from the decomposition 1.5 )for (A, B),

(V2Q2)-BV22Q2 (A’B)
Vz2Q2

-A VzQ2 u2,zQz -A VlzQ2,

and so

(4.11) IIBV:zzQ2[l o.,,+, + IIAV, zQzII..
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Note that V22 and V22Q (, V22Q2) have the same set of singular values. From (2.2)
and (2.3), the smallest singular value of V22Q2 is dp > O. So the biggest singular value of
VIzQ2 is(1 dZp) 1/2. That is, IIVIzQ21[ IIV2,11 from (3.8). Then from (4.9), (4.10),
and (4.1 ), we have

(4.12)
IIBII- n+, IlOll W2,1[ + {JAil VzQzH

Now XTLS 4: implies []BII > O-n+ 1. So

2o1
/,

and from (3.8), the third inequality of (4.2) holds, if]

When p n, Rank (’) n. So in (4.8), I- ’+’ . We then obtain a corollary.
COROLLARY 4.1. Ifin Theorem 4.1, p n, then thefollowing inequalities hold:

(4.13)

XTIS--X r,s 3(r/+_ O-n+ ,)
O-n O’n+

+ XTLS II)

i--n ----- 7n i V1 -[- XTLS 2

9(r/+ O-n+ 1) 0"1=< IIXTLslI.

The last inequality holds for Xvcs 4: .
In rank deficient problems, the TLS solutions are not unique. To obtain XTCS, it is

important to determine p. It is possible that in perturbed TLS problems, perturbed singular
for some integer q, n > q > p. In this case, the perturbedvalues satisfy a; > +

minimum norm TLS solution X }cs is not close to XTcs. However, it is indeed close to
a TLS solution to (1.4b). Specifically, we have Theorem 4.2.

THEOREM 4.2. Consider the TLS problem (1.4b). Assume that the conditions in
Theorems 2.1 or 2.2 hold. Let A’ Cmn, B’ Cmd, and (A’, B’) (A, B) + E with
IIEil <= (ap O-n+ ), and the SVDforA’ and (A’, B’) be as in (4.1). Iffor some integer
q, n > q > p, O- q > O-u+ l, partition V’ as

(Vt Vtf2)(4.14) V’=
n

V V2 d

q,n+d-q.

Let X’ -V2(V2) +. Then there exists a TLS solution X to (1.4b), such that

IIx’-xl[ -{--o-n+ (3+511XLsll +211X’ll)
O’p-- O’n+

(4.15) N _7+ O-, +, (61/1 + Xs 2 + 2[Ix’l[)
0"p-- fin+
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So

Proof. Note that both V’f 2and V are of full rank by Lemma 2.1 Also note that

(4.16) X X ’TLS + I V I + V I-I y=X ’TLS + I fI +fI Y

for some Y e Cn x a, while ’ is defined in (4.4). Let

(4.17) X=XTIS+(I--A+ft)(I-(’)+fI’)Y;
then X is a TLS solution to 1.4b). So we obtain

(4.18)
x’-x xlS-XTks + I1+(I- (’)+.,’) Y

IIx Ls--XTLs / IIA+(A--A’)(I-(A’)+A’)YII,

and the estimates in (4.15 follow from Theorem 4.1 and equations (4.7) and (4.8). [3

Remark. We see from Theorems 4.1 and 4.2 that when Ell --< (p an + ), then
for any TLS solution X’ of the perturbed TLS problem, we can find a TLS solution of
the original TLS problem, such that the relative difference

has the same order as

IIST,mll

If we just look for a TLS solution, then it is not necessary to find the correct number p,
but a number q >= p, such that V is of full rank.

5. Numerical experiments. In this section, we provide numerical experiments to
verify the perturbation and comparison results proved in the previous sections. The
problem taken is the same as mentioned in [15, Thm. 5.1 ], which is the basic result of
Prony’s method for extracting the poles from time-transient data 8 ]. The time-transient
data that we take are

12

(.) J5 E C.z},
j=l

with 0, 1, m + n 1, zj. exp (),j AT) forj 1, 12. The Xj’s and C’s are
to be determined. We assume that C and zj. are nonzero and z are distinct for j 1,.., 12.

Let

(5.2) a An al ,an),
+m-2

and consider the linear system

(5.3) Anx -an + bn.
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Assume that m >= n, m >- 12. Then it is well known [4], [15] that Rank(An)
min (n, 12). So if n >= 12, then (5.3) is compatible. In this case, for any solution x
(ao, an- r, construct a polynomial

(5.4) Pn( z) zn --[- Otn_ zn- w ff- alZ W Oto,

then Pn(z) has zeros Zl, Zl2.
In the following tests, we did the computations on a FACOM-M340S with double

machine precision, and computed the SVD for An and (A, b) and the zeros of the
polynomial P,(z) with SSL2 subroutines DASVD1 and DRJETR, which are based on
the algorithms of Golub and Reinsch [1] and Jenkins and Traub [5], respectively.

In all tables, R.E. denotes the relative error, (E-k) means that the value is in the
interval [. 1E k, 1.E k), x (for n 13) denotes a TLS solution obtained by

(5.5) Xj----Vj,k/)n+l,k for j= 1, ,n, [v+,[ max IVn+l,/[.
p+ <=l<=n+

We took Xj, C. as given in Table l(a) (which are the same values as in [8]), and
the sampling rate AT 0.1. We chose m / n 80 for n 12, 13, then computed the

0

2
3
4
5
6
7
8
9
10
11
12

TABLE
(a) Six pairs ofpoles and residues.

-0.082 + 0.926
-0.147 2.874i
-0.188 4.835i
-0.220 6.800i
-0.247 8.767i
-0.270 + I0.733i

(b) True XTL

n 12 n=13

0.7938982298043E00
-0.7653369105027E +
0.3537685520596E + 2

-0.1035787060425E + 3
0.2137774135039E + 3

-0.3274778523845E + 3
0.3816416365930E + 3

-0.3408584282216E + 3
0.2315475588881E + 3

-0.1166855106588E + 3
0.4141797164398E + 2

-0.9301418820089E +

0.7402257380948E00
-0.6342055198480E +
0.2533178915986E + 2

-0.6119928170028E + 2
0.9574601563874E + 2

-0.9156088539969E + 2
0.2836241974257E + 2
0.6382737256781E + 2

-0.1249649342604E + 3
0.1227507194322E + 3

-0.7806765325649E + 2
0.3274538698142E + 2

-0.8369025082069E +

(c) The SVs ofAn and (A,,, b,,).

n 12 n 13

ffl 0.30E02 0.30E02
0"12 0.39E- 4 0.15E- 3
’12 0.76E- 5 0.39E- 4

Note: The data are taken from Van Blaricum and Mittra [8].
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X and C. Table (b) lists the true XTLS for n 12, 13 and Table (c) lists the singular
values ofAn and (An, bn) for n 12, 13, respectively.

Since linear system (5.3) is compatible for n >_- 12, we may use the estimates in
(4.15 with an + 0 (note that from Table (b), xl[ > )"

(5.6) x’- xll (3 + 5 XT,sll + 2 x’ II) "" xll.
O’p O"p

Table 2 lists the numerical results in which the errors are introduced by roundoff. Because

TABLE 2

(a) XTL with roundofferrors.

n 12 R.E. n 13 R.E.

0 0.79389823049E00 (E 8) 0.74022573813E00 (E 9)
-0.76533691109E + (E 8) -0.63420551987E + (E 10)

2 0.35376855230E + 2 (E 9) 0.25331789161E + 2 (E 9)
3 -0.10357870611E + 3 (E 9) -0.61199281702E + 2 (E 10)
4 0.21377741362E + 3 (E 9) 0.95746015640E + 2 (E 9)
5 -0.32747785254E + 3 (E 9) -0.91560885401E + 2 (E 10)
6 0.38164163675E + 3 (E 9) 0.28362419742E + 2 (E 10)
7 -0.34085842834E + 3 (E 9) 0.63827372570E + 2 (E 9)
8 0.23154755896E + 3 (E 9) -0.12496493426E + 3 (E 11)
9 -0.11668551069E + 3 (E 10) 0.12275071943E + 3 (E 11)
10 0.41417971651E + 2 (E 9) -0.78067653257E + 2 (E 10)
11 -0.93014188209E + (E 10) 0.32745386982E + 2 (E 10)
12 -0.83690250821E + (E 11)

(b) n 13, True and computed TLS solutions.

True x x with roundoff R.E.

0 0.8514624213313E00 0.85146242138E00 (E 10)
-0.7414403470421E + -0.74144034708E + (E 10)

2 0.3028860086281E + 2 0.30288600864E + 2 (E 10)
3 -0.7571216418515E + 2 -0.75712164184E + 2 (E 10)
4 0.1256993390451E + 3 0.12569933905E + 3 (E 11)
5 -0.1374452932055E + 3 -0.137445293208E + 3 (E 10)
6 0.8183596111829E + 2 0.81835961118E + 2 (E- 11)
7 0.1606815156801E + 2 0.16068151569E + 2 (E 10)
8 -0.9252175515349E + 2 -0.92521755156E + 2 (E 10)
9 0.1064013830813E + 3 0.10640138308E + 3 (E 11)
10 -0.7226439331825E + 2 -0.72264393319E + 2 (E 10)
11 0.3144212298599E + 2 0.31442122986E + 2 (E 11)
12 -0.8228910544638E + -0.82289105446E + (E 11)

(c) R.E. in computed poles.

n 13 n 13
n 12 from XTL from x

-0.082 + 0.926i (E- 8) (E- 9) (E- 9)
-0.147 + 2.874i (E- 8) (E- 10) (E- 9)
-0.188 + 4.835i (E- 8) (E- 9) (E- 10)
-0.220 + 6.800i (E- 9) (E- 10) (E- 10)
-0.247 + 8.767i (E- 10) (E- 10) (E- 10)
-0.270 + 10.733i (E- 9) (E- 12) (E- 12)
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the (double) machine precision is about 10 -6, so r/ 10-16C(n, m)a 10-14o"1,
where C(n, m) is a constant depending on n, m 3 ]. Table 2 (a) lists the computed Xxes
for n 12, 13, and Table 2(b) lists the true and the computed TLS solutions obtained
with (5.5). For n 12, ][AXxLsII/IIx’rLS[[ .42E- 9; for n 13, IIAXxLSlI/[IXxLS[I
16E 10 and Ax[[ /[1 xtl --, 19E 10. Table 2 (c) lists the errors of computed poles
that are obtained from Pn(z) with the coefficients listed in Table 2(a,b).

Table 3 lists the numerical results with J’s containing normally distributed pertur-
bation with mean zero and standard deviation 10 -1. We computed n (AAn, b,)[1

TABLE 3

(a) XTLS with error .12E- 8.

aj n- 12 R.E. n 13 R.E.

0 0.79389811208E00 (E 6) 0.74022572934E00 (E 7)
-0.76533681778E + (E 6) -0.63420551525E + (E 8)

2 0.35376851622E + 2 (E 7) 0.25331789091E + 2 (E 8)
3 -0.10357869715E + 3 (E 7) -0.61199281851E + 2 (E 8)
4 0.21377739789E + 3 (E 7) 0.95746016595E + 2 (E 7)
5 -0.32747783211E + 3 (E 7) -0.91560887770E + 2 (E 7)
6 0.38164161678E + 3 (E 7) 0.28362423499E + 2 (E 7)
7 -0.34085841367E + 3 (E 7) 0.63827368354E + 2 (E 7)
8 0.23154755103E + 3 (E 8) -0.12496493082E + 3 (E 8)
9 -0.11668550769E + 3 (E 7) 0.12275071740E + 3 (E 8)
10 0.41417970939E + 2 (E 7) -0.7806752428E + 2 (E 7)
I1 -0.93014187404E + (E 7) 0.32745386769E + 2 (E 8)
12 -0.83690250563E + (E 8)

(b) n 13, True and computed TLS solutions.

True x x with error. 12E 8 R.E.

0 0.8464494801999E00 0.84644941241E00 (E 7)
-0.7366077517118E + -0.73660769990E + (E 7)

2 0.3006521946970E + 2 0.30065217621E + 2 (E 7)
3 -0.7505813330768E + 2 -0.75058129310E + 2 (E 7)
4 0.1243494763689E + 3 0.12434947079E+ 3 (E 8)
5 -0.1353774876176E + 3 -0.13537748292E + 3 (E 8)
6 0.7942614713242E + 2 0.79426145976E + 2 (E 7)
7 0.1822044662383E + 2 0.18220443849E + 2 (E 7)
8 -0.9398382451989E + 2 -0.93983820023E + 2 (E 7)
9 0.1071381747428E + 3 0.10713817112E + 3 (E 8)
10 -0.7252592035766E + 2 -0.72525918559E + 2 (E 7)
11 0.3150085528093E + 2 0.31500854752E + 2 (E 7)
12 -0.8235224881845E + -0.82352248099E + (E 8)

(c) R.E. in computed poles.

n=13
n 12 n 13 from XTL from x

-0.082 + 0.926i (E- 5) (E- 6) (E- 5),
-0.147 _+ 2.874i (E- 5) (E-6) (E- 5)
-0.188 + 4.835i (E- 5) (E- 7) (E- 6)
-0.220 + 6.800i (E- 5) (E- 6) (E- 6)
-0.247 + 8.767i (E- 6) (E- 7) (E- 6)
-0.270 + 10.733i (E- 7) (E- 8) (E- 8)
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and found that n 12E 8 in all three cases. Table 3 (a) lists the computed XTLS for
n 12, 13, and Table 3 (b) lists the true and the computed TLS solutions obtained with
(5.5). For n 12, [lxsll ! xsll .54E 7; for n 13, IlaXTsll ! xsll .32E
7 and Axll / xll .40E 7. Table 3 (c) lists the errors of computed poles that are
obtained from Pn(z) with the coefficients listed in Table 3 (a,b).

Note that the relative errors of the computed TLS solutions match the bound in
(5.6). On the other hand, comparing the TLS solutions with the LS solutions presented
in [15 ], we observe that the two sets of solutions have the same order of accuracy. Also
note that when n 12, An is of full rank, while when n 13, An is rank deficient.

6. Concluding remarks. In this paper we discuss TLS problem AX B in which
(A, B) may have multiple smallest singular values. In particular, rank deficient problems
belong to this class. The results of this paper generalize those of full rank TLS problems
2 ], 3 ], 9 ], 10 ], 12 ], 17 to the rank deficient case. Various formulas for the minimum
norm TLS solution are given. The relationship and the difference between the minimum
norm TLS and the minimum norm LS solutions are obtained. Ifthe original TLS problem
is slightly perturbed, the perturbation bounds for the TLS solutions with or without
minimal length are deduced. It is proved that the upper bound for the relative difference

has the same order as

X FLS XTLS

where XTLS and X FLS are the minimum norm TLS solutions ofthe original and perturbed
problems, respectively, while X and X’ are also TLS solutions of the same problems but
different from XxLs and X LS. In a practical example the perturbation bounds proven
in the paper are verified.

For a detailed discussion ofthe algebraic relations between the TLS and LS problems
with more than one solution, see [16].
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INTRODUCTION

More than 180 mathematicians from all corners of the world attended the First
Copper Mountain Conference on Iterative Methods. The meeting, held April 1-5, 1990,
took place at the Copper Mountain Resort, which is located 70 miles west of Denver.
During the four days of the meeting, over 100 talks on current research were presented.
Topics included nonsymmetric systems, preconditioning strategies, parallel implemen-
tations, applications, software, multigrid methods, domain decomposition, eigenvalue
problems, integral equations, nonlinear systems, indefinite problems, discretizati6n tech-
niques, complex matrix problems, and common software standards.

There are two special issues devoted to chronicling the presentations made at the
Copper Mountain Conference, one in SIMAX and the other in the SIAM Journal on
Scientific and Statistical Computing (SISSC). The review process followed the normal
SIAM policies for selecting referees and making recommendations. This issue represents
a rich mix of papers on a wide variety of topics related to iterative methods. There are
two aspects ofthis collection that we would like to underscore. First, much ofthe research
represented in these articles was motivated or influenced by the need to develop new
algorithms for the growing variety ofparallel processing computers. Second, the increasing
interaction between the multigrid community and the iterative method community is
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reflected in the many articles that incorporate multigrid and multilevel ideas into the
construction of preconditioners and domain decomposition strategies. We also remark
that the articles in this issue reflect the new and exciting work on iterative methods for
nonsymmetric linear systems that was presented at the meeting.

A special effort was made to bring students to the meeting. The vehicle for this effort
was a Student Paper Competition, in which students were asked to submit an original
research paper consisting primarily of their own work. Out of ten submissions, three
winners were selected. First place went to Barry Smith of the Courant Institute at New
York University. Second place was awarded to Doug James of North Carolina State
University. Third place honors were shared by Sverker Holmgren and Kurt Otto from
Uppsala University in Stockholm, Sweden. Barry Smith’s paper appeared in the special
issue of SISSC; the other two winning papers appear in this issue.

We would like to thank the members of the program committee for their help in
organizing the meeting. They are: Seymour Parter (chair), Loyce Adams, Steve Ashby,
Howard Elman, Roland Freund, Anne Greenbaum, David Kincaid, Steve McCormick,
Ahmed Sameh, Paul Saylor, Olof Widlund, and David Young. In particular, we would
like to give special thanks to Howard Elman and Anne Greenbaum, who, in addition to
helping to organize the meeting, acted as special SIMAX editors for this issue. Through
their efforts, the articles contained in this special issue were carefully refereed and brought
into print on schedule. We would also like to thank the following persons for their
generous support of this meeting: Fred Howes of the Applied Mathematics Program of
the National Science Foundation, Don Austin from the Applied Mathematical Sciences
Program of the Department of Energy, Andy White from the Advanced Computing
Laboratory at Los Alamos National Laboratories, and Bob Huddleston ofthe Computing
Division ofLawrence Livermore National Laboratories. Without their help, this meeting
could not have taken place.

As this issue goes to press, planning for the next Copper Mountain Conference on
Iterative Methods is in its final stages. It will be held April 9-16, 1992, in Copper Mountain,
Colorado. Plans again include special journal issues in SISSC and SIMAX. It is our hope
that the lively interaction and the fine quality of presentations and papers that marked
the first meeting can be duplicated at the upcoming meeting.

Thomas A. Manteuffel
Gene H. Golub
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CIRCULANT AND SKEWCIRCULANT MATRICES FOR SOLVING
TOEPLITZ MATRIX PROBLEMS*

THOMAS HUCKLEf

Abstract. In recent papers, numerous authors studied the solutions ofsymmetric positive definite Toeplitz
systems Tx b by the conjugate gradient method for different families of circulant preconditioners C. In this
paper new circulant/skewcirculant approximations are introduced to T and their properties are studied. The
main interest is directed to the skewcirculant case. Furthermore, algorithms for computing the eigenvalues of
T are formulated, based on the Lanczos algorithm and Rayleigh quotient iteration. For some numerical examples
the spectra of C-T are compared and the behaviour of the introduced eigenvalue algorithms is displayed.

Key words. Toeplitz matrix, circulant matrix, preconditioned conjugate gradient method, Lanczos algorithm,
Rayleigh quotient iteration

AMS(MOS) subject classifications. 65F10, 65F15

0. Introduction. In recent papers, Strang and R. Chan [17], [5], [3], [4] and T.
Chan [6 studied the use of circulant matrices C for solving systems of linear equations
Znx b with

to tl tn
tl to

Tn := T(to, tl, "", 1) "= tl "’. "’.

t o

a symmetric positive definite Toeplitz matrix. Thereby a symmetric circulant matrix
Cis defined by C T(co, Cl,’", ck-, ck, c_,..., Cl) for even n and C
T( co, c, c, c, Cl) for odd n with k =/n/2J.

Applying the preconditioned conjugate gradient method [12], [10] to solving the
system Tnx b, we must find a matrix C such that the eigenvalues ofC-1Tn are clustered
and Cy d can be solved very fast. For circulant C the second condition is fulfilled
by a Fast Fourier Transform (FFT) (see, e.g., [8 ]). In [17], Strang proposed Cs :=
T(to, t, t2,’", t2, t), and with Chan he proved that if the underlying generating
function f, the Fourier coefficients of which give the entries of T, is a positive function
in the Wiener class, then for n sufficiently large, C and C are uniformly bounded in
the 12 norm and the eigenvalues of C-1 T are clustered around 5 ].

Chan introduced

(n- 1)tl+t- tn-l+(n- 1)t)Cy’=T to, ,"’,
n n

Cfminimizes c T F over all symmetric circulant matrices, where F denotes the
Frobenius norm. The spectrum of Cf is again clustered around (see 6 ).

In and 2 we consider circulant approximations to T, proposed in [11 ], [17 ],
[6], and [4] and skewcirculant approximations, which can be defined in the same way,

Received by the editors April 5, 1990; accepted for publication (in revised form) January 3, 1991.

f Institut fiir Angewandte Mathematik und Statistik, Universitit Wtirzburg, Am Hubland, D-8700 Wtirzburg,
Germany (huckle@vax.rz.uni-wuerzburg.dbp.de).
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and study some of their properties and relationships. Thereby a symmetric matrix S
is said to be skewcirculant if S T(so, sl, Sk, --Sk, --Sl) for odd n and S
T(so, s,..., Sk-1, O, --Sk-1,’’’, --Sl) for even n [8], [9]. If Tn is indefinite any
circulant approximation will generally be indefinite, but preconditioning is only possible
for positive definite C. However, from Cs and Cfwe can always construct positive defi-
nite circulant matrices such that the spectrum of C-1Tn is approximately clustered
around + 1.

Every n n circulant matrix C has the same eigenvectors. Thus approximating T
by C can be considered as approximating the eigenvalues of T and ordering the eigen-
vectors of C such that they are "near" to those of T. Therefore these eigenvectors may
be efficient start vectors in iterative algorithms for determining any, especially the minimal
eigenvalue of Tn in O(n log (n)) arithmetic operations. In 3 we give different eigenvalue
algorithms based on Rayleigh quotient iteration, proposed in 17], and the Lanczos
algorithm 14 ], 15 ].

Finally, for some numerical examples we compare the clustering properties of the
circulant/skewcirculant approximations and test the eigenvalue algorithms proposed in

3.
1. A new circulant/skewcirculant approximation to T. The purpose of this sec-

tion is to derive estimations for the minimum eigenvalues of a real symmetric Toeplitz
matrix T using a representation T C + S with C a circulant and S a skewcirculant
matrix. For symmetric Toeplitz matrices T, T, T2 let us define a scalar product by
(T, T2)F eTT2e with el (1, 0, 0) T, and the corresponding norm for
symmetric Toeplitz matrices

n-1

IITll ’= IlTe ll2 :
i=O

Similar to the best circulant Frobenius norm approximation to T, we can search for a
circulant matrix Ce with

liCe-Tile= min IIC-TIle.
C circulant

The solution to this problem is

ll + ln- in- + tl)Ce’: T

In the same way we can define the skewcirculant matrix

tl tn- in- tlS to,’=T 2 2

which solves

min S- T
S skewcirculant

Then for Ca Ce + (a to)I and Sb Se + b to)I with a + b to it holds that

(1) Ca+Sb=T.
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Let us define

T:= { T T real symmetric n n Toeplitz matrix

C := C6T/C circulant }, Co := C6 C/Co 0 ),

S := { S6T/S skewcirculant }, So := { Se S/ So 0 }.
Then the matrices T(0, 1, 0, 0, ), T(0, 0, 1, 0, 0, 1, 0), form a basis of
Co, and T(0, 1, 0, 0, -1), T(0, 0, 1, 0, 0, -1, 0), form a basis of So,
and it holds that

C_I_So, Co-LS, CSo=T=CoS
relative to (., .)F, and thus every real symmetric Toeplitz matrix can be uniquely rep-
resented in the form T Co + So + to.I with Co e Co and So e So.

Now can be used to derive estimations for the minimal eigenvalue/ (T). All
eigenvectors of T can be chosen to be reciprocal or antireciprocal; this means Jx x or
Jx x with

(2) J

1

For the following, let us assume that the eigenvector xT, corresponding to l (T), is
reciprocal and unique up to a scalar factor. Following Kato 13, Chap. I., eq. (6.79) and
Chap. II, Problem (6.2)] it holds that

#l( T)= #I(Ca + Sb)/21 (Ca) -[-/1 (Sb) --/1 (Ce) --/1 (Se)- to.

Furthermore, for

T(x): 2Sb + (x-- 1)(Sb- Ca)’- 2Ca + (X + 1)(Sb- Ca) -]-X)Sb-]-( -x)C

the minimal eigenvalue tl (T(x)) =: #1 (x)is a concave, piecewise, holomorphic function
ofx, and T(-1 2Ca, T(O) T, and T( 2S. Denote by Xs, respectively Xc, the
normalized reciprocal eigenvector corresponding to #1 and T( ), respectively, #1 (-1
and T(-1 ). Then we have the series expansions

Ul(X) 2ul(S)+(x- 1)x(S-Ca)xs+""

/l(X) 2#l(Ca)W(X+ )x(Sb-Ca)xc nt-

Hence Ul(1) is the maximum of ul(x) if and only if Xrs(S Ca)xs 0; this im-
plies that

(3) b=(xCexs+to-tl(Se))/2, a=to-b.
Since ul(x) is concave this gives an upper bound for #1( T):

Ul(T) =< 2ul (S) #1 (Se) + xTCexs to,

with b defined by (3). Similarly, 1(-1 is the maximum if and only if x(Sb Ca)xc
0; this gives

gl T) <= #1(Ce) + xSexc- to.
Thus we have proved the following theorem.
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THEOREM 1. For the minimum eigenvalue ofa symmetric Toeplitz matrix T with
circulant and skewcirculant approximations Ce and Se, it holds that

(4) #(Ce)+#l(Se)-to <=#(T)<=min {tt(Se)+XCeXs, gl(Ce)+XSeXc}--to.
Thereby, xr, Xc, andXs are assumed to be unique reciprocal antireciprocal) eigenvectors
of T, Ce, and Se, corresponding to ( T).

These bounds can be used as an initial interval in the Cybenko-Van Loan algorithm
for computing the minimum eigenvalue ofa symmetric positive definite Toeplitz matrix
[7] or in the iterative eigenvalue estimations considered in 3. By FFT they can be
determined in O( n log (n) operations. The lower bound in (4) seems to be an especially
useful completion of the eigenvalue inclusions given in [7].

In addition, Ce is connected with the circulant approximation Cc
T(to, t + tn-,’", tn_ + t) introduced by Chan in [4] by the equation Cc
2"Cto/2 2 , Ce to * I.

2. Circulant and skewcirculant preconditioners for Toeplitz systems. The Toeplitz
property gives no reason to prefer circulant to skewcirculant matrices. Hence for pre-
conditioning the system T.x b, the skewcirculant approximations Ss and Sf should
also be considered, where & := T(t0, t, t2, -t2, -t) and

(n- 1)tl-&_ &_l-(n- 1)t)Sf’= T to, ,"’,
n n

with

&- Z F min s- r. F.
S skewcirculant

Therefore let us first extend the results for circulant approximations derived in 5], [6 ],
[3], and [4] to the skewcirculant case.

Let T T(t0, tl, "") be a real single infinite positive definite Toeplitz matrix in
the Wiener class. This means 0 < Z _-_ tkei and Z: 0 tl < M < , and Tn is a
finite section of T. Following [5 ], for n 2m we can partition T, Cs, and Ss in
the form

T,,= C, S

with D T( to, tm-1), Rc T( tm, l); R has diagonals l, "", t_ 1, and Rs
has diagonals tl , tin-l, O, --tin- l, --t Symmetric Toeplitz matrices are centro-
symmetric [2 ]. Thus using the matrix

with J defined by (2), the eigenvalue problems T.x XCsx and Tnx rSx split into

D RJ)y X_(D RJ)y and D + RJ) z X+ D + RcJ) z

and

(6) (D-RJ)y=a_(D-RJ)y and (D+RJ)z=cr+(D+RsJ)z.
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Defining Hc := (Rc R)J and Hs (Rs R)J, we get

h h2 0 g g2

H= 0, and Hs g2

0 0 gm 0 0

gm

with hj tj tn-j., g -tj. tn_j. for j =< m. Thus (5) and (6) are equivalent to

X+ X_)
(7) X- D+RJ)z H,z X_ D RJ)y Hy

and

a+ o’_)
(8) (D+RJ)z=Hz, (D-RJ)y=-Hsy.

0-+ 0--

As the order n increases, D, H, and H approach singly infinite Toeplitz and Hankel
matrices/ T(t0, t, tz, -..),

t t2 t3
t2 t3

/ -c, and RJconverges against 0. In 5 Strang and Chan proved that the clustering
of C7 T, around depends on the clustering around 0 of the eigenvalues of the infinite
Hankel-Toeplitz problem

9Y / and 937 -/37,
which is the limit of (7) for n -- oe. In the same way the clustering of S- T depends
on the eigenvalue distribution of

s:? /-; and y -fly,

the limit of 8 ). In view of -c, for large n the eigenvalues of S- T are clustered
around in the same way as the eigenvalues of C- T.Furthermore, the eigenvalues of the skewcirculant matrix Ss are of the form

Xj to + tlffWj -Jr- nt- lm- ( 0-WJ) 2t_ 0 lm 1( 0-WJ) + ll (ffwJ)

to + t rw + (ffwJ) -1 -"
m-1

lke(2J + )kri/n

k=l-m

with 0- ei/n and w 0
-2 (see 8 ]); thus S and S-1 are positive definite and uniformly

bounded for positive definite T in the Wiener class and n large enough (see [5, eq. (3)]
for the circulant case). Hence we have proved the following.

THEOREM 2. Suppose T is real andpositive and in the Wiener class. Thenfor large
n the skewcirculants S and S-2 are uniformly bounded and positive definite, and the
eigenvalues of S-2 T are clustered around 1.

In 3 and 4 Chan proved further properties of C and Cf. It can be seen imme-
diately that all results also hold for the skewcirculant approximations S and Sf. Hence
S and Sf are asymptotically equal, and Ss minimizes s Tn I1 s T over all
possible symmetric skewcirculant matrices S. Note that Ce of is not asymptotically
equal to Cs.
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In order to show that skewcirculant matrices are efficient preconditioners, it remains
to prove that the system Sy d can be solved very fast. Every skewcirculant matrix S
can be written in the form S AHCA with a circulant matrix C and a diagonal matrix
A [8, p. 85]. Thus the linear equation Sy d can be solved via FFT, also.

All in all, the skewcirculant approximations to T, have the same properties as the
circulant approximations and are efficient preconditioners. It depends on the special
structure of T, which of the two alternatives is preferable, e.g., in some examples
the skewcirculant matrix Ss is positive definite while Cs is indefinite ([5, example 1]),
and in some other examples the eigenvalues of S- T, are better clustered than that
of C- T,

In l, Chap. 7.6 Szeg5 and Grenander have introduced another family ofcirculant
matrices that approximates a Hermitian-Toeplitz matrix T, and can be used for pre-
conditioning. In the following, we consider only the case of real symmetric T,. Set U :=

c2rikj/n(Ul, u,)" (uk,a)7,j with uk,j /fn and D := diag (dl, d,) with

(9) d := to + 2j,.= -7 t cos n
for _-< p _-< n. Then Cg := UHDU is a circulant matrix with double eigenvalues
dk d_k, k 1,..., [n/2], and one or two simple eigenvalues d and d,/2 (for
even n). For positive definite T in the Wiener class, (9) shows that Cg is positive
definite and bounded for large p and n. The eigenspace to d, k < fn/2], is equal to
span u, u, ) span v, v k) with

v’= u[+ u,_= cos
/7

=1

T -2rik/n bl+ c2rik/n bl k COSv,_ =e
2 2

=0

Then v _+ v_ are the reciprocal, respectively antireciprocal, eigenvectors corresponding
to d. In [8, Chap. 7.3] for Hermitian-Toeplitz matrices Szeg6 and Grenander defined
the norm as

Tnl2__l j(rn)2
j=l

with ha(T,) the eigenvalues of T, and they proved in [8, Chap. 7.6, p. 113] that

nj=, - ItJl 2+2 p2rtj=

=4 J(P-J)
16l 2+- E (n-j)lta[ 2

nj= p nj=

2n )Itjl2+ (n-j)ltjl 2

F/j=p+

with _-< k =< p -< n. Hence for Cg to be a good approximation to T,, we have to choose
k _-< p =< n such that Z= + tjl 2 gets small and n > k. Furthermore, a good choice for
p seems to be p n. For this case, it follows directly from (9) that Cg and Cf have the
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same eigenvalues and corresponding eigenvectors and thus are equal. Thereby, the ei-
genvalues of a circulant matrix T(co, Cl, c,,_ l) are given by (see, e.g., [8 ])

n-1

Xj= E cke2ijk/n.
k=0

Therefore the best circulant Frobenius norm approximation to Tn is the Szeg6-
Grenander approximant with p n. As another example, for p n/2, we get Cg
T(to, (1 2/n)tl,..., (2/n)tm-1, "", (1 2/n)tl), which again is asymptoti-
cally equal to Cs and Cf. The results of Szeg6 and Grenander can be extended to the

eij(Zk+ 1)/n/ and Askewcirculant case by defining V (vk,j), with v,j
diag (61, 6,) with

k.= tO ql_ 2jE1 t cos

for -< p _-< n. Then S VnAV is a skewcirculant approximation to T.
In the end of this section we will be concerned with indefinite Hermitian-Toeplitz

matrices. If T UAUr is indefinite, any of the above-considered circulant approxi-
mations C V2Vr with A and diagonal, U and Vorthogonal matrices, will generally
be indefinite also. Therefore the eigenvalues of C-1T may generally be complex. An
obvious way to generate a positive definite circulant matrix for preconditioning is the
choice of := VIii V r. For C a good approximation to Tn, let us assume that the same
holds for the eigenvalues and eigenvectors. Thus we have that VrU I + E with small
E, and the eigenvalues of C-IT are clustered around 1. Then we get

d-/-Td-/ vl 2 I-/=rgasrl ,l-1/2r T

rl:l-/2(i+E)A(i+Er)l:l-1/=rr= VAI:I-V+B
with small B, and the eigenvalues of (-i Tn are clustered around + 1. Hence ( may be
a good choice for preconditioning the indefinite linear system T,x b. In 4, we give
an example for the clustering of the circulant approximations in the indefinite case.

3. Computing eigenvalues and eigenvectors of a symmetric Toeplitz matrix.
Computing the eigenvalues of a symmetric Toeplitz matrix Tn, especially the minimum
eigenvalue, is a problem of considerable interest 16 ], 7 ], 18 ]. By a suitable shift we
can assume that T is positive definite. For the following, let C and S be any circulant
approximation to T. All eigenvectors of T (and C, respectively S) can be chosen to
be reciprocal or antireciprocal. Hence assuming that the eigenvectors of C and S are
good approximations to those of T leads to the following algorithm for computing the
minimum eigenvalue of Tn.

(i) Compute the smallest eigenvalues ofC and S and the corresponding reciprocal
(antireciprocal) eigenvectors Vr(C), Vr(S), Va(C), and Va(S), and set Ur :=
Vr(C), vr(S)), Ua := (Va(C), va(S)); if the minimum eigenvalue of C or S is
a simple eigenvalue and has no reciprocal or antireciprocal eigenvector, then
we can complete Ur, respectively Ua, by an eigenvector of the next smallest
eigenvalue.

(ii) Compute a lower bound a for )min(T), e.g., using Ce and Se with formula
(4), or set a 0. Define A := T,

(iii) Compute max( UTrA Ur) and )kmax( UTaAUa) with corresponding eigenvectors Xr
and Xa. Set Yr := UrXr, Ya
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(iv) Apply one of the following eigenvalue algorithms to get estimations for the
minimum reciprocal, respectively antireciprocal, eigenvalue of Tn: (a) Lanczos
algorithm on A and Yr, respectively Ya; (b) Rayleigh quotient iteration with
start vector Yr, respectively Ya 14 ], 15 ].

Note that each ofthe algorithms generates approximations to the eigenvectors of Tn that
are either reciprocal or antireciprocal. The Rayleigh quotient iteration for computing
eigenvalues of Tn was proposed by Strang in [5].

Computing the eigenvectors and eigenvalues of C and S requires O(n log (n))
operations. The cost of each step in (iv) depends on the method used for solving
(T #I)x b. For example, solving Yule-Walker equations takes O(n) operations
in VLSI architecture (see [7]), while the new "fast" algorithms take O(n log(n) 2)
operations (see [1 ]). Also, the cg method can be applied to (T, I)x b with pre-
conditioner C I or S I. Furthermore, the matrix A is positive definite, and thus
the methods for solving the linear systems, which appear by using the Lanczos algorithm,
are stable.

In view ofthe low number ofarithmetic operations required for the above algorithms,
it may also be efficient to use the first or second computed estimate of )kmin(T) together
with the lower bound in (4) as an initial interval for the Cybenko-Van Loan
method 7 ].

Obviously the algorithm can be generalized to compute )kmax(Tn) or )ki(Tn) <=
=< n, by starting with the ith eigenvalues and eigenvectors of C and S.

4. Examples. For comparing the circulant/skewcirculant approximations to T
and. for testing the eigenvalue algorithms described above, we consider the following
examples:

1. ti 1/(i + 1)2 for 0, ..., 19; cf. [17] and [6];
2. to and ti random (-.2, .2) for 1, 19;
3. ti=cos(i)/(i+ l)fori=0,..., 14;cf.[6];
4. to 6.2, ti random (-1, for 1, 10 and t; 0 for 11, 19;
5 T= wkT2o a 40 40 matrix with To)i,j cos (19(i -j)) for i, j 1,

40 and wk and Ok are uniformly distributed random numbers taken from [0, 1];
cf. [7];

6. to 0 and ti 1/(i + )2 for 1, 39.
Table demonstrates the lower bound of formula (4); thereby r’= 7]- tl. Figs. 1-
4 show the eigenvalue distribution ofX-1T for the various circulant/skewcirculant ap-
proximations X. Here the circulant approximation ofStrang has the best clustering around
1. For both examp!e the Szeg6 approximation with p n is superior to the choices
p n/2 and p /n. For example 3, the skewcirculant approximation of Strang is
better than the circulant one.

All in all, in the Wiener class the Strang approximation seems to have the best
clustering property. The decision between the circulant and the skewcirculant precon-
ditioner depends on the structure of the Toeplitz matrix. In general, Cs and Ss have the

TAnLE

Nr. /l(Ce) + t,(Se)- to #,(T) #.(T) to r

0.6457 0.6464 2.0289 1.0 0.6
2 -0.3967 0.0064 1.8451 1.0 2.073
3 0.4514 0.4536 2.3584 1.0 1.39
4 2.0180 2.3841 11.139 6.2 5.2
5 -8.2445 0.1083 53.115 19.367 69.1
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inv (Cg (p=n)) T
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FIG. 1. Eigenvalue distribution ofX-Tfor example 1.
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FIo. 2. Eigenvalue distribution ofX-Tfor example 2.
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TABLE 2
Angle between ur and its approximations Uc and Us.

Nr. cos (/-(ur, Uc)) cos (/_(ur, us)) cos (/_(ur, span {Uc, Us}))

0.9125 0.9996 0.999998
2 0.2238 0.9632 0.97145
3 0.9995 0.9140 0.999966
4 0.9185 0.9499 0.994668
5 0.4419 0.7923 0.7845

disadvantage of possibly becoming indefinite, and thus the Frobenius norm approxi-
mations are preferable.

Table 2 shows the angle between the true eigenvector uT of Tn and its projections
on the subspaces spanned by the eigenvectors Uc and Us, corresponding to the minimum
eigenvalues of the circulant/skewcirculant approximations Cy and Sy.

In view of Table 2 for examples and 3 the eigenvalue estimation given by steps
(i)-(iii) is satisfactory for many cases without use of further computation. For examples
2 and 4 we get an estimation of the same accuracy after three Lanczos steps; example 5
requires eight steps. For the general case, in our opinion the best eigenvalue algorithm
(iv) is a combination of the Lanczos and the Rayleigh quotient method.
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HOW FAST ARE NONSYMMETRIC MATRIX ITERATIONS?*

NOeL M. NACHTIGAL’, SATISH C. REDDY:I:, AND LLOYD N. TREFETHEN

Abstract. Three leading iterative methods for the solution of nonsymmetric systems of linear equations
are CGN (the conjugate gradient iteration applied to the normal equations), GMRES (residual minimization
in a Krylov space ), and CGS (a biorthogonalization algorithm adapted from the biconjugate gradient iteration).
Do these methods differ fundamentally in capabilities? If so, which is best under which circumstances? The
existing literature, in relying mainly on empirical studies, has failed to confront these questions systematically.
In this paper it is shown that the convergence ofCGN is governed by singular values and that ofGMRES and
CGS by eigenvalues or pseudo-eigenvalues. The three methods are found to be fundamentally different, and to
substantiate this conclusion, examples of matrices are presented for which each iteration outperforms the others
by a factor of size O(V) or O(N) where N is the matrix dimension. Finally, it is shown that the performance
of iterative methods for a particular matrix cannot be predicted from the properties of its symmetric part.

Key words, iterative method, conjugate gradient iteration, normal equations, Krylov space, pseudospectrum,
CGN, GMRES, BCG, CGS

AMS(MOS) subject classification. 65F10

1. Introduction. More than a dozen parameter-free iterative methods have been
proposed for solving nonsymmetric systems of linear equations

1.1 Ax b, A E(INN.
A rough list is given in Table 1, and for a more detailed classification we recommend

], [6 ], and [12 ]. In this paper we concentrate on the three methods that we believe
are the most important: CGN, GMRES, and CGS. Quickly summarized, CGN is a name
for the conjugate gradient iteration applied to the normal equations; this idea can be
implemented in various ways, of which the most robust in the presence of rounding
errors may be the program LSQR [18]. GMRES is the most robust of the Krylov space
orthogonalization and residual minimization methods. CGS is a modification of BCG,
the biconjugate gradient iteration, that appears to outperform BCG consistently. To the
best of our knowledge none of the other iterations proposed to date significantly out-
perform CGN, GMRES, and CGS.

This leaves us with the questions: do CGN, GMRES, and CGS themselves differ
significantly in capabilities? Ifso, which ofthem is best for which matrices? In the literature,
these questions have for the most part been approached empirically by case studies of
"real world" matrices and preconditioners. However, although such case studies are
indispensable as proofs of feasibility, the answers they provide are not very sharp or
general. We believe that the experimental approach is an inefficient route to the under-
standing of fundamental properties of algorithms and a poor basis for predicting the
results of future computations.

In this paper we attempt a more systematic assessment of the convergence of non-
symmetric matrix iterations. The first half ofthe paper deals with generalities, presenting
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TABLE
Iterative methodsfor nonsymmetric systems Ax b. (The differences

among these algorithms are slight in some cases.) The terminology ap-
proximatelyfollows Elman [6] and Gutknecht [12]. References not listed
can befound in those two papers and in [21].

I. Methods based on the normal equations

CGN CGNR
CGNE
LSQR

Hestenes and Stiefel ’52 14]
Craig’55
Paige and Saunders ’82 [18]

II. Orthogonalization methods

GCG

ORTHOMIN
ORTHORES
ORTHODIR
FOM
GCR
GMRES

Concus and Golub ’76, Widlund ’78
Axelsson ’79, ’80
Vinsome ’76
Young and Jea ’80
Young and Jea ’80
Saad ’81
Elman ’82 [6], Eisenstat et al. ’83 [5]
Saad and Schultz ’86 [23]

III. Biorthogonalization methods

BIOMIN BCG
BIORES BO
BIODIR
BIOMIN CGS
BIORES
BIODIR
BiCGSTAB
QMR

Lanczos ’52 [16], Fletcher ’76 [8]
Lanczos ’50, Jea and Young ’83
Jea and Young ’83
Sonneveld ’89 [25]
Gutknecht ’90 12]
Gutknecht ’90 12]
Van der Vorst ’90 [30]
Freund ’90 [9], [10]

IV. Other methods

USYMLQ
USYMQR

Saunders, Simon, and Yip ’88 [24]
Saunders, Simon, and Yip ’88 [24]

various results concerning the matrix properties that control the convergence of CGN
( 2), GMRES ( 3), and CGS ( 4). In particular, we show that the convergence of
CGN depends on the singular values of A, whereas the convergence of GMRES and
CGS depends on its eigenvalues (ifA is close to normal) or pseudo-eigenvalues (ifA is
far from normal). Many of the results we present are already known, especially those
connected with CGN, but the fundamental distinction between the roles of eigenvalues
and singular values seems to be often overlooked.

These general considerations lead to the conclusion that CGN, GMRES, and CGS
indeed differ fundamentally in capabilities. In 5 we substantiate this claim by constructing
simple, artificial examples which show that in certain circumstances each of these three
iterations outperforms the others by a factor on the order of f or N or more. We
emphasize that these examples are in no way intended to be representative of realistic
computations. They are offered entirely for the insight they provide.

Section 6 discusses the relationship between convergence rates and the properties
of the symmetric part of a matrix, or as we prefer to think of it, the field of values. Using
the examples of 5 for illustration, we argue that a well-behaved symmetric part is neither
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necessary nor sufficient for rapid convergence, and that therefore, considering the sym-
metric part is not a reliable way to analyze iterative methods.

Our discussion of all of these iterations is intentionally simplified. We largely ignore
many important issues such as sparsity and other structure, machine architecture, round-
ing errors, storage limitations, the effect of truncation or restarts, and the possibility of
hybrid Krylov space iterations, which in some cases may be the fastest of all [17]. Most
important, we ignore the issue of preconditioning, without which all of these methods
are often useless (see Example R, below). For a broader view of matrix iterations the
reader should consult references such as 13 ], 21 ], and 22 ]. For an empirical comparison
of CGN, GMRES, and CGS, see [19].

Throughout the paper we use the following standard notation:
Z-norm,

N dimension ofA,
A spectrum ofA,
E set of singular values ofA,
A * conjugate transpose ofA,
x0 initial guess,
x nth iterate,
e A-b x nth error,
r b Ax Ae nth residual.

For any set S
_
C and function f(z) defined on S we shall also find it convenient

to write

f s sup If(z)[.
zS

CGN, GMRES, and CGS can each be described in a few lines of pseudocodeor pro-
grammed in a few lines of Matlab. The formulas are given in Fig. 1.

2. CGN. Perhaps the most obvious nonsymmetric iterative method is the appli-
cation of the conjugate gradient iteration to the normal equations

(2.1) A*Ax=A*b,

an idea that dates to the original CG paper by Hestenes and Stiefel [14 ]. (Of course,
A *A is never formed explicitly.) This algorithm, which we shall call CGN, constructs
the unique sequence of vectors

(2.2) x,xo + (A *ro, (A *A )A *ro, (A *A )"- ’A *ro )
with minimal residual at each step:

(2.3) r, minimum.

A statement equivalent to (2.3) is the orthogonality condition

(2.4) rn .1_ (AA *r0, AA * )Zr0, AA * nro )
The beauty of this algorithm is that thanks to the CG connection, x can be found by a
three-term recurrence relation. For details, see [6].

Though algorithms of the normal equations type are usually based on (2.1), an alternative (often called
Craig’s method) is the sequence AA*y b, x A*y. There is no universal agreement on names for these
algorithms, but the most common choices are CGNR and CGNE, respect.ively. In this paper we use the neutral
term CGN in place of CGNR, since except for a few details, most of what we say applies to CGNE as well.
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CGN
/o:= 0;po:= 0
Forn:= 1,2,...

p,:= A*rn- + 13- 1P,-

an:-IIA*r.-111Z/llAp.
Xn := Xn- + OtnPn
rn ".= rn anAPn
/3.:= IlA*r, ll2/llA*r,_ 1112

GMRES
Vl := ro/ll roll; el (1,0, 0,... )r
Forn:= 1,2,

Forj:= 1,...,n
hjn := VJ’AVn

).+ := AI)n Zj= hjnl)

h.+ 1,.:-- II.+ 111
v.+ f.+ 1/h.+ ,..
y. := least-squares solution to H.y. el I]roll
Xn:= Xo + Ej= (Yn)jV

CGS
q0 := P0 :- 0; o0 := 1, 0 r0 or some other choice
Forn:= 1,2,

p.:= r._
fin := Pn/Pn-
Un := rn Jr- nqn
P. := Un + n(qn- + .P.-
Vn := APn
O’n Vn
On ;’- On/fin
qn := Un OlnVn
r,:= r,-i- a,A(u, + q,)
Xn :-- Xn- + Oln(Un + qn)

FIG. 1. CGN, GMRES, and CGS. Each iteration begins with an initial guess Xo and initial residual ro
b Axo. See 23 ]for details ofmore efficient implementations ofGMRES and 18 ]for the LSQR implementation
ofCGN.

To investigate convergence rates we note that at each step we have

(2.5) x. Xo + q.- (A *A )A *ro
for some polynomial q._ of degree n 1. Subtracting this equation from the exact
solution A -1 b gives

(2.6) e.=p.(A*A)eo

for some polynomial p.(z) zq._(z) of degree n with p.(O) 1. Since r. Ae.
and Ap.(A *A p.(AA * )A, multiplying (2.6) by A gives

(2.7) r. p.(AA * )ro

for the same polynomial p.(z). We conclude that convergence will be rapid if and only
ifpolynomials p. exist for which ]]p.(AA *)roll decreases rapidly, and a sufficient condition
for this is that IIp.(AA * )II should decrease rapidly. Exact convergence in exact arithmetic
occurs in at most n steps ifthe degree ofthe minimal polynomial ofAA * is n. Convergence
to a tolerance e occurs ifAA * has a "pseudominimal polynomial" p. with p.(0) and
[[p,,(AA *)1[ _-< e.
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At this point singular values enter into the picture. Since AA * is a normal matrix
with spectrum ), we have

(2.8) ]]p.(AA * )1] lip.

for any polynomial p, where we have defined ]]p.]] SUpz ]p(z)] as mentioned
in the Introduction. In other words, the rate of convergence of CGN is determined by
the real approximation problem of minimizing []p.]]2 subject to p.(0) 1. We have
proved the following theorem.

THEOREM 1. For the CGN iteration applied to an arbitrary matrix A,

(2.9)
r, _< inf p,

p(0)

Greenbaum has shown that for each n, there exists an initial residual r0 such that equality
in (2.9) is attained 11 ]. Thus this theorem describes the upper envelope ofthe convergence
curves coesponding to all possible initial guesses for the CGN iteration applied to a
fixed matrix A and fight-hand side b. Pagicular initial guesses make obseed convergence
curves lie below the envelope, but the improvement is rarely dramatic.

We emphasize that the convergence ofCGN is determined solely by the singular
values ofA. Any two matrices with the same singular values have identical worst-case
convergence rates.2 IfA is normal, the moduli ofthe eigenvalues are equal to the singular
values, but the arguments of the eigenvalues are irrelevant to convergence. If A is not
normal, convergence rates cannot be determined from eigenvalues alone.

One choice ofa polynomial p, in (2.9) is the Chebyshev polynomial T, transplanted
to the interval [in,x and normalized by p,(0) 1, where min and ffmax denote
the extreme singular values of A. Elementaff estimates lead from here to the famil-
iar corolla

]]r]] <2(- 1)(2.10) []01[ K+

where K O’max/O’mi is the condition number ofA. Thus, loosely speaking, CGN converges
in at most O(r) iterations. Unlike (2.9), however, this inequality is far from sharp in
general, unless the singular values ofA are smoothly distributed.

Another choice ofPn is a product of two polynomials p and pn_ of lower degree.
Together with Greenbaum’s sharp form of Theorem 1, this yields another corollary of
Theorem 1:

for any k =< n. To put it in words: the envelope described by (2.9) is concave downwards,
so the convergence ofCGN tends to accelerate in the course of the iteration.

The convergence of CGN is strictly monotonic:

(2.12) IIr +,ll

In fact the determining effect of the singular values applies to all initial vectors, not just to the worst case;
see the penultimate paragraph of 3.
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One of the many ways to prove this is to note that for sufficiently small e, I- eAA * <
see 6 ). Equation 2.12 follows since Pn / (z) must be at least as good as the product

ofpn(z) and the monomial ez.
The results of this section are essentially all known. In particular, theorems related

to (2.11 can be found in 28 ].

3. GMRES. Residual minimization methods minimize the residual in a simpler
Krylov space at the price of more arithmetic. They construct the unique sequence
{x } with

(3.1) x,xo + ( ro,Aro,
satisfying

(3.2) r, minimum.

An equivalent statement is the orthogonality condition

(3.3) rn _k (Aro,A Zro, ,A nro ).
This condition is implemented by "brute force" in the sense that at the nth step, linear
combinations of n vectors are manipulated. The GMRES iteration is a robust imple-
mentation of (3.1)-( 3.3 by means of an Arnoldi construction of an orthonormal basis
for the Krylov space, which leads to an (n + X n Hessenberg least-squares problem
[23]. At each step we have

(3.4) e,=p,(A)eo, rn=p,(A)ro,

where p(z) is a polynomial of degree n with p(0) 1. Convergence will be rapid if and
only if polynomials p, exist for which I[p(A)ro[[ decreases rapidly, and a sufficient con-
dition for this is that
occurs in n steps if there exists a polynomial p with pn(0) and I[p,(A)I1 --< e.

These formulas lead us to look at eigenvalues rather than singular values. IfA is a
normal matrix with spectrum A, then for any polynomial p,

(3.5)

From this we obtain the following analogue of Theorem 1.
THEOREM 2. For the GMRES iteration applied to a normal matrix A,

3.6

pn(0)

As in Theorem 1, we expect that this bound will be reasonably sharp in practice, though
it is not known that equality need be attained for any r0. Thus if A is normal, the con-
vergence ofGMRES is determined by the eigenvalues ofA via the complex approximation
problem of minimizing [[Pn[[A subject to p(0) 1. Complex approximation problems
are harder than real ones, and no convergence bound as memorable as (2.10) results.
Equation (2.11 ), on the other hand, carries over to this case without modification.

Unfortunately, nonsymmetric matrices are rarely normal. Two methods of analysis
of the convergence of GMRES for general matrices have been proposed. The first, the
standard approach in the literature, is basedon the assumption that A is not too far from
normal. For any matrix A that can be diagonalized as A VAV-, the natural gener-
alization of (2.8) is

3.7 P, A ----< P, (A) _-< K( V p, A.
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Combining (3.4) and (3.7) gives the following theorem.
THFOEM 3. For the GMRES iteration applied to a diagonalizable matrix A,

(3.8)
[[r" [1-< (V)inf

p.(0)

where ( V) is the condition number ofany matrix ofeigenvectors ofA.
This theorem indicates that if (V) is not too large, it is still a reasonable approxi-

mation to say that the convergence of GMRES is determined by the eigenvalues ofA.
The second approach is motivated by matrices for which (V) is huge or infinite,

that is, matrices whose eigenvalues are highly sensitive to small peurbations in the
matrix entries. Let h h denote the e-pseudospectrum of A, i.e., its set of e-pseudo-
eigenvalues: those points z
e or, equivalently, those points z e C with (zI- A)- e -1. Let L be the arc length
of the boundaff 0A. By a contour integral we can readily show that

(3.9) l[p,l[ < l[p,(A)[l <
L

for any e > 0 26 ]. This inequality leads to the following theorem.
THEOREM 4. For the GMRES iteration applied to an arbitrary matrix A,

3.10

p,(0)

for any e > O.
Loosely speaking, ifA is far from normal, then the convergence ofGMRES depends

on polynomial approximation problems defined on the pseudospectra, not just the spec-
trum. See [17], [26], and [27] for examples and fuher discussion of this phe-
nomenon.

The convergence ofGMRES, unlike CGN, is not always strictly monotonic; we can
have r, + r, [. A necessaff and sufficient condition for strict monotonicity at eve
step n (and for all ro) is that the field of values ofA should lie in an open half-plane with
respect to the origin. This half-plane condition is discussed fuher in 6.

Neither Theorem 3 nor Theorem 4 is sha, nor necessarily close to sha even for
worst-case initial residuals r0. To the best ofour knowledge the convergence ofGMRES,
unlike that ofCGN, cannot be reduced completely to a problem in approximation theoff.

It is readily shown that ifA and A are unitafily similar, then their behaviors under
GMRES are identical in the sense that there exists a bijection ro f0 on Cu such that
the convergence curve for A with initial vector r0 is the same as the convergence curve
forA with initial vector f0. The analogous statement for CGN would be that the behaviors
of A and A under CGN are identical in the same sense if AA * and AA* are unitafily
similar, which is equivalent to A and A having the same singular values. See the remarks
following Theorem in 2.

We cannot complete a discussion of GMRES without mentioning the impoant
point that in practice, residual minimization methods are usually not applied in the
"pure" form described above. To keep storage requirements under control, GMRES is
often restaed after each k steps for some integer k (e.g., 5 or 10 or 20), and ORTHOMIN
is generally truncated in a different but analogous way so that the algorithm works always
with a k-dimensional Kfflov substance. Besides the desire to keep the discussion simple,
we have avoided mentioning this issue because we believe that restaaing or truncating
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these iterations is not an entirely satisfactory idea, since the resulting algorithms tend to
spend a great deal of time relearning information obtained in previous cycles. For a
discussion of this point, see [17 ], where we advocate the use of hybrid methods instead.

4. BCG and CGS. The BCG, or biconjugate gradient iteration, constructs non-
optimal approximations in the same Krylov subspace as GMRES, but with less work
per step [8], [16]. Thus, like GMRES, BCG constructs a sequence of vectors

(4.1) x,6xo+ro,Aro,
which implies

(4.2) en=pn(A)eo, rn=pn(A)ro

for some polynomial pn of degree n. The difference is that instead of (3.3), p is now
determined by the orthogonality condition

(4.3) rn_L 0,A*0, ,(A*)"-

where Y0 CU is a vector often taken equal to r0. Since GMRES is optimal in the sense
of (3.2), BCG can never outperform it if one measures performance by the number of
iterations required to reduce [Ir, by a certain amount. However, BCG computes its
choice ofxn by three-term recurrence relations. Consequently the nth step ofBCG requires
O( vector operations rather than the O(n) vector operations required by GMRES,
making it potentially much faster in total work. Equally important, the amount ofstorage
required does not grow with n.

CGS, which stands for "CG squared," is a modification of BCG due to Sonneveld
[25 ]. Sonneveld’s observation is that by reorganizing the BCG algorithm in a certain
way one can replace (4.2) by

(4.4) en=pZ(A)eo, r,=pZ(A)ro

for the same polynomial pn, with no increase in the amount ofwork per step. Furthermore,
whereas BCG (like CGN) requires vector multiplications by both A and A *, which may
be awkward for certain sparse data structures or parallel machines, or may be impossible
when matrix-free algorithms are in use, CGS only requires multiplications by A.

We will not give further details ofthese algorithms or much information about their
convergence properties, which are less well understood than for CGN and GMRES. For
discussion of these matters, including remarkable connections with orthogonal polyno-
mials, continued fractions, Pad6 approximation, and the qd algorithm, see [2], [12 ],
[20], and [29]. The following remarks, most ofwhich can be derived from the description
above, will suffice.

First, thanks to (4.4), CGS typically converges (or diverges) faster than BCG by a
factor of between and 2.

Second, except for that factor of 2, CGS can outperform GMRES in total work but
not in number of iterations. In fact, at each step we obviously have that

(4.5) r ?RES =< r

if all three methods begin with the same r0, regardless of the choice of o.
Third, for a symmetric matrix and Y0 ro, BCG reduces to the CG iteration [8].
Finally, far from converging monotonically, BCG and CGS are susceptible to the

possibility of breakdown--division by zero--if on- 0 or , 0 at some step (see Fig.
). Breakdown will not occur in the genetic case, but numerical analysts are well trained

to expect that where infinities may arise with probability zero, numbers large enough to
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be troublesome in floating-point arithmetic are likely to appear more often than that.
Moreover, as our example S below will show, the mere requirement that ro and 0 be
real is enough to guarantee breakdown in certain cases. In the face of such reasonable
grounds for suspicion, it is remarkable how frequently BCG and CGS turn out to be
effective.

Various results are known about conditions under which BCG and CGS break down
or converge exactly, assuming exact arithmetic 20 ], 12 ]. For example, it can be shown
that ifGMRES obtains the exact solution at a certain step n, then BCG and CGS do the
same if they do not break down [20]. Unfortunately, much less is known about what
matters in practice: approximate breakdown and approximate convergence.

5. Eight examples. So much for the generalities. Now back to the original questions:
how different are CGN, GMRES, and CGS, and when? What convergence curves--
log [Irn as a function of n--are possible?

To show that none of these algorithms is dispensable, three examples would suiflce.
As our goal has been to learn as much as possible in the process, however, we have
actually constructed 23 8 examples in an attempt to nail down the space of matrices
at every corner. Table 2 summarizes these examples by listing numbers of iterations--
not work estimates. For CGN and CGS the two are proportional, but for GMRES the
work per step increases linearly with the number of iterations if the matrix is sparse, and
so does the storage. Thus if a sparse matrix requires O(V) iterations for both GMRES
and CGS, CGS is the winner in both work and storage by a factor O().

GMRES and CGS construct iterates in essentially the same Krylov space and are
relatively hard to distinguish. Therefore, we begin the discussion with the first four ex-
amples in the table, for which these two behave comparably. With each example we
present a computed convergence curve corresponding to dimension N 40, except in
two cases with N 400, and a random real initial vector x0 and fight-hand side b with
independent normally distributed elements ofmean 0 and variance 1. Bigger dimensions
do not change the curves significantly. For CGS we take 0 r0, except in Example B+.

To fully explain these experiments we mention that the curves plotted below represent
actual residuals, not residual estimates computed by the iterative algorithm; as it happens,
in these examples it makes little difference. Plots of errors rather than residuals also look
qualitatively similar for these examples.

Example I: all methods good Fig. 2). By Theorem l, CGN converges in one step
(for all initial data) if and only if all the singular values of A are equal, that is, if and

TABLE 2
Numbers ofiterations requiredfor convergence to afixedprecisionfor our eight

example matrices for worst-case initial residuals. denotes divergence.

Name of matrix CGN GMRES CGS

I all methods good
R N N N all methods bad

C N N CGN wins
BI N 2 2 CGN loses

D N 2 /N CGS wins
S 2 * CGS loses

B+ N 2 * GMRES wins
B, 2 2N N GMRES loses
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-10

GMRES
CGN

CGS

N=40

0 10 20 30 40 50

FIG. 2. Example I (identity). All three iterations converge in one step.

only if A is a multiple of an orthogonal matrix. By a slight extension of Theorem 3,
GMRES converges in one step (and CGS also, by the remark at the end of 4) if and
only ifA is diagonalizable and all its eigenvalues are equal, that is, if and only ifA is a
multiple of the identity. Since the identity is orthogonal, the latter condition implies the
former, and these conditions are simultaneously satisfied if and only if A is a scalar
multiple ofthe identity. Thus up to a scale factor there is a unique matrix that is handled
perfectly by CGN, GMRES, and CGS: A I.

Example R: all methods bad (Fig. 3). The opposite extreme would be a matrix for
which all three iterations made no progress whatever until step N. By (2.12) no such
example exists, but we can easily find a matrix for which all three algorithms make negli-
gible progress until step N. By Theorems and 2 any normal matrix with suitably trou-
blesome eigenvalues and singular values will suffice, such as A diag 1, 4, 9, N2).
For a more interesting example, consider a random matrix R of dimension N. To be
precise (although the details are not very important), let the elements ofR be independent
normally distributed random numbers with mean 0 and variance 1. Such a matrix has
condition number O(N) on average and smoothly distributed singular values [4], so by

lglO rll

-lO

N=40

10 20 30 40 50

FIG. 3. Example R (random). All three iterations require N steps.
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Theorem 1, CGN will require N steps for convergence. The eigenvalues are approximately
uniformly distributed in a disk of radius about the origin, suggesting that GMRES
and CGS will also require N steps. In other words, no known iterative method solves
random matrix problems in better than O(N) iterations. (It would certainly be startling
if this were not true, since such an iteration would beat Gaussian elimination on average
even in the absence of preconditioning.) These predictions are confirmed by the exper-
iment presented in Fig. 3. Note that the CGS convergence curve is wiggly, while the other
two are monotonic, and that only GMRES exhibits the convergence in Nsteps that would
be achieved by all three methods in exact arithmetic.

Example C: CGN wins (Fig. 4). Suppose we want a matrix for which
CGN converges in one step but GMRES and CGS make no progress at all (for
worst-case initial data) until step N. As mentioned above, the first requirement will be
met if and only if A is a multiple of an orthogonal matrix. For the second, we must
have ro rl rv_ l, or by (3.3) and (4.3), ro +/- (Aro, A 2r0, AN- ro and
r0 +/- (?0, A *?0, (A * )u- 20). These conditions are simultaneously satisfied for suitable
ro if A is a multiple of an orthogonal matrix with minimal polynomial zN, such as
the circulant matrix

0 1
0 1

(5.1) C= 0 1 (NN).
0 1

1 0

It is obvious why this matrix is indigestible by GMRES and CGS: C represents a circulant
shift upwards by one position, while C- is a circulant shift downwards. It takes N-
shifts in one direction to approximate a single shift in the other direction, and thus Krylov
spaces provide very poor approximations. This example has been mentioned before by
Brown [3], van der Vorst [29], and undoubtedly others.

Example B: CGN loses (Fig. 5). Now we want to reverse the pattern of the last
example. As mentioned above, convergence in one step of GMRES and CGS implies
that the matrix has just a single nondefective eigenvalue, hence is a multiple of the
identity, entailing convergence in one step of CGN also. Thus a perfect example in this
category cannot exist. However, a nearly perfect example can be found if we settle for

GMRES

CGN

N=40

n
-10

0 10 20 30 40 50

FIG. 4. Example C circulant shift). CGN converges in one step, but GMRES and CGS require N steps.
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GMRES
,,CGS

N=40

CGN

-10
0 10 20 30 40 50

FIG. 5. Example B (block-diagonal matrix with eigenvalue ). CGN requires N stepsfor convergence, but
GMRES and CGS converge in two steps.

convergence in two steps of GMRES and CGS. Thus we need a matrix whose minimal
polynomial has degree 2 but which is ill-conditioned, with singular values spread over a
wide range. Such an example is the block-diagonal matrix

ml

(5.2) B1 M3 (N N),
,o

MN/2

with

j-l) <j<N/2.(5.3) 34 0

Obviously the minimal polynomial has degree 2, while the varying values ofj ensure a
troublesome distribution of singular values in the range approximately [2/N, N/2 ].
Incidentally, the diagonal elements ofM might just as well have been taken to be any
two numbers a and/3 of the same sign, so long as they remain the same in every block.

The four examples above show that CGN is sometimes better than GMRES and
CGS by a factor O(N) and sometimes worse by the same factor. This leaves us with the
problem of distinguishing GMRES and CGS, which calls for examples of a different
style. To make CGS look worse than GMRES, we construct examples in which CGS
breaks down, at least for worst-case initial data. To make CGS look better than GMRES,
we construct sparse examples in which both iterations take O(V) steps, implying that
the work and storage estimates for GMRES are O(/) times larger. Alternatively,
O(V) may be replaced by a constant and these examples may be interpreted as showing
that CGS may outperform GMRES by an arbitrary factor.

Example D: CGS wins (Fig. 6). For an example in this category it suffices to pick
any diagonal matrix with condition number K O(N) and smoothly distributed positive
entries. BCG then behaves exactly like CG, requiting O(V) iterations, since the co;dition
number is O(N), and GMRES behaves almost the same but not identically since it is
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minimizing a different norm. CGS does better by at most a factor of 2. CGN, however,
squares the condition number and requires O(N) steps.

For a particularly clean version of this idea, define

(5.4) D diag (x ,X2, ,XN),

where { xa. } denotes the set of Chebyshev extreme points scaled to the interval [1, K] for
some g > 1,

(5.5) yj cos
(j- )
N-’-’ xJ= +-(yj+ 1)(g- 1), <-j<-N.

Then we expect steady convergence of GMRES at the rate indicated by (2.10) with
replaced by f, and convergence of CGS at about twice this rate. If we set

(5.6) (f-- ) 21/- ( -+- el/21/- 2

=e, i.e.,=/- -t- el/-7U)
then GMRES and CGS will converge to accuracy e in about2and 11 steps, respec-
tively. Confirming this prediction, Fig. 6 shows the results of an experiment with e

10 -l and dimension N 400 rather than the usual N 40.
Example S: CGS loses (Fig. 7). Let S be the skew-symmetric matrix

(5.7) S @IN/2,
-1 0

that is, an N N block-diagonal matrix with 2 2 blocks. This matrix is normal and
has eigenvalues +i and singular value 1. Therefore, by Theorems and 2, CGN converges
in one step and GMRES in two steps, as shown in Fig. 7. On the other hand, CGS
encounters a division by zero at the first step for any real initial vector r0, assuming
o ro. If o is chosen at random, the zero denominator is avoided genetically and
convergence is achieved in practice, but the expected result of that division remains
infinite.

An analogous example, though essentially of dimension 4 rather than 2, has been
discussed by Joubert [15].

10

CGN

GMRES

10 20 30
-10 d0 50o

FIG. 6. Example D (diagonal matrix with condition number N). The dimension is N 400. CGS requires
f- steps for convergence, while CGN and GMRES require O(N) and 21/ steps, respectively--hence a total
work estimate in both cases comparable to O(N) steps ofCGS.
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CGS N=40

GMRES

N
n

-10
0 10 20 30 40 50

FIG. 7. Example S (skew-symmetric). CGS breaks down at thefirst step, while CGN andGMRES converge
in one and two steps, respectively.

Example B+I: GMRES wins (Fig. 8). For this example we want a matrix like that
of Fig. 5, except for which CGS breaks down. This is easily accomplished by defining a
matrix B+I by (5.2) but with (5.3) replaced by

<=j<N/2(5.8) M 0 -As with the matrix S above, CGS will encounter a division by zero at the first step if ro
and ?o are chosen appropriately, and this is what we have done in Fig. 8. Genetically,
however, this example does not break down.

Example BK: GMRES loses (Fig. 9). For this final example it is natural to modify
the idea of matrices B and B+ again so that instead of fixed eigenvalues and varying
singular values, we have fixed singular values and varying eigenvalues. In particular, let
BK be defined as in (5.2) but with (5.3) replaced by

(5.9) M=( xj "’J) K
2 2/X)1/2 <=j<

0 K/xj
"YJ=( +I-x-K =N/2,

cs

o

-2

-4

-6

-8 GMRES

-10
10

CGN

N=40

FIG. 8. Example B+_ (block diagonal matrix with eigenvalues +1 ). To make CGS break down, ro and o
have been chosen diabolically.
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logol rll o

-2

.101
0 10 20 30 40

N=400

n

FIG. 9. Example BK (block-diagonal matrix with singular values 1, K ). As in Fig. 6, the dimension is N
400. CGN takes two steps for convergence, CGS takes f- steps, and GMRES takes 2V steps, for a total
GMRES work estimate comparable to O(N) steps ofCGS.

where { xj. } are again Chebyshev points scaled to the interval [1, K[ as in (5.5), but with
N replaced by N/2. It is readily verified that each block M has the same singular values
and K, whereas the eigenvalues lie throughout the interval [1, r]. Taking again N

400, e 10 -1, and r defined by (5.6) gives the results shown in Fig. 9.

6. Symmetric parts and half-plane conditions. In the literature on nonsymmetric
matrix iterations, much attention has been given to the behavior of the symmetric or
more properly Hermitian part of a matrix, defined by M 1/2 (A + A *). In particular,
Eisenstat, Elman, and Schultz 5 and Elman 6 show that ifM is positive definite, then
various truncated and restarted Krylov space iterations are guaranteed to converge with
a convergence rate bounded according to

[ )tmin(M)2 ]n/2(6 1)
Ilr, _<
]Jr011 a-a-i

where ffmax(A kmax(A *A)1/2 is the largest singular value ofA. Among other algorithms,
these results apply to GMRES (k) for any k >- 1, that is, GMRES restarted every k steps

Theorems ofthis kind can be made rotationally invariant by restating them in terms
of the field of values of a matrix, defined by W {x*Ax/x*x, x cN}. The real
part of W is equal to the interval [kmin(M), kmax(M)], and therefore the statement
that M is positive definite is equivalent to the statement that W lies in the open fight
half-plane. More generally, it is enough to assume that W lies in any open half-plane
{ z Re (e-iz) > 0 }. We call this assumption the half-plane condition; it is also some-
times said that A is definite. The basis of these convergence theorems is the observation
that the half-plane condition implies ee-iAl] < for all sufficiently small e > 0.
The mathematics involved is the same as in standard results in numerical analysis on
logarithmic norms, or in functional analysis, the Hille-Yosida theorem [27].

These theorems are important, but we believe they are oflimited utility for choosing
between iterative methods. The reason is that they are based on the relatively trivial case
in which k 1, analogous to a steepest-descent iteration; for k > 2 the half-plane condition
is sufficient but not necessary tbr convergence. This fact is well known in principle, but
nevertheless the opinion seems to have become widespread that the half-plane condition
is what matters in practice. See, for example, [7] and [24].
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To show that a well-behaved symmetric part is not necessary for rapid convergence
of GMRES, it is enough to look at the matrices S, B1, or B+l. For example, consider
B1. The field of values is the disk about z of radius N4, which implies Xmin(M)
N4, kmax(m) + N4. We could hardly be further from satisfying the half-plane

condition, but GMRES converges in two steps.
Conversely, (6.1) shows that a sufficiently well-behaved symmetric part guarantees

rapid convergence of GMRES. To show that mere positive definiteness of M is not
enough, however, consider a normal matrix along the lines of the matrix C of (5.1), but
with eigenvalues only at the roots of unity in the fight half-plane. Since the condition
number is 1, CGN converges in one step, whereas GMRES still requires many steps.

7. Conclusions and exhortation. Ofthe many parameter-free nonsymmetric matrix
iterations proposed to date, we believe that CGN, GMRES, and CGS are the best. So far
as we know, for calculations in exact arithmetic with performance measured by the
residual norm [Ir,[[, no other iteration ever outperforms these three by more than a
constant factor, except in certain examples involving special initial residuals r0.

The convergence ofCGN is determined by the singular values ofA; the eigenvalues
have nothing to do with it except insofar as they determine the singular values. If A is
normal or close to normal, the convergence ofGMRES is determined by the eigenvalues
of A; the singular values, and in particular the condition number, have nothing to do
with it. More precisely, by Theorems and 2, the convergence ofGMRES and CGN for
a normal matrix depends on how well 0 can be approximated on the spectrum A by
polynomials p(z) and p,(r2), respectively, with p,(0) and r Iz]. It follows that
we can expect CGN to be the winner ifthe singular values are clustered but the eigenvalues
tend to surround the origin, whereas GMRES will be the winner if the eigenvalues are
as tightly clustered as the singular values.

If A is far from normal, on the other hand, the convergence of GMRES becomes
slower by a potentially unbounded factor than eigenvalues alone would suggest. In some
such cases, the convergence is approximately determined by the pseudospectra of A
instead.

The above statements about GMRES apply also), approximately, to CGS, but the
convergence of CGS is affected additionally by instabilities that are not yet fully under-
stood. When matrix-vector multiplications are much more expensive than vector oper-
ations and storage, CGS can outperform GMRES by at most a factor of 2. When the
cost of vector operations and storage is significant, however, as is typical in sparse matrix
calculations, Examples D and B have established that CGS may outperform GMRES
by a factor of order f. Taken together, our examples show that CGN, GMRES, and
CGS each outperform the others in some cases by factors of order or N.

In summary, these three algorithms are genuinely distinct in their behavior. Until
something better comes along, there is a place for all of them in scientific computing.

Having confined the discussion to generalities and contrived examples throughout
the paper, we close with two editorial remarks of the more usual kind. First, we believe
CGN is underrated. Despite the squaring ofthe condition number, this algorithm some-
times outperforms the competition; too many authors dismiss it with a flurry ofrhetoric.
Second, CGS is a remarkable algorithm that deserves attention. It outperforms the more

The "squaring of the condition number" we refer to is the fact that 2; rather than 2; or A is what governs
the convergence of CGN in exact arithmetic (Theorem ). Whether rounding errors are amplified by a factor
on the order of the square of the condition number is quite a different matter and is not discussed here. With
the LSQR implementation, they need not be [18 ].
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familiar BCG frequently by a factor of to 2, and it converges in a number of iterations
as low as GMRES far more often than the available theory might suggest. Yet, despite
these impressive results, the convergence curves generated by CGS are frequently so
erratic that it is hard to imagine that this algorithm can be completely fight. We suspect
an even better algorithm may be waiting to be discovered.4

CGN, GMRES, and CGS are so easy to program that there is little excuse for not
taking the trouble to do so. We propose that until a fundamentally superior matrix
iteration is invented, researchers in this field adopt the policy that no plot ofconvergence
rates is complete unless it includes curves for CGN, GMRES, and CGS.
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A HYBRID GMRES ALGORITHM FOR NONSYMMETRIC
LINEAR SYSTEMS*
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Abstract. A new hybrid iterative algorithm is proposed for solving large nonsymmetric systems of linear
equations. Unlike other hybrid algorithms, which first estimate eigenvalues and then apply this knowledge in
further iterations, this algorithm avoids eigenvalue estimates. Instead, it runs GMRES until the residual norm
drops by a certain factor, then re-applies the polynomial implicitly constructed by GMRES via a Richardson
iteration with Leja ordering. Preliminary experiments suggest that the new algorithm frequently outperforms
the restarted GMRES algorithm.

Key words, iterative method, Krylov subspace, CGNR, GMRES, CGS, hybrid, pseudospectrum
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1. Introduction. In this paper we present a new point of view regarding nonsym-
metric matrices, and as a natural outgrowth, a new hybrid iterative algorithm. The point
of view is that if a matrix is nonsymmetric (more precisely, nonnormal), any attempt
to make use of its eigenvalues should be viewed with caution. The new algorithm is a
hybrid scheme in which a few steps of GMRES [29] are followed by a Richardson
iteration based on the polynomial implicitly constructed by GMRES, with the factors
ordered in a Leja sequence for stability [25]. Unlike other hybrid algorithms, this one
never estimates any eigenvalues. It is simpler than other hybrid iterations, but more
robust, and appears to outperform other methods in many cases.

We begin with a brief explanation and survey of hybrid methods, assuming that the
reader is already familiar with GMRES, the Arnoldi process, and polynomial iterations.
Suppose we are given a large nonsymmetric system of linear equations

(1.1) Ax=b, AECNN, x, bECN,
where A may be the matrix that results after preconditioning. The many nonhybrid
iterative methods that have been proposed for solving such systems can be divided into
two categories: (i) those that require no a priori information about A, of which three of
the most important are CGN, CGS, and GMRES, and (ii) those that do require a priori
information about A, such as the Richardson and Chebyshev iterations. The idea of a
hybrid iteration is to combine these approaches in a two-phase algorithm:

Phase I: acquire information about A via an iteration of type (i);
Phase II: apply that information in further iterative steps of type (ii).

In practice, of course, things need not be quite so simple; a robust code may loop back
to Phase I one or more times to ensure an adequate convergence rate.
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The assumption underlying the hybrid idea is that algorithms of type (i) cost more
per step than those of type (ii), so that a switch from the one to the other is potentially
advantageous. This assumption frequently holds for GMRES and for the many other
Krylov subspace iterations such as ORTHORES, ORTHOMIN, and ORTHODIR, be-
cause these algorithms have the unfortunate property that the work and storage required
to carry out the nth step grow in proportion to n. The goal of a hybrid algorithm is to
recover some of this factor O(n). On the other hand the assumption does not hold for
CGS nor for CGN in problems where A * is as easy to apply to a vector as A. Thus the
natural realm of applicability of hybrid methods is to problems where Krylov subspace
methods take fewer steps than the alternatives. For a discussion of when this is likely to
be the case, see [20].

The recent literature on hybrid methods begins with a paper of Manteuffel 18 ]. In
Manteuffel’s algorithm, a number of extreme eigenvalues of A are first estimated by a
modified power iteration (Phase I). These eigenvalue estimates are then surrounded by
an ellipse, and a Chebyshev iteration is carried out with parameters corresponding to
that ellipse (Phase II). Schematically,

Manteuffel ’78:
modified power iteration - eigenvalue estimates -- ellipse -- Chebyshev iteration.

Ashby has implemented this algorithm in a Fortran code package called ChebyCode 2 ],
which incorporates many safeguards and extra features omitted in this outline.

Let x0 denote the approximation to the solution A lb at the beginning ofan iterative
process, which may correspond to Phase I or Phase II depending on context. We use the
following (standard) notation:

nth iterate: xn,

nth error: en=A-Ib-xn,

nth residual: rn Aen b Axe.
Manteuffel’s algorithm delivers Phase II iterates x satisfying

xn x0 + q (A) r0, q P
and

(1.2) e,,=p(A)eo, r,=p,(A)ro, pn6P,, p(0)=l,

where p,(z) zq, l(z) is a Chebyshev polynomial shifted to the ellipse ofeigenvalue
estimates. (P, denotes the set ofpolynomials ofdegree less than or equal to n. The same
equations (1.2) hold for other hybrid Krylov subspace iterations, including our own.
The various algorithms differ only in the choice of the sequence of polynomials p(z),
known as residual polynomials, and in the mechanics of how they are applied. Our
goal is to make Ilpn(A)roll small, and the obvious way to achieve this is to try to make
IIP,(A) small.

One modification of Manteuffel’s algorithm is to replace the Chebyshev iteration
of Phase II by a more general iteration, an idea first proposed by Smolarski and Saylor
34 ], 35 ]. Phase I oftheir algorithm constructs a polygon containing eigenvalue estimates,
then solves a discrete least-squares approximation problem on that polygon to obtain an
effective residual polynomial p,(z) for some integer . Phase II applies this polynomial
one or more times by means of a cyclic Richardson iteration

(1.3) pk,(z)=[p,(z)] k, k 1,2, ....
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In outline:

Smolarski andSaylor ’81:
modified power iteration -- eigenvalue estimates- polygon --L2-optimal p,(z) -- Richardson iteration.

The advantage of such an algorithm is that since the approximation problem is posed
on an arbitrary domain ofestimated eigenvalues, there is no restriction to matrices whose
spectra are well approximated by an ellipse. Throughout this paper, p,(z) denotes a
residual polynomial of fixed degree which forms the basis of a cyclical Phase II iteration
defined by (1.3).

Another modification of Manteuffel’s algorithm is to replace the power iteration of
Phase I by an Arnoldi iteration, which is now the standard method for estimating eigen-
values of nonsymmetric matrices iteratively. In fact this difference is not as great as the
names suggest, for the modified power iteration is essentially the same as the Arnoldi
iteration. Together with the Arnoldi point of view, however, comes the important ad-
ditional advantage that an approximate solution in Phase I can be conveniently con-
structed by the closely related GMRES algorithm. This kind of hybrid was first proposed
by Elman, Saad, and Saylor [7]:

Elman, Saad, andSaylor ’86:
Arnoldi/GMRES -- eigenvalue estimates -- ellipse -- Chebyshev iteration.

To be more precise about what we mean by an "Arnoldi/GMRES" calculation, the
Arnoldi and GMRES iterations both make use of a Hessenberg matrix obtained by the
orthogonalization of a sequence of Krylov vectors. The Arnoldi iteration estimates ei-
genvalues of A by computing the eigenvalues of the square part of this matrix, while
GMRES finds approximate solutions to Ax b by solving a least-squares problem in-
volving the same matrix made rectangular by the addition of an extra row. In a Phase I
calculation of Arnoldi/GMRES type, both of these computations are carried out si-
multaneously, so that Phase II begins with both eigenvalue information and a good
initial guess.

The most general hybrid algorithms combine both of these modifications, and thus
differ from Manteuffel’s algorithm in both Phases I and II. One of the first of these to be
proposed was the PSUP algorithm ofElman and Streit 8 ], in which an Arnoldi/GMRES
iteration to obtain eigenvalue estimates is followed by a solution ofan L approximation
problem on a polygonal domain, with the resulting polynomial iteration implemented
by a matrix version of Horner’s rule:

Elman andStreit ’86:
Arnoldi/GMRES eigenvalue estimates -- polygon --L oo-optimal p,(z) -- Horner iteration.

Another algorithm of this type, developed at about the same time by Saad [28 ], solves
an L2 approximation problem on a polygon after first constructing a well-conditioned
basis of shifted Chebyshev polynomials, then applies the resulting polynomial in a second-
order Richardson iteration:

Saad ’87:
Arnoldi/GMRES -- eigenvalue estimates -- polygon -- Chebyshev basis --L2-optimal p,(z) -- second-order Richardson iteration.
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More recently, Saylor and Smolarski have also modified their method to take advantage
ofGMRES 32 ], 33 ]:

SaylorandSmolarski ’91:
Arnoldi/GMRES eigenvalue estimates -- polygon --L2-optimal p,(z) -- Richardson iteration.

Finally, two recent algorithms developed since this article was first drafted make use of
numerically computed Schwarz-Christoffel conformal maps [17], [43]:

Li ’91:
Arnoldi/GMRES -- eigenvalue estimates polygon -- conformal maprational approximation (k,/)-step iteration.

Starkeand Varga ’91:
Arnoldi/GMRES -- eigenvalue estimates- polygon --conformal map-- Faber polynomials-- Richardson iteration.

The above algorithms are summarized in Table 1.1. We hasten to add that these
algorithms differ in many important ways that we have not mentioned and indeed, all
of the one- or two-line summaries of this section represent only the barest of skeletons.

This completes our survey of existing hybrid algorithms of the fully specified sort,
where procedures for both Phases I and II are given, so that the algorithm is applicable
in principle to an arbitrary matrix. In addition, however, there is a large literature of
"polynomial iterations" or "semi-iterative methods" devoted to Phase II by itself, on the
assumption that eigenvalue estimates are already available, and each ofthese becomes a
full-fledged hybrid algorithm as soon as it is coupled with an Arnoldi/GMRES iteration
for Phase I. For example, Opfer and Schober construct a first-order Richardson iteration
from an L-optimal polynomial [22]; Eiermann [5] and Gutknecht [13] investigate
Faber and Faber-CF approximations, respectively; Fischer and Reichel [9 ], [24] and
Tal-Ezer 37 derive p,(z) by polynomial interpolation in Frjer points conformal images
ofroots ofunity); and Gragg and Reichel recommend the use ofpolynomials orthogonal
on the boundary of the eigenvalue domain [11]. There are also a number of important
papers by Eiermann, Niethammer, Varga, and others on further aspects ofthese iterations
and their connections with approximation theory and complex analysis; an example is
[6]. We will not attempt a survey, but merely note in conclusion that whereas the idea
of estimating eigenvalues by the Arnoldi process clearly predominates for Phase I of
hybrid algorithms in the current literature, the possibilities for Phase II are numerous.

Phase

Power Method

Arnoldi/GMRES

TABLE 1.1
Hybrid algorithms.

Phase II

Chebyshev Other

Wrigley [42]
Manteuffel 18]
Saylor [30]

Elman, Saad, and Saylor [7]

Smolarski and Saylor [34], [35]

Elman and Streit [8]
Saad [28]
Saylor and Smolarski [32], [33]
Li [17]
Starke and Varga [43]
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Hybrid iterative algorithms are closely related to the idea of polynomial precondi-
tioners 15 ], 27 ]. The polynomial p,(z) constructed by the hybrid algorithm proposed
in this paper might be applied as a preconditioner, and a recursive version of this idea
has recently been considered by Joubert [16, 3.5].2 In the symmetric case, there is a
long history of hybrid algorithms and polynomial preconditioners motivated mainly by
the search for parameters for Chebyshev iterations. In particular, a recursive conjugate-
gradient preconditioner analogous to Joubert’s has recently been proposed for the sym-
metric case by O’Leary [21]. Various further combinations ofhybrid and preconditioning
ideas will undoubtedly be investigated in the years to come.

2. The trouble with eigenvalues. What the existing hybrid methods have in common
is that they all estimate eigenvalues, construct a domain enclosing them in the complex
plane, and then calculate a polynomial p,(z) that is small in some sense on that domain.

(2.1)

Existing algorithms:
Arnoldi /GMRES -- eigenvalue estimates --enclosing domain-p,(z) -- iteration.

In this section we explain why we consider the introduction and subsequent manipulation
of eigenvalue estimates inappropriate. The principal problem is that eigenvalues do not
generally contain enough information to capture the behavior of a matrix efficiently in
the nonnormal case and, in particular, even though the scalar p,(3,) may be small whenever
X is an eigenvalue of A, it does not follow that the matrix p,(A) is small in norm. A
secondary problem, relevant even for normal matrices, is that the smallness ofp,(z) on
a set of estimated eigenvalues does not imply that it is small at the exact eigenvalues.

To begin the discussion with the first of these problems, let us suppose first that
exact eigenvalues rather than mere estimates happen to be available at the end of Phase
I. On the face of it this should be the ideal situation for the standard iterations in Phase
II. Following [38 ], however, we can show by an example that eigenvalue information
may be utterly misleading as to the actual behavior ofA. Let A be a large upper-triangular
Toeplitz matrix of the form

(2.2) A 1/2
1/2 (N N).

This matrix has just the single eigenvalue { ).3 Thanks to this simple eigenvalue distri-
bution, one might naturally expect a Phase II iteration to achieve rapid convergence with
the sequence ofresidual polynomials Pn(Z) z) n. In actuality, however, this choice
will lead to geometric divergence at a rate approximating () for large N and n (( N.
The reason is that for practical purposes A behaves much more nearly as if its spec-
trum were

2.3 Jpractical f(D ),

Joubert’s work, though formulated in terms ofpreconditioning rather than hybrid iterations, is the closest
we have seen in the literature to the idea proposed here. His implementation does not take advantage of the
O(u) speedup in Phase II, however, so little improvement over existing methods is achieved.

In fact it is defective, but the reader should not make too much of that, for the defectiveness is an
inessential property that could be removed without changing the matrix behavior significantly by adding small
perturbations to the diagonal elements. In any case, similar examples are readily constructed that are nondefective
to begin with, such as the matrix (3.6) in 3.
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where D is the closed unit disk andf(z) is the symbol of this Toeplitz matrix [26],

(2.4) f(z)= +z+1/2z2.

This domain is illustrated in Fig. 2.1. Although it contains the exact spectrum A { ),
it is much larger than that and, in particular, the fact that it extends to the fight as far
as the point z 2.5 is what causes divergence at the rate ()n of a Richardson iteration
based on pn(z) z).

On the other hand, if we take p,(z) to be a sequence of polynomials that are small
on _A_practica instead of just A, the convergence of the Richardson iteration for the same
example becomes rapid.

This example is contrived, but similar phenomena occur frequently in scientific
computing. Convection-diffusion equations, for example (the favorite test problems in
papers on iterative methods), sometimes lead to matrices with misleading spectra closely
related to (2.2). The matrices that arise in spectral methods also have misleading eigen-
values [23 ]. We are convinced that this pattern is a common one throughout applications
involving nonnormal matrices [39].

If eigenvalues are not the fight information on which to base a Phase II iteration,
might some different information perform better? It will not do to look at Jordan structure,
for aside from the impracticability of estimating Jordan blocks in Phase I, we have already
noted that small perturbations would make the Jordan canonical form of this and any
other matrix diagonal without changing the eigenvalues very much, in which case we are
back where we started. Another unsuitable idea is to consider the spectrum ofA in the
operator limit N oe. That would be satisfactory for the example above, but not for
many other problems in which the limit process is less sharp, as occur, for example, in
spectral methods. A third idea is to replace the spectrum ofA by the the field ofvalues
W(A), i.e., the set of Rayleigh quotients x*Ax/x* x, x Cu. However, fields of values
are too big to be appropriate for eigenvalue-style applications, besides being always convex.
For example, although the matrices

(2.5)
0- 0

FIG. 2.1. Spectrum (dot) and pseudospectrum (bounded by solid curve) ofthe matrix A of(2.2 )for large
dimension N. Since the pseudospectrum extends outside the dashed circle, a Richardson iteration based on the
residual polynomials p,(z) z)" will diverge as n increases with n (( N.
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are far from singular, their fields of values both contain the origin, and therefore no
residual polynomial satisfying the normalization condition p(0) can ever be smaller
than on W(A). For a further discussion of this point, see [20, 6].

We believe that if the idea of working with a domain in the complex plane is to be
retained, a better approach might be to replace A by a fourth candidate, the e-pseudospec-
trum 23 ], 26 ], 38 ], 39 ], defined by

(2.6) A= { ,6C: (M-A)-’][ e-1 },

where e > 0 is a small parameter which for hybrid methods should be taken to be on the
order of the residual reduction that has been achieved by Phase I (i.e.,
defined by (3.3), below). Equivalently, A can be defined in terms of perturbations
of eigenvalues

(2.7) A= { C: , is an eigenvalue ofA + E for some

We have discussed pseudospectra elsewhere, however, and will not pursue the idea further
here. Instead, our more fundamental proposal (in 3) is that domains in the complex
plane need not be manipulated at all.

Before leaving the subject ofeigenvalue-related quantities, however, we must mention
a remarkable phenomenon that may partially explain why existing hybrid algorithms
work as well as they do. Eigenvalues estimates are sometimes more reliable than exact
eigenvalues! We have noticed this effect in our experiments and Manteuffel informs us
that he has noticed it too 19 ]. One way to explain it is to note that eigenvalue estimates
tend to come closer to a pseudospectrum than to the exact spectrum 39 ], and it is
usually the pseudospectrum that provides the better iteration parameters. A related phe-
nomenon in another context has been mentioned in [40, 7].

However, this eigenvalue-estimate effect is not robust enough to provide a foundation
for an algorithm to be applied to arbitrary matrices, and to illustrate this we will now
turn to the second problem with eigenvalue estimates mentioned in the opening paragraph
of this section. For a trivial example, take

(2.8) A
-1

After one step of the Arnoldi iteration, the estimated eigenvalue is

rAro
(2.9) Arnoai rro O,

assuming r0 is real. Considering the symmetry about the origin of the actual eigenvalues
+i, this may seem a natural enough choice, but it is fatal for any polynomial iteration
that attempts to construct polynomials p(z) that are small on the spectrum but nor-
malized by p,(0) 1. For example, if p(z) is constructed as a product of terms

z/X corresponding to various eigenvalue estimates ,; (see (5.3)), an eigenvalue
estimate 0 will lead to a factor z/O) and a consequent division by zero. We
shall return to this example at the end of 3.

For a richer example along the same lines, consider the matrix

(2.10) A
0 -I+R2

(NN),

where R1 and R2 are dense matrices of dimension N[2 with independent normally dis-
tributed random elements of standard deviation 1/4 /N/2. For large N, the eigenvalues of
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FIG. 2.2. ArnoMi eigenvalue estimates at step n 11 for the matrix A of(2.10), N 200. The small dots
are the exact eigenvalues ofA. One ofthe estimates appears near the origin, farfrom the exact spectrum, which
will cause a residual polynomial based on these estimates to perform poorly.

A are approximately uniformly distributed in the disks [z + 11 -< , well away from the
origin, and the condition number is K(A) 2.06 [4]. Fig. 2.2 shows that ten of the
Arnoldi estimates match this spectrum reasonably well at step n 11, but the eleventh,
thanks to the symmetry, appears near the origin. Since this spurious eigenvalue is not
exactly at the origin, it does not cause a division by zero, but it certainly leads a polynomial
iteration astray.

To summarize, it is not entirely safe to base a matrix iteration on exact eigenvalues,
if they happen to be available, nor, so far as we are aware, on eigenvalues estimated by
any existing methods. Of course, a new eigenvalue estimator might be found with better
properties--and in fact the algorithm we are about to propose might be described in
those terms. Since the successful operation of such an algorithm depends on its estimating
eigenvalues incorrectly, however, we see little to be gained by interpreting it as an eigen-
value estimator.

3. The hybrid GMRES algorithm. We propose that in (2.1), the middle steps should
be eliminated:

New algorithm:
GMRES -- p,(z) -- iteration.

The GMRES iteration of Phase constructs a sequence of residual polynomials that
minimize the norm of the residual

(3.2) GMRES: Ilrnll- ]lpn(A)ro]l min I]p(A)ro[], n 1,2, ....
PPn

p(0)=

Correspondingly, what Phase II requires is another sequence of residual polynomials.
Why translate from polynomials to eigenvalue estimates and back again? We propose to
take precisely the GMRES polynomial p,(z) obtained at some step u of Phase I and
continue applying it over and over again in Phase II cyclically as in 1.3 ):

HYBRID GMRES ALGORITHM
Start with a random initial guess x0.
Phase I: Run GMRES until rll drops by a suitable amount. Set u := n.
Phase II: Re-apply the GMRES polynomial p,(z) cyclically until convergence.

This algorithm is purely a GMRES hybrid, for no Arnoldi eigenvalue estimates are cal-
culated. No domain ofestimated eigenvalues is constructed and no approximation prob-
lem is solved in the complex plane. The omission ofthese steps makes our hybrid algorithm
simpler than most of those previously proposed.

Of course, many issues have been left out of this description, such as:
1. What is a "suitable" reduction in rnll for terminating Phase I?
2. How shall p(z) be constructed from the GMRES iteration?
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3. How shall p,(z) be applied in Phase II?
4. What safeguards should be added to ensure convergence?
5. What are the properties of this algorithm in theory?
6. How does it perform in practice?

Most of these questions will be addressed in the next few sections, but not definitively.
We have little doubt that improvements can be effected in many of the details of our
implementation.

Before we turn to these issues, however, a few remarks will clarify the idea of our
algorithm; further details are given in 6. Suppose that at the uth GMRES step we have

(3.3)
Ilroll Ilroll

for some r < 1. Our hope is that we then have

(3.4) p,( A )ll r,

so that further iterations with the same polynomial p,(z) will continue to reduce the
residual. Of course, such a conclusion can never be guaranteed, for just as adaptive
integrators can always be fooled by integrands with spikes in places that fail to get sampled,
adaptive matrix iterators can always be fooled by initial residuals r0 with small components
in key directions. Nevertheless it is a reasonable hope that (3.4) may hold, provided that
x0 (or more precisely r0) is chosen at random, and provided also that r lies well enough
below so that p,(z) is forced to contain some genuine information about A. Probabilistic
theorems to this effect could be proved.

Thus what GMRES "knows" about the matrix A at the end of Phase I, with a little
luck, is no more and not much less than (3.4). It does not know anything very precise
about the eigenvalues ofA, and in particular, there is no reason to expect that the roots
ofp,(z) must always be good approximations to eigenvalues (though in some cases they
will be). More generally, consider the family of lemniscates defined by

(3.5) L,= zea2: Ip(z)l c}, o0.

The set of roots ofp,(z) is the same as the lemniscate L0, which we have just claimed to
be of little significance. But there is a choice of c of greater interest:

L, "the GMRES lemniscate."

Roughly speaking, the domain enclosed by L, is GMRES’s best concept at step u of the
effective spectrum of A. (We hope to make this statement more precise in later work.)
In running our hybrid algorithm, we have found it informative to plot L, at the end of
Phase I (by sampling log P,(Z)l on a grid and calling a contour plotter). On the same
plot we generally display the zeros ofp,(z) and also the lemniscate L1 that passes through
the origin. These plots of lemniscates give a graphic indication of the manner in which
A may be causing difficulty, and in the practical world this translates into guidance in
the design of preconditioners.

For example, consider the following banded Toeplitz matrix investigated by
Grcar 12 ]:

1 1 1 1
1 1 1 1 1

(3.6) A= -1 1 1 1 1 (NN).
-1 1 1 1 1
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FIG. 3.1. Spectrum (along the dashed curve) and e-pseudospectrum (enclosed by the solid curve) of the
matrix A of 3.6 for large N and small e. Thefigure looks approximately the samefor any Nand satisfying,
say, e-u/s < < 50. See 26 ].)

Like (2.2), this is a matrix whose effective spectrum is quite different from its spectrum.
In this case Apractica is the region of the complex plane enclosed by f(S), where S is the
unit circle and

(3.7) f z z- + qt- z -t- z Z qt- Z

for large N. Figure 3.1 shows A and Apractical for this matrix, assuming N is close to
and Fig. 3.2 shows the lemniscates LT computed by GMRES at steps n 2, 3, 6, and 20

r 0.797

n=2

)
)

r 0.723

n=3

r 0.204r 0.549

n=6 n=20

FIG. 3.2. GMRES zeros and lemniscatefor the same matrix at steps n 2, 3, 6, 20, with N 200. Each
square represents the domain [-5, 5] x [-5, 5 ]. The lemniscates approximate the pseudospectra, not the
spectrum.
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for the case N 200. Clearly, GMRES has done quite a good job of locating _A_practica It
neither can nor should locate the exact spectrum A. Note that for this example the convex
hull of-A-practica encloses the origin, which means that ChebyCode and some of the other
existing hybrid algorithms would fail.

To close this section, let us return to the 2 2 example (2.8) that breaks an Arnoldi
hybrid algorithm. In the first step GMRES makes no progress whatever with this matrix,
and the corresponding residual polynomial is p (z) 1. Thus after one step we have

Arnoldi: p (z) z/ 0,

GMRES: p (z) z/.

To speak conventionally in terms of eigenvalues, we might say that GMRES has chosen
the only other possible eigenvalue estimate besides 0 that is symmetric with respect to
the spectrum +i, namely, the equation analogous to (2.9) is

rA TAro3.8 XGMRES rAro
This choice has made all the difference, however, since it has led to a polynomial p (z)
that is finite rather than infinite. Brown has pointed out that this phenomenon is general:
when the Arnoldi iteration divides by 0, GMRES stagnates harmlessly, and vice versa
[3 ]. Thus, although the performance of our hybrid algorithm can certainly be dis-
appointing, if GMRES converges slowly or if (3.4) fails to hold and some kind of
restart is necessary, the finiteness of IIp(A)I[ implies that at least it can never
break down.

We have now presented a number of arguments in support of the view that the
residual polynomial p,(z) in a hybrid algorithm should be derived from the GMRES
method rather than from Arnoldi eigenvalue estimates. This idea also appears to be
supported by numerical experiments. Throughout our computations for this project we
have subjected each example matrix to two versions ofour program, one based on GMRES
and the other on Arnoldi. Each of the two methods sometimes outperforms the other,
but the Arnoldi variant usually converges more slowly, and it fails considerably more
often. (Of course, a failure is not absolute; with a robust implementation it will mean a
return to Phase I as described in 7.) A few comparisons of this sort are reported in Fig.
8.8, below.

4. Construction of p,(z). Our implementation of the hybrid GMRES algorithm
calculates the coefficients ofp,(z) explicitly. We have not investigated the stability ofthis
procedure, and it may be that there are better ways to find the roots ofp,(z), for example,
by solving an eigenvalue or generalized eigenvalue problem (see the additional remarks
on stability in the next section). However, computational experience indicates that the
explicit approach works well in practice.

Here is how the coefficients are determined. Let Kn denote the N n matrix of
Krylov vectors

(4.1) Kn=(ro Aro An-ro).

The Arnoldi/GMRES process constructs an N n matrix of orthonormal vectors span-
ning the same space

(4.2) Vn v I)2 1)n

by applying the iterative formula

(4.3) 1)n + h-l+ l,n(A1)n Vnhn), hn hln, hnn) T,
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where the numbers hij are the elements of a Hessenberg matrix of inner products. (We
use the same notation as in [29].) Since the columns of Vn and Kn span the same space
for each n, we have that

Vn=KnCn
for some upper-triangular matrix

(4.4) Cn= C:nn!
This matrix is not formed during the GMRES iteration as presented in 29 ], but to find
p,(z) explicitly we will need it. The appropriate formula comes from (4.3):

0
Cl,n + Cl’n h l+ 1,n(4.5) hn+ l,n O

Cn + 1,n + Cn

By inserting the calculation (4.5) in the GMRES iteration, we generate the elements of
Cn column by column as the iteration proceeds.

Having solved a Hessenberg least-squares problem at step n , GMRES produces
an iterate x of the form

(4.6) x, Xo + V,y

for some vector y of dimension v. Since V,y K,C,y, it follows that the vector C.y
contains the coefficients of the polynomial q._ l(z) of 1.2):

(4.7) C,y=(ao, ,Otu_ 1) T, q_l(z)=ao+alz+ +a_lz-1

Since p,(z) zq,_ l(z), this gives us the coefficients ofp,(z) as well.

5. Richardson iteration for Phase II. Phase I is complete and we have determined
the polynomials q,_ (z) and p,(z) implicit in the GMRES iteration. We now face the
question of how best to re-apply these polynomials for the further iterations of Phase II.

As mentioned in the Introduction, many ideas have been advanced for this phase
of a hybrid algorithm, ofwhich one ofthe simplest is the Horner iteration of Elman and
Streit [8]. From (1.2) and (4.7) we have that

(5.1) Xn Xo qn A ro qn Z Oto + Ot Z ff "J- Oln -1Zn -1

and therefore x, Xo is the final result w of the loop

W: O/n 1F0

(5.2) For i:= to n-

w:=Aw+ a i- ro.

In our experiments this method has worked quite well. So has a related and even simpler
method in which one forms q,_ I(A)r0 as a student would do who had never heard of
Horner’s rule--for the familiar factor-of-2 advantage of the Horner formula vanishes
when we are dealing with matrices rather than scalars. The disadvantage of such ap-
proaches is that the intermediate steps may correspond to residuals so large that infor-
mation may be lost due to rounding errors, though this has not troubled us in practice.
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The alternative we have preferred is to factor p.(z) numerically,

(5.3) p.(z) H (1--Z/i),
i=1

and then carry out a first-order Richardson iteration4 along the lines of Smolarski and
Saylor 34], 351:

For j:= to
(5.4)

Xj := Xj- + rj-1/ j.

(One could also formulate the calculation in terms of q,_ (2) rather than p,(z) by means
of the "grand leap" iteration described in [31], a method that can be slightly more
efficient than (5.4).) The reader may object that finding the roots of a polynomial is an
ill-conditioned problem, so that incorporating a root-finding step in a hybrid algorithm
is likely to make the algorithm unstable. Though we have not yet analyzed the matter
fully, we believe that this concern is about halfjustified. On the one hand, ill-conditioning
in the rootfinding problem per se is probably not important, for the success of our al-
gorithm ultimately depends on the size ofp,(z) in the complex plane, not the locations
of its roots. On the other hand, the size ofp,(z) is itself an ill-conditioned function of its
coefficients in general. Thus there is a stability issue, but it lies not in the rootfinding but
in the representation ofp,(z) by its coefficients in the basis of monomials, as alluded to
at the beginning of 4. The ideal hybrid algorithm might begin by constructing a more
stable basis in which to represent p,(z). We do not know how worthwhile this extra
complication would be in practice.

There is still another question of stability to be addressed. The factorization (5.3)
offers a choice of the order in which to label the roots ’, and as discussed first by Young
and more recently by Anderssen and Golub ], Fischer and Reichel 9 ], 25 ], and Tal-
Ezer [37], this ordering is important for stability. The reason is that although the final
result p,(A) will be small in exact arithmetic, floating-point errors may destroy this prop-
erty unless (approximately speaking) the intermediate productsp(A also are reasonably
small. This issue is not academic; the factors at stake are potentially enormous.

How can an ordering of the roots { ’} be efficiently selected to ensure that the
intermediate products p(A are small? Our choice has been the weighted Leja ordering
described in [25], which is defined by the condition

j-1 j-1

(5.5) [[ I-I [’-[ max [’/[ I-I [/-g[, j= 1,2, ,v-1,
J<--l<=v

assuming the points ’ are distinct. (At the first step (5.5) reduces to the condition
I’1 max __<t__<, ’1.) The idea behind this ordering is that it tends to approximately
equidistribute the points ’ in the sense of potential theory. The Leja ordering is easy to
calculate, and in the examples we have looked at, it performs dramatically better than
more elementary alternatives.

The Richardson iteration with Leja ordering also has the appealing property that
since the polynomials p(A) tend to decrease steadily in norm, the Phase II iteration can
be meaningfully stopped at any point rather than just at the end of a cycle of v steps.

When A is real, the introduction ofcomplex arithmetic by a complete factorization ofp,(z) is unnecessary.
One can factor it instead into linear and quadratic terms with real coefficients and obtain a Richardson iteration
with steps of both first and second order. See 22 ], 31 ], or 34 for details.
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It is not hard to argue that (5.5) cannot be exactly the fight ordering condition to
impose in all cases. For example, this algorithm has a sensitivity to multiple points
that is unnatural and that in contrived examples may cause instability. A more perfect,
ifmore complicated, ordering algorithm might involve the minimization ofan appropriate
Leja product not just over the points ’j, ’, but over some approximation to the
lemniscate L,. Nevertheless, our experience indicates that the Leja ordering is a reliable
solution to the instability problem in the great majority of cases.

6. Switching criterion; behavior of the idealized hybrid GMRES algorithm. The
principal feature of our algorithm that we have not yet specified is when Phase I should
be terminatedin other words, the choice of u. Optimizing this decision is a complicated
matter, for it depends on both the problem and the computing environment. For example,
if matrix-vector products are far more time consuming than other operations and plenty
ofstorage is available, then one might as well stay in Phase I forever with a "GMRES()"
iteration. On the other hand, if storage is so limited that only a few vectors can be
retained, then GMRES( is out of the question and one must switch quickly to Phase
II. Considerations such as these suggest that to a certain extent users of a hybrid GMRES
algorithm will inevitably have to make some of the decisions themselves if the aim is
optimal performance.

More can be said, however, ifwe are willing to make some simplifying assumptions.
In particular, let us assume that storage is unlimited, so that the only goal is to minimize
the computing time. Assume further that only operations on N-vectors are significant,
and define a vector operation, our fundamental work unit, to be the cost of an "axpy"
operation ax + y involving a scalar a and N-vectors x and y. Finally, assume also that

(6.1) one matrix-vector multiplication costs vector operations

for some 6 > 0. For a sparse matrix on a serial computer, 6 is approximately the average
number of nonzero elements per row.

These assumptions are mechanical ones, whose degree of validity depends on
straightforward factors readily checked. To motivate our choice of , we are now going
to make two further highly idealized assumptions that are in another category entirely--
approximately true in some cases, perhaps, but sometimes far from true, almost never
true exactly, and in any case unverifiable. First, we assume that the GMRES iteration of
Phase I accelerates as it proceeds, or at worst, converges steadily:

(6.2) Phase I: rn + <__ rnll rml]
for all m n > 0

roll r01l roll
(If rnll/llroll IIp,(A)II at each step n, as in 3.4 ), then (6.2) follows as a corollary, but
in general we only have Ilrnl[ ! [Iroll ----< IlPn(A)II,) Second, we assume that the Richardson
iteration of Phase II converges steadily at exactly the same rate as in Phase I:

(6.3) PhaselI:
I]rk[I (lira[)

k

roll
for all k >- 0.

Our strategy for choosing u is motivated by the following idea:

(6.4) Goal: equal amounts of work in Phase I and Phase II.

Figure 6.1 explains the thinking behind (6.4) by illustrating the kind of convergence
behavior we are hoping for under idealized circumstances. The hybrid algorithm cannot
take fewer iterations than GMRES(), but with luck it will take nearly as few. If is
large this will correspond to a large reduction in the total computing time.
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Phase I Phase II Phase I Phase II

n u iteration no. work

log1
logr

FIG. 6.1. Convergence of the hybrid GMRES algorithm under idealized circumstances as a function of
iteration number and computing time. The switchover step v is determined by the condition that equal amounts
oftime are spent in Phase and Phase II. The resultingfactor ofimprovement over GMRES(oe is O(u2).

Now we work out the algebra required to implement (6.4). Suppose we have just
completed step u of Phase I, the residual has been reduced by the factor of

(6.5)
IIr011 ’

and our desired accuracy is:

(6.6) convergence tolerance:

According to estimates in [29], the work performed so far is

(6.7) Phase I work: v(v + 3 + i) vector operations.

On the other hand in the Richardson iteration of Phase II the work per step will be +
6 vector operations, and by (6.3), the total number ofsteps to convergence will be u log e/
log rmhence in Phase II, u(log e/log r ). This implies that

log e_ ) vector operations.(6.8) Phase II work: u( + 6)
log r

The condition (6.4) can be realized by equating the fight-hand sides of (6.7) and (6.8):

(6.9) switching condition:
log e_ 1).v+3+6=(1+6)
logr

To summarize, here is how we decide when to terminate Phase I. During Phase I
the left-hand side of (6.9) increases monotonically and the fight-hand side decreases
monotonically (because is decreasing). We switch to Phase II as soon as the left-hand
side exceeds the fight-hand side.

Besides its aesthetic appeal, the condition (6.4) has some more solid justification.
In particular, we have the following theorem.

THEOREM 1. Suppose the assumptions above hold, including (6.2) and (6.3), and
let the transition from Phase I to Phase II be determined by (6.9). Then the hybrid
algorithm converges, and no other choice ofu could have reduced the computing time by
more than afactor oftwo.

Proof. Increasing v can shorten the computation only by reducing the length of
Phase II, and since Phase II consumes only halfofthe computing time, the improvement



A HYBRID GMRES ALGORITHM 811

can be at most a factor of two. On the other hand decreasing u would mean entering
Phase II with an inferior polynomial p,(z) and further to travel with it, by (6.2) and
(6.3), so that the work in Phase II would have to increase. Since that work is already
half of the total, the maximum possible improvement is again a factor of two. U]

So long as the assumptions (6.2) and (6.3) hold, the reasoning above shows that
our strategy for choosing u is actually optimal in the sense that any other choice might
lead to a penalty of a factor greater than two.

7. Practical safeguards. In practice, of course, our idealized assumptions do not
always hold. They may fail in several ways, and one of these is particularly important:
equation (3.4) may fail, leaving us with

(7.1) r ]o p(A

In such circumstances (6.3) will be far from satisfied, and the Richardson iteration of
Phase II may converge much more slowly than expected or may not converge at all. The
reason why (7.1) may occur is that the GMRES algorithm depends upon the particular
initial residual r0 and, consequently, the coefficients ofp,(z) are affected by which com-
ponents happen to be well represented in that vector.

There are several ways in which one might modify the hybrid algorithm to try to
minimize the risk of occurrence of (7.1). For example, one might impose a threshold
value of rminsist that switchover to Phase II not take place until rn has been reduced
by a factor of at least, say, 2. Or one could monitor the details of convergence in Phase
I more carefully than we have proposed, forbidding switchover until some evidence has
accumulated that the rate ofconvergence is steady. Another, more expensive, idea would
be to apply Phase I to two or more independent vectors r0 in parallelm"block GMRES."
This would lead to a more reliable polynomial p,(z), though the extra work would be
partly wasted since the residual rn of actual interest would not be reduced. For problems
with multiple fight-hand sides, however, such an idea would be natural.

But there is a more fundamental implication of (7.1), and that is that any robust
hybrid iterative code must include safeguards for coping with failure. If the convergence
of the Phase II iteration proves unsatisfactory, there are various actions that may be
taken. The simplest might be to restart the hybrid algorithm entirely from scratch from
the current best available solution x,. This would mean throwing away the information
obtained in the GMRES steps already carried out, but ifp,(z) has performed disappoint-
ingly, one might argue that that information is unreliable anyway.

The approach we have used instead is to return to the original GMRES iteration of
Phase I and resume that iteration where it was interrupted. Returning to Phase I in this
way is an easy matter if one has retained the necessary vectors in storage. Once a new
polynomial p,,(z) is obtained that is deemed to be substantially better than the old one,
we cycle back again to Phase II. To be precise, here is our current scheme, whose effects
in one example can be seen in Fig. 8.6 below:

1. If any cycle of u steps of Phase II reduces rll by a factor less than fmthat is,
if the convergence is more than twice as slow as expectedmreturn to Phase I.

2. Carry out additional GMRES steps u + 1, u + 2, ..., u’ of Phase I until the total
computing time in Phase I has doubled, and calculate a new polynomial p,,(z).

3. Begin a new Phase II iteration with the new polynomial p,,(z), starting from the
previous best value x, which will come either from the previous Phase II if the
convergence there was slow but positive, or from the new Phase I if there was
actual divergence in the previous Phase II.
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Since this algorithm reverts to Phase I whenever the convergence ofPhase II is going
badly, it can never do much worse than GMRES(oe), as stated in the following theorem.

THFORFM 2. The hybrid algorithm with the safeguards described above always
converges and never requires more than three times as much computer time as
GMRES(o).

Sketch ofproof. The factor of 3 is attained if the first Phase II computation proceeds
twice as slowly as expected in a case where GMRES(oe would have converged to the
desired precision at step u + 1. Careful consideration of the details of the algorithm,
which we shall omit, shows that further cycling between Phase II and Phase I never leads
to a factor greater than 3.

Ofcourse we generally expect convergence much faster than for GMRES. We remind
the reader that Theorem 2 depends on our assumption that storage is not limited, so
that the hybrid algorithm can be implemented as described. It also ignores rounding
errors.

The details of the safeguarding procedure proposed above are arbitrary. There are
many other ways to make a hybrid scheme robust, and we hope to have more to say on
the subject in the future.

8. Numerical experiments. Three sorts ofproblems are chosen most often for testing
numerical algorithms: realistic, artificial, and random. Realistic test problems have the
advantage that they are tied directly to applications and thus, in a sense, are most reliable.
Artificial problems have the advantage that they can be made cleaner and more extreme
in their behavior, so that they provide more insight into fundamentals. As for random
problems, they also have advantages in some contexts, but not here, for none of the
known nonsymmetric matrix iterations beat the O(N3) (serial) performance of direct
methods for random matrices [20]. In other words, iterative methods are useful only
for matrices with special properties, which they typically acquire through preconditioning.

In this section we apply our hybrid algorithm to some test problems of the artificial
kind and illustrate some of its good and bad properties in the process. We hope to
investigate more realistic problems in the future.

Each of our experiments compares four algorithms:
1. Hybrid GMRES (solid curves),
2. Restarted GMRES(u) (solid curves),
3. CGN (dashed curves),
4. CGS (dots).5

So far as we know, these are the best matrix iterations available6 [20 ]. TO keep the
comparison simple, our restarted algorithm is GMRES(u), where u is the same switchover
step number determined adaptively by the hybrid algorithm. Thus our restarted and
hybrid GMRES iterations are identical for the first u steps, and from that point on the
hybrid algorithm re-applies the same residual polynomial p,(z) cyclically, while the re-
started algorithm finds a succession of new optimal polynomials of degree u. Except in
Fig. 8.6, all of the hybrid results shown come from the idealized algorithm described in

6, with none of the safeguards mentioned in 7.
In each experiment the dimension is N 1000 (except as noted), the convergence

tolerance is e 10 -5, and the fight-hand side b and the initial guess x0 are random real
vectors with independent normally distributed elements.

CGS convergence curves are often so erratic that they obscure the rest of the plot. To avoid this clutter
without suppressing convergence rates that are often very impressive, we have settled for a single dot representing
the residual at the end of each CGS iteration.

See the further remarks about CGS in the Conclusions.
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For each example we present three plots. The first plot shows log10 ][rn[[ as a function
of the iteration number n. By this measure the hybrid algorithm can do no better than
GMRES(), whereas CGS and CGN may do better or worse depending on the matrix.
The second plot shows log10 [Irn][ as a function of work measured by vector operations,
defined in 6. By this measure the hybrid algorithm may outperform restarted GMRES
by a factor as high as 0(,). The third plot shows the roots ofp,(z) in the complex plane
together with the associated GMRES lemniscate L and the lemniscate L passing through
the origin. As mentioned in 3, L gives an indication of the spectrum or z-pseudospec-
trum ofA.

Example 1. Our first and simplest example, shown in Fig. 8.1, is the triangular
Toeplitz matrix (2.2). This is an example where the hybrid algorithm outperforms
GMRES() very cleanly. Plotted against the step number, the GMRES(u) residual con-
verges smoothly and linearly and the hybrid algorithm lags a little behind. Plotted against
work, however, that linear convergence curve becomes scalloped, a common phenomenon
for restarted GMRES which reflects the fact that later cycles tend to waste time redeter-
mining information that was already obtained in earlier cycles. The hybrid algorithm
now does much better, achieving rapid and steady convergence after the point of switch-
over. In fact, the figure matches the idealized curves of Fig. 6.1 remarkably well.

A comparison of Figs. 2.1 and 8.1 reveals that GMRES has done a good job of
locating the -pseudospectrum ofA.

In this example the hybrid algorithm is the fastest of the four algorithms asymptot-
ically and is roughly tied with CGN for the specified tolerance e 10 -5 CGS converges
erratically and somewhat more slowly. GMRES() converges much more slowly.

Example 2. A similar but somewhat more complicated Toeplitz example is the
Grcar matrix (3.6) (Fig. 8.2 ). As mentioned above, this is a case where ChebyCode and
some of the other hybrid algorithms would fail since the pseudospectrum does not lie in
a half-plane. Again the hybrid GMRES algorithm substantially outperforms GMRES(u).
CGS does about equally well. CGN does much better, however, because this is a matrix
whose singular values (smoothly distributed in the interval 0.89, 3.24 are much better
behaved than its eigenvalues and pseudo-eigenvalues (encircling the origin).

Example 3. For an example in which CGN does poorly, consider the tridiagonal
Toeplitz matrix (Fig. 8.3)

51 3
5.1 3

(8.1) a 2 5.1 3 (1000 1000).
2 5.1 3

2 5.1

The symbol of this matrix isf(z) 2z- + 5.1 + 3z, which maps the unit circle into an
ellipse whose intersection with the real axis is [0.1, 10.1 ]. Consequently the condition
number is K 101 for large N, and since the spectrum and pseudospectra do not wrap
around the origin, the Krylov subspace iterations do relatively well.

In this example the convergence of the Richardson iteration of Phase II is disap-
pointing; (6.3)does not hold very closely. Nevertheless, the plot of [[rn[[ against work
reveals that the hybrid iteration is the fastest. The GMRES lemniscate closely matches
the elliptical pseudospectrum.

Example 4. Our fourth example is bidiagonal but not Toeplitz (Fig. 8.4). On the

d.ional this matrix has the elements .5 w, .5 o, where o -.5 +
V3 /2 is a cube root of unity. The superdiagonal contains uniformly distributed random
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FIG. 8.1. Example 1: the Toeplitz matrix (2.2). The CGN and hybrid GMRES algorithms are the winners.
For this and the subsequent examples, the dimension is N 1000, except as noted.
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(b) loglo IIr.II vs. work

(c) GMRES lemniscate at step v 24

FIG. 8.2. Example 2: Grcar’s Toeplitz matrix (3.6). The hybrid GMRES algorithm again beats GMRES(v),
but CGN does much better.
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(c) GMRES lemniscate at step 13

FIG. 8.3. Example 3" the tridiagonal Toeplitz matrix (8.1). This matrix has condition number K 101,
and CGN converges much more slowly than the other iterations. The hybrid GMRES algorithm is the winner.
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FIG. 8.4. Example 4: a bidiagonal matrix with three distinct eigenvalues. The CGS and hybrid GMRES
algorithms are the most efficient.
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numbers in the interval 0, 1.5 ]. This is a matrix whose spectrum consists ofjust three
points but whose pseudospectra are larger domains surrounding those points. The singular
values are not very tightly clustered, and we find that CGN converges more slowly than
any of the other algorithms. Among the three Krylov subspace iterations the hybrid
GMRES iteration does best.

Figure 8.4(c) reveals an outlying root ofp,(z) that is worth a comment. Since the
pseudospectra have approximate three-fold symmetry but (= 13) is not divisible by
three, it is not surprising that one of the linear factors of the residual polynomial should
be nearly useless (compare Fig. 2.2). The GMRES lemniscate L contains a very small
lobe near the outlying root (too small to be apparent in the picture), and thus this
example illustrates that the connection ofL with a pseudospectrum ofA is not perfect.
The outlying root does no harm to the hybrid iteration, however.

Example 5. Finally, we give an example in which the hybrid GMRES algorithm
performs poorly, at least in its idealized form described in 6. Let A be a diagonal matrix
of dimension N 1001 whose diagonal entries are complex numbers lying on the unit
semicircle in the fight half-plane. Rather than a uniform distribution of points along the
semicircle with respect to arc length, we take a uniform distribution with respect to the
imaginary coordinate,

aj= eJ, O= sin- ((j- 501)/ 500), l=<j=<1001.

These points are sparsely located near ___i, and as a result, for most initial residuals r0,

GMRES can reduce the residual significantly without going to the considerable trouble
of making p(z)l substantially smaller than near z _i. This is exactly what is
revealed in Fig. 8.5. Assumption (6.3) does not hold closely, and we end up with a Phase
II iteration that makes little progress. GMRES(u) beats the hybrid algorithm by a large
factor, and CGS does even better. Since the singular values are all equal to 1, CGN
converges in one step.

These observations, and Fig. 8.5, pertain to the idealized hybrid algorithm with
none of the safeguards mentioned in 7. In practice, of course, one would never permit
so many iterations to be wasted in Phase II before returning to the GMRES iteration to
get better information about A. In Fig. 8.6, we do this. The same example is run with
the safeguarded hybrid algorithm described in 7 and the convergence becomes acceptable.
Note the plateau in Fig. 8.6 (b), revealing a return to Phase I that generates an improved
residual polynomial p,,(z) without reducing the best available residual.

This example is worth dwelling on because it reveals how important the quality of
the information in r0 is to achieving rapid convergence in Phase II. To put it succinctly,
for hybrid iterative algorithms, multiplicities matterweven if the matrix is normal. Ei-
genvalues of higher multiplicities correspond to larger eigenspaces, so they tend to be
better represented in a random initial vector, which increases their influence on p,(z).
To demonstrate this, Fig. 8.7 repeats the computation of Fig. 8.5 for a new matrix, which
is exactly the same as before, except that the multiplicities ofthe end eigenvalues __+i have
been increased from to 101. Thus the dimension ofA is now 1201. The convergence
of the hybrid algorithm without safeguards becomes quite rapid, and the explanation
can be seen in the difference of the lemniscates L1 in Figs. 8.5 and 8.7.

We close this section with four final examples to illustrate the difference between
our hybrid GMRES algorithm, based on the residual polynomial p,(z) derived from
GMRES, and a "hybrid Arnoldi" algorithm in which p,(z) is taken to be the normalized
polynomial whose roots are the Arnoldi eigenvalue estimates at step u. Figure 8.8 compares
the convergence ofthese two algorithms for Examples 2, 3, 5, and 7 above. For Example
3 the Arnoldi variant is faster in Phase II by about 50 percent, but in our experience this
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(a) log,o IIr.II vs. n
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(c) GMRES lemniscate at step 6

FIG. 8.5. Example 5: a diagonal matrix ofdimension N 1001 with eigenvalues on the unit semicircle in
the right half-plane. The hybrid algorithm without safeguards constructs a residual polynomial p,( z) that is not
much smaller than near z +_i, and the convergence is very slow.
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FIG. 8.6. Example 5 again, but solved now with the safeguarded hybrid GMRES algorithm described in
7. The algorithm returns to Phase to get better information, and ends up solving the problem with reasonable

efficiency.
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FIG. 8.7. Example 5 a third time, except that now, the matrix has been changed by increasing the multiplicities’
ofthe eigenvalues +ifrom to 101, so that the dimension becomes 1201. Now p,( z contains better information,
and the convergence ofthe hybrid algorithm, even without safeguards, is rapid.
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FIG. 8.8. Comparison ofthe hybrid GMRES algorithm with a "hybrid Arnoldi" variant for Examples 2,
3, 5, and 7 above. Usually, though not always, the Arnoldi variant performs less well, for the reasons discussed

in2.
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is not typical. More often it is slower, as in Example 7. In addition, as in Examples 2
and 5, it is not uncommon for the Arnoldi variant to stall, necessitating a return to Phase
I that may not be required by the hybrid GMRES algorithm. In principle the hybrid
Arnoldi algorithm can break down completely with a division by zero, as mentioned in

2, but of course the probability of such an event is zero.

9. Conclusions. In conclusion, we would like to summarize the relationships as we
see them between our hybrid GMRES algorithm and the four principal classes of com-
peting algorithms for the iterative solution of nonsymmetric linear systems: the restarted
and truncated Krylov space iterations such asGMRES(k) andORTHOMIN(k); previous
hybrid algorithms; the normal equations-conjugate gradients combination known as
CGN; and the Lanczos-type algorithms such as CGS. We assume as usual that the cost
of vector operations is significant enough that a "pure" Krylov space iteration such as
GMRES( is not competitive.

The comparison with the first two groups of alternatives turns on the question: how
good is the information contained in the initial steps of an Arnoldi/GMRES iteration?
The first group, the restarted and truncated algorithms such as GMRES(k), are motivated
by the assumption that this information is not reliable and should be replaced regularly
as the iteration proceeds even if this increases the work per step substantially. The second
group, the existing hybrid algorithms summarized in our Introduction, are motivated by
an opposite assumption: that initial Arnoldi/GMRES steps may produce information
solid enough that it makes sense to perform further manipulations and "data compression"
upon it, in particular, the solution of an approximation problem in the complex plane
that typically leads to an iteration polynomial of lower degree.

Our hybrid GMRES algorithm entails an assumption intermediate between these
two. It assumes that the information coming from Arnoldi !GMRES steps is too valuable
to be discarded, but not so solid that further data compression is appropriate. Of course
the validity of this assumption depends upon various factors, notably, the initial vector
for the GMRES iteration and the choice of the switchover step u. We believe that it is a
reasonable assumption in many cases, however, and this view of the matter, combined
with our numerical experiments, leads us to believe that for most problems our algorithm
is faster than GMRES(k) and more robust than other hybrids.

The third comparison, with CGN, is relatively straightforward, at least in principle.
The hybrid GMRES algorithm should be the winner when A is ill-conditioned, loosely
speaking, or more precisely, when its squared singular values are less favorably distributed
than its (pseudo-) eigenvalues in the sense described in [18].

In our opinion, the most serious competitors are the Lanczos-type algorithms such
as CGS [4 ], whose work and storage requirements, unlike those of GMRES and OR-
THOMIN, do not grow with the iteration number. These algorithms do not minimize
anything, and their convergence is often quite erratic, but it is usually very fast. Most
recently (since the time when this manuscript was first submitted for publication), al-
gorithms in this class with less erratic convergence curves have been developed by Freund
[10] and van der Vorst [41]. Examples can be devised for which either CGS or hybrid
GMRES is superior. We hope that a fuller understanding of the comparison between
these two classes of iterative methods will come with further analysis, experiments, and
algorithmic development.
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DIAGONAL SCALINGS OF THE LAPLACIAN AS PRECONDITIONERS
FOR OTHER ELLIPTIC DIFFERENTIAL OPERATORS*

A. GREENBAUM

Abstract. The use ofdiagonal scalings ofthe Laplacian matrix as preconditioners for matrices arising from
other second-order self-adjoint elliptic differential operators is considered. It is proved that ifa diffusion operator
with a piecewise constant but discontinuous diffusion coefficient is preconditioned by a diagonal scaling of the
Laplacian, then, in the limit as the mesh size goes to zero, the optimal diagonal scaling is just the identity. If,
on the other hand, the Laplacian is scaled on each side by the square root of the diagonal of the matrix
corresponding to the diffusion operator, then the condition number of the preconditioned matrix grows like
O(h-E), instead of O( ). This is in contrast to the case in which the diffusion coefficient is smoothly varying,
in which case numerical evidence suggests that the optimal diagonal scaling is approximately equal to the square
root of the diagonal of the matrix.

Key words. Laplacian, preconditioners, elliptic operators

AMS(MOS) subject classification. 65F

1. Introduction. In 2 ], experiments were reported using a numerical optimization
code to determine the preconditioner of a specified form that, for a given coefficient
matrix, minimized the condition number ofthe preconditioned system. One ofthe more
interesting experiments involved finding the optimal diagonal scaling of the Laplacian
to use as a preconditioner for other second-order self-adjoint elliptic differential operators.
Similar experiments had previously been carried out in [1 ], and the use ofpreconditioners
of this form has also been discussed in [6].

Let An be the matrix arising from a finite element or finite difference approximation
for the problem

(1.1) -V.aVu=f inft; u=0 on Oft,

where the positive coefficient a varies throughout the domain ft and is bounded away
from zero. Let An be the Laplacian matrix arising from the same finite element or finite
difference approximation for the problem

(1.2) -Au=f inft; u=0 on Oft.

Let D be any positive definite diagonal matrix. One might consider using the matrix

(1.3) M= OAhO

as a preconditioner for the matrix Ah in an iterative algorithm such as the Chebyshev or
conjugate gradient method to solve problem 1.1 ). At each iteration it is then necessary
to solve a linear system with coefficient matrix M, but such linear systems are generally
much easier to solve than the original problem with matrix Ah. It is trivial to invert the
diagonal matrix D, and, on a uniform rectangular grid, A can be solved with a fast
Poisson solver. On an irregular region, A can be solved by embedding the region in a
rectangle and using an integral equation formulation of the problem [4 ]. The number
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ofiterations required by the Chebyshev or conjugate gradient algorithms can be bounded
in terms of the condition number of the preconditioned system, and so one might then
ask the question: What is the best diagonal matrix D to use in (1.3) in order to minimize
this condition number? That is, find a positive definite diagonal matrix Dh such that

(1.4) min K((DAhD)-IAh) K((DhAhDh)-Ah),
D positive definite diagonal matrices

where (M-Ah) is the ratio ofthe largest to smallest eigenvalue ofM-lAb or the condition
number of the symmetrically preconditioned matrix M-1/2AhM-/2 This is equivalent
to finding a matrix Vh, which minimizes

( A-I (D-AhD- ))

over all positive definite diagonal matrices D, since the eigenvalues of A(D-AhD-1)
are the same as those of (DAhD)-Ah. The problem was stated in this second form
in [1].

In this paper we prove a somewhat counterintuitive result about the optimal diagonal
scaling Dh when the diffusion coefficient a is piecewise constant but discontinuous. Both
the result and the method ofproofbecame apparent from studying the numerical results
of the optimization code, thus indicating the usefulness of such a code as a tool in the
study of preconditioners. The result is that in the limit as the mesh size h goes to zero,
the optimal diagonal scaling Dh approaches the identity (or a scalar multiple of the
identity, since scalar factors do not affect the condition number). This is in contrast to
the case of a smoothly varying diffusion coefficient a, in which case numerical evidence
suggests that the optimal diagonal scaling D is approximately equal to the square root
of the diagonal of the matrix Ah.

2. A liecewise constant diffusion coefficient: Theoretical results. The first theorem
that we prove is very general in nature, applying to arbitrary matrices and preconditioners
with a certain algebraic property. It characterizes a space in which the extreme values of
the Rayleigh quotient must be attained. The next two theorems use this result and apply
to matrices arising from specific forms of 1.1 ), with preconditioners of the form (1.3).

THEOREM 2.1. Let A and C be two n by n symmetric positive definite SPD matrices
and assume that certain rows ofC are just scalar multiples ofthe corresponding rows of
A; that is, there is a nonempty set S such thatfor each S there is a scalar c such that

(2.1) C0=ciAo Vj= l, ,n.

Then the extreme values of the Rayleigh quotient vJ;Av/vCv are obtainedfor certain
vectors v satisfying either

(2.2) (Av)i 0 VieS

or

(2.3) vj=O VjS.

Proof. Let w be an arbitrary vector and let v be a vector that satisfies (2.2) and that
matches w in all components outside of S. Such a vector exists since A is SPD and hence
every principal submatrix is nonsingular. The vector w can be written in the form

w=v+ f,

where b satisfies (2.3). Hence vTA TAr 0 and we have

wAw= vAv + fAf.
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Since (Cv)i is also zero for all S, it also follows that

wrCw v rCv + f) rCf).

Thus the Rayleigh quotient is given by

wrAw
wrCw

v rAv + rAf)

v TCv + f rCf)

and since each term in the numerator and denominator is nonnegative, it satisfies

min
vrAv f)rAf)

<= wrAw <= max
v rCv’ f) rCf) wrCw v rCv’ f) rCf)

from which the desired result follows. Vq

The spaces defined by (2.2) and (2.3) are both A-orthogonal and C-orthogonal to
one another, and together they span all ofR n. The technique ofexpressing a given vector
as a sum of vectors from each space will be used in the proofs throughout this paper.

We first use Theorem 2.1 to prove a result about the one-dimensional problem

(2.4)
dx a-x f

u(0)=u()=0,

xe(0, 1),

where the coefficient a(x) has the form

ifx<.5,
(2.5) a(x) a,a2>0,

a2, if x>.5,
a 4=a2.

Let Ah be the matrix arising from a continuous piecewise linear finite element approxi-
mation for this problem on a uniform grid of size h. Assume that the grid contains a
node at the point of discontinuity of a(x). The matrix Ah is then given by

(2.6) A

2a
--al

-al
-al
2al
-al

-al
a +a2
--a2

-a2
2a2

-a2
-a2
2a2

Let A be the one-dimensional Laplacian matrix arising from a continuous piecewise
linear finite element approximation for the problem

(2.7)

d2u
dx-f, xe(0, 1),

u(0)= u()=0,

on the same uniform grid. The matrix zh is just tridi 1, 2, ). We prove the following
theorem.
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THEOREM 2.2. Let Ah and Ah be as defined above and let Dh be a positive definite
diagonal matrix that satisfies (1.4). Then

Dh has theform

D= d
d2,hlh

where d,h, d2,h, and dn are positive scalars and I is the identity of order
n 1) / 2, where h 1/ n + 1.

(ii) In the limit as h - O, these scalars approach each other; that is,

lim d,h lim dz,h lim dh d,
h0 h0 h0

and the condition number ofthe optimally preconditioned matrix approaches
that ofthe matrix preconditioned by the simple Laplacian"

lim ((DhDh)-Ah) lim (Ah)=max ,--
ho ho a2 al

(iii) Ifh is any matrix oftheform

and the positive scants d,h, d,h, and dh approach different limits as h 0
(more general@, ifthere exist positive constants e and such thatfor ag h less
than either d, d > e or d, & > e ), then

((DD)-A)O(h-) ashO.

We prove this theorem through a series oflemmas (Lemmas 2.1-2.4). For simplicity
we drop the subscript h when it is clear which variables depend on h. The point of
discontinuity of a, x .5, is grid point number (n + )/2, which we denote by m.

LEMMA 2.1. Let D be any matrix oftheform

dI )(2.9) D= d
d2I

where d d2, and d are positive scalars and I is the identity matrix oforder rn 1. Define
M to be the matrix DAD, where A is the Laplacian matrix. The vectors v for which the
Rayleigh quotient v TAr/ V TMv attains its extreme values satisfy

(2.10) (Av)i =0,

or, equivalently,

i= 1,-.. ,m-2,m+2, ,n,

(2.11)

n-l-2j
Vm- -j=

n--1 Vm- , j= l, ,rn--2

n-l-2j
Vm + +j= Vm + j l, rn- 2.

n-1
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Proof. Result (2.10) follows from Theorem 2.1 since all rows of M, except rows
m 1, m, and m + 1, are just scalar multiples of the corresponding rows ofA and since
either of the extreme values a/d2 or a2/d, which can be taken on by the Rayleigh
quotient for vectors that are zero outside { 1, ..., m 2, m + 2, -.., n }, can also be
taken on for vectors satisfying (2.10).

By definition of the matrix A, equations (2.10) are equivalent to

-1

-1

l)m 2 I)

l

yro + 2 I)m +

Vm.+ 0

2 \ t,,
It is easy to check that vectors of the form (2.11 are the solutions to these equations
and, thus, the equivalence of (2.10) and (2.11 ).

Vectors satisfying (2.10) or (2.11 are called discrete harmonic.
LEMMA 2.2 (Theorem 2.2(iii)). Let D be any positive definite matrix oftheform

(2.9). Ifd, d2, and d approach different limits as h -+ 0, then

K(M-A)>=O(h -2) ash---O,

where M DAD.
Proof. For any vector v satisfying (2.10) and (2.11 ), we can write

v TAr l)m -1 (Al))m -1 q- l)m(Al))m q- l)m + (AV)m +

n-3 )=Vm-lal 2Vm-I Vm-l--Vm +Vm((alWa2)Vm--alVm-l--a2Vm+l)

Vm + a2(2Vm + Vm+

After simplification this becomes

(2.12) vTAv=a[(Vm--Vm_I)2+
Similarly, v TMv can be written as

2
+ a2 (1)m--l)m+l)2"[-

n-1

2
(2.13) vTMv (Vm-- dlvm-)2

n-1
dZ v 2 2

n-1

Taking Vm =Dm l)m + and dividing (2.13 by (2.12) gives

2 2
vTMv (d-d)2+n-l dl2+(d-d2)2+n- d2

vTAv 2
n-

(a + a2)

n-1.max {(dl-d)2,(d2-d) 2 } > O(h_l)"
2 a +a2
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Taking

d
)m-1 11

and dividing (2.12 by 2.13 gives

vVAv

l) + --’-7, l)m 1,
a2

alI(l_d/dl)2+ 2 [ 2 ]n.l (d/d)2 +a2 (1-d/d2)2+ (aT/d2) 2

n-i
vrMv 2 (2d

n--1

n- max {a(1/3- 1/d)2,a2(1/d- l/d2) 2} > O(h_)
2 2

Hence, by definition of K, we have

v TAr V rAy / maxK(M-1A) max min
v rAy I max

v,o v,o v Av
max {a(1/d-1/d)2,a2(1/d 1/d)2 }

max { (dl d) 2, (d2 d) 2 } __> O(h-2).
a +a2

LEMMA 2.3 (Theorem 2.2(ii)). IfD is a matrix oftheform (2.9) that satisfies
min ((/}A/)-1A ((DAD)-A ),

1 oftheform (2.9)

then dl, d, and d approach the same limit as h - O, and

I(M-A ( -A max --, as h O,
a2

where M DD.
Proof. From Lemma 2.2, it is clear that dl, d2, and d must approach the same limit,

since otheise the condition number of the preconditioned matrix would be greater
than or equal to O(h -z). Yet the condition number of the matrix preconditioned by the
simple Laplacian is

{aa2}max , =O(1),
a2 al

which is well known, and can also be seen from (2.12) and (2.13). We can assume
without loss ofgenerality that this limit is 1, since scalar factors do not affect the condition
number. Taking Vm- Vm 0, then, and dividing (2.12) by (2.13 ), we have

vAv a2

vrMv d
Taking V I) +1 0 and dividing (2.12) by (2.13 gives

vTAv al
vrMv d{
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Hence, in the limit as h - 0, the condition number of the optimally preconditioned
matrix is no better than

max ,
a2

which is the condition number of the matrix preconditioned by the Laplacian.
LEMMA 2.4 (Theorem 2.2(i)). IfD is a matrix oftheform (2.9) that satisfies

min K((/}A/})-A) K((DAD)-IA),
1 ofthejbrm (2.9)

then D also satisfies
min ((/z/)-IA) ((DzXD)-IA).

1 positive definite diagonal matrices

Moreover, any positive definite diagonal matrix that satisfies this equation is of the
form (2.9).

Proof. Let/} diag (di), 1, n, be any positive definite diagonal matrix
and let/ be the matrix of the form (2.9) whose (rn )st, mth, and (rn + )st diagonal
elements are equal to those of/5. Define =/zX/} and r =/zX/}. Let v be a vector
satisfying 2.1 0). Then v r2trv satisfies

vv vfifi Ofi- fiv w w,

where w =/-l/v matches v in components rn 1, m, and rn + 1. As in Theorem 2.1,
then, w can be written in the form w v + , where m-1 m m +1 0, and hence
r3rv v r]Q 0. It follows that

v rlv wrw vrv + f)rf) >= v rv.
Since by Theorem 2.1 the largest value ofthe Rayleigh quotient v r2fIv/v rAy is obtained
for a vector v satisfying (2.10), it follows that

vDv vv
(2.1 4) max >= max.

v4:0 I)TAI) v4:0 vTAv
Now let a vector w be given by

w= fi-’v,

where v again satisfies (2.10). Then wr2Qw is equal to v r21)v and, since the (m )st,
mth, and (m + )st elements of w match those of v, we can again write w in the form
w v + , where m-1 m m +1 0. Hence f)rAv v rAf) 0 and we have

wrAw WAy + f)VAf) >= vrAv.
Since by Theorem 2.1 the Rayleigh quotient v rAv/vr2C/Iv obtains its largest value for
some v satisfying (2.10), it follows that

wrAw vrAv
(2.15) max >, o w r2C/lw max--.

v4:0 1) Tjlrl)

From (2.1 4), (2.1 5 ), and the definition of , then, the desired result follows:

(M-1A =< K(21)-1A max max < K(J-1
veo VrIV veO vrAV A).
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Since the inequalities in (2.14) and (2.15 are strict unless is zero, i.e., unless/ is itself
of the form (2.9), the second part of the lemma is also proved. E]

When the Laplacian Ah is used as a preconditioner for Ah, the condition number
of the preconditioned system is bounded, independent of h:

(ZXAh)-< max ,--
al

Theorem 2.2 shows that, for small h, the best diagonal scaling is close to the identity (or
a scalar multiple of the identity) and this bound cannot be improved much. The wrong
diagonal scaling can greatly increase this condition number. For larger values of h, how-
ever, an appropriate diagonal scaling can significantly reduce the condition number of
the preconditioned system, as will be demonstrated in the following section.

A similar result holds for the two-dimensional problem

(2.16) x ax +-y a- =f, (x,y)e(0, 1) (0, 1),

u(x, 0) u(x, )= u(0, ) u(,) 0,

where the coefficient a(x, y) has the form

ify<.5,
(2.17) a(x,y) a,a2>0, a 4:a2.

a2, if y>.5,

Again, let Ah be the matrix arising from a continuous piecewise linear finite element
approximation for this problem on a uniform triangular grid of size h, having a mesh
line at the discontinuity, y .5. If the natural ordering of nodes is used then Ah has
the form

(2.18) Ah

-all
-aI aT -aI

a +a2--aI 2

--aeI

--a2I

a2T
-a2I

-a2I a2T

where T tridi (-1, 4, -1 and I is the identity of order n for a grid of n n interior
nodes. Let Ah be the two-dimensional Laplacian matrix arising from a continuous piece-
wise linear finite element approximation for the problem

(2.19) \x2+] =f, (x,y)E(0,1) (0,1)Oy2

u(x,0) u(x, )= u(0, y) u(,y): 0

on the same uniform grid. The matrix A is block tridi (-I, T, -I). The following
theorem is proved very similarly to the one-dimensional case.



834 A. GREENBAUM

THEOREM 2.3. Let Ah and Ah be as defined above and let D be a positive definite
diagonal matrix that satisfies (1.4). Then

Dh has theform
d,I )Dh dI.5,h

d2,I

where d,h, d2,/, and d are positive scalars, I is the identity of order
[n(n )]/2, and I., is the identity oforder n, where h /(n + ).

(ii) In the limit as h -- O, these scalars approach each other; that is,

lim d, lim dz,h lim d-= d,
h--0 h--0 h-0

and the condition number ofthe optimally preconditioned matrix approaches
that ofthe matrix preconditioned by the simple Laplacian"

al a:,_}lim tc((DhAhDh)-lAh) lim t((AlAh) 1/lax --,--
h---o h o a2 al

(iii) If15 is any matrix oftheform

(2.20) /)h (
d2,I

and the positive scalars ,, 2,, and approach different limits as h -- 0
(more generally, ifthere exist positive constants e and 6 such thatfor all h less
than 6 either d,,h > e or [d2, h[ > e, then

K((lhAhh)-Ah)>=O(h -2) ash--O.

As in the one-dimensional case, we prove this theorem through a series of lemmas
(Lemmas 2.5-2.11 ), dropping the subscript when it is clear which variables depend on
h. The matrices considered in the two-dimensional case can be thought of as block
matrices, with n blocks, each of order n. The subscript m (n + )/2 will denote the
middle block, corresponding to the line of discontinuity in a. For any nZ-vector v, vk
will denote the kth block of v.

LEMMA 2.5. Let D be any matrix oftheform

dI )(2.21 O d/.5
d2I

where d, d2, and d are positive scalars, I is the identity matrix oforder [n(n )]/2,
and 1.5 is the identity matrix oforder n. Define M to be the matrix DAD, where A is the
Laplacian matrix. The vectors vfor which the Rayleigh quotient v TArv TMv attains its
extreme values satisfy

(2.22) (Av)i=O, 1, ,m-2,m+2,...,n.

Proof. As in the one-dimensional case, the result is an immediate consequence of
Theorem 2.1.
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LEMMA 2.6. Let v be a vector satisfying (2.22) and let I) and I) + be eigenvectors
ofT tridi (-1, 4, -1 ). Then each block vi can be written in theform

(2.23)
vi 3’iVm- 1, i= 1, ,m--2,

l)i="yil)m+l, i=m+2, ,n

for some scalars "Yi. Ifvm is the eigenvector associated with the smallest eigenvalue of
T, then "Ym++_2 O(h).

Proof. Equations (2.22) are equivalent to

-I l)m’/)m-2 l)mo-1

-re
Vl 0

(2.24)

T -I l)m + 2 l)rn+
-I T Vm+3

--I
Vn 0

We will consider only the first set of equations, since the second is handled in exactly
the same way. Assume there is a solution with vi "yil)m- 1, 1, "’", rn 2, for some
scalars "Yi. Let Vm correspond to an eigenvalue , of T. Then equations (2.24) become

-1 7m.-2 0
(2.25)

-1
-1 #

"}/1 6
This has a unique solution for 3’1, 3’m 2 if z >_- 2, and since all eigenvalues of T are
greater than 2 this condition holds and the solution of (2.24) is, indeed, of the
form (2.23).

Let Tk denote the tridiagonal matrix tridi (-1, g, -1 of order k and let det (Tk)
denote its determinant. Solving (2.25) using Cramer’s rule gives

det Tm 3)
3’m-2-det(Tm_2 )’

where det (T) satisfies

det (To) 1, det (T1) #,

and

satisfies

det T)= det T_ l)- det T_ 2),

det (Tk)
rk----det Tk- 1)

k=2, ,m-2.
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If carried out indefinitely, this recurrence converges to a solution of the equation

r=/2 --,

namely,

/2+ ,//2 4

and it is easy to check that after rn 2 O(h -1 steps, the ratio rm- 2 is greater than
this limit by O(h). If/2 is the smallest eigenvalue of T, then/2 2 + O(h2), and so

rm-2 + O(h) and m-2 1/Fm_ 2 is O(h). q

LEMMA 2.7 (Theorem 2.3(iii)). Let D be any positive definite matrix oftheform
(2.21). Ifdl, d2, and d approach different limits as h -- O, then

K(M-1A)>=O(h -2) as h---O,

where M DAD.
Proof. Let v be a vector satisfying (2.22), with Vm- Vm Vm + being the eigen-

vector of T, of unit norm, corresponding to the smallest eigenvalue/2 2 + O(h2).
Then v TAr is given by

vTAv=al(/2 1--’’m 2)’+"
al +a2

2
/2-- a- a2 + a2(/2-- --’’m + 2)-- O(h),

while v VMv satisfies

v rMv d21(/2- "Ym -2)- 2did+ 672/2 + d22(/2- ’/’m + 2)-- 2rid2 >(d,- d)2 +(d- d2) 2

Hence the ratio satisfies

v rMv>=O(h-1).vAv
If, instead of having unit length, the blocks I) and I) +1 are taken to have lengths
ddl and dd2, respectively, then we find

vTAv>al --- +a2 3--
vTMv=d2[(/2-,’Ym_2 1)+(/2--2)+(/2--’Ym+2-- l)]=O(h).

In this case, then, we have

vTAv
V TMv=>O(h-),

and so the condition number satisfies

K(M-A) max max
= o I) TMI)

v VMv )>wAy O(h-2).

LEMMA 2.8 (Theorem 2.3(ii)). IfD is a matrix oftheform (2.21) that satisfies

min K((/A/ -A ((DAD)-A ),
1 oftheform (2.21
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then dl, de, and d approach the same limit as h - 0, and

(M-1A)--t(A-1A) as h---O,

where M DZXD.
Proof. The proof is the same as that of Lemma 2.3. [5]

LEMMA 2.9. Let be any positive definite diagonal matrix whose m )st, mth,
and m + 1)st diagonal blocks are just scalar multiples of the identity. Let ) be the
matrix oftheform (2.21), which matches in blocks m 1, m, and m + 1. Then

K((/SA/})- A) < K((/}A/5)-’A ).

case.
Proof. The proof is analogous to that of Lemma 2.4 in the one-dimensional

Lemma 2.9 shows that the matrix D of the form (2.21), which minimizes
((/S&/5)-lA) over all matrices/5 of the form (2.21), also minimizes this quantity over
all diagonal matrices whose (m )st, mth, and (m + )st diagonal blocks are scalar
multiples ofthe identity. To show that it minimizes this quantity over all diagonal matrices
with possibly nonconstant elements in these blocks requires some additional work. To
this end, we prove the following lemma.

LEMMA 2.10. Let D be any positive definite matrix oftheform (2.21 and let M
DzXD. The vectors v for which the Rayleigh quotient v rAv/vrMv attains its extreme
values have blocks oftheform
(2.26) vi as, i= 1, ,n,

where Oll, Ol are scalars and s is the eigenvector ofT corresponding to the smallest
eigenvalue.

Proof. Let S be the matrix whose columns are the eigenvectors of T, and let 0
diag (01, 0n) be the diagonal matrix of eigenvalues, so that we have TS SO,
SrS SS I. Define U to be the block diagonal matrix whose diagonal blocks are
all equal to S. Then UrAU is of the form (2.18) with T replaced by O, and UrMU is
D (block tridi (-I, O, -I))D. Let P be a permutation matrix such that the jth
column of the ith block of a matrix B is the ith column of the jth block of the ma-
trix BP. Then the matrices PrUrAUP and PrUrMUP are block diagonal, with diagonal
blocks given by

alOi
--al mal

--al alOi --al

al + a2
0i -a2-al 2

-a2 a20i -a2
-a2 -a2

-a2 a20i
and

d d2 Oi -did
Mii -dlff d20i -dd2
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respectively. Note that these blocks can be written in the form

(0;-2) (0 -2)
Aii=A1o+’diag (AD), Mii=M1o+’diag (M1D),

2 2

where Az and Mz are the matrices that would arise from a one-dimensional problem.
Since each eigenvalue Oi of T is greater than 2, each block Aii and Mii has positive eigen-
values. Hence the largest (smallest) value of the ratio wrPrUrAUPw/wrPrUrMUPw
is attained for a vector w having one nonzero block wi corresponding to the block
Mi Aii with the largest (smallest) eigenvalue. Since the largest (smallest) eigenvalue of
M-iAz is greater (smaller) than that of diag (Mz)- diag (A1D) -1 the block MlAii
with both the largest and smallest eigenvalues is the one corresponding to the smallest
value Oi. Thus, the extreme values of the ratio wrPrUrAUPw/wrPrUrMUPw are at-
tained for vectors w with a single nonzero block, corresponding to the smallest eigenvalue
0i. The vector v UPw, then, is an extreme vector for the Rayleigh quotient vrAv!
v rMv, and each block is a scalar multiple of the eigenvector s of T corresponding to the
smallest eigenvalue. []

LEMMA 2.11 (Theorem 2.3 (i)). IfD is a matrix oftheform (2.21) that satisfies
min K((/)A/))-IA) K((DAD)-IA),2.27

oftheform (2.21)

then D also satisfies
(2.28) min r((/SA/)-lA) r((DAD)-lA).

J positive definite diagonal matrices

Moreover, anypositive definite diagonal matrix that satisfies (2.28) is oftheform (2.21 ).
Proof. Let/ diag (/3,-..,/n) be any positive definite diagonal matrix. Let

/) be the matrix of the form (2.21) whose (rn )st, mth, and (rn + )st block coeffi-
cients are

dl sTjm_ S, d= sTjmS, d2= STm + S,

where s is the eigenvector of T corresponding to the smallest eigenvalue #. Define hr
/A/ and Q =/A/. Let v be a vector satisfying (2.22) and (2.26). Then v r3rv satisfies

/) Tj/) =/) T/f-lj6-1b wTj/Iw,

where w =/-l/v. The vector w can be written in the form v + , where -(/-l/ I)v. Because of the choice of d, d2, and d, we have

) T]fi) Olm 1sT( d-{ bm I) T( d2 o lidS dO 2S- dldOmS)

-1- OlmST(d-ibm I) r( d2Olm#S dldOZm S d2ozm + S)

+ am + sr(dJm + 1-I)r(d2am + #s-d2am + 2s-dd2amS)

It follows that

vv w w vrv + vr >__ v rv.
Since by Theorem 2.1 and Lemma 2.10 the largest value ofthe Rayleigh quotient v rhrv/
v VAv is obtained for a vector v satisfying (2.22) and (2.26), it follows that

vv vv
(2.29) max >= max.

v/0 vrAl v/0 ITAt
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Now let a vector w be given by

where v again satisfies (2.22) and (2.26). Then wQI71w is equal to v T21rv and again we
can write w in the form w v + , where (/}-l/} I)v. We now have

f) TAI) m 1sT(dl1- I) Tal m IS-- m 2S-- mS)

+ mSr(dLl -I)r( al + a2 )2 m#S am S a2m + S

+ m+ 1sT(d2I+ 1--I)Ta(m+ lgS--mS--m+2S),

which can be written in the form

rAv v I(CACv)m @ v(CACV)m +v + CACV)m +

where C is a diagonal matrix whose diagonal elements are one except in blocks m 1,
m, and m + 1, where they are

c =(dlSrL1_ /2 L1 1/21S-- =(dsTb S-- C2 (d2sTbl+ 1S-- )1/2,
respectively. Because of the choice of d, d2, and d, we know that the quantities under
the square roots are nonnegative, since

2-1 4{sfi,s).{s7s)= sd,, sa, s+ ss di di
j= j= j= j=k=

kj

s+2 s s s =1.
j= j= =

kj

Hence ray is nonnegative and so we have

wrAw vrAv +rA vrAv.
Since by Theorem 2.1 and Lemma 2.10 the Rayleigh quotient v ray / vrv obtains its
largest value for some v satisfying (2.22) and (2.26), it follows that

wrAw vrAv
(2.30) max > max

w,o wrw o vrv
Combining (2.29) and (2.30), we obtain the desired result:

(M-1A) (- A) Z (-lA).

Since the inequalities in (2.29) and (2.30) are strict unless is zero, i.e., unless is,
itself, of the form (2.21 ), the second pa of the lemma is also proved.

While our pfima interest has been in diagonal scalings of the Laplacian, it should
be noted that the proofs of Lemmas 2.4 and 2.11 make no use of the assumption that
D is diagonal outside of positions (blocks) m 1, m, and m + 1. They can therefore be
generalized to the following result.

COROLLARY. For the one-dimensional problem, the matrix Dh of Theorem 1.2
minimizes ((EhEh)-IAh) over all matrices Eh whose three center rows and columns
m 1, m, and m + have nonzeros only on the diagonal. For the two-dimensional

problem, the matrix Dh of Theorem 2.1 minimizes ((EhEh)-IAh) over all matrices

Eh whose 3n center rows and columns (n(m through n(m + )) have nonzeros only
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on the diagonal and these nonzeros are positive. More generally, it minimizes this quantity
over all matrices whose 3n center rows and columns have nonzeros only in the n n
diagonal blocks andfor which these diagonal blocks, Em- l, Em, and Em +, have the
property that

(sTEis)’(sTEIs)>= 1, m- 1,m,m+ 1,

where s is the eigenvector ofT corresponding to the smallest eigenvalue.

3. Numerical results. For a given matrix Ah an optimization code can be used to
determine numerically the optimal preconditioner of the form (1.3). A particularly ef-
ficient technique for solving this type ofoptimization problem was developed by Overton
5 ]. Experiments with this code were reported in 2 ]. The code uses a variant ofNewton’s
method to determine a matrix M of a specified form (e.g., form (1.3)) for which the
spectral radius o(I- M-1Ah) is minimal. It was shown in [2] that this same matrix M
(or any scalar multiple ofM) also minimizes the condition number K(M-1Ah), provided
that the set over which the minimization is being performed contains all positive scalar
multiples of its members, which it does in this case.

In the following experiment, the matrix Ah was taken to be the matrix arising from
a continuous piecewise linear finite element approximation on a uniform grid of size h
for the one-dimensional problem (2.4), (2.5), where

(3.1) al 1, a2 100.

The optimization code was run to determine the optimal preconditioner of the form
1.3 ). The diagonal matrix Dh determined by the code was always of the form (2.9), as
Theorem 2.2 shows that it must be. (In fact, this observation of the numerical results
led to the statement and proof of Theorem 2.2). The largest problem size that the op-
timization code was able to handle directly, however, was about n 225, and the asymp-
totic behavior of the system cannot be deduced from results on grids of this size.

Using Theorem 2.2, however, the problem of finding the optimal matrix Dh can be
reduced to a 3 3 eigenvalue optimization problem. From (2.12) and (2.13 it follows
that for vectors v satisfying (2.10) and (2.11 we have

where

v rAy vAcvc, vrMv vMcvc,

mc--

n+l
d

-did

n+l
al

n-1
-al

-al a + a2

0 ma2

-did 0

272 -7d2
n+l

-dd . n-i

-a2

n+l

n-1

l)m 1]UC U

l)m+l

It follows that r(M-1AI) is equal to r(M:lAc), and finding a matrix Dh that satisfies
1.4 is equivalent to determining dl, d2, and t] to minimize r(M Ac). While it appears
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difficult to solve this problem analytically, it is a simple problem for the numerical op-
timization code.

Results from the optimization code are plotted in Figs. (a,b). In Fig. (a) the
condition number of the optimally preconditioned matrix is plotted against h -1 Fig.
(b) shows the ratios dl/d and d2/d for various grid sizes. Note that it is not until the

number of grid points n reaches about 104 that the asymptotic behavior of the system is
approached: K(M-IAh) 100 and dl d d2. This leads us to question the relevance
of asymptotic results such as those in Theorem 2.2 since for problems of typical size,
they may not be approached. It is interesting to note, however, that for all problem sizes
the scalar d is approximately equal to d2, the diagonal element corresponding to the
subregion with the larger diffusion coefficient.

Additional experiments were performed with largerjumps in the diffusion coefficient:

a2_ 10 10 4 10 6

al

Results for the case a2/al 103 are plotted in Figs. (c,d). The grid size n at which the
condition number reaches some fixed fraction, say, .9 of its asymptotic value, seems to
grow linearly with the size of the jump in a(x). When a2/a is 100, a grid of size about
2000 is needed before the condition number of the optimally preconditioned matrix
reaches 90, and so for a2/al equal to l0 it is only for grid sizes n 2. l0+ that the
condition number of the optimally preconditioned matrix reaches .9.10. Since large
jumps in a diffusion coefficient are usually handled with much coarser grids, the asymptotic
results become even less important.

The optimization code was also applied to a similar two-dimensional problem:

( O Ou O Ou )-xa-x+-ya-y =f in (0, 1)x(0, 1),

u(x,O)-- u(x, )- u(O,y)- u( 1,y)- 0,

where

1, y<.5,
(3.2) a(x’Y)=

100, y>.5.

The matrix Ah was again derived from a continuous piecewise linear finite element ap-
proximation on a uniform grid of size h. The optimization code was used to find the
diagonal matrix Dh for which

K((DhAhDh)-lAh)

was minimal, where/x is the five-point Laplacian.
The matrix Dh returned by the optimization code was observed to have the form

dlI )Dh dI.5
d2I

where d, d2, and d are scalars, I is the identity corresponding to the subregion (0,
(0, .5) or (0, (.5, ), and/.5 is the identity on the dividing line, y .5. Applying
the code directly to this problem, we were not able to work with fine enough grid sizes
to determine the asymptotic behavior of the system. Using Theorem 2.3, however,
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FIG. 1. (a) Optimal diagonal scaling ofthe Laplacian as preconditioner (one-dimensional) (a2 al 100).
(b Element ratios ofoptimal diagonal scaling (one-dimensional) a2 a 100).

this problem can again be reduced to a 3 3 eigenvalue optimization problem. It is
equivalent to finding scalars d, d2, and d to minimize the condition number of
M1Ac, where

a(/-y) -a
a +a2Ac --al #2

0 ma2

0 d(t,-3,) -dd 0

-a2 Mc -dd d2v -dd2

a2(z-) 0 -dd2 d22(u-3,)

Here # is the smallest eigenvalue of the n n tridiagonal matrix T tridi (-1, 4, -1 ),
and 3’ is the first component of the solution to the linear system (2.25).

Using this formulation of the problem, the numerical solution becomes very easy
for the optimization code. The condition number ofthe optimally preconditioned matrix
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FIG. 1. (C) Optimal diagonal scaling of the Laplacian as preconditioner (one-dimensional) (a2/al
1000). d Element ratios ofoptimal diagonal scaling (one-dimensional) a2 a 1000 ).

is plotted in Fig. 2(a) for different grid sizes, and the ratios d/d and ded are plotted
in Fig. 2 (b). For the two-dimensional problem, an even finer grid is required before the
asymptotic limit is closely approached. Again, however, even for relatively coarse grids,
the scalar d was approximately equal to de, the diagonal element corresponding to the
subregion with the larger diffusion coefficient.

In contrast to the above results, Table shows results for the problem (2.1), where
a(x) is given by

(3.3) a(x) .01 qt_ X2

Although the total variation in a(x) over the interval (0, is approximately the same
as that in (3.1) (amax/amin 101), it now varies smoothly. The diagonal matrix Dh
returned by the optimization code is now very nearly equal to the square root of the
diagonal of Ah. Table shows the largest and smallest ratio between the square of a
diagonal element of Dh and the corresponding element ofAh. Dh has been multiplied by
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FIG. 2. (a) Optimal diagonal scaling ofthe Laplacian as preconditioner (two-dimensional) a2 a O0 ).
(b Element ratios ofoptimal diagonal scaling (two-dimensional) a2 a 100).

a scalar so that its center element is equal to the square root ofthe corresponding diagonal
element ofAh. In this case, then, the optimal diagonal matrix Dh is not ofthe form (2.9)
and it does not appear to approach the identity as h -- 0. Rather, it appears to approach
the square root of the diagonal of Ah.

TABLE
Ratios ofdiagonal elements for the optimal preconditioner and condition

number ofthe preconditioned system (3.3).

l/h

10
26
50

max Dii/Aii
1,

1.01
1.00
1.00

min Di/Aii
i= 1,..- ,n

.98

.98

.99

K(M-Ah)

1.17
1.26
1.28
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4. Further discussion. In the case of a smoothly varying diffusion coefficient a, the
differential operator V. (a7u) can be written in the form

(4.1) aAu+Va.Vu.

Consider the equation Au --f. Making a change of variable from u to v a
multiplying this equation by a 1/2 gives

-1/2b/and

(4.2) al/2A(al/2v) aAv + Va. X7v + al/2( /Xa/)v -a/2f.

The matrix M DAhD where D is the square root of the diagonal OfAh, represents the
differential operator in (4.2), with the same homogeneous Dirichlet boundary conditions
as the original problem. Since this is a second-order self-adjoint operator, it follows that
using M as a preconditioner for Ah gives a condition number for the preconditioned
system that is O( ), independent of the mesh size [3]. Since the leading terms of the
differential operator in (4.2) match those in (4.1), it is perhaps not surprising that this
is a near-optimal diagonal scaling.

When the coefficient a is discontinuous or continuous but not differentiable, there
is no such analogy between the preconditioner and a differential operator whose leading
term(s) match those of the original equation. In this case, a discontinuous diagonal
scaling of the Laplacian does not represent a second-order self-adjoint elliptic operator
and, as Theorems 2.2 and 2.3 show for a specific problem class, the condition number
of the matrix preconditioned in this way may become infinite as h goes to zero.

5. Conclusions. While the problems considered in this paper are very simple ones,
the negative resultmthat, in the limit as h -- 0, scaling the Laplacian by a diagonal
matrix cannot improve its performance as a preconditioner for a problem with a dis-
continuous diffusion coeificientmcan be expected to hold for more complicated problems
as well. Techniques similar to those used in proving Theorems 2.2 and 2.3 should also
be applicable to problems defined in different domains, with different boundary conditions,
and with multiple discontinuities in the diffusion coefficient.

An interesting question is whether the result that the optimal diagonal scaling (for
a fixed-size grid) is piecewise constant would hold also for more complicated problems,
e.g., for two-dimensional problems with four different diffusion coefficients in each of
four quadrants. Numerical results indicate that in this case the optimal diagonal scaling
of the Laplacian is not exactly constant in regions with constant diffusion coefficient but
has a small amount of variation. Still, for problems with just a few such discontinuities,
one might be able to find the optimal piecewise constant diagonal scaling (which is not
far from the optimal diagonal scaling) by reducing the problem to a low-dimensional
eigenvalue optimization problem and solving with a numerical optimization code. Since
the size of the optimization problem is much much smaller than the size of the linear
system to be solved, this could prove to be a practical procedure.

Another idea suggested by these results is that the class of diagonal scalings of the
Laplacian is not a sufficiently general class to provide an effective preconditioner for
problems with a discontinuous diffusion coefficient. A slight generalization to allow scaling
the Laplacian by a low-rank update of a diagonal matrix might yield significantly better
results for such problems. This idea is currently being investigated using the same opti-
mization code.
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BOUNDS OF EIGENVALUES OF PRECONDITIONED MATRICES*

O. AXELSSON]"

Abstract. Some methods to bound individual eigenvalues of a generalized eigenvalue problem kCx Ax
are presented, both for general positive semidefinite matrices and for the special case where C is an incomplete
factorization of A. This provides accurate estimates of the rate of convergence of preconditioned conjugate
gradient methods to solve linear systems with A. In particular, methods are presented to actually numerically
compute bounds of the extreme eigenvalues. The estimates enable us to compare modified and unmodified
incomplete factorization methods.

Key words, generalized eigenvalue problem, local eigenvalue estimates, upper and lower bounds, precon-
ditioned iterative methods, rate of convergence
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1. Introduction. Consider the solution of a linear system of algebraic equations,
Ax b, where A is symmetric and positive semidefinite using a preconditioning matrix
C, which is symmetric and positive definite. In practice, A will be sparse, and C is fre-
quently given as a product of sparse triangular matrices. It is well known that the rate of
convergence of the preconditioned conjugate gradient (PCG) method to solve Ax b
by iteration depends on the distribution of eigenvalues of the generalized eigen-
value problem,

1.1 XCx=Ax.

For details, see 2 ], 18 ], 15 ], 8 ], and 17 ]. In general, this distribution is not known.
However, in this paper we consider some methods for deriving upper and lower bounds
of individual eigenvalues of 1.1 ). Let

(1.2) R:C-A

and let kma (R) and min(R) denote the largest and smallest eigenvalues ofR, respectively.
We assume that kmax(R) is nonnegative and kmin(R) is nonpositive, i.e.,

)kmin(R) 0 )kmax(R).

Note that this can always be achieved by multiplying C with a proper scalar and that
such a translation of the eigenvalues does not change the rate ofconvergence ofthe PCG
method.

Estimates ofthe extreme eigenvalues can be found for the special case ofincomplete
factorization preconditioned matrices for difference matrices in [12 ], [13 ], [3 ], I16 ],
and 5 ]. The present paper gives for the first time fairly complete general tools for esti-
mating interior eigenvalues.

In 2 we present some general methods to bound the eigenvalues, while in 4 we
derive upper bounds for the special case when C is computed as an incomplete factori-
zation ofA.

Such incomplete factorization methods are introduced in 4. We show also the
equivalence between the method ofperturbations (see 3 ], 10 ], and 5 and the method
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of relaxation (see [8]) used when computing incomplete factorizations. The derivation
oflower eigenvalue bounds when the method ofperturbations has been used is discussed
in 3. For alternative methods using graph theory methods, see [11], [7], and [20].

In 5 we apply the bounds to show the distribution of eigenvalues and the order of
condition numbers, in particular, for elliptic difference matrices. We show also that the
bounds of the extreme eigenvalues are readily computable, which in particular implies
that it can be efficient to use a Chebyshev acceleration iterative method as an alternative
to the conjugate gradient method.

2. Bounds of eigenvalues of generalized eigenvalue problems. Consider the gener-
alized eigenvalue problem

(2.1) hCx=Ax,

where A is symmetric and positive semidefinite and C is symmetric and positive definite.
We derive upper and lower bounds of the extreme eigenvalues and also of interior

eigenvalues. IfA is singular, we will consider the positive part of the spectrum. The first
bound is elementary and is presented only for comparison with a more general method
to follow.

LEMMA 2.1. Consider the generalized eigenvalue problem (2.1). Then
(a) hmin(A)/hmax(C) <: hmin(C-IA) < hmin(A)/hmin(C);
(b) hmax(A)/hmax(C - hmax(C-1A) hmax(A)/hmin(C).
Proof. We have

hmax(C-1A max { xTAx/xTCx } >= xTAx/xVCx
x#O

for any x # 0. Let be the eigenvector ofA corresponding to hmax(A). Then

hmax( C-1A > )TA./.TC. hmax(A ).T./ )TC. >: hmax(A )/ hmax( C).

This shows the left-hand side part of Lemma 2.1 (b). Clearly

hmax(C-IA)<= max { x’Ax/xTx} /min xVCx/xVx} hm,(A)/hmin(C),
x#0 x#0

which shows the fight-hand side part. In a similar way, Lemma 2.1 (a) follows, if]

We now let the eigenvalues h; hi( C-A ofC-lA and ofC, C-, andA, be ordered
in an increasing order and consider bounds of hi. For this purpose we shall use the
Courant-Fischer theorem to bound eigenvalues of sums and products of matrices.

LEMMA 2.2. Let A and B be symmetric matrices and let hi(A), hi(A + B), and so
forth, denote the ith eigenvalues ordered in an increasing order. Then

(a) h(A) + hmin(B hi(A -4- B) <: hi(A) A- hmax(B);
(b) Ifkmax(B) is nonnegative and A is positive definite, then

hi(mB) <: hi(A hmax(B).
C If hmi (B) is nonnegative andA is positive definite, then hi(AB) >- hi(A hmi (B).

Proof. The proof of Lemma 2.2(a) can be found in Wilkinson [23, p. 101 ], for
instance. For completeness, we give the proof. Let v, , vn denote the eigenvectors of
A. Then the Courant-Fischer theorem shows that for any x, xVx 1,

h/.(A + B) > min x(A + B)x
X-L I, ,1)i

>= min xVAx+ min xVBx hi(A)+ hmin(B),
Xl Vl, ,1)i- xTx

Note that the eigenvalues of (2.1) are identical to the spectrum of C-A.
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which shows the lower bound of Lemma 2.2 (a). Similarly,

hi(AB) hi(A /2BA /2)

xTA /2BA /2x xTAx]=< max c-a-- .Fx jX.]- l)n, ,1)

(A /2x)TB(A /2x) xTAx_-< max max hi(A hmax(B),
x0 (A1/Zx)T(A1/Zx) xxv,,...,vi+ xTx

which shows Lemma 2.2(b). The proofs of Lemma 2.2(c) and the upper bound of
Lemma 2.2 (a) follow the same lines. []

THEOREM 2.1. Let R C- A and assume that hmin(R) - O. Then

(2.2) hi(C-A) <= -k- hi(f-1)hmax(-R)

and, in particular,

hmax(C-’A) -< + hmax(-R)/hmin(C).

Proof. Since A C- R we have

C-A =I-C-R=I+C-(-R).
Hence Lemma 2.2(b) shows that

h;(C-A) + h(C-(-R)) <= + hi(C-)hmax(-R),

where, to show that hma (-R) is nonnegative, we have used

hmax(-R) hmin(R),

which is nonnegative, by assumption. E]

2.1. Alternative bounds. Consider the matrix pencil hC A. This can be written
in the form

(2.3) hC-A =(- )A +X--R’’I
where R /C A and where we let 0 < h </. This decomposition for the matrix
pencil hC A can be used to show the following alternative bounds, which relate eigen-
values of the generalized eigenvalue problem to the eigenvalues ofA.

THEOREM 2.2. Assume that t is sufficiently large so that hmin(#C-A)>
hmi (A). Then

(2.4)
Ihi(A <_ hi C_A <_ Ihi(A

hi(A)+ hmax(#C-A) hi(A)+ hmin(#C-A)

In particular, assuming that hmi (R) > hmi (A), we havefor l 1,

hi(A <= hi C_A <= hi(A
hi(A)l" hmax(R hi(A)-]- hmin(R)

Further, as t - , wefind that

(2.5) hi(A )/hmax(C) hi(C-A <- hi(A )/hmin(C).
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Proof. The upper bound of Lemma 2.2(a) applied to (2.3) shows that for any 3‘,
0<3‘<#.

(2.6)
3‘n-i+ l(3‘C-A) <- 3‘/#)3‘n_ i+ (-A) +- 3‘max(Ru)

--(

Note now that 3‘n-i+ 1( 3‘C- A) 0 if and only if3, 3‘i(C-1A). See Fig. 1. (The curves
for 3‘(3‘C- A) and 3‘-i+ 1(3‘C- A) are generally not straight lines. The unlabeled
pair of lines shows the right-hand side function in (2.6) for and for some > 1, re-
spectively.) Also note that the fight-hand side of (2.6) has a zero _Xi in the interval
(0, #), where

hi #3‘i(A )[3‘i(A +
It is readily seen that this latter becomes a lower bound of 3‘i(C-1A). Similarly,

(2.7)

3‘n-i+ 1( 3‘C A >- 3‘/#)3‘n-i+ (-A) -I- 3‘- 3‘min(Ru)

3‘i(A)+- min(R,)

and the fight-hand side of (2.6) has a zero 3‘i, where

Xi I,tXi(A )/[ 3‘i(A +
which becomes an upper bound. The remaining statements follow at once. Ul

Remark 2.1. The special case of of Theorem 2.2 was considered in 6 ]. The
use of the Courant-Fischer theorem to bound eigenvalues of incomplete factorization
preconditioned matrices was suggested by van der Vorst [21]. Note also that the estimates
(2.5) for the extreme eigenvalues generate those in Lemma 2.1. In fact, it is readily seen
that we could have derived such estimates in Lemma 2.1 for all eigenvalues using the
Courant-Fischer theorem, but that these estimates are only a special case of (2.4).

,(C-X A)
"I(A)

-hi(A)

A,,(,xc A)

.-+(AC A)

FIG. 1. Lower eigenvalue bounds using the Courant-Fischer theorem.
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Note finally that the bounds in Theorem 2.2 for tt converge to the optimal
value 1, as R - 0.

We conclude this section by presenting the following important result regarding a
uniform upper bound.

COROLLARY 2.1. For any tt such that )kmin(#C- A) - 0 We have

kmax(f-lA) .
Proof. This follows from the upper bound of (2.4). Clearly, this can also be seen

by the variational characterization

xAx
max(C-A) =/x max

,=x(uC)x

because, by assumption, x(lC)x >= xAx for any x.

3. Computable lower eigenvalue bounds using the method of lerturbations. For
many years it has been recognized that a certain perturbation technique is a convenient
tool to bound eigenvalues of preconditioned matrices; see [3], [16], [7], and also com-
ments in 10 ]. The technique is to add certain small positive numbers to the diagonal
of the original matrix when computing the preconditioning matrix to it. The purpose of
this is to control the upper eigenvalue of the preconditioned matrix, as we shall see in

4. For a recent exposition of this, see [5].
In this section we shall assume in addition that A and C are monotone matrices,

and that R, to be defined below, is negative semidefinite. As has been shown in 16] and
[4 ], a sufficient condition for this to hold is that A is an M-matrix, when we use the
modified method of incomplete factorization (for the perturbed matrix A; see 3 ], 16 ],
and [8]); i.e., let Rv 0 (see below).

The perturbations decrease the smallest eigenvalue. How this can be bounded and
estimated with a computable bound is shown here.

Let then the diagonal perturbation matrix A have nonnegative entries and let .
A + A be the perturbed matrix. Further, let C be a preconditioning to A, let

(3.1) R=C-A

and assume that A is computed so that

(3.2) Rv=O

for some v > 0 such that Av >= O. Then

A+R=C-A, (C-A)v>=O, C-A>=O.

Further, since R is symmetric and negative semidefinite, we have

(3.3) )i(C-1A) 1-),_i+I(C-I(A+R))>= --)kmax(C-1A)

and C-1A >= 0 and the Perron-Frobenius theorem shows that

)kmax( f-l A p( f-l A ).

THEOREM 3.1. Let C + R, A + ix, where A is a positive semidefinite diag-
onal matrix, R is negative semidefinite, Rv 0, v > 0, and let A diag
Then

-1(a) Xi(C-A) > min {maxi(vi (C- Av)i), maxi()iri(C-v-l)i)}
-(A -1(b) Xi(C-1A) > 1/[1 + max {max/(/)/ Av)i), maxi(vic3i(A-v-1)i)}],

where v- denotes the vector with components v and v > 0 is such that Av >= O.



852 o. AXELSSON

Proof. Equation (3.3) shows that

x.(C-l) >__ -p(C-/x).

Further,

p(C-A p(D C- AD,),

where D diag (v, v2, v). But for any matrix B and any natural norm, we find
p(B) B[]. Hence using this and BII BII, we find that

p( C-A) min { D’ C-lADy D1C--1AD Ill }

=min(mx((C-lAD)i),mx(vi6i(C-lv-)i)),
which proves Theorem 3.1 (a). Similarly, C A + A + R shows that

X(A-C) + Xi(A-I(A+R)) + Xmax(A-1A),
or since A-& 0,

X(A-C) + p(A-I)
and

Xi(C-lA) 1/[1 + p(A-1A)]

>_--1 +min (A-Av) ,mai x(l)iri(A-11)-l)i

which shows Theorem 3.1 (b).
Remark 3.1. Both the bound in Theorem 3.1 (a) and the bound in Theorem 3.1 (b)

are computable. The first requires only a solution with the preconditioning matrix C,
which is usually cheap, while the latter requires a solution with a given matrix A itself.
However, the latter bound is sharper, because

1/[1 +p(A-1A)] 1/Xmax(A-(A+A)) kmin((A q- A)-IA)

Xmin((A + A)-I(A + A-- A))=)kmin(I--(A + A) -1A)

-p((A + zX)-’/) -o((C-R)-’zX)e o(C-16).
An alternative method to derive lower eigenvalue bounds uses matrix graph theory

based on the matrix graph corresponding to the nonzero pattern of A. For details, see
[7] and for an extension of this method, see [20].

4. Upper eigenvalue bounds for incomplete factorization methods using the method
of perturbations. Let A be split as

A=D-L-LT,

where D is the (block) diagonal part ofA and (- L) is the (block) lower triangular part
ofA.

We consider now the case when the preconditioning matrix C has been computed
as an incomplete factorization. The form of a generalized symmetric successive overre-
laxation method SSOR matrix (see [3] and [5]) is

(4.1) C=(X-L)X-I(X-Lr),
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where X is (block) diagonal with positive diagonal entries (or positive definite diagonal
blocks) chosen as described below and, in the block matrix case, partitioned consistently
with the partitioning of D. Equation (4.1) shows that

so

Let R be defined by

C=X+LX-1Lr-L-L r,

R=-C-A =X-D+LX-1L T.

0, i=j,
(R)i’J=

(LX-1Lr)i,j,

(In the block matrix case, (R)i,j denotes the i, jth block of R.) Hence R consists of
the "fill-in" entries, i.e., the entries of the matrix LX-L r which fall outside the (block)
diagonal. X is computed recursively from

(4.2) Xi=Di-(LX-1Lr)i,j-wi(Re)i, 1,2,

where Di is the th block ofD, e 1, 1, )T, and wi are relaxation parameters. (In
the block case, wi is a diagonal matrix.) Note that (Re)i is a scalar ifXand D are diagonal
and a diagonal matrix, ifX and D are block diagonal. (Hence in the latter case, the off-
diagonal entries ofXi are determined so that they are equal to the corresponding entries
of Oi- (LX-1L r)i,i.) Hence Xi is uniquely determined by (4.2). Also, by choosing wi
properly (even negative, if necessary) we can guarantee that X/. becomes positive definite.
The method ofusing a relaxation parameter was first introduced in 8 ]. It follows readily
that for w/. 1, 1, 2, we have Ce Ae, which is the rowsum criterion and a
basis for the so-called modified incomplete factorization method of Gustafsson [16].
When wi 0, then R R and Ri/. 0. This is the unmodified method first considered
by Meijerink and van der Vorst [19].

We show now that the relaxation method is equivalent to a method ofperturbation,
which latter type of method has been used in 3 and 5 ].

For a method of perturbations we compute C; i.e., the diagonal of X in (4.1),
such that

Ce A + z)e,

which implies that

(X-L-Lr+ LX-1Lr)e=(A + A)e

or, since A D L L r,

(4.3) Se)i De)i + LX-1 L r)i,i -ll- R e)i ai.

Comparing (4.2) and (4.3), we see that

(4.4) i/=( wi)(Re)i.

Hence the method ofrelaxation is equivalent to the method ofperturbations ifthe diagonal
of A is perturbed by i defined by (4.4). Note that i is nonnegative if wi is chosen
properly.



854 o. AXELSSON

Next we shall derive an upper bound for the largest eigenvalue of C-IA. We extend
then a method used in [2], [5], and [7]. It is readily seen that we can write C in (4.1)
in the form

or

NC=[( -)X-Lk-X][x]-l[ ( --)X--LT+X]

where V L. Hence, since VX-1Vr is positive semidefinite, for any
positive Ix we find that

(4.5) )ti(IXC-A)>=. k 2-- X-D >= )kmi 2-- X-D

We assume that 2X- D is positive definite (which again can be achieved by a proper
choice of w in (4.2)). Therefore there exists a positive Ix for which

)tmin ((2 ----1)X- D) ->-0"
Ix

Theorem 2.2 (see the upper bound part of (2.4)) shows now that

(4.6) Xi( C-IA <= IXXi(A /[ Xi(A + Xmin( ( 2 -1)X- D) ]"Ix
For the largest eigenvalue we have then that

max)ti(C-lA)<=ix/[l+)tmin((2-1)X-D)/maix)ti(A) ]
Assume now that

((,) )(1)(4.7) Xmi, 2-- X-D >= 2-- x-d>-O,

where x and d are certain positive scalars. In the case X, D and 2X- D are M-matri-
ces, then

)tm’n((2-)X-D)>=rn!n{( (2-)X-D)e}
In particular, ifX and D are diagonal and D =dI has a constant diagonal, then

where x is the smallest diagonal entry of X. Clearly, since 2X- D is positive definite,
we have 2x- d > 0.

Note that one can always scale A prior to applying the generalized SSOR method;
i.e., consider D-1/2AD-/, where the scaled matrix has a unit diagonal. In case D is
block diagonal, for practical reasons, scaling is however viable only if the order of the
blocks ofD is small.
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We now derive the best (i.e., smallest) upper bound of the form (4.6) by choosing
the parameter u properly. For an earlier presentation of this, see [6]. Equations (4.6)
and (4.7) show that

(4.8) hi(C-A)<#hi(A)/[hi(A)+(2 x-d
#1) ]

and differentiation of the fight-hand side with respect to u shows the stationary point

(4.9) #i 2x/[2x-d+ hi(A)], hi(C-1A)<=,i 4xhi(A)
[2x-d+ hi(A)] 2"

However, we require that [2 /u)]x d >= 0, i.e., that

x
--2x-d"

Hence (4.9) gives a minimum in the interval x/(2x d) =< < only if hi(A) <-_
2x d. If hi(A) >-_ 2x d, then z x/(2x d) gives the smallest upper bound in
(4.8), and this bound is x/(2x d). We collect these results in the following theorem.

THEOREM 4.1. Assume that hmin{[2 (1/#)]Y- D} >= [2 (1/#)]x- dfor
some positive scalars x, d, where 2x d < O. Then

4xhi(A)

hi(f-A)<=i
[2x-d+ hi(A)] 2’ ifhi(A)<=2x-d’

1/(2-), for any eigenvalue.

Note that by choosing the parameters w; properly, we can require that 2 (d/x) >=
c -, for any prescribed positive number c, in which case Corollary 2.1 shows that c

becomes an upper bound of the spectrum of C-A.
COROLLARY 4.1. If2 --(d/x) >= a- for a positive , then hmax(C-A) =< o.
Note that we can choose first an a and then compute perturbations (6i) or relaxation

parameters (wi) such that 2 (d/x) a -. Hence the upper bound is under the control
of the user of the incomplete factorization method.

5. Applications. Consider the selfadjoint problem

(5.1) -6Uxx- uyy=f in [0, 1] 2,

where 6 > 0 and with Dirichlet boundary conditions, discretized by central difference
approximations on a uniform mesh. Using a natural ordering, we find that

ai,i l, ai,i- 6, ai,i d, ai,i + 6, ai,i + l,

where d 2 / 6), and the mesh width is h /(n + ). Consider first the choice of
the relaxation parameters.

5.1. Optimal choice of the relaxation larameter to minimize the condition num-
ber. For the entries of the matrix X in (4.1) we find that

Xi di Z li,jx-f l,t w(R e)i, 1,2,
i<j

or

xi 2( + 6)-62x- -x w6(x +x-2 )
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(apart from corrections at points next to the boundary). We see readily that as
and h 0, x; converges to a lower bound x, where

x=2(1 +6)-(1 +2wr+62)/x
or

(5.2) x +6+ {26(1- w)} 1/2.

Note that

(5.3)

and R has entries converging to

t’ii+(n 1)=rX-1
Hence

2x-d=2{26(1-w)} 1/2

Fi, --2WrX-1.

(5.4) kmax(R) 26( W)/X, kmax(-R) 26( + W)/X.

(To make this proof easier we consider periodic boundary conditions instead of the
Dirichlet conditions. This is similar to the local analysis used in the finite difference
theory for multigrid methods. In order not to burden the presentation with further such
details we leave it to the interested reader to show this.)

Since we require that these numbers are nonnegative and that (2x d) is positive,
we assume that -1 =< w < 1.

Note that Xl(A) + 6)(2 sin rh/2) 2. Theorem 2.2 (with shows that

)kl(C-1A)-I + ,max(R)/Xl(A) + 26(1-w) )kl (A) -1

Hence kma C-1A =< + kma C-1 kma (-R) and Theorem 4.1 show that

max ki(C-1A) <= min 2 +
x x

where we have made use of

Hence

(x_(1 +6))2

kmax(C-1) max vrv
((X- L)-lv) TX(X- L)-lv

wrXw x
max =<((X-L)w)r(X-L)w [x-(l+6)] 2.

xi-l=< + 26(1-w)
+6+ {26(1- w)} 1/2)kl(A)-I

and

max k min +
1+6 2 }2 26( w) } 1/2, W

The condition number K(w) maxi )ki/kl is therefore bounded above by

K(w) =< min [+ 1+6 2}[1+2{26(1 w)} 1/2, w
26( w) Xl (A)-1
q- 6 4- 26( --3" 1/2
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or

K(w) =< min
(26(1- w)) ’/2+ + {26(1- w) )1/2 Xl (A )-I

+ 48 l+8+(28(1-w)}’/zXl(A)-
To minimize K(w), we need to choose

1+8
W"- Wopt--

28
Xl(A) and w=-l,

-l__<w<l.

respectively, for the two functions in the outer bracket.
Hence

{min(w)=min (Wopt), +
+8+28 /2Xl(A)-l

48 }=min + 2 sin 2r_h, +
(1 + 81/2)2 Xl(/)

and we find that

min r(w)

1+8

sin - ’8>" )kl(A)l/2 for w= 2 X(A)

48
+(1 -1-81/2)21(A)-1’8<’’ kl(A)l/2’ forw=-l.

Note that as 8 decreases, the optimal value of w switches for 8
_

Xl (A)1/2 from a
value slightly less than unity to the value (- ).

We conclude that the spectral condition number is bounded above by

1+8
(5.5) +(Trh) -1 for w=

28
Xl(A)= 1-O(h2)’

for any fixed value of 8, but for h fixed and 8 significantly small,

48
+(1 nt-81/2) 2)kl(A)-l/2, for w=-I

gives a smaller bound.
The problem 5.1 is a singular perturbation problem for 8 (( and its solution has

boundary layers (of width 0(81/2)) at x 0 and x as 8 -- 0. To accurately resolve
the solution, we need therefore to use a stretched mesh with varying mesh widths in the
x direction, like hi ho (n/2)-i+ 1, 1, 2, where o 8 /n (i.e., hi 81/2). We now
first scale the matrix A. For such a problem it is recommended to choose the relaxation
parameters differently. For instance, we choose an upper bound a of the eigenvalues of
C-1A and compute wi from (4.2) such that 2 (d/xi) >= a -1 for all i, where d is the
diagonal of the scaled matrix A (i.e., d ).

5.2. A lower bound of the number of iterations of the preconditioned conjugate
gradient method. Consider next the derivation of a lower bound for the number of it-
erations required to solve the discretization problem (5.1) using a fixed value of the
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relaxation parameter. (From the remark above it follows that this means that we do not
now consider the singular perturbation case in practice.)

We recall from (5.3) that

2x-d=2{26(1-w)} 1/2

and Theorems 2.2 and 4.1 show that for such that h;(A) < 2x d, the difference
between the upper and lower bounds of hi(C-A), is

( 4x
ki--hi-- [2x-d+ hi(A)]Z-hmax (R)+ hi(A)

or, by 5.2 and (5.4),

[2d- hi(A)](hi(A)) 2

(5.6) hi-fi { [hi(A)+ 2 { 26( w) } /212. [hi(A)+ 26( w)/x] }"
Hence if w < and hi(A) -- O, h -- O, then (5.5) implies that

x
hi(A + O( hi(A )2) h -- O,hi(C-A)=26(l_w

which shows that for any fixed value of w, w < (independent ofthe problem parameter
h), the eigenvalues hi of C-A are very close to the factor x/(26( w)) times the
corresponding eigenvalues hi(A) ofA, for all hi(A) o( ), h -- O.

We state this result.
LEMMA 5.1. Consider the generalized SSOR incompletefactorization method C in

(4.1), (4.2)for the difference matrix Afor problem 5.1 ), discretized byfinite differences
with constant stepsize h. For any fixed value w, w < 1, independent of the problem
parameter h, the eigenvalues hi ofC-A satisfy

hi
X

hi(A) + O( hi(A )2), h 0,
26(1- w)

where x + 6 + { 26( w) } /2. Hence apart from a constant factor, as h -- 0 the
smallest eigenvalues ofC-A are distributed essentially as the smallest eigenvalues ofA.

We now estimate the rate of convergence of the preconditioned conjugate gradient
method to solve an algebraic system Ax b when the matrix C defined in (4.1), (4.2)
is used as a preconditioner. In particular, we estimate the number of iterations for the
case when the smallest eigenvalues ofC-A are distributed essentially as those ofA. This
is used to discuss the rate of convergence of relaxed methods where 2x- d O( ), and
to compare them with relaxed methods where 2x d o( ), h -- 0.

Let then ek) x xk) be the iteration error at the kth iteration step. As is well
known (see [7], for instance) the iteration error satisfies

(5.7) I]ek)llA1/2= min []p(C-A)e()l[Al/2
Pk

where 7r) denotes the set of polynomials of degree k, which are normalized to unity at
the origin, i.e., for which p(0) 1. By expanding e) in the eigenvectors of C-A, we
find that

e()llA 1/2 min, max pk(h) eC0) I]AI/2,
pkTr XeS(C-IA)

where S(C-A) denotes the spectrum of C-A. Note also that, as has been shown in
[15 ], there always exists an e) (i.e., x)) for which we have equality in (5.7). Hence
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to find the number of iterations required to iterate to a relative precision e, e < in the
worst-case initial guess, we must find the smallest polynomial of degree k for which

min max Pk(,)[--<e.
pk-Tr XS(C-1A)

Let a, b be the extreme eigenvalues of C-1A. If the eigenvalues are distributed as the
points, called here the Chebyshev set for a, b], where the shifted Chebyshev polynomial,

b+a 2X
Tk(x)=- (x+/x2 +(x-1/x2 1)T b-a

takes its maximum absolute value, we find that

ffk
(5.8) min max pk()X)I

(b+a I + o.2kPk XS(C-IA) Tk b- a\/

where a fa/b)/( + f/b) is the asymptotic average reduction rate. Equations
(5.7) and (5.8) now show that k is the smallest integer for which

(5.9) k>-_k*(a b,e)=-ln (1 )/-+ In (r-1)

and hence

k*>=ln(1)/ln(r-1)
For e and ba )) we find an accurate upper bound

In(5 10) k*_-< In 2e ln(-l) --<
a

However, when the eigenvalues are not distributed as the Chebyshev set, we can find
better estimates of k*. Assume now that

P

(5.11) S(C-A)= I,..J CJ[a,b],
i=l

where i < a < b, 1, .--, p and that the eigenvalues in [a, b] are distributed as the
Chebyshev set for [a, b].

Then we readily derive (see ], 2 ], and 18 the upper bound

(5.12a)

For small values ofp this bound can be quite accurate. Ifthere are only a few eigenvalues, p which are well separated from the remainder of the spectrum [a, b] and
from each other, and if the initial error contains large components in the direction of
these eigenvectors, then it is reasonable to assume that these error components are an-
nihilated early in the iteration. In that case we can expect the number of iterations k*
to satisfy

(5.12b) -+ ln -1 lno--1.
e i=1
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We obtain such an initial distribution of the Fourier components if we use the CGT
method (see 14 ), where the first iterations consist ofChebyshev iterations with iteration
parameters chosen to construct the Chebyshev polynomials for the interval a, b ]. These
iterations make the Fourier components in [a, b] small, but leave the components for
hi, _-< =< p, essentially unaffected. After these iterations the conjugate gradient method
is applied, and (5.12a) and (5.12b) indicate that after some steps the components ofthe
current residual become more uniformly distributed resulting in a number of iterations
shown by the bounds in (5.12a), (5.12b). However, to estimate the number ofiterations
more accurately is outside the scope of this paper, but numerical tests in [8 and [9
indicate that for small values ofp the penalty for using an asymptotic average reduction
rate based on the interval a, b (instead ofthe interval Xl, b contains the logarithmic
function terms as shown in (5.12a), (5.12b). At any rate the lower bound In 1/e/ln r-is clearly too optimistic in general. For further discussions of the influence on the rate
of convergence of the conjugate gradient method of small, well-separated eigenvalues,
see 22 ].

In practice, the eigenvalues in the interval [a, b] may not be distributed as assumed
here, but it is known from numerical evidence that as they become increasingly densely
distributed in such an interval, this assumption can be made.

For the estimate ofthe number ofiterations for the relaxed preconditioning method
in (4.1), (4.2) we need also the following lemma, which is an obvious corollary of 5.7
and (5.8).

LEMMA 5.2. (a) Let S be a subset ofS(C-1A) or (b) let
p p

S= (.J XsU[a,b], S= (.J XU[a’,b],
s=l s=l

where a’ > a.
Then the conjugate gradient method for S converges to a given precision (e) with

a number of iterations at most equal to that for S, when the initial iteration error in
both cases is the worst case.

We consider now the case where the smallest eigenvalues of C-A are assumed to
be distributed in the same way as the corresponding eigenvalues of A. As Lemma 2.1
shows, this is a valid assumption when 2X- D is positive definite, uniformly in the
problem parameter h.

We assume further that the eigenvalues of A are distributed as for the central dif-
ference operator. In fact, Lemma 5.2 shows that it suffices to consider the one-dimensional
case, where Xs(A) us 2 sin (srh/2) 2, S 1, 2, n, h / (n + because for
the multidimensional case (an n n or an n n n mesh) the spectrum contains these
eigenvalues (apart from a constant factor) as a subset. Note also that the set { s } (and
{ s becomes very dense near the fight endpoint b, hence the approximation with a
Chebyshev set is a valid one for intervals near b. Therefore the estimate we derive can,
for practical purposes, be used as a bound for the actual number of iterations and for
elliptic problems in any space dimension.

Note first that the Chebyshev set of points for the interval a, b] is

b+ a b-a lr
2 2 cos--, 0,1,.",k.

Hence if we use a Chebyshev polynomial of degree k n + 1, we find that these points
are very close to the eigenvalues

Xs(A)=#s=2 1-cos s =1 2,... n.
n+l
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This equation and (5.7) show that if the initial errors are distributed uniformly (with
respect to the norm lIAble) and ife is sufficiently small we always need O(n) O(h -1

iterations; i.e., the same order as predicted by the upper bound (5.10). (Naturally, in
the absence of round-off errors, we never need more than n iterations when there are n
disjoint eigenvalues.) Actually, numerical tests ofthe conjugate gradient method to solve
a system with matrix A tridiag (- 1, 2, -1 shows that the residuals decay slowly for
the first n iterations and then drop significantly for the next iteration, which shows
that for e sufficiently small, we generally need (at least) n iterations.

The above indicates that the number of iterations of the relaxed method with w
fixed, w < 1, are always O(h -1 for proper initial distributions of the Fourier coefficients
of the error. Another indication of this is the following argument.

With a (2 sin (p + )Trh/2)2, we choose the largest p* eigenvalues for which

ln(a-1)>1n(1+6’)’#5 < s<p *

for some positive 6’. Again, Lemma 5.2 shows that the estimate of the corresponding
number of iterations will be a lower bound of the actual number of iterations because
we base it on a subset of the actual spectrum. We find then that

a
-->=2+6’, <- s<=p *.

Using the elementary inequality

2
-x_<sin (x)<=x, 0<x<-
r -:2’

we find that

if

m_ >=2+6’
s 7r S

s<=p * 6,)l/2(pnt- 1)

The above and (5.12b) show then that (assuming the lower bound holds)

(5 13) k>p* +[ln
p*

]/-+ Zln(1 +6’) In (a-l),
/?

where Va/ b) / + aVaVa) and Va/b _-< const (p + h, where const does not
depend on p and h. Equation (5.13) shows then that

k>
p* In + 6’) O(h_l) h-O,

In (r-1)

either if a/b=O(1) where p=O(h -1) or if a/b=O(h2"), 0<-_< 1, where
p O(h,-1).

If 2x d O( ), h - 0 (i.e., if w < and w independent of h), (5.13 shows that
the number of iterations is k* _>- O(h -1 ). Hence we have presented arguments for two
entirely different distributions of initial errors to show that k* >= O(h- ). On the other
hand, if w O(X(A)) O(h2), (5.6) shows that the spectral condition num-
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ber of C-A is O(h-) and the upper bound (5.10) shows the number of iterations
O(h- -) In (2 /e) in this case.

Clearly, for special choices of the initial residual (or initial vector), it may happen
that the unmodified method converges faster than the modified. In particular, this seems
to be the case in the presence of round-off errors of significant size unless, for instance,
a method of perturbation in [3] or the method of relaxation in [8] is used. For some
tests indicating this, see [21]. See also comments in [20].

Acknowledgments. Anne Greenbaum’s comments on an earlier version ofthis paper
helped to improve the presentation of parts of the paper.

Theorem 3.1(a) was derived by L. Yu. Kolotilina, which is also gratefully ac-
knowledged.
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ITERATIVE SOLUTION METHODS AND PRECONDITIONERS FOR
BLOCK-TRIDIAGONAL SYSTEMS OF EQUATIONS*

S. HOLMGREN? AND K. OTTO

Abstract. Systems of equations arising from implicit time discretizations and finite difference space dis-
cretizations of systems ofpartial differential equations in two space dimensions are considered. The nonsymmetric
linear systems are solved using a preconditioned CG-like iterative method. A class of preconditioners, referred
to as semicirculant, is examined. For a scalar hyperbolic model problem, it is shown that the number of
iterations required using a preconditioner in the semicirculant class is independent ofthe number ofunknowns,
provided that the quotient K between the time- and space-step is held constant. Also, it is shown that the number
of iterations grows no faster than . This type of favorable convergence property is also observed in numerical
experiments solving more complicated problems.

Key words, hyperbolic PDE, difference equations, CG-like methods, circulant preconditioners, spectra

AMS(MOS) subject classifications. 65F10, 65N20

1. Introduction. In this report we study conjugate gradient-like iterative methods
and preconditioners for an important class of systems of equations. We consider iterations
for nonsymmetric coefficient matrices and semicirculant preconditioners. Some theoretical
results for the spectrum ofthe preconditioned coefficient matrix are presented for a scalar
model problem.

The systems ofequations arise from implicit time discretizations ofsystems oftime-
dependent partial differential equations in two space dimensions. We only consider first:
order partial differential equations (PDEs), but the solution procedure is not limited to
this class of equations. Our aim is to develop efficient solution procedures for some
problems involving the Euler or Navier-Stokes equations. Specifically, we are interested
in problems where the systems ofPDEs have time-scales ofdifferent orders ofmagnitude,
and where the fast time-scales do not have to be resolved. An important application is
almost incompressible flow [14], [16], where the sound waves in the medium are much
faster than the motion of the fluid. Here it is possible to calculate an accurate solution
even ifthe fast sound oscillations are not resolved by the time-marching method, provided
these oscillations are not present in the initial solution. For an explicit time-marching
method the time-step would, due to the stability criterion, be restricted by the fastest
time-scale. Thus, an explicit time-marching method is "too accurate" resolving fast os-
cillations that are not present in the problem, and it is preferable to use an implicit time-
marching scheme.

1.1. Notation. All matrices used in the presentation are square matrices. In) denotes
the identity matrix of order n. We define the matrices diag(.) (O/i) trip(n) (ai, , "Yi),
and circn) (al, a2, On) in the following way:

(Ol )diag(n) (ai)
O
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f Department of Scientific Computing, Uppsala University, Sturegatan 4B, S-753 14 Uppsala, Sweden
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trip(n) (0i, Ji, i)

circ<n) (a, a2, "’’, an)--

01 02 On- On\
O O O2 O

021O 0 O

/O2 O Of O

1.2. The structure of the coefficient matrices. We study the solution oflinear systems
ofequations, where the structure ofthe coefficient matrices is block-tridiagonal periodic.
The blocks on the main diagonal are tridiagonal periodic and each entry in the blocks
is a small matrix with arbitrary structure. We define the B-class of matrices by

(1.1) B=trip) (Aj, BJ ’) Cj)

where

Aj= diag(m,) (Pi,j,-2),

Bj(’l) triP(ml) Pi,j,-1, Vi,j,O, Vi,j,1 ),

C diagm,) (Pi,j,2).

Here li,j,l, -2, 2, are nc nc matrices. In the definitions above, we have used
periodic tridiagonal matrices in order to allow periodic boundary conditions in the PDE
problems.

We consider linear systems of nc PDEs in two space dimensions x (xl, x2) of
the form

OU
(1.2) u,

Ot

where u is an nc-vector containing the unknown functions and is a spatial differential
operator. We only consider first-order operators , where the spatial derivatives are
approximated with finite difference operators using a five-point stencil. Using single-step
implicit time-marching methods demands that a system of equations with a coefficient
matrix belonging to the B-class is solved for the unknowns at each time level. Also, for
the nonlinear operators in the Euler and Navier-Stokes equations, we obtain similar
matrices by using a linearization 4 ], yielding a second-order accurate noniterative time-
marching scheme, or an operator splitting [14 ], where implicit time-marching is used
only for a part of the operator.

The structure of the coefficient matrices is relatively independent of the class of
PDEs, but the properties of the matrices and therefore the "best" solution procedures
vary with the properties ofthe underlying differential equations. Since the solution meth-
ods described in this report basically depend only on the structure of the coefficient
matrix, it is possible to define these procedures for a large number of PDE problems.
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However, for specific classes ofPDEs there are probably more efficient solution algorithms
available.

1.3. Properties of the systems of equations. We now make some important obser-
vations regarding the properties of the matrices in the B-class.

--The matrices B are very sparse, even inside the band. For an m m-grid, B is
(ncm 2) (ncm2) and the bandwidth is ncm, but less than 5n2m2 elements are
nonzero. If standard Gaussian elimination is used practically all of the band will
be filled, and the memory requirement will be (9(nc2m3). For large grids the
memory requirements effectively prohibit the use of standard direct solution
methods. For a CG-like iterative method the memory requirement will be
(9(nc2 m2). It is important that the memory requirement for a preconditioner used

2 2in conjunction with the iteration also is not larger than (9(no rn ).
--The matrices B are generally nonsymmetric. First-order derivatives in ap-

proximated with centered differences contribute to the total matrix in an unsym-
metric fashion, with elements like +_k/(2h) on the off-diagonals corresponding
to the nearest neighbor gridpoints in the direction of differentiation.

raThe matrices B are also generally not diagonally dominant. Assume that the time-
step k is large compared to the space-step h. If 9 contains only first-order deriv-
atives and centered differences are used, the nondiagonal dominance (and skew-
symmetry) increases linearly with the time-step. In terms of the spectrum of B
this implies that the largest imaginary parts of the spectrum grow approximately
linearly with the quotient ofthe time- and space-step. Despite these complications
it is often preferable to use centered differences. This avoids keeping track of the
sign of the characteristic variables in each space- and time-point, and makes it
easier to achieve high accuracy in space. Hence, we will use centered differences
for our model problems.

--For hyperbolic and incompletely parabolic PDE problems with analytical Dirichlet
boundary conditions, a number of numerical boundary conditions will also be
required.

We now introduce the notion of a (., PDE problem, where "." is either "P,"
denoting "periodic," or "D," denoting "Dirichlet." The first position in the parenthesis
holds the symbol describing the type of boundary condition in the xl-direction and so
on. For instance, a (P, D)-problem is a PDE problem with periodic boundary conditions
in the xl-direction, and analytical Dirichlet boundary conditions in the x2-direction. A
typical realistic problem is of (D, D) type.

1.4. CG-like iterative methods. As mentioned in 1.3 the coefficient matrices B
are nonsymmetric. There is a large number of generalizations of CG-like algorithms for
nonsymmetric systems of equations, e.g., generalized conjugate gradients (GCG) [1],
3 ]; generalized conjugate residuals (GCR) 11 ], 12 ]; ORTHOMIN 23 ]; ORTHODIR
and ORTHORES 25 ]; generalized minimum residual (GMRES) 20 ]; the Axelsson
least-squares method (Axel-LS) [2]; biconjugate gradients (BICG) [13]; and conjugate
gradients squared (CGS) [21]. We believe that the most critical choice is to be made
among different preconditioners, and not among different iterative methods. We have
chosen one representative method: restarted generalized conjugate residuals, GCR(l).

We use left preconditioning, i.e., the iterative method is applied to the system

(1.3) M-IBu"+=M-b,
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where M is a nonsingular matrix. The preconditioner M should be chosen so that the
system Mw y is easy to solve and the number of iterations is significantly reduced.

Assume that it can be established that the spectrum of M-B is contained in an
ellipse centered on the real axis with center in c, foci in c + e and c e, and semimajor
axis a, and that this ellipse does not contain the origin. Then it is proved [19], [3] that
the asymptotic convergence factor o for the GCR(oo )-iterations is given by

(1.4) o <1
-]-- V2- e2

Using further knowledge of the eigenvalue distribution it is possible to derive sharper
bounds on the convergence rate. For CG-like methods it is important that the eigenvalues
of M-B are highly multiple or cluster near a small number of points in the complex
plane. The latter property may be more important than the condition number or the
size of the enclosing ellipse.

All iterations are considered to have converged when the following condition holds:

Ilm-(b-Bx)ll
(1.5) ilM_bll 2

<e.

2. Semieireulant preeonditioners. In this section we define a class of preconditioners
for coefficient matrices in the B-class. We refer to preconditioners in this class as being
semicirculant. Let (R) denote the Kronecker product. A semicirculant preconditioner M
for B is then defined by

(2.1) M=tripm2) (Lj,M ’) Uj)

where

Lj I(mi) (R) Pj,-2,

M 1) circ(m,) (Pj,o, Pj, O, O, Pj,-1 ),

Uj. Iml) (R) Pj,2.

Here oj,t, l -2, ..., 2, are nc nc matrices. We discuss the choice of these parameters
in 2.2. From the definition it is clear that M is formed by exchanging the periodic
tridiagonal matrices B) ) in the definition of B by circulant matrices. Not requiting the
outermost block-level of the preconditioner to be circulant makes it possible to retain
information from variable coefficients and numerical boundary conditions in the space
direction associated with m2. The coefficients in the other space direction are reduced
to constants, since circulant matrices are Toeplitz. We therefore expect that the best
performance, using semicirculant preconditioners, is achieved when the difference ap-
proximation ofthe PDE has constant or almost constant coefficients in the space direction
associated with m. Observe that even if the approximation of the PDE has constant
coefficients in this space direction the matrices B) will generally not be Toeplitz, because
of the entries added by the numerical boundary conditions. However, these entries only
disturb the Toeplitz structure in the first and last row of the matrices. Also observe that
the preconditioning matrix M is as sparse as B, and it is completely described by the
5m2 n nc matrices oj,t, -2, 2, j 1, m2.

2.1. Preeonditioner solve. The reason for introducing circulant matrices in the pre-
conditioner is that such matrices are diagonalized by using discrete Fourier transforms
(DFTs), which are performed by the fast Fourier transform (FFT) algorithm. Below we
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derive the exact procedure for the preconditioner solve w M-y. First we introduce
some notation. Let

(2.2) (.O exp i2r/ n)

and define Ft,) as the nth-order Fourier matrix:

(2.3) [F(n)]j,k=n-1/2"CO(nJ-1)(k-1) j,k 1,... ,n.

The algebraic relationships (2.4a)-(2.4f) are proved in [9]"

(2.4a) A (R)(B(R) C) (A (R) B)(R) C,

(2.4b) (A (R) B)(C(R) D) (AC)(R)(BD),

(2.4c) (A(R)B)* =A* (R)B*,

(2.4d) F*,)Ft,) I).
IfA is rn rn and B is n n then

(2.4e) A (R) B (A (R) I,))(Im) (R) B) (Im) (R) B)(A (R) I,)).
Let the matrices Go, G, ..., Gm- be n n. Then

(2.4f) (Fm)(R)Itn))circm)(Go, G, ,Gm_l)(Fm)(R)In))=diagm)(A),

where

m-1

k=0

Now consider the transformation

(2.5) 2l I(m2) ( Q* )i(I(m2) ( Q),

where

(2.6) Q=- Ftmo (R) In).

This transformation yields

(2.7) M-’ (I(m:) Q) 2Q-1 (I(m2) ) Q* ).

THEOREM A.

(2.8) /l=trip(m2) (L,A ’) Uj.)

where

A) diag(ml) ("" l,J )5

and

(0) -(i-Ai,j Pj,O + W( )Pj,1 + Wm )Pj,-1.

Proof. From (2.5) and (2.1) it is clear that

/1= trip(m:) Q* LjQ, Q*MJ Q, Q* UjQ).
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(i) Consider Q*LjQ and Q*UQ" Using (2.4b) twice and then (2.4d) we have

Q*LjQ= (Fml)( I(nc))(I(ml) (oj,_2)(F(ml)( I(nc))

(FmoF(m,))@pj,_2

I(ml) () Pj,-2

The same technique yields

Q*UQ I(ml)I) Pj,2 Uj.

(ii) Consider Q*M)Q" Using (2.4f) we have

Q*M)Q= (Fm,)(R)I(nc))

where

circ{ m,) (Pj,O, Pj,1, O, O, pj,-1

X(F(ml)@I(n))

tA(o)diag(ml), , ),

1) ._ (.o-(i- 1) []i,j Pj,o + o0(lml Pj,1 ml Pj,-1.

Using Theorem A, we see that a preconditioner solve w M-y can be performed
according to:

V (I(m) (Fml)@ I(,,c)))Y,

Solve Mz v,

w (Im2) (R) (Fm) (R) I(nc) Z.

A more algorithmic formulation of the preconditioner solve follows.

Two-DIMENSIONAL PRECONDITIONER SOLVE.

for j to mznc do (in parallel)"
Perform an FFT of length m.

endfor
for to m do (in parallel)"

Solve a (possibly periodic) block-tridiagonal system of equations
with blocksize nc and mznc unknowns.

endfor
for j to mznc do (in parallel)"

Perform an FFT of length m.
endfor

The semicirculant framework can be extended to matrices in the three-dimensional B-
class [18], which arises in space discretizations using a seven-point stencil. The three-
dimensional preconditioner solve is based on FFT methods in two dimensions and the
solution of block-tridiagonal systems in the third dimension.

2.2. Choice of parameters. Different choices of the parameters &,l, -2, , 2,
j 1, m2, result in different preconditioners. We first make the observation that if
p,-2 and Pm2,2 are zero, the matrix Mwill be nonperiodic block-tridiagonal at the outermost
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level. For a -, D)-problem there is usually no reason for introducing a periodic structure
at the outermost block-level. Still we have chosen to define the semicirculant precondi-
tioners as periodic tridiagonal matrices, since this definition allows us to include some
block-circulant preconditioners [17 in this more general framework. The methods de-
scribed below for calculating oj,t are partially motivated by the following theorem, pre-
sented in 7 ].

THEOREM B. Let A be an n n matrix with elements [A ]id. Then the circu-
lant matrix

where

C= circn) (Cl, c2,

Ci Z [A ],k,
nj=l

k=(j+i-2) mod (n)+ 1,

is an optimal circulant preconditionerfor A in the sense that C solves

min I-AII,

where Cn is the family of all circulant matrices of size n, and [l" IIF denotes the Frobe-
nius norm.

Observe that the entries in C are formed by averaging the diagonals ofA, extended
by wraparound. This implies that the number of nonzero diagonals in C will equal the
number of nonzero diagonals in A, i.e., C will have almost the same sparsity structure
as A. Another possible choice for the circulant matrix C is given in 22 ]. Here it is shown
that it is possible to calculate the truly optimal circulant preconditioner, i.e., the matrix
that solves

min I- d-IA F,

using (9(n log2 n) arithmetic operations. This preconditioner will be a dense circulant
matrix, and we have not yet developed this approach.

We now define a number of semicirculant preconditioners for the problem
Bu + b. We refer to the PDE problem resulting in this system of equations as the
original problem. To describe the preconditioners we use the notation M(.,., ). Here
"." again denotes the type of analytical boundary conditions for a PDE problem, i.e.,
"." is either "P" ("periodic") or "D" ("Dirichlet"). "" denotes the "number ofaveraged
levels," which is either "1" or "2." The value "1" corresponds to a semicirculant pre-
conditioner described by o,t, -2, , 2,j 1, m2, and the value "2" corresponds
to a block-circulant preconditioner described by or, -2, 2.

Now form a matrix B using the difference approximation of the original problem,
but imposing boundary conditions given by (., ), i.e., not necessarily the same type of
boundary conditions as for the original problem. This is equivalent to determining a set
of matrix elements i,j,l, 1, ml, j 1, m2, -2, 2, forming the
matrix/. Most of the elements ?i,,z will be equal to the elements ui,,z in the matrix B,
but since the boundary conditions may be altered a small number of elements in each
block may be different. The matrix M(.,., is then formed using

ml

(2.9) Oj, ?i,j,t, j= 1,"’,m2, l=-2,... ,2,
mli=l
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and the block-circulant matrix M(.,., 2) is formed using

m!

(2.10) 0- 9i,j,t, l 2, ,2.
m2mlj= i=

2.3. Problems with constant coefficients. If a differential operator with constant
coefficients is discretized on a uniform grid, the coefficient matrix will be Toeplitz, ignoring
the effect ofboundary conditions. Suppose that a difference approximation with constant
coefficients is given. Then, if the boundary conditions are periodic in one or more space
directions, the coefficient matrix will have one or more circulant levels. In some cases,
this implies that a specific semicirculant preconditioner M- will be the exact inverse to
B. For a problem in which the coefficients in the difference approximation of given
by 1.2) are independent ofx, i.e.,

li,j,l-" 1)j,l, j 1, m2, --2, 2,

the following relations are valid:

(2.11) M-(P,P, )n(e,P)= I(ncmm2)

(2.12) M-(P,D, 1)B(P,O)=lncm,m2).
If the coefficients are also independent of x2, i.e.,

ui,j, u, l -2, 2,

we have

(2.13) M(P,P, 1)=-M(P,P,2).

However, note that M(.,., ) always has at least one circulant level and therefore
M-(., ., )B(D, D) 4: I(ncmm2).

3. Model problems. In this section we define the model problems that we use for
the study of the spectra in 4 and the numerical experiments presented in 5. The first
model problem arises from the implicit time discretization of a two-dimensional scalar
hyperbolic equation, and the second model problem arises from the implicit part of a
semi-implicit time discretization ofthe two-dimensional Navier-Stokes or Euler equations.

3.1. Model problem 1. We consider the following two-dimensional (D, D)-problem
17 ], which we refer to as MP1 (D, D):

Ou Ou Ou
(3.1)

Ot
t-
Ox Ox2

and

(3.2)

(3.3)

(3.4)

(3.)

O<xi<=ai, 1,2, t>0,

u(x,O,t)=f(x-vt),

u(O, x2,t)=f(x2-vt),

u(x,xz,O)=f(x +x2),

g=(2-v)f’, v>0.

Here a and a2 are positive constants, f is a scalar function with derivative f’. The
analytical solution of this problem is a wave of shape f moving in the direction x x2
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with velocity v:

(3.6) u =f(x + x_ vt).

Later we consider the corresponding MP1 (P, D)-problem, which arises ifboundary
condition (3.2) is changed to

(3.7) U(Xl, O,t) U(Xl, 1,t).

To model nonuniform space meshes or variable coefficients in the PDE, we introduce
the following transformation from the computational to the physical domain:

[tanh(si(2(i 1))+ 0 < 2.(3.8) x=aiI tanh(s;) =(i--<

The parameters s and sa are positive constants, which control the stretching of the
grid. When si increases, the distribution of gridpoints in the ith space direction of the
physical domain becomes more dense near the boundaries. In the limit s, s -- 0 the
grid is unstretched and the transformation defined by (3.8) is the identity transformation.
Using (3.8), (3.1) transforms to:

Ou Ou0/
__

ffl (1)1 _t a()- g,(3.9)
Ot

where

-1 2 tanh (si)
(3.10) tri(i)=--ai cosh (si(2gzi- 1)), 1,2.

The time discretization of (3.9) is performed using the second-order accurate trapezoidal
rule. The space discretization is performed on a grid that is uniform in the computational
domain with (m + (m2 + gridpoints. The space-steps are given by hi /mi,

1, 2. Let ui,j denote the approximative solution at the point (ih, jh2), O,
ml, j 0, m2. Observe that u,0 for 0, m and u0,j for j 0, m2 are
given directly by the boundary conditions (3.2) and (3.3) for the (D, D)-problem,
and by (3.7) and (3.3) for the (P, D)-problem. This implies that we have to solve for
m m2 unknowns in each time-step.

The spatial derivatives in the PDE are approximated using centered differences in
the interior ofthe domain. For the numerical boundary condition required at the outflow
boundaries we use one-sided differences. Using this type ofnumerical boundary conditions
locally reduces the order of accuracy from two to one. This does not affect the order of
accuracy inside the domain [15].

We now define the following quantities:

(3.11)

k
Pi, l-Klffi,l =--S--O’i,l i= 1, ,ml,

nl

k
Pj,2 K20"j,2 O’j,2, j 1, m2;

n2

b/n (b/n T
1,1/12,1 b/ml,1/g 1,2 "/gml,m2)

Introducing the discretizations in (3.9) yields the following system of equations for
the unknowns at time level n + 1:

(3.12) B(.,D)u"+=b.
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Here b contains known quantities and B(., D) is a member of the B-class:

(3.13)

where

and

B(.,D)

B() C1
A2 B

A3
Cm 2

2Am: B 2Cm:

4 Pl,I

P2,1 4 P2,1

B(I)(D,D)= -v3,1 .’. ...
Pm 1,1

4 Pl,1

//2,1 4 /)2,1

BI)(p,D)= -u3,1 .’. .’.

lIm 1,1

/)ml,1

Pm 2,1

4 /)m 1,1

--2Vm,l 4+2ml,1

--Pl,1

Pm 2,1

4 Pml 1,

--/)ml,1 4

Aj. I( ml 1) Pj,2 ), Cj I(ml) 1) Pj,2*

We consider MP1 (D, D) on the unit square using a uniform grid with m2 gridpoints,
where rn m m2. We use a time-step that is K times larger than the space-step, which
implies that vi,1 vj,2 K 2 , i, j 1, m. We refer to this problem as
P1 (m, ).

We also consider MP1 (D, D) on a nonuniform grid with al 50 and a2 1, and
the stretching given by s 0 and s2 2. The grid has m2 gridpoints, where rn m
m2. This problem will be referred to as P2(m, ). We use this type of grid to model a
situation where the solution changes rapidly in the xz-direction near the boundaries
x2 0 and x2 1. The solution is assumed to change slowly with Xl, and hence the grid
is coarse in this direction.

3.2. Model problem 2. Model problem 2 arises in the solution of the isentropic
two-dimensional Navier-Stokes and Euler equations using a semi-implicit time-marching
scheme of a type described in [14]. The specific problem studied here is the calculation
ofthe flow in a driven cavity using Navier-Stokes equations 16 ]. The original equations
are symmetrized by a transformation presented in [14], yielding

(3.14) ut+(e-lo+ I(U))U-’- I02(U)U,

Here e is the Mach number and u is a vector with three components. The first component
is a "transformed pressure," and the second and third components are the velocities in
the Xl- and xz-directions, l2 contains the nonlinear second-order terms in the Navier-
Stokes equations corresponding to viscosity. l is a nonlinear first-order operator and
e-10 is a linear first-order operator with constant coefficients. The time-marching method
exploits the implicit Euler backwards scheme for e-10 and the explicit leap-frog scheme
for l and 2. The discretization of spatial derivatives is performed on a uniform grid
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with m m internal gridpoints and space-step h using centered differences. Introducing
the discretizations, the analytical and numerical boundary conditions, we arrive at a
system of equations with 3mlm2 unknowns. The coefficient matrix is a member of the
B-class given by:

(3.15) B(D,D)=

where

B (1) AZI C-AZ2
A B() C

A B () C
A CZ2 B CZ1

Z I(ml) () --2 ’),

I(3)-- 2Vl"

B()

C I(m) 2,

Z2 I(m,) ( ,
v+v

I(3) vl

--Pl

A I(ml) I) (- P2 ),

I(3)
111 111 " 1(3) + 2v"

and

111 K 0 112--
0 0

0 0
0 0

0
"= 0

0

and finally

k

We refer to this problem as P3 (m, K).

4. Spectra of the preconditioned coefficient matrices. Here we study spectra of the
preconditioned coefficient matrices. First we review some theoretical results reported for
Toeplitz matrices preconditioned by circulant matrices. Then we present an analysis of
the eigenvalues of the matrix M- (P, P, 2)B(P, D) for MP1. Finally, we discuss the
qualitative properties of different matrices M-( ,., )B(D, D) for MP1, by studying
plots of numerically calculated spectra.

Circulant preconditioners for symmetric positive definite Toeplitz systems have been
studied in, e.g., [6] and [5], and are found to be effective. For large systems it is proved
that the number of CG-iterations required to solve the system is independent of the
number of unknowns. The preconditioned coefficient matrix has only a finite number
ofeigenvalues outside an arbitrary small interval ofthe real axis enclosing 1. The authors
of[6] also report on numerical experiments, where the same type offavorable convergence
properties are observed for nondiagonally dominant symmetric Toeplitz matrices. In 5
and [17 the use of circulant preconditioners for near-Toeplitz systems of equations is
proposed. Numerical experiments in [17] show that the number of iterations required
are independent of the number of unknowns even for strongly nondiagonally dominant
unsymmetric near-block-Toeplitz systems, where the coefficient matrix B(D, D) is pre-
conditioned with M(D, D, 2) or M(P, P, 2).
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4.1. A theoretical study. In this section we calculate the eigenvalues of
M-I(P, P, 2)B(P, D), i.e., we study MP1 with periodic boundary conditions in the
xl-direction and analytical Dirichlet boundary conditions in the x2-direction. We
have not yet performed the corresponding analysis for the more interesting matrix
M-I(P, D, )B(D, D), since it is considerably more complicated. We show that the
resulting matrix has 2ml eigenvalues different from one, and present explicit formulas
for the calculation of them. Furthermore, we show that if m2 is large, the eigenvalues lie
on two curve segments in the complex plane. These curves are independent of m and
m2 and well separated from zero.

The matrix B considered here is a nearly block-Toeplitz tridiagonal matrix with m2
blocks:

B (1) C
A B (1) C

(4.1) B= .." .." ..
A B (’)

A --D1
C

B (1) + Do
where A I(m,) b-2, C I(m,) b2, D1 I(m,) dl, Do I(m,) do, and B(1)

circ(m,) (bo, bl, O, O, b-1 ). The preconditioner M(P, P, 2) is block-circulant:

(4.2) M M(P, P, 2 circ(m2) (B ), C, 0, 0, A ).

We define the error matrix E, given by

(4.3) B=M+E.

This matrix has only four nonzero blocks:

(4.4)

0 0 0 0 -A
0 0 0 0 0

E

0 0 0 0 0
-C 0 0 -Dl Do

From (4.3) we obtain

(4.5) M-1B M-1 (M+ E) I(mzm) +M-1E.

It is possible to calculate the eigenvalues ofM-1 E. We will not show the rather tedious
algebra here. In the calculation we use the spectral decomposition ofM-1, observe that
M-1E has only three nonzero block columns, and solve the characteristic equation

(4.6) det (I.tI(m2m,) M-1 E) O.

The result of this calculation is that M-1E has 2ml nonzero eigenvalues tzk given by:

(4.7a) tk =-- + ---/3, k= 1, ,ml,

k(4.7b) t + ml --/3, k 1, ml,
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where

and

ak -(dl + b-2) k,-1 + do,,o b2/c,1,

= db_:(,_- ,-,o)+ b_b_:(,,_- ,o),

m2 ml o.)J(l- 1)

l_ m2kk’J k+ 09(m/2 1)b2 + 6on l)b_2

-(-X= bo + o,- 1)bl + 0ml 1.

We now study the discretization ofMP1 (P, D) described in 3.1, yielding bo 4, bl
-b-i K1, and b2 -b-2 do/2 dl K2. The quantities k,j. can be regarded as
Riemann sums. We introduce the function F:

(4.8) F(0)=
exp (/0)

kk -1- K2 exp (i0) K2 exp (-i0)

Exploiting the trapezoidal rule and the periodicity of F, F(2r) F(0), yields

(4.9) ,,j - F(O) dO + (9 rn2

By a change of variables, z exp (i0), we obtain

2-

2

zTrllfc(4.10) F(O) dO=--:, f(z) dz,

where C is the positively oriented unit circle. We now use the residue theorem to calculate
the integrals (4.10). Summarizing the results, we find that in the limit m2 -- , all
eigenvalues lie on the curve segments/21 (0) and/22(0), where

(4.11a)

(4.11b)

and

j__ (’-- V ’2 q 1) -j

2]/"2 +
j= --2,-- 1,0,

where

2 K1’=--- i-- sin (0), 0 _-< 0 _-< 2r.
K2 K2

Observe that/21 (0) and/22(0) are independent of ml. Fig. shows the spectrum of I +
M-E, calculated from formulas (4.11a)-(4.11b), for a problem with rl r2 100
and m 128. Six eigenvalues are specially marked by stars, and given a capital letter
label. The curve/21 is given by the segments A + - C+ and A- - C-. The discontinuity
is caused by a change of branch of the square root in (4.11 a). The curve/22 is given by
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FIG. 1. The spectrum for I + M-E. K K 100, ml 128, and m2 oe.

the segments A + B+ and A- - B-. The curve indicated by A +, B +, and C+ is formed
in the following way:

Curve segment 0sty" 0stp Curve

t 0 r/2 A+ C
t r/2 r C+ A
#2 r 3a’/2 A+"B
t2 37r/2 27r B+--A

We now put K K2 K. Asymptotically for large values of K we have:

(4.12) A+ =1/4(5 + iVY),
(4.13) B+ =1/2(4+2i),

(4.14) C+ -(3_+ i)V.

Further algebra shows that, for large values of K, the spectral quotient
min01/l,21 is given by

(4.15) }l/-.
According to the discussion in 1.4, these results imply that if the GCR(o )-iteration is
used to solve a problem with coefficient matrix M-B, the asymptotic convergence factor
is independent ofthe size ofthe problem. It is also clear that when grows, the asymptotic
convergence factor does not grow faster than 1/-.

Observe that half of the eigenvalues lie on the curve segments A B+, which are
independent of for large values ofthis parameter. The eigenvalues are a!so quite densely
clustered at the points B+. As mentioned in 1.4, this favors the use of CG-like iterative
methods.

4.2. Numerically calculated spectra. Here we show plots of the spectra of the ma-
trices M- (.,., )B for the problems P1 16, 100) and P2 16, 100). The plots are
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FIG. 2. The spectrum ofBfor P1 16, 100).
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FIG. 3. The spectrum ofM-l(D, D, )B for P1 16, 100).
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FIG. 4. The spectrum ofM-I(D,D, 2)Bfor PI( 16, 100).
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FIG. 5. The spectrum ofM-(P, D, )Bfor PI( 16, 100).
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FIG. 6. The spectrum ofM-(P, D, 2)Bfor PI( 16, 100).

generated by the software tool PRO-MATLAB. Observe that the problems studied are
small compared to realistic problems.

We first study P1 16, 100). Note that the resulting coefficient matrix B is strongly
nondiagonally dominant. The only disturbances of the block-Toeplitz structure in this
matrix are caused by the numerical boundary conditions. This specific problem is also
studied in 17 ]. There spectra of the preconditioned coefficient matrix using different
incomplete LU factorizations and block-incomplete LU factorizations are shown.

Figure 2 shows the spectrum of the matrix B, and Figs. 3-7 show the spectra of
M-l( ,., )B for different semicirculant preconditioners. The eigenvalues are labeled
by i, 1, -.., 256. In Table some characteristics regarding the spectra are listed.
The entries in the row labeled # (i 4 represent the number of eigenvalues that are

not numerically equal to one. 3’ max/ ]i]/mini u;I. Observe that for P1 (m, K),
M(P, P, M(P, P, 2) according to (2.13).

Most of the spectra shown in Figs. 3-7 are similar in the sense that many of the
eigenvalues are clustered near two points and the rest of the eigenvalues are scattered in

a relatively small region in the complex plane. Further numerical calculations of the
spectra for different problem sizes confirm that these regions are independent of the
number of unknowns. Intuitively, the spectrum ofM-1 (P, D, )B shown in Fig. 5 is
the most favorable for a CG-like iterative method, since this spectrum has only 32

2m eigenvalues different from one. This assumption is also verified by the numerical
experiments presented in 5.1.

Observe that, for all preconditioned coefficient matrices shown above, all eigenvalues
have positive real parts. Also observe that the spectra are well separated from zero. Further
numerical experiments show that for large values of K, the smallest and largest eigenvalues

0 0 0 0 0 0 "0 .0 0 O,

0

0 2 4 6 8 10 12 14

FIG. 7. The spectrum ofM-(P, P, 2)Bfor PI( 16, 100).
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TABLE
Properties ofthe spectra for P 16, 100).

Preconditioner None (D, D, 1) (D, D, 2) (P, D, 1) (P, D, 2) (P, P, 2)

maxi e(#i) 16.4 12.5 3.18 5.28 4.02 12.7
mini te(/i) 1.24 .246 .158 .790 .237 .592
maxi m(tti) 98.1 2.10 1.45 1.99 2.30 6.47
maxi Iil 98.1 12.5 3.18 5.73 4.04 12.7
mini Iil 1.24 .259 .158 .867 .250 .592
3’ 79.2 48.2 20.2 6.61 16.2 21.5
#(i q: 1) 256 256 256 32 256 60

of M-I(P, D, )B behave in the same way as the corresponding eigenvalues of the
problem theoretically analyzed in 4.1.

We now study the spectrum ofthe preconditioned coefficient matrix for the problem
P2 16, 100). Fig. 8 shows the spectrum of the matrix 1/4 B for this problem and Figs. 9
and 10 show the spectra of M-l( ", X)B for different semicirculant preconditioners.
In Table 2, properties of these spectra are listed.

It is clear from Figs. 9 and 10 that it is vital to retain the information ofthe variable
coefficients in the x2-direction. It is also probable that the preconditioner M(P, D, is
a really good preconditioner for this problem. Numerical experiments presented in 5.2
confirm this assumption.

5. Numerical experiments. In this section we present the results ofsome numerical
experiments, where we solve the system of equations arising from the problems
P1 (m, K), P2(m, r), and P3 (m, r). We use the GCR(l) iterative method combined
with different semicirculant preconditioners. The implementations are made in FOR-
TRAN 77, using 64 bit arithmetics for both the iterative methods and the preconditioners.
In 6 we discuss the implementations and algorithms in more detail. The results presented
in this section are obtained using an Alliant FX/8 and a Cray X-MP/48. The calculations
are performed by fixing an a priori defined solution, and multiplying the coefficient
matrix B with this solution vector to determine the fight-hand side. As an initial ap-
proximation, we use u + 0. In the stopping criterion (1.5), we use e 10 -6. Below,
the term efficiency refers to the number of arithmetic operations required.

5.1. Problem 1. In [17] the solution of P1 (m, r) is also considered. There the
preconditioners M(D, D, 2) and 34(P, P, 2 are compared to standard incomplete LU-

-100

0

100
/

/

20 40 60 80 100 120 140 160 180

FIG. 8. The spectrum ofBfor P2 16, 100).
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TABLE 2
Properties ofthe spectra for P2(16, 100).

Preconditioner None (P, D, 1) (e, D, 2) (P, P, 2)

maxi Re(i) 163 1.05 4.02 24.6

mini Re(ui) 1.00 .999 .207 .248
max/m(ti) 103 .0289 .771 16.8
maxi Iil 163 1.05 4.09 25.9

mini I#il 10.2 .999 .211 .248
15.9 1.05 19.4 104

#(ui 4: 1) 256 32 256 256

factorization preconditioners of different types 24 ], 10 ], 8 ]. Numerical experiments
show that for large values of K (K >= 100) and large problems, the block-circulant pre-
conditioners are considerably more efficient than the ILU and block-ILU factorizations.
It is empirically observed that the number ofiterations required using the block-circulant
preconditioners is independent ofthe problem size. For very large values ofr r 1000),
the ILU and block-ILU preconditioners are not usable.

In Figs. 11-13 below we show the number of iterations required to solve P1 (m, r),
using the GCR(5)-iteration and semicirculant preconditioners. Note that in all figures
Log means Log2.

Observe that the largest problems solved are quite massive, containing 256
256 65,536 unknowns. The difference in efficiency between the different preconditioners
decreases when the problem size increases. This is natural, since the influence of the
different boundary conditions on the parameters oj,z decreases when the problems get
larger.

For all three examined values of r the preconditioner M(P, D, is the most efficient,
at least for large problems. Figs. 11-13 indicate that the number of iterations required
using this preconditioner for large problems approaches 14 for K 10, 28 for
100, and 60 for 1000. These results indicate that the asymptotic convergence factor
for the GCR(5)-iteration does not grow very quickly with . In fact, the growth is slower
than (9(V), which was the result of the theoretical analysis in 4.1 and the empiri-
cal observations in 4.2. The reason for this is probably that the eigenvalues of
M-I(P, D, )B are clustered.

5.2. Problem 2. We here study the solution of P2(m, 100) presented in 3.1.
Figure 14 shows the number of GCR(5 )-iterations required to solve this problem ex-

0 0.5 1.5 2 2.5 3 3.5 4 4.5 5

FIG. 9. The spectrum ofM-(P, D, )Bfor P2( 16, 100).
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FIG. 10. The spectrum ofM-l(P, D, 2)Bfor P2( 16, 100).
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FIG. 11. The number ofiterations requiredfor P1 m, 10).
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FIG. 12. The number ofiterations requiredfor P1 m, 100).
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FIG. 13. The number ofiterations requiredfor P1 m, 1000).
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FIG. 14. The number oj’iterations requiredfor P2(m, O0 ).
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ploiting different semicirculant preconditioners. As anticipated in 4.2, the preconditioner
M(P, D, is efficient for this problem, but the preconditioner M(D, D, is almost
as good. The M(P, D, )- and M(D, D, )-preconditioners are probably quite useful
for problems that are "nice" in one space direction and "nasty" in the other direction.

5.3. Problem 3. Finally, we study P3(m, 100) presented in 3.2. To solve this
problem, we have used the GCR( 15)-iteration combined with the preconditioners
M(P, D, ). The GCR( 15)-iteration performs slightly more efficiently than the
GCR(5 )-iteration for this problem. In Fig. 15 the results for the problem P3 (m, 100)
are shown.

Observe that the total number of unknowns is given by 3m2 since nc 3.
Once again, the preconditioner M(P, D, performs better than the preconditioner



PRECONDITIONERS FOR BLOCK-TRIDIAGONAL SYSTEMS 883

70-

60

10

O"

2 3 4 5 6 7 8

M(P,D, 1)
t M(P,D,2

Log m

FIG. 15. The number ofiterations requiredfor P3 m, 100).

M(P, D, 2). Also for this problem, arising from the solution of a system of PDEs, the
numerical results indicate that for large problems the number of iterations required is
independent ofproblem size. Further numerical experiments show that the increase with
K in the number of iterations required is moderate (slower than VK).

6. Arithmetic complexities and memory requirements. In this section we discuss
the algorithms used in the CG-like iterations and the semicirculant preconditioner solves,
as well as their scalar arithmetic complexities and memory requirements. Observe that
the number of arithmetic operations given only includes the highest-order terms. Also
observe that a complex addition is considered as two arithmetic operations, a complex
multiplication as 6 arithmetic operations, and a complex division as 11 arithmetic op-
erations.

The computational workrequired forone iteration usingtheGCR(l) iterative method
is given by air 3l + 13 + am + aps. In this context, the quantity am denotes the number
of arithmetic operations per unknown needed to perform a matrix-vector product Bp,
and aps denotes the number of arithmetic operations per unknown required for one
preconditioner solve w M-y. The arithmetic work for GCR(I) is an average value
taken over a complete cycle of l iterations. The memory requirement for the GCR(I)-
iteration is m;t 7 + 2(1 + + mm + mps. Here mm denotes the amount of memory
required to hold the coefficient matrix B, and mps denotes the memory requirement for
the preconditioner. The memory requirement is normalized by the number ofunknowns.
For a matrix in the B-class am 10nc and mm 5no. Note that the values of ait and mit
are also valid if the system of equations arises from a three-dimensional problem.

To perform a semicirculant preconditioner solve, a number of FFTs have to be
executed. An FFT oflength rn used in the preconditioner solve requires 5m log2 rn arith-
metic operations. This implies that for a preconditioner solve, 10 log2 m arithmetic
operations per unknown are required for the FFTs.

Furthermore, a number of possibly periodic block-tridiagonal systems of equations
with complex entries has to be solved. These systems are periodic if the preconditioner
is of the M(., P, ) or M(.,., 2) type. In our implementation we assume that the
block-tridiagonal systems of equations are periodic, and we solve them by block-cyclic
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TABLE 3
Arithmetic complexities and memory requirementsfor the semicirculant

preconditioners.

Two-dimensional Three-dimensional
preconditioner preconditioner

apf 60n + 22nc 60n + 28nc
aps 10 log2 m + 48n 10(log2 m + log2 m2) + 48n
m,s 13n + 12 13nc + 12

reduction. This algorithm is equivalent to block-Gaussian elimination without pivoting.
Note that some ofthe block-tridiagonal systems may be ill conditioned to the same extent
as the original system ofequations. However, the block-tridiagonal systems can probably
be solved without pivoting, since these systems are much smaller than the original system
and the solution of them is part of a preconditioner algorithm. For preconditioners of
M(., D, type, the block-tridiagonal systems are nonperiodic, and a solver using ordinary
banded Gaussian elimination with pivoting would be simple to implement.

The block-cyclic reduction is divided into a factorizing and a backsubstitution phase.
In the factorizing phase, the diagonal blocks of the systems of equations are inverted,
and the elimination phase of the cyclic reduction is performed. This phase has to be
performed only when the parameters ofthe preconditioner are changed. In the backsub-
stitution phase, the information from the factorization is used to solve the block-tridiagonal
systems of equations for new fight-hand sides. In Table 3 above, we summarize the
different contributions to the total work required for the semicirculant preconditioners.
apf denotes the work required to form the preconditioner and to factorize the small block-
tridiagonal systems. In this table we also give counts for the corresponding three-dimen-
sional semicirculant preconditioner.

The efficiency of the semicirculant preconditioners is investigated by solving
P1 (m, K) using GCR(5). The total arithmetic work without preconditioner is compared

2 3 5 6 7 8 9

K=10-- K 100-- 1000

Log rn

FIG. 16. The arithmetic speedupfor GCR(5) + M(P, D, compared to GCR(5).
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to the work when a semicirculant preconditioner is employed. The total arithmetic work
is given by

W lit Nit,

where Nit is the number of iterations.
In Fig. 16, W GCR 5 /W GCR 5 + M(P, D, is given for different problem

sizes and different values of K. Note that the number of arithmetic operations required
to solve the problems is always smaller when using the preconditioner, except, for one
4 4-problem. For large values ofK and relevant problem sizes, the speedup is significant.

7. Conclusions. We have studied two model problems, one two-dimensional scalar
hyperbolic PDE employing the trapezoidal rule in time, and Navier-Stokes equations
for the flow in a two-dimensional driven cavity exploiting a semi-implicit time discreti-
zation. The systems of equations arising from the space discretizations are solved using
CG-like iterative methods combined with semicirculant preconditioners.

A study of the spectrum of the preconditioned coefficient matrix, using one of the
semicirculant preconditioners for a scalar model problem with periodic boundary con-
ditions in one space direction, shows that the number of eigenvalues different from one
is (9(f), where n is the total number of unknowns. Furthermore, these eigenvalues lie
on two curve segments in the complex plane, which are independent of n. Hence, the
asymptotic convergence rate for minimizing iterative methods like GCR is independent
of n. Also, we show that the number of iterations does not increase faster than (9(]/-),
where is the quotient between the time- and space-steps. Since the number ofarithmetic
operations required to perform a semicirculant preconditioner solve is (9(n log2 n), the
total number of arithmetic operations required to solve the system of equations will also
be (9(n log2 n).

For some problems using semicirculant preconditioners, spectra of the precondi-
tioned coeffcient matrices were calculated. A representative CG-like iterative method
and a number of semicirculant preconditioners were also implemented and numerically
tested. These results show that for the model problems studied, the number of iterations
required to solve the systems of equations approaches a constant number when the size
ofthe problems is increased. Also, the increase in the number ofiterations required when
grows is smaller than . Hence, the favorable convergence properties theoretically

proved for the simple scalar model problem seem to be valid also for more complicated
problems. The assumption that, for some of the semicirculant preconditioners, variable
coefficients in the difference approximation are allowed in one space dimension without
any decrease in performance was empirically verified.
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Abstract. A preconditioned iterative method for indefinite linear systems corresponding to
certain saddlepoint problems is suggested. The block structure of the systems is utilized in order to
design effective preconditioners, while the governing iterative solver is a standard minimum residual
method. The method is applied to systems derived from discretizations of the Stokes problem and
mixed formulations of second-order elliptic problems.
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1. Introduction. The purpose of this paper is to present a preconditioned iter-
ative method for linear systems corresponding to certain saddlepoint problems. These
systems arise frequently from discretizations of partial differential equations. Impor-
tant examples are the system of discrete equations that results from the approximation
of the equations of elasticity and the Stokes problem (cf. [15], [16], [19]). Other ex-
amples result from mixed formulations of second-order elliptic problems (cf. [12], [25],
[30]). Since these discrete systems can become very large, it is of great interest to
develop efficient iterative methods for such problems.

We shall consider linear systems of the form

Mx 4- By b,
(1.1) BTx- c,

where M E Rnn is symmetric and positive definite, B ]nm with m _< n and B
has full rank; i.e., rank(B) m.

It is well known that systems of the form (1.1) have a unique solution x Rn
and y ]’. Furthermore, the system is equivalent to the constrained minimization
problem:

(Mx, xI (b, xI subject to BTx c,min

where (., "/ denotes the Euclidean inner product of R. Alternatively, (1.1) is equiv-
alent to the saddlepoint problem for the Lagrangian

f..(x,y) 1/2(Mx, x) (b,x) + (y, BTx-
For a review of these simple results for the system (1.1) we refer, for example, to [18].

The coefficient matrix A of system (1.1), given by

(1.2) A- Bv 0
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is symmetric, nonsingular, and indefinite. The preconditioned iterative method pre-
sented in this paper will be based on the minimum residual method. Application of
this method to symmetric, indefinite systems is discussed by Paige and Saunders [23]
and Chandra [10] (cf. Stoer [27]). They develop an algorithm that can be applied to
any symmetric, nonsingular system. The main contribution of this paper is a discus-
sion on how systems of the form (1.1) can be preconditioned in order to increase the
convergence rate of the algorithm. Hence, the block structure of the system (1.1) will
only be utilized in order to derive efficient preconditioners for the minimum residual
method.

The convergence rate of the minimum residual method depends on the location of
eigenvalues of the coefficient matrix. Since the coefficient matrix of (1.1) is indefinite,
the spectrum of this matrix contains both positive and negative eigenvalues. We will
show that an upper bound for the convergence rate of the minimum residual method
applied to (1.1) can be related to the condition numbers of the matrices M and B.
In addition, this convergence rate will depend on the relative scaling between M and
B. The purpose of a preconditioner for the system (1.1) is therefore to improve the
conditioning of the matrices M and B, while the relative scaling between them is kept
roughly fixed.

Most iterative methods that have been suggested for systems of the form (1.1)
are mod.ifications of Uzawa’s method (cf. [18]). This algorithm requires that a system
of the form

(1.3) (M + pBBT)z d,

where z is the unknown and p _> 0 is a parameter, must be solved for each iteration.
Hence, if an iterative method is used to solve the system (1.3), we obtain a solver
with an inner and outer iteration. The problem with this approach is that in order to
ensure convergence of the outer iteration, it might be necessary to iterate the inner
iteration until it converges within computer precision, thus making the overall process
somewhat costly. Also, certain iteration parameters have to be selected in order to
speed up the convergence of Uzawa-type algorithms. In contrast, the minimum resid-
ual method does not require the choice of any parameters and leads to an "optimally"
converging scheme. For the application of Uzawa-type methods to systems of the
form (1.1) we refer to [11], [18], and [24]. Discussions of iterative methods for linear
systems using an inner and outer iteration can also be found in [2], [4], [13], and [20].
Iterative methods for the system (1.1), based on positive definite reformulations of
the system, are suggested by Bramble and Pasciak in [5] and [6].

In 2 we will discuss some elementary spectral properties of matrices of the form
(1.2). These properties are related to the convergence rate of the minimum residual
method in 3. In 4 we propose a general preconditioning strategy for systems of the
form (1.1), while 5 reports on some numerical examples. We discuss the application of
a fast Poisson solver and an incomplete Cholesky factorization to the discrete systems
arising from mixed finite element methods for some second-order elliptic problems
and to discrete Stokes problems.

2. The saddlepoint problem. The coefficient matrix A of (1.1) is symmetric,
nonsingular, and indefinite. Thus the spectrum of A, A(A), contains both positive
and negative eigenvalues. In this section we establish a simple result relating A(A)
to properties of the matrices M and B. In the next section these properties will be
related to the convergence rate of the minimum residual method.
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Let M have eigenvalues #1 > #2 > > #n > 0. Then

(2.1) #nix[ 2 _< (Mx, x> < ll2

for all x R’. Here denotes the Euclidean norm on R’. Since rank(B) m, B
has singular values al _> a2 >_ _> a, > 0, and

for all y E R". We also have

(2.3) mlXl < IBTxl < allXl
for all x N(BT)+/-. Note that this implies that the right inequality is valid for all
x ,n.

The following simple result relates the spectrum of the coefficient matrix A to
these properties of M and B.

LEMMA 2.1. Let # > #2 > > #n > 0 be the eigenvalues of M, a > a2 >
> am > 0 the singular values of B, and denote by A(A) the spectrum of A. Then

where

and

A(A) c I I- I+,

1 1 ](, V/, + 4o)

[ 1 ]z+ ,( + +4)

Proof. The bounds are established by energy arguments. Let A A(A) and let
(x, y) be the corresponding eigenvector, i.e.,

(2.4) Mx + By
(2.5) BTx Ay.

Note that if x 0 then y 0 by (2.4), since rank(B) m. This is impossible when
(x, y) is an eigenvector. Hence x 0. The proof is now divided into two parts. First
we bound the positive eigenvalues, then the negative eigenvalues.

Let be a positive eigenvalue. By combining the inner product of (2.4) with x
and the inner product of (2.5) with y we get

(Mx, x) + lyl 2 lxl2.

Next, we use (2.1) to obtain

(- X)lxl <-Xlyl2 < o,
and since ]x is positive, we have A > #,. To derive an upper bound, we use (2.5) and
the inner product of (2.4) with x to obtain

1 IBTxl2(Mx, x) + -
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By (2.1) and (2.3) this implies the inequality

( ), ,)11 < 0.

sie Ixl is positive, we gherefo:e cold.de ghg ( + + 4). , we
have derived the desired bounds for the positive eigenvalues.

Consider next a negative eigenvalue A. The derivation of the lower bound of I-
is similar to the derivation of the upper bound of I+. Finally, we derive the upper
bound for the negative eigenvalues. To do this, let x v + w, where v N(BT)
and w N(BT). By (2.5) and the inner product of (2.4) with v we get

1(Mw, v) Alvl- (Mv, v)- xIBTvl.
Applying (2.1) and (2.3) we obtain

(2.6) (Mw, ) ( /)1
To proceed we musg bound (Mw, v). This is nchieved by forming the inner product
of (.4) wire d ig (z.). si N(B) d- u. i giv wg

(,) (- u.)l 0.

Together with (2.6) nd the symmetry of M we obtain

0 ( )11=.
If v 0, (2.5) implies 0 and (2.4) reduces o Mw &w. Since & is negntive this

0. Hence,is a congradiction, and it follows that & &

(1- +4). D

We remark that the estimates given in Gemma 2.1 are indeed sharp. In order o
see his consider a 3 x 3 matrix of he form

(.7) 0 .
0 a 0

where > 0. This matrix is of the form (1.2) and h the eigenvalues

(2.8) ,, (,+,+4) and (,-+4).
We also observe that a block diagonal matrix, with diagonal blocks of the form (2.7),
can be transformed to a magrix wih ghe desired sgructure (1.2) by renumbering the
variables. Hence, by varying and along the diagonal, we conclude from (2.8) that
the bounds of Lemma 2.1 are sharp.

The result above will be used in a when we discuss the convergence properties
of the minimum residual method applied to the system (1.1). We observe that the
two intervals I- and I+ are located on each side of the origin. Let (M) and (B)
be the spectral condition numbers of M and B, respectively; i.e.,

(M) =,1/, and (B) 1/.
om he expressions above we can eily deduce that if (M), (B) 1, then the
interval I- degenerates to a single point and the length of the interval I+ tends to a
value 1.
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3. The minimum residual method. The purpose of this section is to discuss
the minimum residual method for symmetric, indefinite linear systems. In particular,
we shall discuss the application of this method to systems of the form (1.1).

Consider first a system of the form

(3.1) Ax* b,

where A is a square, symmetric, and nonsingular matrix, while x* and b are vectors. If
A also is positive definite then (3.1) can be solved by the conjugate gradient method.
However, the minimum residual method can also be used when A is indefinite.

The minimum residual method for indefinite systems has been studied by Paige
and Saunders [23] and Chandra [10] (cf. Stoer [27]). We first give a brief derivation
of the method.

Let Vk span(b, Ab,..., Ak-lb}. The approximation xk E Vk of x* is determined
by

(3.2) IAxk b] 2 inf lAx bl 2.xV

This solution Xk Vk is unique and satisfies the system

(3.3)
The iterative method for the calculation of the vectors {Xk}, originally proposed

in [23], was derived from the Lanczos process stated in terms of the Euclidean inner

product. An alternative algorithm can be derived from the Lanczos process using the
"energy" inner product (., ">A given by (p, q>A (Ap, Aq>. In this case a sequence
of vectors {pj } is generated, such that {pl, p2,’", Pk } is an orthonormal basis for Vk
with respect to the inner product (., ">A"

Using this notation, it follows from (3.3) that

(x,+ x,, v) 0 Vv e y.

Hence

Xk+l Xk -[- Ok+lPk+l

for a suitable scalar ak+l. Furthermore, from the equation

<A(Xk nt- Ok+lPk+l), Apk+l> <b, Apk+l>
and the properties of the vectors {Pk }, we derive the expression

k+l <pk+l,Pk+l>A
Here rk is the residual vector defined by rk b- Axk. The complete iteration for the
vectors {Pk} and {xk} is therefore given by the algorithm below.

ALGORITHM 3.1. The minimum residual method:

p0 := x0 := 0

flPl := X := b
k:=l
while rk 0 do

"=

Xk+l := Xk + (rk, Apk+)Pk+
k:=k+l
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The constants k > 0 are chosen such that (Pk, Pk)A 1. For exact arithmetic this is
always possible, since rk 0 implies that Apk Vk; i.e., k+lPk+l O.

From the optimality property (3.2) we can derive a convergence estimate for the
method. Recall that rk -b- Axk satisfies

(3.4) Irk] 2 Ib- Axk[2 <_ Ib- Ax[2 Vx C Vk.

Using spectral theory we easily obtain from (3.4) that

(3.5) 5 (A(A))Ibl,

where

6k (A) inf sup Ip()l
peP )A

and Pk {PIP is a polynomial of degree less than or equal k and p(0) 1}.
It is clear from (3.5) that we can estimate the convergence rate of the minimum

residual method by estimating the quantity 5k(A). If all the eigenvalues are positive,
we can embed A in a positive interval I [a, b]. In this case it is possible to derive
an analytical expression for p* E P such that

sup IP* (’)1 inf sup IP()I.
,kEI PEPk

It is well known that p* can be expressed in terms of Chebyshev polynomials, and
that this leads to the estimate (cf., e.g., [21])

5k(A) _< 5k(I) <_ 2e-2k/vf-,
where a(A) denotes the spectral condition number of A. Furthermore, if the eigen-
values of A have a relatively uniform and dense distribution in I, this convergence
estimate is rather sharp.

Consider the case when

A(A) c: I I- U I+,
where the intervals I- and I+ are located to the left and to the right of the origin,
respectively. In this case it seems to be harder to obtain an analytical expression of
the optimal polynomial p* (cf. the discussion given in Atlestam [1]). However, we
observe that even if it is hard to derive sharp estimates for the quantity 5(I) in
the case of two intervals, some general properties can easily be seen. First of all, by
a proper scaling of the polynomials in Pk, we obtain that 5k(aI) 5k(I) for any
c # 0. Also, if ] C I then obviously 5k(i) < 6k(I). The estimate (3.5) therefore
clearly indicates that the minimum residual method converges faster when we shrink
the intervals. This phenomenon is illustrated by the following numerical example.

Example 3.1. We fix n 600 and let A be the diagonal matrix with 300 diag-
onal elements equally distributed in each of the intervals I-a,- 1] and [2, d]. All the
elements on the right-hand side b are taken to be 1. The linear system Ax b is
solved by the minimum residual method for different values of a and d. The iterations
are terminated when ]]rk <_ 10-4. The number of iterations required is given in
Table 3.1.
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TABLE 3.1
Number of iterations for Example 3.1.

I \ 11  lxl
20 194 89 62
4 92 42 30
1 28 12 9

Assume that A(A) c I I-t2 I+, where I- and I+ are given by Lemma 2.1. By
scaling I as indicated above, such that the lower limit of I+ is unity, we can assume
that I- and I+ are given by

(3.6)
I- 1/2(1 V/1 + 4p2n2(B)), (n(M) V/a2(M) + 4p2)

Here p- p(B, M) denotes the relative scaling between the matrices B and M given
by the ratio between the smallest singular value of B and the smallest eigenvalue of
M; i.e.,

p(B, M) am/#,.
The expressions for I- and I+ given by (3.6) indicates that the convergence rate

of the minimum residual method can be estimated by the three parameters a(B),
a(M), and p(B, M). Note that if a(B) and n(M) are fixed, the upper limit of I+ will
increase as a function of p. On the other hand, if p --+ 0 the upper limit of I- will
approach zero. Since the polynomials in Pk must satisfy p(0) 1, this is obviously not
desirable in order to make 5k(I) small. The scaling factor p(B, M) should therefore
neither be too small nor too large; i.e., the matrices B and M should be properly
balanced.

However, if the scaling factor p(B, M) is fixed, it is easy to see that a reduction
in one of the condition numbers a(B) or a(M) will lead to a proper shrinking of
the intervals I- and I+ given by (3.6). As a conclusion of this section we therefore
obtain that if the matrices B and M are well conditioned and properly balanced, the
minimum residual method applied to the system (1.1) will converge fast.

4. Preconditioning of saddlepoint problems. The purpose of this paper is
to discuss the application of the minimum residual method to systems of the form
(1.1) arising from the discretization of partial differential equations. From the previous
section we know that the convergence rate of this method is in some sense governed
by three parameters measuring the conditioning of the matrices M and B and the
relative scaling between them; i.e., (M), (B), and p(B, M). Furthermore, if these
three parameters can be bounded independently of the discretization parameter h
(cf. 5), the convergence rate is bounded independently of the number of unknowns.

However, for most interesting examples of systems arising from discretization of
partial differential equations, at least one of the condition numbers will increase when
the discretization is refined. A direct application of the minimum residual method
is therefore usually not practical, since the rate of convergence will be too slow. In
order to speed up the convergence we will therefore consider a preconditioned version
of the method.

From the discussion above we know that the convergence of the method usually
will be accelerated if we can properly shrink the two intervals given by (3.6). Further-
more, if the scaling parameter p(B, M) is fixed, this can be obtained by reducing the
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I- I+

I- I+

FIG. 4.1. Effect of reducing (M) or (B) when p(B, M) is fixed.

condition number of M or B (cf. Fig. 4.1). The preconditioned system will therefore
be designed such that the conditioning of at least one of the matrices is reduced, while
the relative scaling between them should be kept approximately fixed.

The preconditioned minimum residual method for systems of the form (1.1) will
be presented in general terms in this section. In 5 we apply the method to some model
problems arising from the discretization of the Stokes problem and mixed formulations
of second-order elliptic equations.

We will use a block diagonal preconditioner for the system (1.1). Such precondi-
tioners for these systems have earlier been suggested by Fortin [17]. The advantage
of block diagonal preconditioners is that, through such a setup, the properties of the
matrices M and B, which are discretizations of differential operators, can then be
easily utilized (cf. 5 below). In general, a linear system is preconditioned if it is
replaced by an equivalent system with the property that the convergence rate of the
iterative method will be significantly improved. Furthermore, this modification of the
system should not significantly increase the necessary work required in each iteration.
In addition, the preconditioned system should have the same structure as the original
system.

Let L E Rnxn and R rnxrn be nonsingular matrices, and let S diag(L, RT).
Then the matrix S-1AS-T is given by

L_1ML_T L-IBR- )S-1AS-T (L-1BR-1)T 0

Hence, the system (1.1) is equivalent to the system

L-1ML-T(4.1) (L_IBR_)T
L-1BR-1 )( v ) ( n-lb )0 w R-Tc

where v LTx and w Ry. The system (4.1) has the same structure as (1.1). In
fact, the problem (4.1) is equivalent to the constrained minimization problem

min 1/2(L-ML-Tv, v}- (L-b,v} subject to (L-IBR-1)Tv R-Tc.
If L and R are such that

a(L-ML-T) << a(M) and/or

while

a(L-BR-) << a(B),

p(L-IBR-1,L-1ML-T) .. p(B,M),
then, according to the discussion above, the minimum residual method applied to
(4.1) will usually converge faster than if the method is applied to the original system
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(1.1). In addition, the matrices L and R should have the property that linear systems
with coefficient matrices given by LLT or RTR can be solved by a fast solver. The
last requirement is necessary since such linear systems have to be solved once in each
iteration of the preconditioned minimum residual method.

The choice of the preconditioning matrices L and R is, of course, problem depen-
dent. We shall make only a few general remarks. Since M is symmetric and positive
definite and the preconditioning of such systems has been intensively studied during
the last years, we often know how to find a matrix L with the required property that
a(L-1ML-T) is sufficiently small. In such cases, the remaining problem is therefore
partly to find a matrix R such that L-1BR-1 is well conditioned; i.e., the matrix R
should be chosen such that L-1BR- is approximately a unitary matrix. We observe,
furthermore, that this is equivalent to the requirement

BT(LLT)B RTR.
Hence the matrix R should be chosen such that RTR is a good preconditioner for the
positive definite matrix BT(LLT)B.

The problem of designing an effective preconditioner of the form discussed above
for the system (1.1) is, in some sense, equivalent to the problem of designing effective
preconditioners for the symmetric and positive definite matrices M and BT(LLT)-B.
Furthermore, if the original system is properly scaled, the scaling factor p should not
be significantly changed by the preconditioning of the system.

5. Numerical examples. In this section we will present results from numerical
experiments with the preconditioned minimum residual method. The linear systems
used in these experiments result from mixed finite element discretizations of second-
order elliptic equations or from the Stokes equations. The matrix M in (1.2) is well
conditioned in the first case, but not in the second case.

The preconditioned minimum residual method will be compared with a two-level
conjugate gradient method (cf. [29]). Before describing the numerical examples we
therefore briefly present this two-level method. The method is closely related to
Uzawa’s method, except that no acceleration parameter has to be chosen.

Consider the general system (1.1). Since M is positive definite, it follows from
the first equation of (1.1) that

(5.1) x M-(b- By).

Substituting this into the second equation of (1.1), we obtain

(5.2) BTM-1By BTM-lb c.

Since B has full rank and M is symmetric and positive definite, the matrix BTM-1B
is also symmetric and positive definite. We may therefore solve (5.2) by the conjugate
gradient method. Once y is known, x is calculated from (5.1) by the conjugate gradient
method.

The conjugate gradient method involves calculating a matrix-vector product in
each iteration. Calculating the action of BTM-1B on a vector involves inverting the
matrix M. In some applications it is possible to solve linear systems of the form

(5.3) Mz d,

where z is the unknown, by a fast direct method. However, in general this may be
too expensive. In practice we may therefore be forced to solve (5.3) by the conjugate
gradient method. This results in a two-level procedure, with an inner and an outer
iteration, for the solution of the system (5.2).
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5.1. Mixed methods for second-order elliptic problems. We consider pre-
conditioning of a mixed finite element discretization of a second-order elliptic partial
differential equation with variable coefficients. The resulting linear system has the
form (1.1). If the coefficients are mildly varying the matrix M is well conditioned in-
dependently of the grid. For this model problem we therefore choose L I. However,
the condition number of the matrix B grows with the number of unknowns. Below
we will consider two possible choices for generation of the matrix R.

Let Ft C ]2 be a bounded domain with boundary F and unit outward normal
vector . In the numerical examples we consider the following partial differential
equation:

-V a(x)Vp f in ft,

p--- g, on F,

where f e L2(Ft) and g e L(F) are given functions. The 2 2 matrix a(x) is
symmetric, and we assume that there exist positive constants al and c2 such that
the inequalities

hold for almost all x E ft and for all E ]R2.
In many applications the variable u -aVp has physical significance, and may

even be of primary interest. For example, if (5.4) is the pressure equation in reser-
voir simulation, then u is the Darcy velocity. If we solve for the pressure p with a
standard finite element method we must differentiate p numerically and multiply the
discrete gradient of p by a possibly rough coefficient to obtain u. This may lead to
unsatisfactory results. Alternatively, we can use a mixed finite element method, where
we solve for u and p simultaneously. The advantage with this approach is that we
can approximate u and p with the same order of convergence. However, instead of
obtaining a positive-definite system for the discrete solution we obtain a saddlepoint
problem of the form (1.1).

In this section (., .) denotes the inner product on L2() and on (L2())2, with
the corresponding norm II" II, and (., .} is the inner product on L(F). Furthermore,
H(div, ) denotes the set of functions v e (L2())2 with V.v e L2(), and with
norm I1" I[div given by Ilvlliv --Ilvll 2 + IIV" vii 2. We refer to [19] for more details.

Let Vh C H(div,) and Qh C L2(gt) be finite-dimensional spaces. The mixed
finite element method for the equation (5.4) is given by: Find (uh,Ph) e Vh Qh such
that

v) V. v) W e

-(q, V. Uh) --(f, q) Vq e Qh.

Here Uh is an approximation of the variable u introduced above. The discrete problem
(5.6) leads to a linear system of the form (1.1). In order to guarantee that the matrix
B of (1.1) has full rank, and in order to obtain numerical stability, the spaces must
satisfy the so-called inf-sup condition; i.e., there exists a constant , independent of
h, such that

(q, V v) _>/ > 0.inf sup
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In addition, the spaces Vh and (h should be chosen such that

sup (q, V. v) > 0
qEQh

for all v E Vh with V. v 0. There exist several stable mixed finite elements for
the discretization of the system (5.4) (cf. [7], [8], [25]). We have used the rectangular
Raviart-Whomas element of order zero (see [25]) to construct the finite-dimensional
subspaces Vh and Qh. We briefly review the construction of these spaces.

For simplicity we shall consider only the case when t is the unit square. For a
positive integer N let h 1/N and define the piecewise polynomial space

Mr (w e CS([0, 1]) lwl[(i_l)h,ih e Pr, i-- 1, 2,... ,N},

where s -1 refers to discontinuous functions and Pr is the set of polynomials of
degree less than or equal to r. Using this notation, we define

Qh M (R)M and Vh [M (R) M] [M (R) M],

where (R) denotes the tensor product. With these discrete spaces the convergence rate
of the finite element approximations is O(h) for both the pressure and the velocity in
their associated norms (cf. [25]).

If a nodal basis for Vh is introduced and the unknown velocity coefficients corre-
sponding to the X direction are ordered before those related to the x2 direction, the
matrix M has the block structure

We have evaluated the integrals in (5.6) by using a certain combination of the midpoint
and trapezoid rule (cf. [26]). With a natural numbering of the unknowns the matrices

MI and M22 are then diagonal. If exact integration had been used they would have
been tridiagonal. When a is diagonal the matrix M12 0, and M may be inverted
effectively using direct elimination. However, if a is not diagonal then M12 0. In
this case a direct elimination method applied to. M may be too costly (cf. [14]). An
iterative method that requires the inversion of M will therefore lead to a two-level
iterative method. However, the preconditioned minimum residual method uses the
matrix M only in matrix-vector products. The efficiency of this method is therefore
independent of the possible diagonal structure of a.

In order to use the preconditioned minimum residual method, we must choose
the matrices L and R. Note that the condition number of M is dominated by O/2/O
and is independent of h. Thus we set L I and it remains to choose the matrix R.
Since the condition number of the matrix B, which is a discrete gradient operator,
is O(h-1), it is essential for the efficiency of the method that R be properly chosen.
Since L I, it follows that R should be chosen such that RTR is a preconditioner
for the discrete Laplacian BTB. We may therefore use well-known preconditioners
for the Poisson equation in order to find a suitable preconditioning matrix R.

Incomplete factorization methods have frequently been used as a preconditioning
technique for the Poisson equation. These methods are easy to implement and usually
result in a significant reduction of the condition number of the coefficient matrix. The
basic idea is to use Cholesky factorization or Gaussian elimination and neglect all the
fill-in generated by the elimination process. There are also more effective variants



898 TORGEIR RUSTEN AND RAGNAR WINTHER

TABLE 5.1
Number of iterations for Example 5.1.

h (number of iterations)
No preconditioner
Incomplete Cholesky preconditioner
Fast Poisson

1/8 1/16 1/32 1/64 1/128
78 146 281 530 >1000
30 49 85 165 335
23 23 22 22 21

TABLE 5.2
Number of iterations for Example 5.2.

h (number of iterations) 1/8 1/16 1/32 1/.64 1/128
No preconditioner 147 318 625 >1000 >1000
Incomplete Cholesky preconditioner 64 90 147 274 576
Fast Poisson 54 61 62 61 61

where more nonzero elements are allowed in the factorization, or where fill-in terms
are added to the diagonal (cf. [3], [9]). In our calculations we have used the incomplete
Cholesky factorization algorithm in [21] to obtain an approximate factorization RTR
of BTB. Note that if we set Q BR-1, we have QTQ R-TBTBR-1 , I. Hence
we may say that QR is an approximate "QR-factorization" of B. We emphasize that
the preconditioned minimum residual method uses only the matrix R. The matrix Q
is not computed.

The incomplete Cholesky factorization can be used for problems on a general
domain f. However, when is a square we can also apply a fast solver as a pre-
conditioner for BTB. If we use a regular node numbering, BTB is equal to the
matrix obtained from the five-point discretization of the Poisson equation. In this
case we can use a fast eoisson solver (cf. [28]) to solve systems with coefficient matrix
BTB. We may think of this as having an exact factorization RTR of BTB. Letting
Q BR-, Q is orthogonal and QR is an exact "QR-factorization" of B. Hence,
(BR-1) (Q) 1, and the conditioning of BR- is best possible. We note again
that Q is not computed.

In all the numerical experiments g 0 and f 2, and the minimum residual
method is terminated when IS-rkl/IS-rol <_ 10-5. As above, I" dentes the
Euclidean norm and S is the preconditioner..

Example 5.1. In the first example we let a(x) diag(1 4- xx2, 1), and we solve
the discrete systems with the preconditioned minimum residual method. In Table 5.1
we list the number of iterations for the different preconditioners. For comparison
we have also added the number of iterations without preconditioning. When the
fast Poisson preconditioner is used, a(BR-) 1 and we expect the number of
iterations to be independent of h. Furthermore, in this example the inequalities in
(5.5) hold with a 1 and a2 2. The condition number of the matrix M in
(1.2) is therefore small and the minimum residual method should converge in a few
iterations. It is clear from Table 5.1 that this is actually the case. We also observe
that the incomplete Cholesky factorization leads to a preconditioner which reduces
the number of iterations significantly compared to the case with no preconditioner,
but which is considerably less effective than a fast Poisson solver. Recall, however,
that the incomplete Cholesky factorization can be used on general domains.

Example 5.2. In our next example we consider a nondiagonal matrix a, given by

(5.7) a(x)=(l+4(x+x) 3XlX2 )1+ +
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TABLE 5.3
Number of iterations for Example 5.3.

h (number of iterations) 1/8 1/16 1/32 1/64 1/128
No preconditioner 149 320 619 >1000 >1000
Incomplete Cholesky preconditioner 66 93 147 278 569
Fast Poisson 56 62 61 61 61

TABLE 5.4
Number of iterations for Example 5.4. The tolerance ei of the inner iteration is 10-7.

h (number of iterations) 1/8 1/16 1/32 1/64 1/128
No preconditioner 32 69
Incomplete Cholesky preconditioner 21 32
Fast Poisson 20 26 29 30

The eigenvalues of this matrix are

l(x) 1/2(2 T 15(x T x22)T (49(x - x)2 - 36xx)1/2)
and

A2(x) 1/2(2 + 15(x + x2) (49(x + x22)2 + 36x2x2)l/2).
Since 1 _< AI(x) _< A2(x) _< 25 the inequalities (5.5) hold with 1 and 2 25.
Again we solve the linear systems with the minimum residual method. The number
of iterations for different values of h, and for different choices of preconditioners, are
listed in Table 5.2. Comparing this with Example 5.1, we note that the minimum
residual method requires more iterations to converge for any choice of preconditioner
compared to the corresponding results of Example 5.1. This is what we should expect,
since the condition number of the matrix M in (1.2) is larger than in Example 5.1.
However, the nondiagonal matrix a poses no difficulties in the application of the
minimum residual method.

Example 5.3. In the last example, with the preconditioned minimum residual
method we choose a to be the diagonal matrix a(x) diag( (x), 2(x)). Here (x)
and A2(x) are the eigenvalues of the matrix (5.7) given in Example 5.2. The number
of iterations for different values of h, and for different choices of preconditioners, are
listed in Table 5.3. We note that the results of Examples 5.2 and 5.3 are almost
identical. Hence this example demonstrates that the convergence rate depends on the
conditioning of the matrix a and not on the possible diagonal structure of a.

Example 5.4. We again choose the variable coefficient matrix a to be the full
matrix given by (5.7). The solution (uh,Ph) of (5.6) is calculated by solving (5.2)
and (5.1). Note that the symmetric, positive-definite coefficient matrix in (5.2) is not
well conditioned. We solve this equation with the preconditioned conjugate gradient
method and we choose the incomplete Cholesky factorization or the fast Poisson solver
used above as preconditioners. Once in every iteration we must invert M; i.e., solve
an equation of the form (5.3). Since the matrix a is full, it is impractical to do this
with a direct elimination method. We therefore must solve equations of the form
(5.3) with the conjugate gradient method. The matrix M is well conditioned and no
preconditioner is necessary. This results in a two-level method. The outer iteration
is terminated when IR-Trkl/IR-Trol < 10-5. In Tables 5.4-5.6 the number of outer
iterations is reported, when the inner iteration is terminated when Irkl/Irol < ei for
ei 10-7, 10-s, 10-9. The .’s in Tables 5.4-5.6 signal a breakdown of the conjugate
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TABLE 5.5
Number of iterations for Example 5.4. The tolerance ei of the inner iteration is 10-s.

h (number of iterations)
No preconditioner
Incomplete Cholesky preconditioner
Fast Poisson

1/8 1/16 1/32 1/64 1/128
32 69 148 313
21 32 57
20 25 28 30 32

TABLE 5.6
Number of iterations for Example 5.4. The tolerance ei of the inner iteration is 10-9.

h (number of iterations) 1/8 1/16 1/32 1/64 1/128
No preconditioner 32 68 147 311 661
Incomplete Cholesky preconditioner 21 32 57 118 245
Fast Poisson 20 25 28 30 33

gradient algorithm. Note that since only the outer iterations are listed, these numbers
are not directly comparable to the numbers in the previous examples. This experiment
demonstrates that it is necessary to solve (5.3) with high-order accuracy to ensure
convergence of the outer iteration.

When the variable coefficient a is diagonal, the matrix M is also diagonal. Hence,
systems of the form (5.3) are easy to solve. In this case (5.2) may therefore be solved
efficiently by the conjugate gradient method without a two-level iteration. Recall that
in the pressure equation of reservoir simulation, where the matrix a corresponds to
a mobility matrix, problems with a nondiagonal matrix a occur frequently. When
a is a full matrix, M in (1.2) is not block diagonal and a direct solution of (5.3) is
impractical. In this case (5.2) must be solved by a two-level iterative method, which
is very sensitive to the accuracy of the inner iteration. Examples 5.2 and 5.3 clearly
indicate that the performance of the preconditioned minimum residual method is
independent of a being a diagonal or a full matrix. It is only dictated by the variation
of a. Therefore, our opinion is that the minimum residual method, which has only
one level of iteration, is preferable for these problems.

5.2. The Stokes problem. Our second model problem is a mixed finite element
discretization of the stationary Stokes problem. The resulting linear system is again
of the form (1.1). In this case none of the matrices M and B are well conditioned.

Let f c ]2 again be a bounded domain with boundary F. Define by L(t) the
set of L2(t) functions with zero integral over f, and let H0 (t) be the set of functions
in L2(t), with first-order partial derivatives in L2(gt) and with vanishing trace on F.
Furthermore, denote by I1" II1 the usual norm on H(t).

The variational formulation of a generalized Stokes problem reads: Find (u, p) E
(H())2 L(Ft)such that

(#(x)Vu, Vv) (p, V v) (f v) Vv e (H())2,
(5.8)

(q, V. u) 0, Vq e n(f),

where f e L2(Ft) and # e L(f) with it(x) _> a > 0 almost everywhere on gt. In the
Stokes problem it is a constant. The existence of a unique solution in the Stokes case
is proved in [19], and the variable coefficient case is an easy consequence of this result.
We add the variable coefficient to the problem in order to test the preconditioner on
a more difficult problem (cf. [5]).

Let Vh C H() and Qh C L() be finite-dimensional spaces, and approximate
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TABLE 5.7
Number of iterations .for Example 5.5.

h (number of iterations) 1/16 1/32 1/64 1/128 1/256
No preconditioner 132 243 450 815
Incomplete Cholesky preconditioner 53 92 175 366 }06

Fast Poisson 21 21 21 21 21

(5.8) by the following discrete problem: Find (uh,Ph) E V x Qh such that

Vv) v. v) (L v) w e

--(q, V Uh) O Vq E Qh.

As above, the finite-dimensional spaces V and Qh should satisfy the inf-sup condition

(5.10) inf sup
(q’V" v) > > 0,

where/ is a constant independent of the mesh parameter h. In our experiments we
use the subspaces described in [5]. We briefly review the construction of these spaces
when t is the unit square.

1N and divide into 2N 2NFirst, choose a positive integer N, set h
subsquares. Then, subdivide all these subsquares into two triangles, and use the
usual continuous linear finite element on this triangulation to construct Vh. Next let
(h be the set of discontinuous functions, constant on each subsquare. It can easily be
seen that the spaces Vh2 and (h do not satisfy the inf-sup condition (5.10). Therefore,
a subspace Qh of Qh is used. Define for k, 1, 2... 2N the function k,Z that takes
the value one on the subsquare [(k- 1)h, kh] [(/- 1)h, lh], and vanishes elsewhere.
Then define the function i,j Qh by

i,j 92i-- 1,2j-- 92i,2j-- 92i-- 1,2j " 92i,2j

for i, j 1,..., N, and the space Qh by

Qh {q e n (q,,)- O, i,j 1,...,N}.

It is verified in [22] that the inf-sup condition (5.10) holds for this pair of subspaces.
The system (5.9) has the same structure as the system (1.1). In the Stokes

case the matrix M is block diagonal with two copies of a discrete Laplace operator
on the diagonal. Obviously, we choose L to be block diagonal, with two Poisson
preconditioners on the diagonal. In our calculations we use the preconditioners from
5.1. It remains to choose R; i.e., a preconditioner for BT(LLT)-IB. However, in
this model, BTM-1B is well conditioned (cf. [5]). Hence, if LLT is a preconditioner
for M, BT(LLT)-IB will also be reasonably well conditioned. We therefore choose
R=I.

In the numerical examples below, the iterations are terminated when the weighted
Euclidean norm of the residual, IS-Irkl, is reduced by a factor of 10-5.

Example 5.5. In this example we choose #(x) 1, and solve the system (5.9) with
the minimum residual method. The effect of the incomplete Cholesky and the fast
Poisson preconditioners are reported in Table 5.7. In this example the fast Poisson
solver actually inverts M. Hence, both L-MLT and L-1B are well conditioned
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TABLE 5.8
Number of iterations for Example 5.6.

h (number of iterations) 1/16 1/32 1/64 1/128 1/256
No preconditioner 280 605 >1000’ >1000 >1000
Incomplete Cholesky preconditioner 75 143 304 640 >1000
Fast Poisson 48 54 55 55 52

TABLE 5.9
Number of iterations for Example 5.7. The tolerance ei of the inner iteration is 10-8.

h (number of iterations) 1/16 1/32 1/64 1/128
No preconditioner 20 22
Incomplete Cholesky preconditioner 20 22
Fast Poisson 20 22

independent of h. From Table 5.7 we observe, as expected, that the minimum residual
method converges in a few iterations. Also for this problem we observe that the
results obtained with the incomplete Cholesky factorization rank somewhere between
the results obtained with no preconditioning and with preconditioning by the fast
Poisson solver.

Example 5.6. In this example we use the minimum residual method to solve the
system (5.9) with #(x) 1-XlX2 "- X21-x/2. Again we use the incomplete Cholesky
and the fast Poisson preconditioners. The number of iterations is listed in Table 5.8.
In this case the fast Poisson preconditioner is not an exact inverse of M, and we
expect more iterations than in Example 5.5. However, we observe, as expected, that
the number of iterations appears to be independent of h when the Poisson solver is
used.

Example 5.7. In this last example we choose it(x) 1 + xlx2 + x x/2 and
solve the linear system with the two-level conjugate gradient method. In this case
the coefficient matrix of the linear system (5.2) is well conditioned, but M is not.
It is therefore unnecessary to precondition the outer iteration. In the inner iteration
we use the preconditioned conjugate gradient method to solve the Poisson problem
for each component of u. As preconditioners we still use the incomplete Cholesky
factorization and the fast Poisson solver. The outer iteration is terminated when the
Euclidean norm of the residual is reduced by a factor of 10-5. The inner iteration is
terminated when the weighted Euclidean norm of the residual is redused by a factor of
ei, for ei 10-s, 10-9. The number of outer iterations is given in Tables 5.9 and 5.10.
The ,’s in these tables signal a breakdown of the conjugate gradient algorithm due
to division by zero. The results show that the method is sensitive with respect to
the accuracy of the inner iteration. Note that only the number of outer iterations is
given.

We conclude this subsection with some comments. In Example 5.5, the fast
Poisson solver may be used to solve (5.3). Equation (5.2) may therefore be solved
in an efficient way by the conjugate gradient method without a two-level iteration.
However, when it is not constant or gt is not square a direct solution of (5.3) may
be impractical. Since the two-level iteration is sensitive to the accuracy of the inner
iteration, the minimum residual method, which has only one iteration level, seems
preferable.

5.3. Conclusion. The numerical examples above indicate that the precondi-
tioned minimum residual method is an effective iterative procedure for saddlepoint
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TABLE 5.10
Number of iterations for Example 5.7. The tolerance ei of the inner iteration is 10-9.

h (number of iterations) 1/16 1/32 1/64 1/128
No preconditioner 20 22 24 26
Incomplete Cholesky preconditioner 20 22 24 26
Fast Poisson 20 22 24 26

problems of the form (1.1) arising as discretizations of partial differential equations.
In particular, we have demonstrated that for properly scaled matrices M and B the
convergence of the minimum residual method depends on the condition numbers of
M and B, but not on the sparsity structure of these matrices. Furthermore, we have
demonstrated that the performance of the two-level conjugate gradient method is
sensitive to the accuracy of the inner iteration.
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PRECONDITIONING FOR BOUNDARY INTEGRAL EQUATIONS*

STEPHEN A. VAVASISt

Abstract. New classes of preconditioners are proposed for the linear systems arising from a

boundary integral equation method. The problem under consideration is Laplace’s equation in three
dimensions. The system arising in this context is dense and unsymmetric. These preconditioners,
which are based on solving small linear systems at each node, reduce the number of iterations in some
cases by a factor of 8. Three iterative methods are considered: conjugate gradient on the normal
equations, CGS of Sonneveld, and GMRES of Saad and Schultz. For a simple model problem, the
exact relationship between the preconditioners and the resulting condition number of the system
is investigated. This analysis proves that the condition number of the preconditioned system is
decreased by a factor asymptotically greater than any constant.

Key words, integral equations, boundary element methods, preconditioners, iterative methods

AMS(MOS) subject classifications. 65F10, 65R20, 65N38, 65F35

1. Boundary integral equations. The boundary integral equation method
(BIEM) is a technique for solving certain kinds of boundary value problems including
Laplace’s equation. The specific problem under consideration is: Given a compact re-
gion E R3 whose boundary is homeomorphic to a sphere, find a solution to V2 0
given Neumann or Dirichlet boundary data. The Neumann and Dirichlet boundary
data can be expressed in terms of one another via integral equations. By discretizing
these integral equations, we arrive at a dense linear system relating the Neumann and
Dirichlet data on the boundary. If Dirichlet data is given, it can be solved for the
Neumann data or vice versa. Once both sets of boundary data are known, further
integrations yield interior values of .

Our application for Laplace’s equation is a free-surface irrotational incompressible
fluid flow in three dimensions (see Liu, Hsu, Lean, and Vavasis [16]). The data
determined by BIEM in this case is the normal derivative of the velocity potential on
the free surface.

Accordingly, each timestep of the fluid calculation requires a new solution of
Laplace’s equation, which in turn requires the solution of the dense unsymmetric
system of linear equations arising from BIEM.

For the remainder of this section we explain the details of the integral equations
and linear systems. The boundary integral equation method is credited to Hess and
Smith [12], Jaswon [14], and Symm [24]. For more information about the method, we
refer the reader to the series edited by Brebbia [5].

Suppose satisfies Laplace’s equation. Let z be a point on OFt. Let g(x) be the
function
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For now and for the rest of the paper, II" II will denote the 2-norm. Lower case letters
are used for scalars and for two- or three-dimensional vectors. Boldface is used for
vectors of higher dimension. Capital letters are used for matrices. With this definition
of g, the following identity always holds:

(1)
a

Here c meures the angle at the point z and would be 1 if the boundary is smooth.
There is an analogous equation for twdimensional Laplace problems with a different
choice for the function g (called the Green’s function). See 5. Note that the integrals
in this equation are improper because the function gz and its derivative are infinite
at x z. The integrals still have a well-defined value, but these singularities make
numerical methods more complicated.

Suppose we divide the surface of fl into elements joined by nodes. Let the nodes
be {Zl,’",Zn}. Then an equation like (1) holds for each zi. Writing down equa-
tions for each zi in this fhion is generally known collocation. We can approx-
imate the solution to the Laplace equation by suming that the and O/On are
piecewise polynomial interior to each element and are therefore determined by their
values at nodal points. This means that there are 2n variables (z1),..., (Zn) and
O/On(zi),..., O/On(zn). The integrations in (1) are approximated with numerical
quadrature; the integral on each element can be expressed a linear combination of
the variables at its vertices. This gives a dense linear system of n equations in the 2n
variables; the system looks like this:

n n

el(Zl) dijO/O(zj) elj(zj),

n n

j=l

In this system of equations the coefficients dij.and eij rise from evaluating the Green’s
function. Accordingly, all of the coefficients (c’s, d’s, and e’s) are determined entirely
by the geometry of 0. See Atkinson [1] for a description of specific methods for
collocation.

In a well-posed Laplace problem, for each point on the boundary either O/On or
is specified at the point. Therefore, in the above system of equations, n out of the

2n variables will be specified and n will be unknown. Since (2) h n equations, we
use these equations to solve for the remaining unknowns. This system will generally
be dense and unsymmetric.

It follows that the coefficient matrix of the system to be solved is determined
entirely by 0 and by the specification of which kind of boundary data is provided
for each node.

Once the values of and O/On are known, there is an equation similar to (i) to
compute any interior value of .

In some applications of BIEM, interior values are not needed. In our fluid appli-
cation it is enough to know O/On everywhere on the boundary.

The remainder of the paper is organized follows. In 2 we discuss iterative
methods for solving (2). In 3 we introduce our clses of preconditioners for this
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problem. In 4 we report on our computational experience with the algorithm. In
5 we give an analysis of one of the preconditioners for a simple model problem. We
show that the condition number is reduced by a factor of v/n for the model. Finally,
in 6 we discuss computational complexity issues connected with the BIEM solution.

The emphasis of this paper is on the use of the preconditioners for Laplace prob-
lems in three dimensions with collocation and mixed boundary conditions. There
appears to be very little known about such matrices; they lack many of the properties
(such as symmetry and positive definiteness) that are instrumental for analysis of
finite-element methods.

Accordingly, we do not attempt an analysis of the preconditioners for the prob-
lems actually of interest to us. The analysis given in 5 is for a simple two-dimensional
model problem and appears to be pessimistic compared to our computational exper-
iments.

2. Iterative methods for linear systems. An iterative method for solving a
system of linear equations Ax b is a method that generates a sequence of vectors
converging to the true solution. Applied to a dense n x n system, one iteration of an
iterative method ordinarily requires O(n2) steps. Solving the system with elimination
requires O(n3) steps. Accordingly, the hope is that a good iterative method will
require only a few iterations and be faster than elimination.

Canning [6] has developed a technique to reduce the number of nonzero elements
in a BIEM matrix from n2 to O(n) in many cases. Iterative methods would become
even more attractive, because the time per iteration is O(n). We have not tried
Canning’s method for our problem.

The three iterative methods under consideration in this paper are GMRES, CGS,
and conjugate gradient applied to the normal equations. The GMRES algorithm is
due to Saad and Schultz [21] and operates directly on the original system. CGS, due
to Sonneveld [23], also operates on the original system. Conjugate gradient (CG),
due to Hestenes and Stiefel [13], only works for symmetric positive definite systems.
Accordingly, CG is applied to ATAx ATb instead of Ax b. Note that the
product ATA is never actually formed--this would ruin the bound on the running
time. Instead, whenever a product ATAy is needed by CG, we carry out the product
as two matrix-vector multiplications AT(Ay). This remark about matrix products
also applies to the case described below in which preconditioners are inserted into the
problem. CG applied to the normal equations is known as CGNR.

It is known (see Golub and Van Loan [10]) that the convergence rate of CGNR
can be bounded in terms of the condition number of the matrix of coefficients. The
convergence rate for GMRES is determined by the positions of the eigenvalues or
pseudoeigenvalues (see Nachtigal, Reddy, and Trefethen [18]). There is no simple
formula known for the convergence of CGS.

Suppose that we have a nonsingular matrix P such that PA has a lower condition
number than A alone. Then the system of equations PAx Pb has the same
solution as Ax b. Moreover, an iterative method applied to PAx Pb might
converge faster because of the lower condition number. Such a matrix P-is called a

left preconditioner. Ideally, we want to have PA close to the identity matrix.
Each iteration of conjugate gradient requires one matrix-vector multiply opera-

tion. Since we are working on the normal equations, we need two matrix-vector mul-
tiplications. Finally, if we use preconditioning then the system becomes ATPTPA so
we need four matrix-vector multiplications.

Each iteration of CGS requires two matrix-vector multiplications. Each iteration
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of GMRES requires one matrix-vector multiplication. The time required for the kth
iteration of GMRES is proportional to O(kn / n2), in contrast to CGNR and CGS,
which require only O(n2) steps per iteration.

3. Preconditioners for BIEM. In this section we introduce three classes of
preconditioners tailored to the BIEM problem described in the introduction. All
three of our preconditioners are based on the same idea, which is as follows. The rows
of preconditioner P are generated independently and can be done in parallel. Let
the ith column of pT be denoted as Pi. As mentioned in the last section, we would
ideally like to have ATpi ei, where ei is the ith column of the identity matrix.

For our preconditioners we take the following approach. From the matrix A and
other data we determine some small list L of indices drawn from {1,..., n} such that
the variables and constraints in L have the most impact on variable i. Then we solve
the small system of equations Ti i where the bars over the variables indicate
that we are deleting all the rows and columns except for those in L. Once this solution
is known, we expand it back to the entries of P. This is done for all rows of P; the
rows can be generated in parallel.

The brief description in the last paragraph completely explains how to compute
our classes of preconditioners. All that remains is the explanation of how L is chosen
and how to expand the solution of the small system back to the row of P. In all cases
the number of flops to compute the preconditioner is bounded by O(k3n) where k is
the maximum size of the small system solved for each node.

Preconditioner MN. Preconditioner MN stands for "mesh neighbor." Recall
that each variable of the linear system arising in a BIEM problem corresponds to a
node on the surface of the region. We say that two nodes are neighbors if they border
on a common element. The choice of L for node is as follows: We let L be i together
with all the indices of neighbors of node i. After the small system involving these
rows and columns is solved, then we scatter the entries of the solution vector i back
to their original coordinate positions in pi, and we fill in the remaining positions of
pi with zeros.

The motivation for preconditioner MN is as follows. The matrix coefficient relat-
ing node and node j comes up roughly from a formula like 1/[[xi- xjl I. Therefore,
the further apart two nodes are, the less impact we would expect a change at one
node to have on the other. Since neighboring nodes are the most interrelated, we put
them in our preconditioner.

Note that the preconditioner generated in this manner will be sparse, and in
particular, its sparsity pattern will mirror the connectivity of the mesh. In general,
sparsity is considered a very desirable feature of a preconditioner. See, for example,
Manteuffel [17] or Kolotilina and Yeremin [15].

For our application, sparsity is an added benefit but not a major goal. The reason
is that A is already dense, so we have to carry out a dense n x n matrix-vector multiply
operation in each iteration. Therefore, the additional multiplication involving P is
not too expensive, relatively speaking, even if P is dense.

Preconditioner ME. Preconditioner ME stands for "matrix entries." The way
to choose L for a variable for this preconditioner is as follows. If aij, aji satisfy
]aia] >_ t]aaj then include j in L. Here, t denotes some user-specified tolerance
(our choice was t 0.1). Note that this preconditioner does not depend on any BIEM
structure and hence could be applied to an arbitrary matrix.
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o
O o,.O

Fro. 1. C1 is acceptable; C2 is not acceptable.

After the small system is solved, the solution vector is scattered back into P as
in preconditioner MN.

This preconditioner is similar to the local matrix idea of Benson and Freder-
ickson [2].

Preconditioner HC. Preconditioner HC stands for "hierarchical clustering."
Hierarchical clustering, an idea due to Rokhlin [20], classifies nodes based on how far
away they lie from node i. This is the most complicated of the three preconditioners
and requires a more extensive explanation.

A cluster refers to a set of nodes that are intended to be near one another. The
first step in constructing HC is to make a hierarchy of clusters. The top cluster Co
of the hierarchy contains all the nodes. The next level contains two clusters, each
with about half the nodes. These clusters are then recursively subdivided, so that the
kth level of the hierarchy consists of 2k mutually disjoint clusters of about equal size
whose union is the entire set of nodes.

There are many algorithms for clustering geometric objects (see, for example,
Feder and Greene [9] and Greengard [11]). We have chosen the following simple
approach, which seems to work well in practice. The top level cluster Co is divided
in two by splitting the points according to the median X coordinate. The clusters at
the next level are split according to their median x2 coordinates. The next level is
split according to median x3 coordinates. The ftrther levels cycle through the three
coordinates.

Once the cluster hierarchy is built, we next identify a center for each cluster.
This is the node in the cluster such that the maximum distance to other nodes in the
cluster is minimized. In our current implementation we find the exact center of each
cluster in the hierarchy; this fairly expensive computation (O(n2) steps total) could
be replaced by a heuristic. The radius of a cluster is defined to be the maximum
distance from its center to other nodes in the cluster.

Once the clusters, centers, and radii are computed, we next address the actual
preconditioner. For each node i, we carry out the following steps to produce the list
L of nodes related to i. We say that a cluster C is acceptable to node i if the distance
from node i to the center of C is at least tr, where r is the radius of C and t > 1 is a
user-specified parameter. In Fig. 1 we show a sample node i and an acceptable and
unacceptable cluster, with t 2. The centers of the two clusters are enlarged.

The algorithm for constructing list L for node i is the following recursive proce-
dure, whose initial arguments are (i, Co).
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function make-list(i, C)
if C is acceptable to i then

make-list :-- {center of C}.
else

Let C1, C2 be the children of C in
the hierarchy.

make-list :-- make-list(i, C1) t make-list(i, C2).
end

Note that this recursive procedure is guaranteed to terminate, since the bottom level
of the hierarchy consists of clusters made up of individual nodes. These clusters have
radius zero and hence are acceptable to all nodes.

The motivation is as follows. Suppose C is acceptable to i. The coupling in
matrix A between the nodes of cluster C and node will not depend very much on
which node of C is selected. Therefore, we could summarize all the nodes of C with a
single node, namely, the center. This motivation follows Rokhlin [20] and Greengard
[11], although their algorithms for determining the representation of a cluster are
considerably more sophisticated since they are interested in getting strong bounds on
the difference between the "cluster" approximation and the true effect of all nodes of
the cluster.

The list L is generated in this manner, and then the small system for i is solved. In
preconditioners MN and ME the elements of the small system solution were scattered
throughout Pi and the remaining elements were filled with zeros. Preconditioner HC
will be dense; the entry at position m of pi is taken to be equal to the entry in
corresponding to the representative of m’s cluster, scaled by the cluster size.

For the parameter t in the definition of "acceptable," we used t 1.5 in our
experiments. This seemed to give reasonable preconditioning results. It should be
noted that larger values of t give more reliable clusters because the "clustering" effect
is expected to be more apparent, but they also result in significantly more expensive
preconditioners since the lists L become larger. Rokhlin [20] settles on a choice for
t based on careful analysis of the clustering effect, which we have not been able to
carry out in the setting of preconditioners.

It is also not clear whether it makes sense to force the cluster boundaries to re-
spect nondifferentiable edges and vertices of the region or boundaries between regions
with different types of boundary conditions (we did not). The theory for boundary
element methods with nonsmooth boundaries and mixed boundary conditions is not
understood well enough to make definite statements in this regard.

An important question to ask about our preconditioners is whether they can be
stably computed in all cases. The methods break down if one of the small linear
systems is singular. We have the following theorem in this regard.

THEOREM 3.1. If A is either symmetric positive definite or strictly diagonally
dominant, then all three preconditioners can be computed stably.

This theorem is immediately obvious from the fact that the small systems that
are solved in all cases are principal submatrices of A. Therefore, these submatrices
are symmetric positive definite if A is, and they are strictly diagonally dominant if
A is.

Of course, the matrices of interest to us are neither symmetric positive definite nor
strictly diagonally dominant. We have not encountered any instabilities in our test
runs (such instabilities would most likely manifest themselves as unexpectedly large
elements of the preconditioner). There is no theory at present to predict whether this
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could happen.
The primary value of the above theorem is to show that our preconditioning ideas

may be applicable to a broad variety of dense or even sparse problems. By way of
comparison, the well-known incomplete Cholesky preconditioners (see Manteuffel [17]
and Elman [8]) can be stably computed for only a subset of symmetric positive definite
matrices.

4. Computational experience. We tried all three preconditioners out on three
different test problems. For each problem we tried CGS, GMRES, and CGNR. We
also noted the condition numbers of the system with and without preconditioners.
All experiments were carried out with MATLAB on an Ardent Titan. MATLAB, an
interactive language for numerical computation, is a trademark of The Mathworks,
Inc. The results are summarized in Tables 1-3. The numbers in the six middle
columns are number of iterations and number of millions of floating point operations
for the iterative methods as computed by MATLAB. The last column is the 2-condition
number. An illustration of the domains of the test problems are in Figs. 2-4.

In all of the domains we used mixed boundary conditions. The surfaces are divided
into triangular elements, and the functions are assumed to be piecewise linear on the
triangular elements. The collocation points are identical to the nodal points of the
discretization.

Dense matrix-vector multiplication was used to compute PAx in the iterative
routines, even when P was sparse (including the case P I). Accordingly, the
floating point operation counts are higher in many cases than would be expected
from the number of iterations.

The floating point count does not include the time to compute the preconditioner.
In the cases of MN and ME, the operations to compute the preconditioner were negli-
gible. In the case of HC, the number of operations to compute the preconditioner was
substantial--on the same order as the number of operations of the iterative method.
In the domain for Table 1, 0.69 million operations were required to compute HC. The
numbers for Tables 2-3 are 2.42 million and 2.20 million, respectively.

Our convergence criterion was as follows. In all three routines we stopped when
the residual computed by the routine dropped below elll, where e denotes the unit
roundoff (around 2.2.10-16 on our computer) and I denotes the right-hand side of
the actual system being solved. In GMRES we sopped also when the residual norm
did not improve by a factor smaller than 0.9 over two consecutive iterations. This was
necessary in GMRES because we noticed its tendency to stop converging when the
residual was slightly larger than elll. Such a test was not possible in CGS or CGNR
because of oscillation in the computed residual.

In most cases the residual lib- Axll computed a posteriori was on the order of
10-14 or 10-15; in a few cases it was as large as 10-12. These anomalous residuals
always occurred in trials with CGS, where we discovered a divergence between the a
posteriori residual and the computed residual Ilrll in the algorithm.

In each trial the right-hand side was generated randomly (each component was
selected uniformly at random between -0.5 and 0.5). The same right-hand side was
used for all trials in a table.

The most striking feature of these tables is the drastic reduction in the number of
iterations when comparing preconditioned systems to the case with no preconditioner.
In some cases the reduction is over a factor of 8.

The three preconditioners themselves seemed to have similar properties. We no-
tice that preconditioner ME generally did slightly worse than the other two. Precon-
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FIG. 2. Domain D1 with Dirichlet conditions on the top surface, Neumann conditions on the
other surfaces.

TABLE
Domain D1 computational results (n- 92).

Precond. CGS GMRES CGNR a2
iter. m.flop. iter. m.flop. iter. m.flop.

I 106 8.25 92 4.85 189 13.16 45.7
MN 12 0.88 20 0.82 33 2.28 3.2
HC 13 0.96 22 0.91 41 2.84 4.6
ME 13 0.96 22 0.91 38 2.63 4.3

FIG. 3. Domain D2 with Dirichlet conditions on the two small end surfaces, Neumann condi-
tions elsewhere.

TABLE 2
Domain D2 computational results (n- 128).

I 98 14.65 96 8.91 243 32.50 70.6
MN 13 1.84 21 1.62 46 6.12 5.3
HC 13 1.84 22 1.69 50 6.66 5.6
ME 14 2.00 23 1.77 55 7.33 6.6

Precond. CGS GMRES CGNR a2
iter. m.flop, iter. m.flop, iter. m.flop.
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FIG. 4. Domain D3 with Dirichlet conditions on all surfaces except the bottom.

TABLE 3
Domain D3 computational results (n- 92).

Precond. CGS GMRES CGNR 2
iter. m.flop, iter. m.flop, iter. m.flop.

I 118 9.20 64 3.05 198 13.79 75.1
MN 14 1.04 24 1.00 46 3.19 6.0
HC 14 1.04 24 1.00 38 2.63 3.9
ME 17 1.27 26 1.08 52 3.61 8.4

ditioner MN did slightly better than the other two. Algorithm GMRES marginally
outperformed CGS in all trials when comparing the measured number of floating point
operations; CGNR was a distant third.

In order to understand in practice how the preconditioners affect the convergence
rates, we have plotted a sample of the pseudoeigenvalues of A and PA in Fig. 5,
where P denotes preconditioner MN. These tests were done for an L-shaped region
similar to domain D2 but with fewer nodes. A sample of the pseudoeigenvalues of X
(where X A or X PA) was computed by plotting the eigenvalues of 20 complex
perturbations of X. The entries of the perturbation were chosen uniformly at random
in the disk in (l: of radius 5, where 5 was taken to be 0.01, 0.005, and 0.0025. A
rough rule is that convergence of GMRES is better when the pseudoeigenvalues are
clustered away from zero; see Nachtigal, Reddy, and Trefethen [18]. We notice that
the clustering seems to be greatly improved in the case of the preconditioned matrix.

To be precise, [18] has the following bound, based on earlier work by Greenbaum,
Trefethen [25], and others:

lib- Ax(k) _< lib- Ax()II inf{sup{Ip(z)l z e A}’p e Hk}. L/(2e).
In this formula, x(k) denotes the kth iterate of GMRES; A is the set of e-pseudoeigen-
values of A (a subset of ); L is the length of the boundary of A; and IIk is the set of
degree-k complex polynomials p(z) such that p(0) 1. Thus, if the pseudospectrum
is clustered away from the origin, it is easier to find a low-degree polynomial that
nearly vanishes on the pseudospectrum and that is 1 at the origin, indicating that the
inf factor in the preceding bound will be small. Conversely, a bad case for GMRES
is when the eigenvalues or pseudoeigenvalues are clustered around the origin.

In the plots of Fig. 5, the pseudoeigenvalues of A are shown side by side with the
pseudoeigenvalues of PA, for 5 0.01, 0.005, 0.0025, 0. Note that when 5 0, we are
plotting the exact eigenvalues. Another way to bound the convergence of GMRES is
the following formula in terms of exact eigenvalues:

lib Ax(k)ll
_

lib Ax()ll. 2(Y)- inf{sup{Ip(z)l z e A0}’p e IIk}.
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FIG. 5. A sample of the pseudoeigenvalues of A (left) and PA (right) for L-shaped domain with
n 58. First row is 6 0.01, second row is 0.005, third row is 0.0025, fourth row is O.
The x and y axes (scaled differently) are the real and imaginary parts, respectively.
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FIG. 6. Solid line indicates 2(PA) plotted against n; dashed line indicates 2(A)/2(PA)
plotted against n.

In this formula, A0 denotes the spectrum of A, V denotes the matrix of eigenvectors of
A, and 2(V) denotes the condition number of V. Thus, this formula predicts better
convergence when the exact eigenvalues are clustered away from the origin. As illus-
trated in the figure, the clustering is improved for PA. On the other hand, the factor
2(V) is worse for PA: for this example, the condition numbers of the eigenvectors for
A and PA are 6.19 and 328.37, respectively. Thus, the pseudoeigenvalue bound for
the convergence of GMRES seems to be more predictive than the eigenvalue bound
for this example.

A final experiment carried out was to compute 2(PA) and 2(A)/2(PA) for
the same shape domain (domain D2) but varying numbers of nodes. Here, P is
preconditioner MN. The results are illustrated in Fig. 6. We notice that the factor
improvement in condition number increases as n increases, but so does the condition
number of ,2 (PA).

5. Analysis of a simple model problem. Let D c ]R2 be the disk of radius
p. We assume p = 1 (when p 1, the method breaks down). We will try to
solve Laplace’s equation with Dirichlet boundary data on this region. We provide an
asymptotic analysis of the condition number of the dense matrix and of preconditioner
MN. We will argue that there is an asymptotic reduction of v/n in the condition
number. This reduction appears to be pessimistic compared to our three-dimensional
computational experiments reported in the last section.

We define three operators on the space of real- or complex-valued functions on
0D, namely, A, B, and I. These operators can be defined for certain normed vector
spaces, but the details of the particular function spaces are not important for the
analysis in this section.

The three operators are as follows. Let the 0n be parameterized by

/(0) p(cos 0, sin 0).
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Let f be a complex-valued function on Oft. The function A(f) evaluated at point
-),(t) is defined to be

(3) A(f)(-/(t))
p r[2
4r do

ln(ll-(t) "(s) 112) f(9/(s))ds.

The kernel of this integral operator is the Green’s function for a two-dimensional
Laplace equation.

Let B be the following integral operator:

p j0
2 (7(t) 7(s), (cos s, sin s))B(f)(’(t)) 7- 7(s)ll 2 f(9/(s))ds.

The kernel here is the normal derivative of Green’s function. The notation (., .} denote
the inner product on IR2.

Finally, I denotes the identity operator. Then the following result holds if f is
the restriction to OFt of a solution to Laplace’s equation on :

(4) (I+B)(f)=A nn
Here, Of/On denotes the derivative of the function extended to f. This identity is
the basis for the boundary integral equation method in two dimensions.

In the version of the the boundary element equation method described earlier,
functions on OFt are approximated as a piecewise linear function with n equally spaced
breakpoints around 0f. We assume the breakpoints are Vo,"., Vn-1, where

vj "/(2rj/n).

A matrix A is created as a discretized representation of A. The discretization pro-
cedure is as follows. Operator A is applied to the basis of piecewise linear "hat"
functions. Denote this basis bo,..., bn-1. These basis functions have the property
that bk(/(O)) is a piecewise linear function of 0. In addition, the bk’s are continuous
and satisfy

bk(v:) 6jk,

where the right-hand side is the Kronecker 6 notation. The (j,k) entry of matrix
A is then defined to be the function A(bk) evaluated at vj. In general, the entries
of A are obtained by numerical integration and so would not be exactly equal to
A(bk)(vj), but we assume that a sufficiently high-order quadrature method is used
that the truncation error can be ignored.

We can conclude that A will be circulant and symmetric. It is circulant because
A(bk)(Vy) is the same as t(bk+l)(Vj+l) (where bn, v, are identified with b0, v0); this
follows from (3). The symmetry of A follows because A(bk)(vj) A(bj)(vk).

In the boundary element method for t given Dirichlet data, we have to solve a
system involving matrix A. Accordingly, the goal of this section is to determine how
the preconditioner affects the condition number of A.

Since A is circulant, the eigenvectors of A are the discrete Fourier vectors, that is,
vectors w0,’", wn-1, where the kth component of w is exp(2rijk/n). We number
the components of w with subscripts 0,..., n 1.
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We next attempt to determine the eigenvalue of A corresponding to wj. Let Cj
be the piecewise linear function on 02 corresponding to wj, that is,

n--1

)J E Wjkbk.
k----0

The function Cj((0)) is a piecewise linear approximation to the Fourier function
exp(ijO) defined on 0 and has been studied in the literature. In particular, Chandler
and Sloan [7] have provided a Fourier series expansion for Cj for j 0:

sin(tin/n)2 exp(imO)

m----j

Here, the sum is over integers m congruent to j mod n. The number aj is a scaling
constant. Their results also cover higher-order splines.

Note that the eigenvalue for wj is equal to the ratio of A(j) evaluated at a
collocation point divided by Cj evaluated at the same collocation point (provided Cj
is not zero at the collocation point). Since A is linear, we have:

sin(Trm/n)2A(em)
m=_j

where em is the Fourier function exp(imO) defined on the circle of radius p.
Thus, the next task is to evaluate A(em). We first treat the case in which m 0.

We notice that

(5) A(em)((t)) P L2"

4r
ln(ll/(t) (s)l12) exp(ims)ds.

This integral appears to be difficult to analyze directly, so we instead approach it
via identity (4). Focus on the case in which m is a positive integer. We notice
that exp(ims) on the circle of radius p can be extended to all of IR2 as the complex
analytic function f(z) zm/pm. Here, we are identifying IR2 with (I:. Notice also
that f, since it is analytic, is a Laplace solution. The normal derivative of f is given
by Of/On mem/p for points on the circle of <adius p. Thus, from (4), we have

A(em) (p/m)(I + B)(em).
Let us now evaluate the right-hand side:

p [2 p(cos t cos s) cos s 4- p(sin t sin s) sin s. em dsB(em)(/(t)) P2(cst -2 + P2(sint sins)2

1 [2 cos(s-t)-I .eim8
2r. 2--2cos(s-t)

ds

(--)
=0

as long as m 0. This is because the real and imaginary parts of eims go through an
integer number of periods over the range of integration. Thus, for positive integers
m, we have A(em)= (p/m)I(em), i.e.,

(6) A(em) (p/m)em.
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The preceding analysis fails for negative integers because zm is not analytic at
zero if m < 0. The eigenvalue of em for m < 0 is seen to be Iml; this follows by taking
the complex conjugate of (6).

Thus, we conclude for m 0 that A(em) (p/Iml)em. This fact appears also in
[7] and is well known in the literature.

The last case to analyze is m -0:

r
4r

ln(p2(2- 2 cos(s- t)))ds

4r
ln(o2) ds ln(2 2 cos s) ds

-pln(p)/2.

The second integral on the right-hand side of the second line vanishes, as can be
verified with Fourier expansion. Notice that the answer is a constant (independent
of t).

Now, we return to the analysis of matrix A. We see now that

sin(rm/n)2eimtp
A(j)(-(t)) aj E. ii:

for j 1,..., n 1. We return to the case when j 0 below.
Recall that the eigenvalue of A corresponding to w is equal to the ratio

provided that Cj(v0) - 0. The numerator A(j)(v0) is found using the formula in
the last paragraph:

sin(rm/n)2p

m=j

which simplifies to

(7) ay sin(rj/n)2pn2
r2 E (1/Irnl3)

m=j

The preceding summation can be analyzed by splitting it into positive and negative
indices, and dividing each summation by its leading term. The result is

E Irnl3 =TJ -5 + (n--j)3
m=_j

where Tj lies between 1 and 1.3.
The formula for Cj (v0) is

sin(m/n)2

m3

This simplifies to

(8) ay sin(rj/n)2n2

r2 E (1/m2)"
m=_j
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TABLE 4
Condition numbers of A for a disk with p-- 2.

n 2(A)
10 8.89
20 17.69
40 35.31
80 70.54

The summation in the previous expression can be written

)+

where T lies between 1 and 1.7.
Thus, dividing (7) by (8) gives the eigenvalue of wj. Simplifying gives

(9) Awj pTj 1 3Z + 3Z2

nT" Z(1 z)(1 2z + 2z2) wj,

where z j/n.
We next determine the eigenvalue of A for w0. Notice that w0 is the vector of all

ls. The value of AT0 is the collocated values of A(0), which is the same as A(eo).
We showed earlier that A(e0) is the constant function with value -pin(p2)/2. Thus
we see that the eigenvalue of A for w0 is independent of n and equal to this constant.

We now have enough information to determine the asymptotic condition num-
ber of A. Since A is symmetric, its condition number is the ratio of the extreme
magnitudes of its eigenvalues. The second fraction in (9) may be written as

1 3y
(10) y(1 2y)’
where y z(1- z). Formula (10) is seen to be positive and decreasing for 0 < y < 0.25
(since z is between zero and 1, y must be between zero and 0.25). Thus (10) is
maximized when y is small, i.e., when z is close to zero or 1, i.e., when j is 1 or n- 1.
In this case the second fraction of (9) behaves asymptotically like n for large n. The
first fraction behaves like 1In. Thus, the largest eigenvalue is for w or w_ and
has value that is a constant. The smallest eigenvalue occurs when y in (10) is largest,
i.e., when z is close to 1/2, i.e., when j is close to n/2. Assume n is even so that n/2
is an integer. Then we see that the second fraction of (9) is 2, so the eigenvalue is
proportional to 1/n.

Thus, we see that the largest eigenvalue of A is at w0 or w and is asymptotically
bounded above and below by constants independent of n. The smallest eigenvalue
of A behaves like 1In. Thus, the condition number of A is expected to be O(n)
asymptotically. In fact, this condition number result was established more generally
by Richter [19] in the context of Galerkin-type discretizations.

These assertions are borne out by our computational experience; Table 4 indicates
the condition number of A in the case p 2 for varying values of n.

Next, we turn to preconditioner MN. Let us call the preconditioning matrix P.
In the problem on the disk, each node has two nearest neighbors; therefore, each row
of P will have three nonzero entries. Each row is determined by solving a 3 3 linear
system.

This linear system will be the same for each node v0,"., v_ by symmetry, so
P will also be circulant with three nonzero bands clustered around the diagonal. In
addition, the 3 3 system is symmetric since A is symmetric.
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Let the 3 3 system be denoted by A; it is the principal submatrix of A formed
by taking three consecutive rows and columns of A. Thus, it has the form

A= u # u

The next task is to determine the values of #, v, and . This is equivalent to
determining formulas for the entries of A in positions (1, 1), (1,2), ana (,3). Le
f(z) A(b0)(z); then our problem is go deermine f(vo), f(vt), f(v) (recall hag bo
denotes he piecewise linear ha function nonzero a v0, and v0, v, v2 are breakpoings).

We have he following calculation:

A(bo)(Vp) O ln(llv, 7(s)112) b0(7(s))as

In (0 I(cos(p/nl, sin(p/n)) (cos s, sin s)l})4 _/
bo(7(s)) ds.

In this formula, p 0, 1,2. The second line follows from the fact that bo(7(s)) is
nonzero only for s e [-2r/n, 2r/n].

Next, notice that

II(cos(27rp/n), sin(27rp/n)) (cos s, sin s)l 127rp/n s Xp(S),

where Xp(S) E [1-0(1/n3), 1+0(1/n3)]; this follows because (cos(2rp/n), sin(2rp/n))
and (cos s, sin s) are two nearby points on the unit circle (recall p- 0, 1, 2). Thus we
have

A(bo)(Vp) P In (pXp(S). 12rp/n s[)2. b0(7(s))ds4r J-27r/n

p
(ln p + In X.p(8) + In 12rp/n sl). b0(7(s)) ds

2r

P (i + i2).
2"

Here,

The other term is

2r/n

il (ln p + In Xp(s))bo(9/(s)) ds
J -2r/n

(ln p + 0(1/n3)) 2__.
n

2r/n

i2 In 12rp/n sl bo(7(s)) ds.
J --2r/n

The integral in the previous equation is the product of a logarithm and a piecewise
linear function, which can be integrated analytically. The result is that i2 5 In 5 +
CpS, where 5 2r/n and co -1.5, Cl -0.1137, and c2 0.6712.
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Thus

p5
(ln + ln5 + + O(1/n3))

This gives us a formula for the entries of A. In particular,

The linear system we solve to recover the entries of a row of P is Ax e2, where
e2 (0, 1, 0)T. We solve this with Cramer’s rule. Let d be equal to 1/det(fi.); then
the solution to x- e2 is (Xl,X2, x3)T, where

xl d(u- #u),
x2 d(#2 2),
x3 d(u- #u).

We can simplify these expressions; let d’= (p6/(2r))2 and d"= Inp + In ; then

xl x3 dd’(d"(c2 co) + c1(c2 co) + d"O(1/n3))

and

x2 dd’(2d"(co c2) + c c2 + d"O(1/n3)).

This gives the entries of P. Notice that

X2/Xl --2+ -co c2 + 2cl + d"O(1/n3)
d" + cl + d"O(1/n3)

Recall that d"= ln(5)+ O(1) -ln(n)+ O(1). Notice also that -co -c2 + 2Cl
is a positive constant approximately 0.6014; call this constant d(3). Thus,

d(3) + O(ln(n)/n3)x/x: -2
In(n) + 0(1)

d(3)
-2- + O((lnn)-2).

Thus, P/Xl is a circulant symmetric matrix with -2 d(3)/(lnn) + O((lnn) -2) on
the diagonal and 1 on the positions adjacent to the diagonal (and in the (n, 1) and
(1, n) positions).

The next task is to compute the condition number of PA. This is the same
as the condition number of PA/x:, so we work with PA/x: instead. Since P is
circulant and symmetric, it has w0,.’., Wn-1 as eigenvectors. Therefore, PA/x: is
also circulant and symmetric and also has w0,..., w,_: as eigenvectors. Accordingly,
we now attempt to compute the eigenvalue of wj in PA/xl. This is the same as the
product of the eigenvalue of wj in P/x: multiplied by the eigenvalue in A.
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FIG. 7. The eigenvalues of A, P, and PA plotted against frequency.

The kth component of Pwj/xl (counting from zero) is equal to

e2ij(k-1)/n (-2- d(3)/(lnn) O n)-2))e2ijk/n +(Pwj/xl)k= -t- -t-((ln e2ij(k+)/n

(e2ij/" + e-2"ij/n 2 d(3)/(lnn) + O((lnn)-2))e2ijk/n
(2 cos(2j/n)- 2- d(3)/(lnn)+ O((lnn)-2))e2ijk/
(-4sin(j/n) 4(3)/(ln n) + O((ln n)-2))e2Eijk/.

Thus, the eigenvalue of P/x for wy is

-4 sin2(rj/n) d(3)/(ln n) + O((ln n)-2).
We can rewrite the first term; in particular, there exists a number T lying between
r and 4 such that

sin(rj/n) ’(j/n)(1 j/n)

for j 0,..., n 1. Thus the eigenvalue can be written

(11) "2z2aTj (1 Z)2 d(3)/(lnn) + O((ln n)-2),
where z j/n.

Figure 7 shows a plot of the magnitude of the eigenvalue versus j produced by
MATLAB. There are three sets of eigenvalues in the plot. The solid line is the eigen-
value in A; the dhed line is the eigenvalue in P; and the dotted line is the eigenvalue
in PA. Notice how the eigenvalues of P are of large magnitude roughly in the places
where the eigenvalues of A are small. This is the desired feature of the preconditioner.
Note that these plots include some scaling factors not described above,

Continuing our analysis, the eigenvalue of wj for PA/xl for 1 j n- 1 is
given by the product of the eigenvalues in (9) and (11). This is
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where z j/n. As above, we can substitute y z(1 z). Also, let qn d(3)/(ln n)+
O((lnn)-2). We obtain

1 -_3Y2y) "-4TPr2j 2 qn)(12) Aj riTZ’y(1 y

For n large enough, q is positive so the whole expression is negative. Therefore,
it suffices to estimate the largest and smallest eigenvalues in order to estimate the
condition number. We break (12) into two terms; the first term is

1

nT 1 2y

This number is seen to lie between aly/n and a2y/n, where al, a2 are two negative
constants, provided y is between zero and 0.25 (so that (1 3y)/(1 2y) is between
1 and 1).2

The second term is

pTj 1 3y

nT y(1 2y)

Reasoning as in the previous paragraph, we conclude that this lies between a3q,/(ny)
and a4q,/(ny) where a3, a4 are negative constants.

Thus, it suffices to establish upper and lower bounds on functions of the form

(13) a’y/n + a"qn/(ny),

where ar, a" can lie between fixed negative bounds. Assume a fixed choice of a
Formula (13) is a concave function of y. This means its lower bound is achieved at
one of the endpoints. The first endpoint occurs when y is as small as possible, i.e.,
j 1 or j (n- 1), giving z i/n, and z (n- 1)In, giving y (n- 1)/n2, which
is asymptotically like 1In. Plugging 1In into (13) gives an eigenvalue asymptotically
like a"qn for large n. The other endpoint occurs when y is as large as possible, i.e.,

and 1/4. Plugging this in gives an eigenvaluej n/2, in which case z y
asymptotically like a’/(4n), which is larger than the eigenvalue at 1. (Recall a’,a"
are negative and qn O(1/(ln n)).) Thus, the smallest eigenvalue has the form a"qn.

The largest value of (13) occurs where the derivative with respect to y is zero.
Thus, the largest eigenvalue comes at

o’qn
Yo a

We remark that for n large enough, Y0 will lie between zero and 0.25 and hence
is achieved asymptotically for some value of j. At Y0, formula (13) has the value
-2v/aa"q,/n. Therefore, this is the largest eigenvalue of PA/x up to the choice of

This means that the eigenvalues run from O(1/(lnn)) down to O(1/(nVn)) in
absolute value. We have not yet addressed the eigenvalue for w0. This turns out to
be O(1/(ln n)) also.

Thus we obtain the condition number of PA/x by dividing the largest eigenvalue
in absolute value by the smallest. This yields a condition number of O(n/v/-n).

Since the condition number of A was O(n), this concludes our proof that for a
simple model problem, the condition number of A is reduced by O(x/’n), a factor
growing faster than any constant.
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6. Complexity issues. Suppose we could establish a constant upper bound on
the number of iterations required by a preconditioned iterative method for BIEM.
This would imply a running time of O(n2) to solve the dense system of equations,
clearly an improvement over the running time O(n3) of Gaussian elimination.

In fact, there are several complexity results in this direction. Rokhlin gets an

O(n) running time for solving the linear system using multipole expansion. Brandt
and Lubrecht [4] achieve an O(n log n) running time with multigrid. Earlier, Schippers
[22] had achieved an O(n2) running time, also with multigrid. Bramble, Pasciak, and
Xu [3] have proposed a multilevel preconditioner for boundary element methods.

It seems to us, however, that none of these methods apply to (1) with mixed
boundary conditions, because solving (1) with mixed boundary conditions yields a
system of equations that is a mixture of first- and second-kind integral equations. All
of the above-mentioned methods assume that the integral equation is homogeneous.

Accordingly, it remains an interesting open problem to establish asymptotic com-
plexity results on how long it takes to solve the BIEM system of linear equations
arising from (1).

Acknowledgments. The author thanks Professor Kendall Atkinson for provid-
ing some of the background material for this paper and Professor L. N. Trefethen for
explaining some properties of unsymmetric iterations.
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LANCZOS METHODS FOR THE SOLUTION OF
NONSYMMETRIC SYSTEMS OF LINEAR EQUATIONS*
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Abstract. The Lanczos or biconjugate gradient method is often an effective means for solving
nonsymmetric systems of linear equations. However, the method sometimes experiences breakdown,
a near division by zero which may hinder or preclude convergence. In this paper we present some
theoretical results on the nature and likelihood of the phenomenon of breakdown. We also define
several new algorithms that substantially mitigate the problem of breakdown. Numerical comparisons
of the new algorithms and the standard algorithms are given.

Key words, linear systems, iterative methods, nonsymmetric, Lanczos

AMS(MOS) subject classifications. 65F10, 65F15

1. Introduction. In this paper we consider methods for solving the linear sys-
tem of equations

(1) Au=b,

where A E INN is a given nonsingular matrix.
When A is large and sparse, iterative methods in many cases are effective means

for solving (1). In particular, when A is Hermitian and positive definite (HPD), the
conjugate gradient (CG) method [21] is an effective solution technique for (1).

However, the case when A is nonsymmetric is substantially more difficult to solve
efficiently by means of iterative methods. For example, the important CG method
cannot be generalized to the nonsymmetric case without a serious loss of some of its
more useful properties (see [9], [10], and [27]). This difficulty has led to the develop-
ment of a wide variety of generalized CG methods having varying degrees of success
(for an overview, see, for example, [42], [2], or [26]; see also [25]).

The biconjugate gradient or Lanczos method [29], [11], [41] is an important ex-
ample of a generalized CG method. In many cases, Lanczos algorithms give some of
the fastest solution times among all generalized CG methods (see, e.g., [30] and [1]).

However, the Lanczos method is known to break down in some cases. In practice,
the occurrence of a breakdown or near-breakdown of the method can cause failure to
converge to the solution of (1). Furthermore, the size of the iterates generated by the
Lanczos method may become arbitrarily large during the iteration process, which can
introduce numerical error into the approximate solution.

Comparatively little is known about the theoretical properties of the Lanczos
method (see, e.g., [7]). The fact that Lanczos algorithms perform very well in some
cases but fail in others heightens the need for further insight into the theoretical
properties of the Lanczos method.

In this paper we present theoretical results on the Lanczos method as well as new
algorithms that are better able to deal with the problem of breakdown of the Lanczos

*Received by the editors October 8, 1990; accepted for publication March 7, 1991. This work
was supported in part by National Science Foundation grant DCR-8518722, by Department of Energy
grant DE-FG05-87ER25048, and by Cray Research Inc. grant LTRDTD 1/18/90, with the University
of Texas at Austin.

fThe University of Texas at Austin, Austin, Texas 78713 (joubertemx.utexas.edu).
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method. This will be organized as follows. In 2 we define the Lanczos method and
its algorithms, and in 3 we examine the conditions that lead to breakdown of the
algorithms. Then in 4 and 5 we give results on the likelihood of breakdown of the
Lanczos algorithms, and in 6 we analyze the important categories of curable and
incurable breakdown. After this, in 7 we define modified Lanczos algorithms, and
the results of numerical experiments with these algorithms are presented in 8.

2. The Lanczos method. The Lanczos method is a particular instance of an
iterative method, which is defined as a procedure that for a given initial guess u()
may be used to compute subsequent iterates {u(i)}i>l, which approximate the true
solution u A-lb. We denote the corresponding residuals by r(n) b- An(n), and
the error vector is denoted by e(n) u(n) u -A-r(n).

Specifically, the Lanczos method is defined by the following two properties:

(2) u() u() E K(r(), A), r(n) _1_ Kn((0), A*).

Here, the Krylov space is defined as Kn(v,A) span{A’v}__-0. The vector (0) is an

auxiliary vector supplied to the algor_ithm, typically defined by fi(0) 2,r(0) for some
matrix Z which is commonly set to Z I. Here we use the notation X* to denote the
complex conjugate of X when the quantity X is a scalar and the conjugate transpose
when X is a vector or matrix. We also define the standard inner product (u, v) u*v.

The first condition of (2) indicates that the method is a polynomial method in
the matrix A. The second condition of (2), which is the orthogonality or Petrov-
Galerkin condition, categorizes the method as an example of a projection method (see
[26]). Unfortunately, in general there is no guarantee that the two conditions of (2)
necessarily define a unique iterate u(n).

For certain choices of A and 2, the method (2) reduces to a standard conjugate
gradient method (see [23] and [26]). For example, if A is HPD and 2 I, then (2)
reduces to the conjugate gradient method of [21]; if A is HPD and 2 A, then (2)
gives the standard conjugate residual method (see, e.g., [11] and [2]).

The abstract method (2) may be implemented by various algorithms. Three ex-
amples of such Lanczos algorithms are the Lanczos/Orthodir, Lanczos/Orthomin, and
Lanczos/Orthores algorithms [23]. Of these, the Lanczos/Orthomin version is most
commonly used and is also referred to as the biconjugate gradient (BCG) algorithm.

LANCZOS/ORTHODIR ALGORITHM

q(0) r(0); q(=) Aq(=-) anq(=-i) bnq(n-2)

t(o) (o); (,) A,((,-) at(n-1) b(,-2),

(A,(I(n-),Aq(-)) ((n-1)Aq(-))
a,

((n-1) Aq(,-i)) bn (4(-2) ,Aq(n-2))

U(n+l) U(n) -- inq(n), in (q(n), r(n))
((() Aq()

r(n+l) r(n) nAq(),

n>0,

n>O,

(bl =0),

(+) () A,().
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p(0) r(0);

5(0) (0);

u(n+l) u(n) - )np(n),

r(=+) r(=) =Ap(=),

LANCZOS/ORTHOMIN ALGORITHM

p(n) r(n) + cnp(,-l), n > 0,

iS(n) (n) + aiS(,-l), n > 0,

a ((-1), r(-))’

An(=))’
(=+) (=) $A,(=).

We will say that an algorithm breaks down at a step n if U(n-l) U has been
successfully computed by the algorithm but u(n) cannot be computed by the algorithm
due to some condition such as division by zero.

In the absence of breakdown of the given algorithm, the above three algorithms
are guaranteed to yield the iterates defined by (2), and furthermore, if the algorithm
does not break down we have exact convergence u(n) u if and only if n d(r(), A).
Here we define the degree of a vector v by

d(v, A) max{d" 4-1{A v}i=o linearly independent}.

When A is diagonalizable, the quantity d(v, A) is the number of eigenvectors of A
represented in v.

As noted above, for certain choices of A and 2 the method (2) reduces to a
standard CG method. In such cases the above three algorithms above reduce to
standard CG algorithms. In these cases, breakdown is known to be impossible (see
[2]). However, in more general situations, the above three algorithms may indeed
break down; for examples of this, see [24].

3. Breakdown of Lanczos algorithms. In this section we give conditions
that characterize the situations in which each of the above three Lanczos algorithms
experience breakdown.

For theoretical reasons, it is desirable to find characterizations of the conditions
of breakdown of the algorithms that are based on the key spaces Kn(r(),A) and
gn(?:(), A*) rather than the formulas for the algorithms. In particular, we will char-
acterize breakdown of the three Lanczos algorithms in terms of the moment matrices
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Kn((0), A*)*Kn(r(), A) and K((0), A*)*AK(r(), A). Here we define the matrix
gn(v,A) Iv Av An-iv], a matrix whose columns span the Krylov space
K(v, A).

The following three theorems give exact conditions for breakdown of the above
algorithms. Detailed proofs may be found in [24]. A result similar to Theorem 2 is
found in [11]; see also [41].

THEOREM 1 (Lanczos/Orthodir Breakdown). Suppose Lanczos/Orthodir has suc-
cessfully generated u(n-) u. Then the following are equivalent:

The algorithm does not break down at step n.
The matrix g,((0), A*)*AK,(r(), A) is nonsingular.
There exists a unique iterate u(n) satisfying (2).
THEOREM 2 (Lanczos/Orthomin Breakdown). Suppose Lanczos/Orthomin has

successfully generated u(n-) u. Then the following are equivalent:
The algorithm breaks down at step n.
Either gn_((),A*)*gn_(r(),A) or Kn((),A*)*AKn(r(),A) is singular.
THEOREM 3 (Lanczos/Orthores Breakdown). Suppose Lanczos/Orthores has suc-

cessfully generated u(n-) u. Then the following are equivalent:
The algorithm breaks down at step n.
Either gn ((0), A*)*gn (r(0) A) or gn((0), A*)*AKn(r(), A) is singular.
Thus we see that the Orthodir variant of Lanczos breaks down at a step precisely

when (2) fails to define a unique iterate, or equivalently when the moment matrix
Kn((), A*)*AK(r(), A) is singular for these choices of n. On the other hand, the
Orthomin and Orthores variants break down under further circumstances involving the
moment matrix gn((), A*)*Kn(r(), A). Thus the Orthomin variant breaks down if
and only if the Orthores variant breaks down, and if neither algorithm breaks down
then the Orthodir variant does not break down.

These observations lead us to make the following definitions. We say that a (hard)
breakdown of the Lanczos method (2) occurs at a step n <_ d(r(), A) if the moment
matrix Kn((),A*)*AKn(r(),A)is singular. In this case, u() defined by (2) does
not exist uniquely, so that no algorithm can be used to compute this iterate. On the
other hand, we say that soft breakdown of the Lanczos method occurs at step n if the
moment matrix Kn ((0), A*)*Kn (r() A) is singular. This condition causes failure of
the Orthomin and Orthores variants but not the Orthodir variant.

Importantly, the conditions of hard and soft breakdown are conditions associated
with the method (2), irrespective of the particular algorithms used to implement the
method. Hard breakdown is a serious problem, a failure of the method defined by (2).
On the other hand, soft breakdown is a condition that poses a problem only for certain
algorithms but is not an intrinsic problem for the method (2), since some algorithms
(e.g., Lanczos/Orthodir) may still be used to compute the iterates.

The Orthomin variant of Lanczos is generally preferable to the other variants, due
to its economy and relative numerical stability. On the other hand, its vulnerability to
the problem of soft breakdown may be remedied in theory by a temporary switch to
the Orthodir variant in the event of a soft breakdown. This will be discussed further
in 7.

In what follows we will consider some of the theoretical aspects of hard and soft
breakdown of the Lanczos method.

4. Basic results on the likelihood of breakdown. One fundamental ques-
tion to ask about the Lanczos algorithms is: how likely is an occurrence of breakdown
for a given choice of A and 2? We recall that the matrix 2 defines the relationship
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(o) 2,r(O).
To answer this question, we will use results from measure theory (see, e.g., [39]

and [38]). Specifically, we define a field lK to be either the reals lR or the complex
numbers (, and for A, E ]KNN we ask: what is the measure of the set of vectors
r() E]KN that cause hard or soft breakdown?

The following sequence of results begins to provide an answer to the question of
the likelihood of breakdown. We show that in many cases, the set of initial residuals
r() causing breakdown is only of zero measure, while in a few cases of A and 2
breakdown occurs for almost every vector r(). It is desirable that the set of r()
causing breakdown be measure zero, since this indicates that an initial guess vector
u() chosen randomly has zero probability of causing breakdown in exact arithmetic.

To prove these measure-zero results, we begin with the following result on the
measure of the set of zeros of a polynomial in several variables.

PROPOSITION 4 (Zero Sets of Polynomials). Let ]K ]R or (. If P is a complex
nonzero polynomial in the variables xl,x2,.’.,xg ]K, then P(x) 0 .for almost
every x (xl, X2,’’’, XN) ]KN.

Proof. If ]K ]R and P is nonzero, then either Re P(z) or ImP(z) is a nonzero
(real) polynomial; if lK , we may decompose each xi into real and imaginary
parts, giving 2N variables, and consider the real polynomial P(x)*P(x). In any case,
we may assume without loss of generality that P is a nonzero real polynomial of real
variables.

We know that for any point x, the polynomial P is the zero polynomial if and
only if the polynomial and all its derivatives are zero at x. Let V0 denote the set of
zeros of P in ]Rg. Suppose the set V0 has nonzero measure. We know from integration
theory (see, for example, [44, pp. 128f]) that almost every point of V0 is a point of
density in each of the N coordinate directions. We recall that x ]R is a point of
density of a measurable subset S c_ IR if for any sequence of intervals In such that
x I, with measure m(In) --* 0 we have m(S g I,)/m(In) 1.

It is easily seen that at such points in V0, the first partial derivatives of P must
necessarily be zero. Let V be the points of V0 where all first derivatives are also
zero. We have just shown that V0 and V both have the same nonzero measure. The
argument may be repeated for V to show all second partial derivatives of f are zero
at almost every point of V0, and so forth, resulting in the fact that P and all its
derivatives are zero on a set which has nonzero measure. The proof is completed by
selecting any one of these points. D

This result may be immediately applied to Lanczos moment matrices, by using
the fact that the determinant of a matrix is a polynomial in the elements of the matrix.

COROLLARY 5 (Lanczos Moment Matrices). Let lK lit or ( and 2, A (NN.
For some integerm let f(r) det[gn(2*r,A*)*Amgn(r,A)]. Then either f(r) is zero

for all r ]Kg or it is zero only on a measure-zero set of vectors r in ]KW.
Proof. If lK lit, then f(r) is a polynomial in the N variables ri =_ er, where e

represents the standard unit basis vector. If ]K , then f(r) is a polynomial in the
2N variables Re r and Im r. [:]

From this we conclude that the relevant Lanczos moment matrices are singular
either for every r() or only for a measure-zero set of vectors r().

In order to proceed, we must show some results concerning the degrees of vectors
with respect to the matrix A. We define the degree of a matrix d(A) min(deg(P)
P monic, P(A) 0}. We note that for every v we have 0 <_ d(v, A) <_ d(A) <_ N. We
show here that almost every vector v satisfies d(v, A) d(A).
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PROPOSITION 6 (Degrees of Vectors). Let ]K ]R or and A E ]KNxN. Then
almost every v e lKg satisfies d(v, A) d(A).

Proof. The result follows from the fact that almost every vector necessarily con-
tains a nonzero component of each of the generalized eigenvectors of A. The details
are found in [24]. D

We noted earlier that breakdown is equivalent to the singularity of an appropriate
moment matrix only when the iteration number n satisfies n <_ d(r(), A). Due to this
technical point, in order to prove the desired results we define notation for the set
of vectors r() for which this condition is satisfied. We define the set Tn(A) {v
cg n <_ d(v, A)}. The set Tn(A) is the set of initial residuals r(0) for which
the singularity/nonsingularity of the moment matrices is relevant to the question of
breakdown at step n.

We established in Proposition 6 that /’d(A)(A)N]KN contains almost every vector
in lKN. It will be noted that Tn(A) is monotone, in the sense that m _< n implies
TIn(A) D_ Tn(A). Thus for any n <_ d(A), Tn(A)g ]UN necessarily contains almost
every vector in ]KN.

We now present the major theorem, which gives the three basic possibilities for
breakdown of Lanczos algorithms. The upshot of this result is that for a given iteration
number n <_ d(A), for the set of vectors r(0) for which d(r(), A) >_ u (which amounts
to almost every vector), either breakdown is impossible, breakdown always occurs, or
breakdown occurs only for a nonempty measure-zero set of vectors.

THEOREM 7 (Lanczos Breakdown, Iterate n). Let ]K ]R or , A, lKNN

and n <_ d(A). Then exactly one of the following three conditions holds for the Lanczos
method with (0) 2,r(0).

(i) Hard breakdown at step n occurs .for every vector r() Tn(A) ]Kg (and
thus at least for almost every r() ]KN).

(ii) Hard breakdown at step n occurs .for a nonempty measure-zero set of vectors
r() e Tn(A) ]KN (and thus a nonempty measure-zero set of vectors in ]KN).

(iii) Hard breakdown at step n occurs for no vectors r() Tn(A) g ]KN (and
thus for at most a measure-zero set of vectors in IKN).

Furthermore, the same result holds if "hard breakdown" is replaced by "soft break-
down" in the statement of this theorem.

Proof. For vectors r() Tn(A) lKN, breakdown is equivalent to singularity of
an appropriate moment matrix. The set Tn(A) ]Kg amounts to almost every vector
in lKg. Now, by Corollary 5, the set Sn of vectors in ]KN for which the moment
matrix of dimension n is singular is either the set of all vectors or a subset of measure
zero. If the moment matrix is singular for every vector (i.e., Sn lKY), then it is
singular for every vector in Tn(A) ]KN, giving case (i) above. Otherwise the set Sn
is measure zero in ]KW. Thus Bn =- Sn (Tn(A) ]KN) is of measure zero and is
either empty or nonempty. D

5. Measure-zero results. When the Lanczos method may be reduced to a
standard conjugate gradient method, it is known that breakdown at any step is im-
possible. In the general case, we would like to show at least that breakdown occurs
for no more than a measure-zero set of vectors. We will show below that this is true
in many but not all cases.

We begin by considering the simple case of n N d(A). We may then show
a more general result by projecting the problem to this simpler case. Similar results
are shown in [40] and [50].

THEOREM 8 (Measure-Zero Breakdown, Case n N d(A)). Let lK lR or
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(, and let A, 2 E ]KNxN with A and , nonsingular and d(A) N, and let m be
some integer. Then for n g and almost every r lKN, Kn(2*r,A*)*A’K,(r,A)
is nonsingular.

Proof. Let S- (r e ]KW. d(r,A) N} and S’ ( e ]Kw. d(,A*) Y}.
By Proposition 6, S and S each contain almost every vector in ]Kw. Furthermore,
for every r e S, Kn(r, A) is a square full-rank matrix, and thus nonsingular. Also, for
every 2*r e S’ (i.e., r e 2-*S’), gn(2*r, A*) is a square nonsingular matrix. The
proof is completed by noting that S N Z-*S contains almost every vector in lKg and
that the product of two square nonsingular matrices is nonsingular. D

We now prove the result for a more general situation including nearly all itera-

tion_ numbers n

_
d(A). The following result applies to a wide range of choices of

Z, including, for example, the common choice Z I. The idea of the proof is to
reduce the general problem back to the case of n N d(A) by projecting onto an
appropriate A-invariant Krylov subspace. The range of possible values of n covered
by this theorem will be discussed below.

We define here a definite matrix to be a matrix B satisfying v*Bv 0 for every
nonzero v. A real matrix B is definite if and only if either its Hermitian part H(B) =_

(B + B*)/2 or its negative -H(B) is HPD (see [26]).
THEOREM 9 (Measure-Zero Breakdown, Iteration n). For ]K ]R or , let A,, ]KNN, and let Z satisfy the condition that fo_r some polynomials F and G over

]K and for some definite matrix U ]KNN, Z F(A)*HG(A) is nonsingular.
Let m be arbitrary and let n <_ d(A) be such that there exists v ]KN satisfying
d(v,A) n. Then there exist r ]KN and 2*r such that Kn(,A*)*AmKn(r,A)
is nonsingular.

Proof. We have 2 [F(A)]*HG(A) nonsingular with H ]KNN definite and
polynomials F and G over ]K. We seek to find r ]KN such that

K,([G(A)]*H*F(A)r, A*)*A’Kn(r, A)

is nonsingular.
By hypothesis, there exists v such that d(v, A) n. Let Q be the g2-orthogonal

projector onto the A-invariant subspace Kn(v,A) of lKN. We note that Q ]KNN

is Hermitian and AQ QAQ. Then it is sufficient to find r Range Q such that

Kn([G()]*/:/*F(i)r, .*)*mK,(r, )

is nonsingular, where . QAQ and/:/- QHQ.
Without loss of generality we may assume r ]Kn and ., /:/ E ]Knn, by re-

striction of the operators to Range Q. Importantly, since H is definite, the restricted
matrix/:/is definite, thus nonsingular. Furthermore, since the spectrum of fi, is con-
tained in the spectrum of A, we have that F(A) and G(A) are nonsingular. Therefore,
by applying Theorem 8 to this restricted problem, we have the desired result.

It remains to be determined which iteration numbers n the above result may be
applied to. In the case of complex spaces, an A-invariant (complex) Krylov subspace
of any size n <_ d(A) exists. On the other hand, if A is real and subspaces over the
reals are sought, then some values of n may be excluded. In particular, if A has
no real eigenvalues, then for every real r, the value of d(r, A) must be even. This
is true because such r must necessarily contain matched pairs of complex conjugate
generalized eigenvectors in order to be a real vector.

These observations are made precise by the following proposition.



LANCZOS METHODS FOR NONSYMMETRIC SYSTEMS 933

PROPOSITION 10 (Vectors of a Given Degree). Let lK R or , A E ]KNxN,
and 0 <_ n <_ d(A). Then there does not exist a vector r ]KN satisfying d(r, A) n,
if and only if all of the following conditions hold: ]K lit, n is odd, and A has no real
eigenvalues.

Proof. For a detailed proof, see [24]. D
To summarize, we see that for the common choice of 2 I, breakdown cannot

occur for any of the three Lanczos algorithms except for a set of vectors r() which
has zero measure in CN. On the other hand, when A is real, in order to guarantee the
same result for vectors in ]RN, it is sufficient that A have at least one real eigenvalue.

Though this condition may not be necessary, nonetheless some restriction is neces-
sary in order to limit breakdown to a measure-zero set of real vectors, as the following
example shows. Let

1 -1 0 0

11 1 0 0
0 0 3 -1
0 0 1 3

and let r. We note that A is a normal matrix and d(A) 4. After some algebra
it may be shown that for n 3 and for every real r, Kn(, A*)*Kn(r, A) is singular.
As a practical consequence, the standard BCG algorithm (Lanczos/Orthomin, Z I)
necessarily breaks down at step 4 for every real r() satisfying d(r(), A) _> 3, that is,
for almost every real vector r().

This result contradicts a result of [50, p. 278]. It also sheds light on the comments
of [22, p. 21], [49, p. 389], and [4, p. 328] on selecting an alternate pair of initial vectors
r, in the case of breakdown. In particular, this counterexample shows that for some
cases of A and 2, there is no practical way to apply the standard Lanczos algorithms
in real arithmetic if the initial vectors r and are forced to satisfy the relationship

*r. Thus, in some cases it is necessary to choose r and as arbitrary independent
vectors, or else they must be chosen complex. This is also in agreement with the
comments of [7], where it is suggested that complex vectors be used, since in general
the invariant subspaces for A and A* are complex.

We conclude that for a certain small class of matrix problems, the standard BCG
algorithm cannot be used successfully. On the other hand, since the problem of hard
or soft breakdown for almost every real r() can only occur for odd values of n, a
look-ahead procedure could be used to skip over these steps. This will be described
further in 7.

6. Curable and incurable breakdown. We now analyze hard and soft break-
down of the Lanczos method from an alternate viewpoint. In the previous sections we
considered the behavior of the Lanczos method at a given step n as the initial residual
r() was allowed to range over all possible values in ([N or ]pN. In this section we will
instead consider the behavior of Lanczos for a fixed value of r(), for various values
of n.

If hard (soft) breakdown of the Lanczos method occurs at step n, then we say
that it is an incurable hard (soft) breakdown if for every step m satisfying n < m _<
d(r(),A), hard (soft) breakdown also occurs at step m. A hard (soft) breakdown
that is not incurable is said to be curable. These concepts are an adaptation of the
definitions given in [46] and [37] regarding the nonsymmetric Lanczos method for
solving the eigenvalue problem.

As mentioned earlier, an occurrence of soft breakdown, whether curable or incur-
able, could be remedied by a temporary switch to the Orthodir variant of Lanczos. On
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the other hand, an instance of curable hard breakdown could in theory be remedied
by an algorithm that skipped over the steps for which hard breakdown occurred. This
idea of a look-ahead Lanczos algorithm is developed for the eigenvalue problem in
[37]. Look-ahead techniques for Lanczos and other methods constitute a current area
of research; see, for example, [18]-[20], [3], [35], [13]-[15], and [28].

Unfortunately, a curable hard breakdown may occur for as many as N- 1 steps,
where N is the size of A. For example, we let

N-1

A eNe + ee+1,

i--1

a permutation matrix, and we let r() (o) eN. Here, ei represents the standard
unit basis vector. Then

N

KN(() A*)*AKN(r() A)= .*eZeN_i+l.
i--1

Thus the Lanczos method with Z I experiences hard breakdown at every step
n < N but not at step n N. In this case, a look-ahead algorithm would have to
perform a look-ahead over a prohibitively large number of steps.

We now consider incurable hard and soft breakdown. The phenomena of incurable
hard and soft breakdown have straightforward characterizations. The following result
is similar to the Mismatch Theorem of [46].

THEOREM 11 (Mismatch Theorem). Suppose that for a particular choice of initial
vectors r and and for a given m and for a given value of n satisfying n < d(r, A),
we have that either n- 0 or Kn(,A*)*AmK,(r,A) is nonsingular. Then the matrix

Kn+k(,A*)*AmKn+k(r,A) is singular for every k satisfying n < n + k <_ d(r,A)
if and only if there exist vectors p and and integers d > 0 and d’ >_ 0 such that
d(r,A) n + d, d(,A*) n + d’, and

K+d(r, A) Range[K (r, A) Kd(p, A)],

K+d,(,A*) Range[K(,A*) Kd,(,A*)],

Kd,(,A*)*A’K+d(r,A) O, K+d,(,A*)*A’Kd(p,A) O,

where [K(r, A) Kd(p, A)] and [K(, A*) Kd, (, A*)] represent block matrices.

Proof. See [24].
From this result we have the following consequences.
COROLLARY 12 (Breakdown Equivalence). For a particular run of Lanczos, in-

curable hard breakdown occurs at step n if and only if incurable soft breakdown occurs
at step n.

Proof. First, we suppose incurable hard breakdown occurs at step n. Let m
1 _< n indicate the first step at which the incurable hard breakdown has occurred.
Using the characterization from Theorem 11, since Km+d(r,A) AKm+d(r,A) and
K,+d, (, A*) A*Km+d,(, A*), we see that incurable soft breakdown also occurs at
step m / 1, and thus at step n. The opposite implication is proved analogously.

COROLLARY 13 (Restarting of Lanczos). Suppose that for a run of the Lanczos
method breakdown does not occur at step n >_ 0 but incurable breakdown occurs at step
n + 1. Then d(r(n), A) d(r(), A) n. Thus the Lanczos method applied to initial
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residual r() r(n) with any auxiliary residual vector p(0) is guaranteed to converge
(if breakdown does not recur) within d(r(), A)- n steps.

Proof. We first show that d(r(n), A) <_ d(r(), A)-n. Using (2) and the character-
ization of Theorem 11, we have r(n)-r() E AKn(r(),A) so that r(n) Kn+d(r(O), A),
i.e., r(n) [gn (r(), A) Kd(p, A)]# for some #. Furthermore, r() +/- g((), A*),
so that r(n) e Kd(p, A), since gn((), A*)*gn(r(), A) is nonsingular and
Kn((0), A*)*Kd(p, A) is zero. We also note that Kd(p, A) is A-invariant" v Kd(p, A)
implies Av Kn+d(r(), A). But (w, Av) (A’w, v) 0 for all w Kn+d,(P(),A*).
Thus Av _l_ Kn+d,(P(0), A*), implying Av Kd(r(), A). Thus it is necessarily true
that d(r(n), A) <_ d.

We now show that d(r(n),A) >_ d(r(),A)- n. We have that r(n) P(A)r()
where P(0) 1 and deg P _< n. Now, let P be the minimal p_olynomial for r(n). Then
0 P(A)r() [(A)P(A)r(), from which we obtain deg P
deg(P. P) >_ d(r(), A), so that degP n and d(r(), A) d(r(), A) n.

This result suggests that the restarting of the Lanczos method is a possible remedy
for the problem of incurable breakdown. It is not clear, however, how restarting
affects the number of iterations required to satisfy some convergence criterion such
as IIr(n)ll/llr()ll < . Restarting of the Lanczos method is a technique that was
investigated experimentally in [31] and also mentioned in [47]. This technique will be
considered in more detail below.

7. Modified Lanczos algorithms. The theoretical results given above for the
Lanczos method may be applied to the development of modified Lanczos algorithms
that are better able to deal with the problem of breakdown or near-breakdown. In [24]
the algorithm BCGNB is defined. It embodies three particular strategie_s for remedying
the breakdown problem of the standard BCG algorithm, which uses Z I:

1. In the case of a near-soft-breakdown, a switch to the Orthodir variant is
made for the step for which soft breakdown is a problem. A similar idea was used in
[5] to develop a hybrid Orthodir/Orthomin conjugate residual algorithm for the case
of A symmetric indefinite. Such a hybrid algorithm may be easily developed for the
Lanczos method, based on the observation that the vector p(n) (alternatively, i5(n)) of
the Orthomin variant of Lanczos is a scalar multiple of the vector q(n) (alternatively,
(n)) of the Orthodir variant, whenever these quantities are well defined.

2. In the case of near-hard-breakdown for up to s- 1 steps, where s is
parameter supplied to the algorithm, a look-ahead procedure similar to that of [37] is
used to skip over those steps.

3. For near-hard-breakdown for more than s- 1 steps, a restart of the algo-
rithm is performed, based on the last iterate for which near-hard-breakdown was not
indicated. This is done in the hope that this is a case of an incurable breakdown.

Derivations of the formulas for the BCGNB algorithm are given in [24]. The
implementation of this algorithm requires the development of adequate tests for near-
hard-breakdown and near-soft-breakdown that account for the difficulties of finite
precision arithmetic. Tests are defined and experimental results for the choices of
tolerances for the tests are given in [24].

Experimental evidence indicates that the most effective of the three remedies
listed above is the technique of restarting. Due to its simplicity, we will state here the
criterion used to determine whether to restart. In particular, using the notation for
the Lanczos/Orthomin algorithm given in 2, we say that if the criterion

3
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is satisfied, then a restart of the algorithm will be performed, using the new initial
residual r() r(n) and the new auxiliary initial residual (0), 2,r(0), with 2 I.
A simple restarted BCG algorithm may be implemented based solely on this technique.
The particular choice of 3 2 has proven to be useful for a number of problems
where eM is unit roundoff error, the smallest floating point number such that 1 +eM >
1. This particular criterion for testing for near-hard-breakdown has the advantage of
limiting the size of the growth of IIr(n) ll over the course of the run.

Another algorithm that suffers from the same breakdown problems as the Lanczos
algorithm and can be remedied by similar techniques is the conjugate gradient squared
(CGS) algorithm of [45]. The CGS algorithm is defined as follows:

CGS ALGORITHM

p(2) f(o) r(O),

S(n) r(n) .2t- olnh(n), p(2n) S(n) - Oln(h(n) + Olnpn-1)),
h(n+l) f(n) AnApn),

u(n+l) u() + A(f(n) + h(n+l)), r(+) r() A,A(I(,O + h(+)),

((0) r(n+l))A= ((o) r())
a+=

((o), Ap(’O) ((o), r())

This algorithm experiences breakdown in precisely the same instances as the BCG
algorithm, in exact arithmetic. The CGS algorithm commonly requires roughly the
same computational work per iteration as BCG, and half the number of iterations;
however, the numerical effects of near-hard-breakdown are frequently more severe (see,
e.g., [48]).

A restarted CGS algorithm, CGSNB, is defined in [24]. The criterion used to test
for near-breakdown is

1/2In the runs presented below, we use the setting eh tUeM
We now describe one further technique for mitigating the problem of breakdown.

The Mismatch Theorem [46], [24] indicates that incurable breakdown is caused by
irregular left- and right-eigenvector distributions in r() and (0). To remedy this
problem, a randomized vector may be used for r(). This may easily be done by setting
the initial guess u() to be a vector of random entries of an appropriate size. To do
this, we let v be a vector whose elements are random numbers uniformly distributed on
[-1, 1], and we set u() to be a multiple of v scaled so that llAu()ll llbll. Experiments
using this technique will be given below. Similarly, if a choice of u() is already known
that is near the true solution, then the given vector may be perturbed by a small
random vector in order to give a new randomized choice of u(). Experimental results
from using random vectors with Lanczos algorithms are also reported in [12].

8. Numerical results. In this section we present numerical results with the
algorithms described in this paper. We are primarily concerned with the algorithms
BCG, BCGNB, CGS, and CGSNB. For comparison, we will also consider the full
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TABLE 1
Model problem, h-1 128, ITMAX-3000. Number of iterations.

Method \ Dh:

GMRES(oo)
BCG
BCG, random u()

BCGNB
CGS
CGS, random u()
CGSNB

0 2-3 2-2 2-1 20 21 22 23 24 25

290 269 245 220 200 189 186 189 207 249

308 341 299 1518 533

309 354 300 310 313 301 299 302 290 293

308 353 284 338 253 240 243 240 302 962

272 254 222

193 189 200 192 193 175 225 212 216 197

272 284 212 196 151 162 158 173 156 256

GMRES algorithm GMRES(oc) [43], the restarted algorithm GMRES(k), and the
normal equations algorithm LSQR [33].

The GMRES(cx)) algorithm is of particular interest, since it gives iteration counts
that are minimal among all polynomial methods, in the sense that Ir(’) II is minimized
with respect to all possible polynomial methods in A. However, the method is generally
too expensive to be practical.

Unless otherwise stated, we make the following assumptions. For the test runs
we utilize the initial guess vector of u() 0. For the sake of simplicity, we use the
simple stopping test

< = 10-6.

Also, we use the basic choice (0) r(0), i.e., 2 I, for the Lanczos-type algorithms.
The University of Texas System Cray X-MP/24 vector computer was used to

perform the runs presented here. Single precision real arithmetic was used, with unit
roundoff given by eM (7.1 10-15).

The first set of test matrix problems to be considered arises from the finite dif-
ference discretization of the boundary value problem

-uxx(x, y) Uyy(X, y) + Dux(x, y) G(x, y) on f [0, 1] 2,
u(x, y) 1 + xy on OFt.

We utilize central differencing to discretize this pr(blem, with uniform mesh spacing
h in either direction. This yields a matrix of size N (nh 1)2 (where h 1/nh),
after boundary points have been eliminated. The right-hand-side function G(x, y) is
defined so that the true solution is u(x, y) 1 + xy on gt. By varying the constant D,
the amount of nonsymmetry of the matrix may be varied. Specifically, for a given h
there exist a symmetric matrix As and a skew-symmetric matrix AN, independent of
D, such that A As + D. AN.

In Tables 1-3 we consider the unpreconditioned problem and also the (left) ILU-
and MILV-preconditioned problem (see [17] and [32]). Runs for which convergence
was not possible in ITMAX iterations are labeled by (-).

We make the following observations about these runs.
For the unpreconditioned problem, the standard BCG and CGS algorithms break

down in a number of cases, but the use of random u() or the use of BCGNB or
CGSNB resulted in convergence. Furthermore, the iteration counts for the algo-
rithms BCG and BCGNB are in general comparatively close to those of the "best"
method, GMRES(oc), while these algorithms have short economical recurrences, un-
like GMRES(oc). This underscores the importance of the Lanczos algorithms as eco-
nomical solution techniques.
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TABLE 2
Model problem, h-1 128, ILU-preconditioning, ITMAX----500. Number of iterations.

Method \ Dh: 0 2-3

GMRES(cx) 92 83

BCG 94 102

BCG, random u() 94 102

BCGNB 94 102

CGS 74 68

CGS, random u() 63 59

CGSNB 74 68

2-2 2-1

74

90

92

88

64

58

61

20 21 22 23 24 25

64 52 41 32 26 19 14

82 178 53 35 28 22 17

87 55 45 34 28 22 17

77 128 67 35 27 21 17

90 97 26 18 12 9

55 48 33 25 18 13 9

73 48 39 26 18 12 9

TABLE 3
Model problem, h-1 128, MILU-preconditioning, ITMAX--500. Number of iterations.

Method \ Dh:

GMRES(cx)
GMRES(oc), random u()

BCG
BCG, random u()

BCGNB
CGS
CGS, random u()
CGSNB

0 2-3 2-2 2-I 20 21 22 23 24 25

27 25 24 26 28 28 25 19 14 10

33 29 28 29 31 31 29 24 19 14

31 27 29 33 30 37 30 23 15 10

38 34 33 37 44 40 38 29 23 18

28 27 29 30 34 35 30 23 15 10

21 18 17 20 22 22 19 15 9 6

24 18 20 22 22 23 21 16 12 9

21 18 17 20 22 27 20 15 9 6

For the ILU-preconditioned problems, in most cases all methods worked well. For
the case of Dh 1, BCG gave an excessive number of iterations, but this was remedied
significantly by BCGNB and much more so by the use of random u(). Similarly, CGS
could not converge, but CGSNB and CGS with random u() both converged.

For all of the MILU-preconditioned problems, all of the Lanczos-type algorithms
performed quite well. In particular, the BCG algorithm gave approximately the same
number of iterations as GMRES(oc).

Figures 1 and 2 give representative plots of the convergence behavior of the al-
gorithms for the case of h-1 128, Dh 4, and no preconditioning. These results
show that the new algorithms keep the residual size better behaved than the standard
BCG and CGS algorithms over the course of the run.

We now consider a more difficult class of finite difference problems, namely, central
finite differencing applied to the Dirichlet problem

-ux(x, y)- u(x, y)+ D[(y- )u(x, y)+ (x- )(x- )u(x, y)],

u(x,y)- l +xy on

with G(x, y) chosen as before so that the true solution is u(x, y) 1 + xy. Again,
we let h denote the mesh size in each direction. For D 0 and h small, the matrix
generated by this problem is a symmetric indefinite matrix with 16 distinct negative
eigenvalues and the rest of the spectrum positive.

The standard conjugate residual algorithm applied to this problem with h-1

128 and D 0 requires 766 iterations to converge to IIr(n)ll/llbll < 10-6. In any
case, this is a difficult problem to solve.
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0 50 100 150 200 250 300

Iterations

FIG. 1. Residual behavior: h-1 128, Dh--4.

CGS

CGS, random ()

GMRES(o0)

0 50 100 150 200 250 300

Iterations

FIG. 2. Residual behavior: h-1 128, Dh 4.

In Table 4 we give numerical results for various algorithms applied to this problem.
The BCG algorithm applied to the Dh .5 case with a second random vector u()
failed to converge. Also, for the CGS algorithm applied to Dh .5 with random u(),
convergence was indicated, but the final true value of IIr(’)ll/llbll had a (degraded)
value of .12 10-3.

We now comment on these runs.
The BCG algorithm applied to this problem gave good results. Similar results
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Indefinite problem, h-1
TABLE 4

128, ITMAX--8000. Iterations.

Method \ Dh:

BCG

BCG, random u()

BCGNB

BCGNB, e3 e2/100
CGS
CGS, random u()
CGSNB

1/2CGSNB, eh eM /100
GMRES(5)
GMRES(10)
GMRES(20)
GMRES(40)
LSQR

0 2-3 2-2 2-1

820 1803 2209 3384

839 1767 2707 4079

835 1814 2530

835 1814 2397 4794

939

789 2307 3268 6329

939

were given by using random u(), but for some random choices of u() the algorithm
did not converge.

The BCGNB algorithm converged for all cases except Dh .5. It was found that
a smaller value of e3, causing a more stringent requirement for restarting, was able to
give convergence in this case.

The CGS algorithm was not able to converge for the nonsymmetric cases. This
was effectively remedied by random u() except for the Dh .5 case. The CGSNB
algorithm was not able to converge for the nonsymmetric cases. This might suggest
that the use of random u() is a safer strategy than restarting, in general.

For comparison purposes, we give run results for the GMRES(k) algorithm, which
is the GMRES(c) algorithm restarted every k iterations. This is known to be an
effective algorithm for solving linear systems for which A is a definite matrix. We see
that for a wide range of choices of k, the restarted GMRES algorithm was not able
to converge for any of the problems in the given number of iterations, even when k
was rather large. Furthermore, the normal quations algorithm LSQR was not able
to solve these problems either in the given number of iterations.

A major conclusion to be drawn from this example is that the class of Lanczos-
type methods is an important alternative for solving difficult matrix problems such
as this problem. In fact, for this problem the Lanczos-type methods were the only
methods that converged among all the methods tried.

9. Conclusions. In this paper we have examined some theoretical aspects of
the Lanczos method and have defined and tested modified Lanczos algorithms which
are of significant use in remedying the convergence problems of the Lanczos method.
The results given here indicate that the class of Lanczos-type methods is an important
alternative for solving nonsymmetric systems of equations. However, further research
is necessary to better understand the behavior of the Lanczos algorithms, particularly
in finite precision arithmetic. A theoretical understanding of the phenomenon of loss
of orthogonality of the Lanczos vectors for the nonsymmetric case is necessary (see
[16] and [34]). Despite these difficulties, positive experimental results with the Lanczos
method continue to make it a significant method for solving nonsymmetric systems of
equations.
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ORDERING METHODS FOR PRECONDITIONED
CONJUGATE GRADIENT METHODS APPLIED TO

UNSTRUCTURED GRID PROBLEMS*

E. F. D’AZEVEDO?, P. A. FORSYTH$, AND WEI-PAI TANGS

Abstract. It is well known that the ordering of the unknowns can have a significant effect on
the convergence of preconditioned conjugate gradient (PCG) methods. There has been considerable
experimental work on the effects of ordering for finite difference problems. In many cases, good
results have been obtained with preconditioners based on diagonal, spiral, red/black reduced system
orderings, or some others. The reduced system approach generally gives rapid convergence. There
has been comparatively less work on the effect of ordering for finite element problems on unstructured
meshes. In this paper, an ordering technique for unstructured grid problems is developed. At any
stage of the partial elimination, the next pivot node is selected so as to minimize the norm of the
discarded fill matrix. Numerical results are given for model problems and for problems arising in
groundwater contamination. Computations are reported for two-dimensional triangular grids, and
for three-dimensional tetrahedral grids. The examples show that ordering is important even if a
reduced system (based on a generalized red/black ordering) method is used.

Key words, ordering method, preconditioned conjugate gradient method

AMS(MOS) subject classifications. 65F10, 76S05

1. Introduction. It is well known that the ordering of the unknowns can affect
the convergence behavior of preconditioned conjugate gradient methods. There have
been many studies of the use of various ordering techniques coupled with incomplete
LU (ILU) factorization preconditioners [3]-[5], [7] [11], [12], [13]-[16], [17], [25], [29],

Most of these studies have been restricted to the analysis of partial differential
equation problems arising from five- or seven-point finite difference discretizations in
two or three dimensions. For the most part, these ordering methods are based on the
graph of the matrix, and do not use actual values of the matrix entries.

In general, the results can be summarized as follows:
1. Random orderings are poor.
2. "Natural" row orderings perform quite well.
3. Fill-reducing orderings, such as mini’mum degree and nested dissection, are

poor.
4. Reduced systems are very effective (red/black ordering of a bipartite graph,

and exact elimination of the red nodes).
Incomplete factorizations can be classified by the allowed level of fill [17], [29], [38],
[39]. A rigorous definition of the level is given in 2.2. It is generally agreed that level-1
or level-2 ILU factorizations are usually the best in terms of total work required for
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convergence [3], [4], [17], [25], [29], [38]. Consequently, at least for five- or seven-point
molecules, a reduced system level-1 or level-2 ILU is a popular choice.

For finite element-type discretizations on unstructured grids, it is possible to
define a generalized red/black ordering, and use a reduced system preconditioner, even
in the finite element case. Red nodes are defined as being connected only to black
nodes, while black nodes have at least one red neighbor [4], [20]. The red nodes
are eliminated exactly and the remaining matrix constitutes the reduced system.
However, if the average node connectivity is large, then the number of red nodes
can be small, and this approach may not be very advantageous. It is also not clear
how to order the remaining black nodes in the reduced system.

An ordering based solely on the graph of the matrix cannot detect anisotropies.
For example, consider the equation

(KUx) + Uvv f(x, y)

with K >> 1. If this equation is discretized using the usual five-point molecule,
then, as will be shown in the numerical results (see 4), the effect of ordering on the
convergence of PCG is very large.

Note that numerical anisotropy is very common in practical situations. Even if
the equation coefficients are not anisotropic, it is often the case that the grids are
very anisotropic. This is especially common in geophysical applications (reservoir
simulation, groundwater contamination) where the vertical distance is often one or
two orders of magnitude smaller than the horizontal distances.

The idea of developing an ILU factorization based on a drop tolerance has been
suggested by Munksgaard [28], Zlatev [40], and Tuff and Jennings [37]. In this case,
the sparsity pattern of the ILU was determined by a drop tolerance. However, if the
initial ordering is poor then the fill may not decay very rapidly, leading to a dense
ILU factorization, and hence an inefficient PCG method.

The objective of this paper is to develop an automatic method for producing an
ordering that reduces the discarded fill in an ILU factorization. We are particularly
interested in solving time-dependent problems, which are typical of groundwater con-
tamination modeling. In this case, the order of magnitude of the matrix coefficients
is determined by time-invariant physical parameters. Consequently, an ordering can
be determined at the start of a simulation and used for many Newton iterations. The
cost of the ordering can then be amortized over many solves [6], [10].

The ordering method used in this work assumes that the level of fill is given,
and then the ordering is selected so as to minimize discarded fill. Comprehensively
varying the level of fill as well as the ordering is also a possibility, but is beyond the
scope of this work.

Note that if a very high level of fill is allowed in the ILU factorization, then a fill-
reducing ordering such as reverse Cuthill-McKee (RCM) [8], [27] may become efficient.
This is because a higher level of fill can be retained for a given number of nonzeros in
the ILU factorization, compared to orderings that do not try to minimize the number
of nonzeros in the incomplete factors. For a five-point molecule on a square grid, RCM
has fewer nonzeros in the factors for level-3 factorizations (and higher) compared to
natural row orderings [3]. Of course, in the extreme case that the allowed level of
fill becomes infinite, then fill-reducing orderings are clearly more efficient than other
orderings (since the method is now a direct technique). Consequently, we shall concern
ourselves with low levels of fill in the following, since this is usual in practice.

Natural or row orderings applied to structured finite difference grids have the
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property that nodes ordered consecutively are (graph) neighbors of previously or-
dered nodes. An obvious generalization of this idea to unstructured grids is an RCM
ordering.

Test results will be presented for some matrices generated by two- and three-
dimensional groundwater contamination simulations (triangular and tetrahedral ele-
ments). These problems have large jump discontinuities in absolute permeability [24],
and therefore constitute a severe test of the ordering algorithm. Some results are also
given for some standard two-dimensional model problems [15], [36].

The results are compared using natural (row) ordering, RCM, and the minimum
discarded fill (MDF) technique developed in this work. Factorization levels are varied
from levels 0-3, and both full and reduced system methods are used.

2. Minimum discarded fill ordering.

2.1. Motivation by matrix formulation. The Cholesky factorization of an
n n symmetric positive definite matrix A can be described by the following equations:

where

0](2.2) L1- ")’1/1 In-1

At the kth step,

(2.3) Ak-1--
/ Bk =Lk 0 Ak Lkt’

where

0](2.4) Lt:= "k/Vr In-k Ak Bk 9/k’kt/dk.

Here Ik denotes a k k identity matrix, dk a.scalar, and is a column vector of
length n- k. The matrix Ak is the (n- k) (n- k) submatrix that remains to be
factored after the first k steps of the factorization.

In the incomplete factorization of matrix A, some of the entries in the factor
are discarded to prevent excessive fill and computation. Let matrix Fk contain the
discarded values. Then the incomplete factorization proceeds with the perturbed
matrix

i Ak F B -9/kkt/dk Fk.

The minimum discarded fill ordering is motivated by the observation that a small
discarded fill matrix Fk would produce a more "authentic" factorization for matrix
A. We define the discarded Jill for eliminating the kth node as the Frobenius norm of
the discarded fill matrix Fk,

(2.6)
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The discarded fill at the kth step for an arbitrary node is similarly defined by per-
forming a symmetric permutation that exchanges this node with the kth node. To
determine the sparsity pattern for matrix Fk that will yield a high-quality precon-
ditioner is still a very interesting research subject. A current popular choice is to
discard the fills that have a "higher fill level" during the incomplete factorization [23].
The simplest strategy is ILU(0) where all new fill is discarded and ILU(1) where only
level-1 fills produced by eliminating original nonzeros are retained but higher-level fill
produced in the elimination of level-1 fill is discarded. The notion of "fill level" will
be defined more precisely through the graph model presented in 2.2.

The basic idea of the minimum discarded fill-ordering scheme is to eliminate the
node with the minimum discarded fill at each stage of the incomplete factorization.
This scheme can be considered as the numerical analogue of the minimum deficiency
ordering strategy [14] for minimizing the amount of fill. The most computationally
intensive calculations are in the updating of new discard values after each stage of the
factorization process.

2.2. (raph model. In this section we present a graph model [31], [33] for de-
scribing the factorization process as a series of node eliminations. The graph model
provides invaluable insight into the minimum discarded fill ordering.

To simplify notation, we present a symmetric case and assume the elimination
sequence is Vl, V2,’’’, Vs. Let graph Gk (])k, tk), k 0, 1,..., n- 1 be the graph

to matrix Ak- ]a)[ of (2.4). The vertex set and edge set are definedcorresponding

}0
We assume each vertex has a self-loop edge (vi, vi) and each edge (vi, vj) has a value

The notion of "fill level" can be defined through reachable sets [22] in the graph
Go. Let , be a subset of the node set, ,S c 0, and nodes , v S. Node u is said
to be reachable from a vertex v through ,S if there exists a path (v, u,.-., ,, u) in
graph Go, such that each ui E ,, 1 _< i _< m. Note that m can be zero, so that
any adjacent pair of nodes u, v ,, is reachable through S. The reachable set of v
through , is denoted by

Reach(v, S) {u u is reachable from v through S }.

Let q be the set of eliminated nodes so far, {Vl,’’’, Vk}, and let vj
with the shortest path (vi, Ul,..., urn, vj), and nodes u’s in S are eliminated nodes.

We define the fill level for entry a to be the length of the shortest path from vi to

vj minus one, i.e., Level(a)) m. We initially set

(2.9) Level(a) 0 if aij O,
cx) otherwise.

Since Level(a)) is defined by reachable sets through {Vl,’", vk }, as more nodes are
eliminated, there may be a shorter path between vi and vj. Thus as the elimination
proceeds, the fill levels are modified by

(2.10) ( (k-l) Level(a(-l) (k-l))Level(a)) rain Level(ai )+ )+ 1, Level(a,j
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It is possible to define a fill level independent of k, if the order of the unknowns is
predetermined. In this application, however, the order of the unknowns is dynamically
changing during the incomplete factorization. A predetermined level, therefore, is not
practical.

The elimination of vk to form Ak can be modeled as a graph transformation [33]

(k-I)

aak.
aij

(k-i)
aik a.kj.

(k-l)
akk

if (Vi, Vk) and (vk, vj) e 8k-1,

otherwise.

_(k-l)Note that if ij is a zero entry, (vi, vj) ig k-1, then the elimination of their

common neighbor Vk would create at position a.),’- a new fill of value

a(k-1) (k-l)
ik akj

akk

With the minimum discarded fill reordering that corresponds to an ILU(0) factor-
ization, only entries with fill level zero are kept, i.e., all new fill-ins must be discarded.
If node Vm were eliminated after the kth stage of the incomplete factorization (2.5),
the discarded fill value for node Vm would be

(2.11) (k-1)...(k-1)) 2]
1/2

aim

where

(2.12) 77-- {(Vi,Vj) (Vi, Vj) k-1, (Vi, Vm) e k-1, (Vm, Vj) e k-1},

and Gk-1 (]2k-l, ’k-1) is the graph corresponding to matrix Ak-1. The minimum
discarded fill strategy can be generalized to correspond to ILU(t) factorization by
accounting for only new fill-ins with fill level greater than g in the computing of
discarded fill value. Then set " in (2.11) is taken to be

(2.13) e &-l,

(Vm, Vj) e k-1 and Level(a))

In the following discussion, we shall denote MDF(g) as the minimum discarded fill
ordering corresponding to an ILU(g) factorization.

Observation 1. For the MDF(g) algorithm, discard values for all nodes can be
initially precomputed. At each elimination step, if vk is chosen to be eliminated, only
discard values of the neighbors of vk need to be updated.

Observation 2. The MDF(0) algorithm overwrites the original matrix A with the
corresponding ILU(0) incomplete factorization.

2.3. MDF(0 algorithm. The MDF(g)-ordering algorithm can be described as
follows.
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Initialization:
A A0
for each aO 0

Level aO) := 0
end
for each node v

Compute the discarded fill value discard(v) from (2.11) and (2.13).
end

for k--1...n-1
Choose a node Vm that has the minimum discard(vm) as the next pivot node
(see 2.4 on tie breaking).
Update the decomposition,

ik Bk 7k/k/dk Fk, where PkAk- P /

Pk is permutation matrix to exchange vk with Vm and Fk is the matrix of dis-
carded fill-in entries,

(k--l) (k-l)
aim amj

F(k) := a(k_l)
wmm

0

(k-:)if Level(a)) > t and aij

otherwise.

Update the discarded values of Vm’S neighbors.
Update the fill level of entries in Ak by (2.10).

end

2.4. Tie breaking. There are often cases where many nodes will have the same
(typically zero) discarded fill. Several possible tie-breaking strategies are investigated
in the following.

Ties can be broken by selecting the nodes that have the smallest degree in the
incomplete factorization (smallest number of nonzeros in the row). Another possibility
is to use the node with the smallest deficiency (smallest number of new nonzero fill
elements introduced if this node is used as a pivot) [14]. If there are still ties remaining,
then the node with the smallest discarded fill from a previous stage of the incomplete
factorization is selected first. If further ties exist, the unordered node with the smallest
original number is selected. The minimum deficiency and minimum degree strategies
attempt to minimize the number of fill elements in the case of ties.

Tests were run using minimum deficiency, minimum degree, and random tie break-
ing for all our test problems. On average, the minimum degree strategy required 2
percent more solution time than minimum deficiency, while random tie breaking re-
quired 13 percent more solution time than minimum deficiency. Consequently, all test
results will be reported using minimum deficiency tie breaking. Our tests also show
that these tie-breaking algorithms have little effect on the cost of the MDF ordering.
Therefore, no timing comparison is given.

2.5. An example of MDF(0) ordering. In this section we consider an exam-
ple of an MDF(0) ordering on the model Laplace problem. The Laplace problem with
Dirichlet boundary conditions is discretized by the five-point molecule on a regular
4 4 grid. Figure 2.1 displays the grid with initial natural row ordering.

The initial discard values for the four corner nodes {v:, va, v:3, v:6} are equal to
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FIG. 2.1. Natural row ordering and final MDF(0) ordering.

discard(v1) v/0.125 0.354. The discard values for the boundary nodes {v2, v3,

Vh, vs, v9, v12, via, v15} are equal to discard(v2) v/0.375 0.612. Similarly, discard
values of interior nodes {v6, vT, v0, v} are equal to discard(v6) . 0.866.
The corner nodes have the smallest discard values and should be eliminated first. Note
that these corner nodes are not connected and their discard values are unaffected by
the elimination of other corner nodes. After the corner node v is eliminated, its
boundary neighbor node v2 has new discard value given as discard(v2) x/-/15
0.377. After the four corner nodes are eliminated, the discard values for the interior
nodes are unchanged. For example, discard(v2) x/-/15 0.377, and discard values
for interior nodes are unchanged at discard(v6) 0.866. The boundary
nodes have the smallest discard values. Boundary node v2 is chosen by the tie-
breaking strategy, and its neighbor v3 with discard(v3) 0, could be eliminated
next with no fill. Similarly, nodes v5 and v9, v8 and v12, and v14 and v15 will be
eliminated in sequence. Node v15 will be eliminated next since discard(v5) O.
Further computation would show that an MDF(0) ordering for this example is given
by Fig. 2.1.

2.6. MDF(1) ordering. In 2.5 we looked at an example of minimum discarded
fill ordering that corresponds to an ILU(0) incomplete factorization. This ordering is
abbreviated as the MDF(0) ordering. The MDF(1) ordering is the extension of this
basic strategy to correspond to an ILU(1) incomplete factorization.

Although an MDF(0) ordering overwrites the original matrix A with its ILU(0)
factorization, MDF(1) does not exactly reproduce the ILU(1) factorization. There
are some subtleties in the computing of level-2 contributions that happen to fall
upon nonzero entries. Consider the scenario in Fig. 2.2, where Vl and v2 have been
eliminated causing fill contribution to edges (v3, v4) and (v3, Vh). Suppose we wish to
eliminate v3 next. This would cause a level-2 fill contribution to edge (v4, v5). The
subtle problem is in deciding whether this (va, Vh) level-2 fill should be discarded.
Note that if we knew in advance that v6 would be eliminated before v4 and Vh,
then this elimination of v6 would cause a level-1 fill contribution to edge (v4, v5).
Thus this level-2 contribution of (va, v5) would fall on a nonzero entry and may be
accepted. The MDF(1) algorithm always discards (pessimistically) the level-2 fill con-
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@ @
’x, oO

FIG. 2.2. Level-2 fill at (v4, v5).

tribution (v4, v).
Axelsson and Gustafsson [1] have observed that reduced system preconditioners

are very effective (red/black partitioning of nodes and exact elimination of the red
nodes). It is interesting to note that a generalized red/black partitioning of the nodes
is an MDF(1) ordering of the red nodes. A generalized red/black partitioning of a
graph has the property that each red node has only black neighbors and each black
node has at least one red neighbor. In the special case where each black node has only
red neighbors, the graph is bipartite, or the corresponding matrix is two-cyclic. Note
that in this special case the red nodes form an independent set so that the discard
value for each red node is unaffected by elimination of other red nodes; therefore, the
elimination order of the red nodes is immaterial.

Remark 2.1. A generalized red/black partitioning of the nodes is an MDF(1)
ordering of the red nodes.

In an ILU(1) incomplete factorization, all level-1 fill is accepted. Hence if a vertex
has no eliminated neighbors, its discard value is zero and would be a candidate for
selection by the MDF(1) criterion. A generalized red/black partition of the nodes
orders red nodes first, and these red nodes have (by definition) zero discarded fill.

Remark 2.2. If a matrix is symmetric and two-cyclic (its graph is bipartite),
then an MDF(0) ordering on the reduced matrix formed with the bipartite red/black
partition is an MDF(1) reordering on the original matrix.

The reduced matrix is obtained by exact elimination of the red nodes. Since
the graph is bipartite, there are no black-to-black connections in the original graph.
Therefore, all black-to-black connections in the reduced matrix are level-1 fill. Level-3
fill from the original graph is exactly the new level-1 fill generated from the reduced
matrix. Thus an MDF(0) ordering on the reduced matrix is an MDF(1) reordering
on the original matrix.

While a generalized red/black partition is an MDF(1) ordering of the red nodes,
an MDF(1) ordering may or may not produce a generalized red/black partitioning.
Consider a tridiagonal matrix. All nodes initially have no level-1 discarded fill. Con-
sequently, the ordering depends crucially on the tie-breaking strategy. For example,
either a red/black partition or the perfect elimination order (no fill) would be consis-
tent with the MDF strategy, in this case.

Although the description of MDF(0) and MDF(1) orderings has been given for
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FIG. 2.3. Natural row ordering and final MDF(1) ordering.

symmetric matrices, it is clearly trivial to generalize to the case of a nonsymmetric ma-
trix having a symmetric incidence matrix. This is, in fact, how we have implemented
the MDF(g)-ordering algorithms. Of course, the minimum discarded fill algorithm can
also be applied to matrices with nonsymmetric nonzero structure, and our findings
will be reported in a forthcoming paper [9]

2.7. An example ofMDF(1) ordering. We consider an example of an MDF(1)
ordering on the model Laplace problem used in 2.5. The minimum deficiency crite-
rion is used for tie breaking.

Since level-1 fill entries are accepted, initially all nodes have zero discard values.
The four corner nodes (vl, va, V13, V16} are chosen based on deficiency. Nodes V6 and

vl are chosen next since these have zero discard values. Nodes (v3, v8, v9, va} have
the same discard value discard(v3) 0.094, nodes (v2, Vh, v2, v5} have discard value
discard(v2) 0.226, nodes (vT, Vl0} have discard value discard(vT) 0.381. By the
tie-breaking criterion, v3 will be the next eliminated node. Then v2 followed by vs
and v12 are eliminated with no new fill. Among the uneliminated nodes, v7 has the
smallest discard value of discard(vT) 0.056. After v7 is eliminated, there is a perfect
elimination sequence of Vh, v9, vl0, v4, and v5. The final ordering is shown in
Fig. 2.3.

3. Test problems. The minimum discarded fill orderings were tested on a va-

riety of problems. For Problems 1, 2, and 4 below, the matrices are only positive
semidefinite. The solution is determined only to within a constant. These matrices

can be made definite by fixing the solution at a single node. However, the conjugate
gradient method still converges even if this is not done. In fact, if the solution is fixed
at a node, the algorithm actually converges more slowly [2], [21]. For Problems 1, 2,
and 4, the matrices are left as semidefinite.

3.1. Problem 1 (STRONGX). The first problem solves the equation

0- gx--x +yy gy =-q

on the region x E [0,1], y E [0,2], using a five-point cell-centered finite difference
discretization [32] with Neumann boundary conditions, where Kx 1000 and Ky 1.
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Let h 1/30 be the cell spacing; let nx 30, ny 60 be the number of cells in the
x and y direction, respectively. The source term is

-1/h
q(x,y) 1/h2

0

if (x, y) (hi2, hi2),
if (x, y) (1 hi2, 2 hi2),
elsewhere.

3.2. Problem 2 (STRONGY). This problem is identical to Problem 1, except
that the anisotropic property is reversed: Kx 1, Ky 1000.

3.3. Problem 3 (LAPD5). This is Laplace’s equation on the unit square with
Dirichlet boundary conditions, as used in [15]. The usual five-point finite difference
discretization was used on a regular 30 30 grid.

3.4. Problem 4 (STONE). This problem is Stone’s third problem [36]. The
equation

Ox K-x +y Ky-y =-q

was discretized on the unit square using a vertex-centered finite difference tech-
nique [32], with Neumann boundary conditions. If the node spacing is h 1/30,
then

x ih, yj jh, O < i,j < 30.

We will refer to the location of the source and sink terms by

q(xi, yj q(i, j)

in the following and in Fig. 3.1, which shows the problem domain.
The values of K, Ky, and q were

(3.3)

(1,100)

(K:,Ky)= l00i 1)

(1,1)

if (x,yj) E B,
if (x,yy) C,
if (x,yy) D,
if (x,yy) A,

14_<i<30, 0<j<16,
5<i_<12, 5<j<12,
12<i<19, 21<j<28,

(3, 3) 1.0, q2(3, 27) 0.5, q3(23, 4) 0.6,

qa(14, 15) -1.83, q5(27, 27) -0.27.

A 31 31 grid was used, and an harmonic average was used to define K and K [3]
at cell boundaries.

Test problems 5-7 are derived from two- and three-dimensional pressure equations
arising in groundwater contamination simulations [18], [24]. The pressure equation is
essentially equation (3.2). Since the actual values of Kx, K, q, and the boundary
conditions are quite complicated, only a brief description of these problems will be
given. The choice of boundary conditions (fixed pressure) resulted in a sparse right-
hand vector.
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. q2 (3,27)

A

D

(27,27) q5

C

(14,15)

B

ql (3,3) q3 (23,4)

FIG. 3.1. Stone’s third problem.

3.5. Problem 5 (REFINE2D). A finite element method using linear trian-
gular basis functions was used to discretize this problem. In this example, Kx and
Ky were constant. The triangulation is such that the resulting equation is an M-
matrix [18]. The grid was constructed by first defining a very coarse triangulation,
and then repeatedly defining finer grids by subdividing a triangle into four smaller
triangles with new nodes determined by the nodes of the original triangle, and the mid-
points of the original triangle edges. This problem had 1161 nodes, and is described
in more detail in [18]. The nodes are originally ordered using an RCM ordering.

3.6. Problem 6 (FE2D). A finite element method using linear triangular basis
functions was also used on this problem. However, in this example, Kx and Ky
(3.2) varied by four orders of magnitude. The grid, which had 1521 nodes, was
defined by constructing a distorted quadrilateral grid, and then triangulating in the
obvious manner. A Delaunay-type edge swap was used to produce an M-matrix. The
original ordering for this problem used a natural or lexicographic ordering based on
the distorted quadrilaterals. This problem is described in more detail in [18].

3.7. Problem 7 (FE3D). This problem is a three-dimensional version of equa-
tion (3.2). A finite element discretization was used, with linear basis functions defined
on tetrahedra. The absolute permeabilities (K,Ky,Kz) varied by eight orders of mag-
nitude (this model was derived from actual field data). The nodes were defined on a
25 13 10 grid (3250 nodes) of distorted hexahedra, which were then divided into
tetrahedra. The resulting matrix was not an M-matrix, and the average node con-
nectivity was 15. In general, it is not possible for a given node placement to obtain an
M-matrix in three dimensions if linear tetrahedral elements are used [26]. The origi-
nal ordering for this problem used a natural ordering based on distorted hexahedra.
This problem is described in more detail in [19].

4. Results. The computations to solve the test problems 1-5. were done on a
Sun SPARC SLC workstation in double precision and using

(4.1) I]rkll2 _< llrl12, e 10-6



ORDERING METHODS FOR PCG TECHNIQUES 955

TABLE 4.1
Summary for test problem STRONGX.

Ordering
& level

Nonzeros Ordering Fact. Solution time
in L time time & iterations

OaG(0)
ORG(1)
OaG()
oaa(a)
RCM(0)
RCM(1)
RCM(2)
RCM(3)
MDF(0)
MDF(1)
MDF(2)
MDF(3)

3510
5221
6903
10238
3510
5221
6903
8527
3510
6867
7074
10210

Full system
n/a 0.25 4.49(33)
n/a 0.27 4.64(32)
/ 0.a a.(a)
n/ o.4 5.05(30)
0.06 0.22 4.46(33)
0.07 0.27 4.65(32)
0.06 0.30 1.98(13)
0.06 0.36 2.11(13)
.65 0.23 4.46(33)
3.38 0.31 2.01(13)
3.50 0.32 1.72(11)
7.83 0.46 1.56(9)

Reduced system (black nodes= 900, red nodes= 900)
ORG(1) 3421 n/a 0.31 3.97(40)
ORG(3) 5060 n/a 0.36 4.10(38)
RCM() 342 0.07 0.3 3.97(40)
RCM(3) 5060 0.07 0.36 1.99(18)
MDF(1) 3421 2.14 0.31 1.17(11)
MDF(3) 6584 6.54 0.44 1.00(8)

as the stopping criterion, where rk is the residual vector after the kth iteration in the
conjugate gradient acceleration and the zero vector is the initial guess.

Some tests were carried out using a random initial guess (random numbers be-
tween (-1,4-1)), and the results were qualitatively similar. The tests were also repeated
using a stopping criteria of 10-12, and the trends were similar to the results ob-
tained with 10-6, and hence will not be shown.

The reduced system factorizations were constructed by first using a generalized
red/black partitioning of the nodes. The initial red node was selected as the initial
node in the given ordering. The initial ordering (ORG) was x-y natural for Problems
1-4, and RCM ordering for Problems 5-7.

The levels of fill will be defined so that all original entries in the full system have
level 0. This means that the lowest level reduced system factorization will be level 1.
If the original matrix has a bipartite graph, then the next level of fill in the reduced
system is level 3. Note that in the finite element case, the next level of fill in the
reduced system is level 2. For this reason, our definition of levels for reduced systems
differs from that used previously [38]. For all reduced system methods, the ordering
was determined using the reduced system. For example, RCM on the reduced system
refers to the following sequence of steps: the full system is red/black ordered, the
red nodes are eliminated exactly, and the reduced system is reordered using an RCM
algorithm.

Table 4.1 shows the results for Problem STRONGX. This problem has a strong
coupling in the x-direction. As discussed in [9], ORG ordering (x-y natural) is very
poor for this example, since the entries in LU factorization decay very slowly with
this ordering. This is reflected in the results for ORG ordering, full system, all levels
of fill. The full system computations for RCM are poor for levels 0 and 1, but become
competitive with MDF as the level of the ILU increases. MDF(0) is poor (level 0
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TABLE 4.2
Summary for test problem STRONGY.

Ordering[& level g
Nonzeros Ordering[Fact. [Solution time
in L time time & iterations

ORG(0)
ORG(1)
ORG()
ORG(3)
RCM(0)
RCM(1)
RCM(2)
RCM(3)
MDF(0)
MDF(1)
MDF(2)
MDF(3)

3510
5221
6903
10238
3510
5221
6903
8527
3510
6873
7064
10150

Full system
n/a 0.22 8.06(60)
n/a 0.26 2.92(20)
n/a 0.30 3.02(20)
n/a 0.41 1.72(10)
0.06 0.22 8.05(60)
0.06 0.27 2.93(20)
0.07 0.30 2.87(19)
0.06 0.35 1.63(10)
1.63 0.24 8.25(60)
3.35 0.31 2.16(14)
3.48 0.31 2.32(15)
7.69 0.45 1.24(7)

Reduced system (black nodes 900, red nodes 900)
ORG(1) 3421 n/a 0.31 1.93(19)
ORG(3) 5060 n/a 0.36 1.36(12)
RCM(1 3421 0.06 0.31 1.94(19)
RCM(3) 5060 0.07 0.37 1.14(10)
MDF(1) 3421 2.11 0.32 1.45(14)
MDF(3) 6572 6.53 0.45 0.77(6)

factorizations cannot detect anisotropies [9]), but is much improved for level 1. Note
that the ordering time for RCM varies slightly for different runs. This is due to the
inaccuracy in the system timing calls.

For the reduced system, MDF(1) is much faster than either RCM(1) or ORG(1).
In all cases, the amount of fill in the ILU(1) factorization is identical. This demon-
strates that the orderings for reduced system factorizations can be very important.
As the level of factorization on the reduced system is increased, the ORG ordering ac-
tually becomes slower, while RCM(3) shows a large improvement. However, MDF(1)
is still superior to RCM(3) with less fills. If the levels are increased to very high
levels, we would expect RCM to eventually becqme more efficient than MDF, due to
the fill-reducing property of RCM as discussed in the introduction.

Note also that the cost of the MDF ordering is quite high. However, as discussed
previously, we expect to carry out the ordering only once for many matrix solves, for
time-dependent, nonlinear problems [6], [10].

Table 4.2 lists the results for Problem STRONGY. In this case, the ORG orderings
result in rapid decay in the size of the fill entries, and hence the ORG orderings
(for level greater than 0) are quite efficient. The reduced system factorizations are
generally more efficient than the full system factorizations.

For the reduced system, MDF(1) is superior to RCM(1) and ORG(1). All methods
have the same fill. MDF(3) is also faster than either ORG(3) or RCM(3), but at the
cost of greater fill.

Problem LAPD5 (Table 4.3) has constant coefficients for all interior nodes, and
as expected, all the orderings behave very similarly.

Table 4.4 shows the results for Problem STONE. The reduced system factoriza-
tions are the most efficient for this problem. Again, the reduced system MDF(1) is
faster than RCM(1) or ORG(1). However, reduced systems MDF(3) and RCM(3) are
quite close, especially if the factorization time is included.
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TABLE 4.3
Summary ]’or test problem LAPD5.

Ordering
level

Nonzeros Ordering[Fact. ]Solution time
in L time time iterations

ORG(0)
ORG(1)
ORG(2)
ORG(3)
RCM(0)
RCM(1)
RCM(2)
RCM(3)
MDF(0)
MDF(1)
MDF(2)
MDF(3)

1740
2581
3393
4988
1740
2581
3393
4177
1740
3391
3571
5041

Full system
n/a 0.11 1.73(26)
n/a 0.13 1.24(17)
n/a 0.15 1.05(14)
n/a 0.20 0.92(11)
0.04 0.11 1.74(26)
0.03 0.13 1.24(17)
0.04 0.15 0.83(11)
0.03 0.17 0.S0(0)
0.84 0.11 1.67(25)
1.67 0.6 0.90(1)
1.79 0.16 0.92(1)
3.S0 0. 0.60(7)

Reduced system (black nodes 450, red nodes 450)
ORG(1) 1681 n/a 0.15 0.70(14)
ORG(3) 2465 n/a 0.18 0.56(10)
RCM(1) 1681 0.04 0.16 0.70(14)
RCM(3) 2465 0.03 0.18 0.50(9)
MDF(1) 1681 1.09 0.16 0.65(13)
MDF(3) 3261 3.29 0.22 0.48(8)

TABLE 4.4
Summary for test problem STONE.

Ordering[& level t
Nonzeros Ordering[Fact. Solution time

in L time time & iterations

ORG(0)
ORG(1)
ORG(2)
ORG(3)
RCM(0)
RCM(1)
RCM(2)
RCM(3)
MDF(0)
MDF(1)
MDF(2)
MDF(3)

1860
2760
3630
5340
1860
2760
3630
4471
1860
3658
3819
5361

Full system
n/a
n/a
n/a
n/a
0.04
0.03
0.03
0.04
0.92
1.81
1.90
3.98

0.12 3.31(47)
0.14 2.08(27)
0.6 .82(23)
0.22 1.43(16)
0.12 3.32(47)
0.14 2.07(27)
0.16 1.35(17)
0.19 1.18(14)
0.12 3.25(46)
0.17 1.36(17)
0.18 1.38(17)
0.24 0.99(11)

Reduced system (black nodes 480, red nodes 481)
ORG(1) 1798 n/a 0.17 1.16(22)
ORG(3) 2638 n/a 0.20 0.87(15)
RCM(1) 1798 0.03 0.17 1.16(22)
RCM(3) 2638 0.03 0.20 0.76(13)
MDF(1) 1798 1.16 0.17 0.91(17)
MDF(3) 3487 3.42 0.24 0.69(11)

The first finite element problem REFINE2D tests are listed in Table 4.5. The
reduced system factorization is effective for this problem since almost half the nodes
are exactly eliminated. The reduced system MDF(1) has the smallest solution cost.

Table 4.6 shows the results for Problem FE2D. Even though the generalized
red/black partitioning has only 430 (out of 1521) red nodes, the reduced system
factorizations are superior to the full system factorizations. For a given level of fill,
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TABLE 4.5
Summary for test problem REFINE2D.

Ordering
& level

Nonzeros Ordering Fact. Solution time
in L time time & iterations

RCM(0)
RCM(1)
RCM(2)
MDF(0)
MDF(1)
MDF(2)

2480
3571
4758
2480
4645
5292

Full system
0.0 0.
0.0 0.
0.0 0. ..()
1.19 0:15 4.29(48)
2.35 0.21 2.10(21)
3.04 0.24 2.16(21)

Reduced system (black nodes= 648, red nodes= 513)
RCM(1) 2629 0.04 0.21 1.96(28)
RCM(2) 2952 0.05 0.23 1.80(25)
MDF(1) 2753 1.72 0.23 1.’51(21)
...MDF(2.) 3390 2.52 0.25 1:59(21)

TABLE 4.6
Summary for test problem FE2D.

Ordering
& level

Nonzeros Ordering Fact. [Solution time
in L time time & iterations

RCM(0)
RCM(1)
RCM(2)
MDF(0)
MDF(1)
MDF(2)

4373
5846
8325
4373
7942
10620

Full system
0.06 0’25 6.40(49)
0.07 0.29 4.12(30)
0.07 0.37 3.31(22)
2.09 0.25 3.99(30)
4.66 0.36 3.43(23)
8.39 0.49 2.64(16)

Reduced system (black nodes 1091, red nodes 430)
RCM(1) 5286 0.0S 0.38
RCM(2) 6888 0.08 0.43
MDF(i) 5782 3.86 0.41
MDF(2) 8565 7.90 0.54

4.00(34)
2.93(23)
2.84(23)’
2.33(17)

reduced system MDF has a smaller solution cost than reduced system RCM.
For the three-dimensional problem FE3D, lzigh levels of fill are not very effective

because of the large amount of fill in the ILU factorization. If factorization cost is
included, the best method is MDF(0) (Table 4.7).

To summarize, for Problems STRONGX, STRONGY, and STONE, the reduced
system MDF(1) ordering outperforms RCM(1) and ORG(1). All orderings have the
identical amount of fill for level-1 reduced systems. Reduced system MDF(3) is either
the best or tied with RCM(3), although at the expense of greater fill. Note that for
STRONGX, reduced system RCM(1) is almost four times slower than reduced system
MDF(1).

For Problems REFINE2D and FE2D, reduced system MDF(1) again outperforms
RCM(1). Reduced system RCM becomes more competitive with reduced system MDF
as the level increases. It is interesting to note that for the three-dimensional problem
FE3D, MDF(0) is superior to RCM(0).

5. Conclusions. In agreement with previous work, we have found that the or-
dering of the unknowns has a major effect on the convergence of the ILU precondi-
tioned PCG iterative methods.

In some cases, it is possible to select an a priori ordering that results in rapid
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TABLE 4.7
Summary for test problem FE3D.

Ordering Nonzeros
& level in L

Ordering Ft"
time time

Full system
RCM(0)
RCM(1)
RCM(2)
MDF(0)
MDF(1)
MDF(2)

19725
39066
72038
19725
49599
92181

Solution time
& iterations

0.23 1.02 16.13(41)
0.24 2.01 11.70(24)
0.23 5.27 10..29(16)
16.49 1.11 10.08(25)
150.2 3.45 9.88(18)
1002 10.6 10.69(14)

Reduced system (black nodes 2593, red nodes 657)
RCM(1) 38822 0.23 3.00 10.66(23)
RCM(2) 66933 0.23 6.32 10.32(17)
MDF(1) 43141 143 3.36 8.96(18)
MDF(2) 87472 1067 9.34 9.97(14)

convergence. However, for partial differential equation problems that have rapidly
varying coefficients and are discretized on unstructured grids, a good ordering is far
from obvious.

As demonstrated in the anisotropic examples, RCM orderings can be quite poor
for level-1 fill, for both full systems and reduced systems, compared to MDF or-
derings. Reduced system methods were superior to full system iteration for all the
two-dimensional problems. Reduced system MDF orderings with lower fill level out-
performed reduced system natural and RCM orderings.

Because of the large factorization cost and the relatively small number of red
nodes exactly eliminated, the reduced system approach was not very effective for the
three-dimensional problem. MDF(0) was the best choice.

In all our tests, the MDF ordering method always resulted in good convergence be-
havior, even for anisotropic and inhomogeneous (rapidly varying equation coefficient)
problems. Of course, the ability of MDF ordering to perform well for anisotropic,
inhomogenous problems comes at a price. The ime taken for determining the MDF
ordering is much larger than the ordering cost for RCM. Consequently, we believe
that the major application of MDF ordering will be in the solution of time-dependent
or nonlinear problems. In these situations, a sequence of matrix problems must be
solved, where the matrix elements are only slightly changed from one timestep to the
next. An ordering determined from one of these matrices can be used for the sequence.
The ordering cost can then be amortized over the cost of many solves. Applications
of this idea to reservoir simulation and Navier-Stokes equations are discussed in [6]
and [10].

If a single solution is required for a two-dimensional problem that is isotropic,
then a reduced system RCM method would be a good choice. On the other hand,
if several similar anisotropic problems are being solved, then it is worthwhile to use
a reduced-system MDF ordering. For three-dimensional problems, MDF(0) would
appear to be a good choice.

We are currently developing approximate MDF ordering methods that are less
expensive to compute, and hence can be applied to problems with a large node con-
nectivity, which is typical of discretized systems of partial differential equations.
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IMPLICIT NULLSPACE ITERATIVE METHODS FOR
CONSTRAINED LEAST SQUARES PROBLEMS*
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Abstract. A class of iterative algorithms is proposed for solving equality constrained least
squares problems, generalizing an order-reducing algorithm first analyzed by Barlow, Nichols, and
Plemmons (algorithm BNP). The new algorithms, called implicit null space methods, are based on
the classical nullspace method, except that the basis for the nullspace of the constraint matrix is
not explicitly formed. The implicit basis acts as a preconditioner for a set of normal equations in
factored form. Implicit nullspace methods allow great flexibility in the choice of preconditioner, and
can be used to solve certain problems for which algorithm BNP is not well suited. In addition, they
offer the opportunity for parallel implementation on substructured problems. Some numerical results
based on both structural engineering applications and Stokes flow are included.

Key words, constrained least squares, force method, nullspace method, Stokes flow, structural
analysis, substructuring
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1. Introduction. Our interest is the solution of the equality constrained least
squares problem, or problem LSE: given an mln matrix E, an m2n matrix G, an
m 1 vector b, and an m2 1 vector c,

(1) minimize IlOy- cl[e such that Ey b.

We will assume that E has full row rank, so b is in the range of E and the
problem has at least one solution. We will also require that the nullspaces of E and G
intersect trivially (or, equivalently, that [] has full column rank), guaranteeing that
the solution is unique. Finally, we presume that the matrices are large and sparse, so
that it is plausible to consider iterative algorithms. All three assumptions are realistic
for a wide range of important applications.

A number of essentially equivalent formulations of LSE will prove helpful:
Constrained minimization problem. Let F GTG and s =--GTc. Note

that IIGy-cll yTFy+2yTs+cTc, and that the term cTc has no effect on the value
of y at which the quantity is minimized. Hence, LSE is equivalent to the problem

minimize (yTFy + 2yTs) such that Ey b.

Kuhn-Tucker formulation. Introduce the Lagrange multiplier A and the resid-
ual r c- Gy. Then solving LSE amounts to finding y, r, and satisfying

(3) G I 0 r c
0 OT ET A 0

Saddle-point formulation. Introduce the Lagrange multiplier # to the con-
strained minimization formulation. Then we can find y satisfying (2) by solving

-F(4) E
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The multiplier # is related to A in the Kuhn-Tucker equations by # -A.
The motivating example is the static analysis of engineering structures: given a

large structure subjected to an external load, find the internal forces at equilibrium.
When the problem is modeled using the force method (see, for example, [7]), the
constraint Ey b captures the fact that the forces sum to zero at any node in the
structure (the equilibrium condition). The vector y represents the unknown internal
forces, b is the vector of external loads, and E (commonly called the equilibrium
matrix) is determined by the shape and connectivity of the structure. The vector -A
represents the nodal displacements. We seek the particular solution to the constraint
that minimizes complementary energy; the matrix F, which helps define the energy
functional, is determined by the material properties of the elements in the structure.
In a rigid bar truss, F is a diagonal matrix with positive diagonal entries determined
by Hooke’s Law (see Strang [16]). In more general structures, F is block diagonal,
with one small block for every element in the structure. The blocks in F are always
symmetric nonnegative definite, and are symmetric positive definite when all elements
behave elastically (see, for example, Przemieniecki [14]). Unless the elements are
prestressed, the vectors c and s are zero in this application.

Static analysis of engineering structures is but one example of a more general
physical principle at work: minimizing an energy functional subject to an equilibrium
constraint is a central idea throughout the physical sciences (see Strang [15], [16]).
Stokes flow provides a second interesting application. For simplicity, assume the
density of the fluid is constant and unchanging, so the continuous velocity vector v
satisfies the conservation of mass equation V.v- f, where f 0 in the absence
of sources and sinks. This continuous equation becomes Ey b after discretizing,
where E approximates the divergence, y represents the discrete velocity components,
and b captures boundary and source information. The velocity v and pressure p are
related by the conservation of momentum equation V2v- Vp- g, where g reflects
boundary and forcing terms. Discretizing this equation produces the rest of the saddle
point formulation (4). The symmetric positive definite matrix F (typically block tri-
diagonal) represents the negative of the Laplacian applied to each component of v, the
matrix -ET approximates the gradient, and s contains boundary and forcing terms
(see Strang [15], [16] for a more complete discussion of the Stokes model, and Hall
[6] for a treatment of the more general Navier-Stokes equations). The matrix G, if
needed, could be taken to be the Cholesky factor of F, but a more natural approach is
to recognize the Laplacian as the divergence of the gradient. Then G can be defined
to be some suitable discretization of the gradient operator acting componentwise
on v.

Our approach to solving problem LSE and its equivalent forms is an extension
of an algorithm first proposed and analyzed by Barlow, Nichols, and Plemmons [1].
Their algorithm, which we refer to as algorithm BNP, starts with a repartitioned form
of the Kuhn-Tucker equations which has square, nonsingular, and easily invertible
diagonal blocks (equation (7) below). Block Gauss elimination produces a symmetric
positive definite subproblem (equation (9) below) with the n-m1 leading components
of the residual r c- Gy as the unknowns. The authors then apply a variation of
the conjugate gradient algorithm to this subproblem, generating at each iteration an
approximation to the original unknown y. The method is order- or dimension-reducing
in the sense that the subproblem has fewer unknowns than the original problem in y.

In theory, BNP requires assumptions on problem LSE no stronger than the ones
listed above. In practice, however, implementation is difficult without the stronger
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assumption that G itself has full column rank. This assumption holds for many
but not all applications (it fails to hold, for example, if any of the elements deform
plastically in the structures problem). The algorithm may also be difficult to apply
to the saddle-point formulation (4) (e.g., Stokes flow), where F and s rather than G
and c are available. Our primary goal is to overcome these limitations.

The key to the extension is recognizing a connection between algorithm BNP and
the classical nullspace method. The latter begins with some convenient solution yp to
the constraint, and a matrix N whose columns form a basis for the nullspace of E. We
then seek a coordinate vector x such that y yp+Nx is the solution to the constrained
problem. We show that BNP may be viewed as a variation of the nullspace method,
in which distinguished choices of yp and N are used but never formed (we will call
such a method an implicit nullspace method, or INM). The basis matrix N is seen
to be acting as a preconditioner for a set of normal equations in factored form. We
generalize algorithm BNP by producing implicit nullspace methods for other choices
of N. The extension preserves the spirit of BNP (in particular, the algorithms are
order-reducing), but is somewhat more flexible: it becomes relatively easy to construct
preconditioners for problems in which G lacks full column rank, as well as problems
in saddle-point form. Both BNP and the more general implicit nullspace algorithms
can be implemented in parallel when the matrices reflect a substructuring (domain
decomposition) of the physical model.

Section 2 introduces algorithm BNP as it is derived in [1] and summarizes some
of its properties. We briefly mention recent results comparing BNP to both p-cyclic
successive over-relaxation (SOR) and a two-parameter generalization of SOR known
as block accelerated over-relaxation (AOR). We also discuss a parallel implementation
for substructured problems (first reported in [10]) that proves helpful in understanding
the extension. In 3, we establish the relationship between BNP and the nullspace
method, and exploit the connection to derive the more general implicit nullspace
methods. We describe in 4 some numerical experiments on both structures and
Stokes problems, and offer some concluding remarks.

2. Algorithm BNP. It is difficult to apply traditional iterative methods to the
Kuhn-Tucker equations as written in (3): the diagonal blocks are not even square,
let alone nonsingular. We therefore start by repartitioning these equations. Since we
are assuming E has full row rank, and that [t has full column rank, we can reorder
the rows of G and c, and repartition

G-[ G1

so that

is square and nonsingular. Defining A2 G2 for convenience, we now have

(6) [ E A2 ]
Make these substitutions in (3) and reorder the column blocks to obtain the modified
Kuhn-Tucker equations

A2 I 0 r2 c2
0 A’ AT z 0
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where

C
C1

C2 r2
bl

Cl
Z3

rl
and K-

0 I

Note that the diagonal blocks are now square and nonsingular.
The derivation of BNP in [1] begins with this repartitioned system. The authors

first apply block elimination to reduce the system to block upper triangular form.
The result of this reduction is the system

(8) I -A2AIK r2
(I / BK) z3

bl ]c2 A2Albl
A-TAT2 (A2Albl c2)

where B ATAT2A2AI. The linear system associated with the third (lowest)
diagonal block in (8) is particularly important. A careful look at the matrix I + BK
(see [1] and [8]) reveals that it too is block upper triangular. There are two diagonal
blocks; the second (lowest) of these diagonal blocks is the coefficient matrix of the
linear system

[0](9) (I + yTy)rl h, whereY-A2Alfi[, K= I

The right-hand side vector is given by h yT(A2Albl- c2). The unknown rl
consists of the n rnl leading components of the residual c- Gy.

In principle, one can solve this reduced system for rl, then use back substitution
on the transformed Kuhn-Tucker system to recover the remaining unknowns. In
practice, this is not necessary: the analysis in [1] shows that a variant of conjugate
gradients applied to the reduced system produces as by-products all that is needed
to recover the full solution y. It is this order-reducing conjugate gradient algorithm
that we call BNP.

It is worth noting that the symmetric positive definite matrix I + yTy is likely
to have a number of desirable properties. In particular, the scalar A 1 is often a
multiple eigenvalue due to column rank deficiencies in Y. This, of course, limits the
maximum number of conjugate gradient iterations required for convergence.

The key to implementing BNP is producing an A1 that is easily invertible, and
the most convenient form to seek is an upper triangular matrix. If G has full column
rank, one way to accomplish this, depicted in Fig. 1, is as follows:

1. Use Gauss elimination (or orthogonal reduction) with column pivoting to
replace E with the upper trapezoidal matrix

(10) Et= [EL ER ],
where EL is upper triangular and nonsingular. Here the subscript t indicates "trape-
zoidal," while L and R indicate left and right, respectively.

2. Apply the same column interchanges to G, and partition compatibly with
Et. Use orthogonal rotations on G and c to replace G with the nonsingular upper
triangular matrix
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E t =

A1 =

G

A
2

FIG. 1. Forming A1 from trapezoidal Et.

Here the leading subscripts indicate whether the blocks will become part of G1 or

G2. We emphasize that the original matrix G is not necessarily square; because it
has full column rank, however, it can be reduced to nonsingular triangular form using
orthogonal rotations. In some applications it is helpful and easy to achieve this form
(in the structural engineering problem, for example, both F and G are block diagonal
with relatively small blocks). In other problems (most notably the Stokes problem)
it would be inappropriate (and unnecessary) to attempt to reduce G to this form
(see 4 for an alternative). In either case, however, the algorithm is easier to picture
when presented using a triangular G; without loss of generality, we proceed under this
assumption.

3. Define G1-[0 G12 ]and G2 [G21 G2 ], obtaining

(12) nl:[ EL ER]12,

With these substitutions, the matrix Y in the BNP system (9) can be written in
a way that will prove useful in the next section:

(13) Y=A2[ I G-.
While this method of constructing A1 is useful for analysis, it may not be efficient:

column interchanges may destroy exploitable structure in the matrices E and G.
Another approach, first reported in [10], is to reduce E without column pivoting to
produce a "stairstep" form E8 (Fig. 2). Now form A1 by interlacing rows of G with
rows of Es. A permutation matrix P-- PL PR defines the interlacing

E ] PE + PRG.(14) A -P
(1

Notice that the same permutation matrix (not its transpose) relates the stairstep and
trapezoidal forms:

(15)
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E

A2 =

FTG. 2. Forming A1 from stairstep

::::::::::::::::::::::::::::::::

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

FTG. 3. Substructuring of a flexible truss.

Interlacing without column permutations is especially helpful when the matrices
E and G reflect a substructuring (domain decomposition) of the physical domain.
Substructuring of the flexible truss in Fig. 3, for example, results in matrices with the
depicted block structure (the matrices in the figure have been modified for clarity:
there should be one small block in F for each bar in the truss, and the subblocks in E
are not necessarily the same size). The domain decomposition of the Stokes problem
is somewhat more subtle, but the ideas are similar (see [8]).

Given such a substructuring, Fig. 4(a) depicts the result of reduction of E and
factorization of F. Both Es and G can be produced in parallel by assigning to a
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single processor the rows associated with the block being reduced. Additionally,
notice that solves involving A1 and AT provide opportunities for block-based parallel
computation: when A1 is the coefficient matrix of a linear system, we can first solve
for the unknowns associated with the last (lowest) diagonal block, then solve for all
remaining blocks of unknowns in parallel (assign each block of unknowns to its own
processor). A similar process is possible for solves involving A’. The matrices in our
extension of algorithm BNP will allow similar opportunities for parallel computation.

Ideally, we would like to reduce E in a stable fashion, yet still preserve the struc-
ture of both E and G. Of course, these are in some ways competing goals: column
pivoting improves the likelihood of a stable reduction, but such pivoting can destroy
exploitable structure in the matrices. Fortunately, there is a compromise approach: if
column pivoting is needed or desired when reducing E, we can preserve the structure
of E by restricting eligible pivot columns to those associated with the current sub-
structure. The price of such pivoting includes additional but predictable fill during
the factorization of F. In either case, we can now complete the construction of A by
interlacing (Fig. 4(b)).

We should also observe that one can apply other more traditional iterative al-
gorithms to the modified Kuhn-Tucker equations (7), including in particular block
successive over-relaxation (SOR). Partitioned into either two or three diagonal blocks,
the coefficient matrix in (7) is a so-called block cyclic matrix. The associated block
SOR methods, called p-cyclic SOR methods, enjoy an elegant theory due largely to
Young [19] and Varga [17], [18]. Barlow, Nichols, and Plemmons [1], extending work by
Freund [4] and Markham, Neumann, and Plemmons [11], prove that algorithm BNP
applied to LSE is superior to both two- and three-cyclic SOR in exact arithmetic.
Another approach to solving the modified Kuhn-Tucker equations is a two-parameter
variant of block SOR known as accelerated over-relaxation or AOR (see, for example,
[12]). We have recently extended the work in [1] and [4] to show that BNP is superior
to two- and three-block AOR as well [8]. Numerical experiments (see [9] as well as 4
below) suggest that BNP is in fact faster than both p-cyclic SOR and block AOR by
a wide margin.

3. Implicit nullspace algorithms. Algorithm BNP as outlined in 2 has sev-
eral limitations. Suppose, for example, that G lacks full column rank. Given a spec-
ified column of G, there may be no row of G with leading nonzero in that column,
even after orthogonal reduction. If we need such a row to augment E, we will be
unable to produce an upper triangular A. A second limitation applies to problems
expressed in saddle-point form (4). When F and s are given instead of G and c, it
may be impractical to recover G and c, both of which are needed. We seek to extend
the algorithm to overcome these limitations.

We begin by considering the classical nullspace method (see, for example, [2] and
[13]). Suppose we are given a particular solution yp to the constraint Ey b. Let
N be a matrix whose columns form a basis for the nullspace of E (for convenience,
we will call N a basis matrix). Then any vector satisfying the constraint can be
written as y yp + Nx for some choice of x, and minimizing IIGy- c112 subject to the
constraint amounts to minimizing IIG(yp + Nx)- c112 over all possible x. The latter
minimization is an unconstrained problem of order n- ml. Forming the associated
normal equations confirms that the required x solves the symmetric positive definite
system

(16) NTGTGNx NTGT(c- Gyp).
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E

A1 =

A2 =

(a) (b)

FIG. 4. Parallel implementation of interlacing: (a) Matrices after reduction; (b) Results of
interlacing.

Now consider the upper trapezoidal matrix Et EL
that

ER given in (10). Note

is a particular solution of the constraint Ety b, and the columns of

(18) Nx=[ -E[IER]I
form a basis for the nullspace of Et. Consider the nullspace normal equations (16)
with these choices of the basis matrix and particular solution. Precondition in the
standard way with G12, where G12 is the lower right-hand corner of G defined in (11):

(19) G-2TNITGrGNIG-w G-2TN]Gr(c- Gyp), where W a12Z.

The formidable-looking coefficient matrix simplifies nicely. First, note that

(20) NIG- [ E-1ERG-G- ] A- R,

where A1 and K are as in (9). Now observe that

(21) [ E ] A-[- AIA-2- ’ s CIIA-I I"
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This gives us

G2 A2A- R Y

where Y is as in the BNP system (9). Moreover, we can relate the BNP unknown rl
to the preconditioned nullspace unknown w. Begin by partitioning the LSE unknown
y into

and use the fact that y yp + Nix to find that x YR. Now, since rl cl -Gly,
which is Cl -G12yR, we find that w cl -rl. All of this allows us to rewrite (19) as

(23) (I + YTy)(Cl rl) -2TN]T(C yp).

Finally, move cl to the right-hand side and simplify; the result is precisely the
BNP system (9). Thus BNP is essentially a preconditioned form of the nullspace
method, where a distinguished choice of the nullspace basis appears in the equations
but does not need to be formed explicitly. In fact, we can say more: if NI is a basis
matrix, so is N NIC for any nonsingular C. This means N- NIG- is a basis for
the nullspace of Et, and (19) is a set of normal equations associated with the nullspace
method for this choice of basis. So BNP is itself an implicit nullspace method, with
N- NIG-21 as the (unformed) basis matrix.

The basic idea behind the extension of BNP is now clear: instead of using G12
as a preconditioner for the nullspace normal equations, choose any convenient non-
singular (n ml) x (n ml) matrix M, and use N NM as the basis matrix. But
so far we have only considered the trapezoidal matrix Et obtained by column pivoting.
To make this approach practical, we would like to use interlacing to construct a basis
matrix and particular solution for the stairstep matrix Es.

Recalling equation (15), let P PL PR be the permutation matrix relating
the trapezoidal matrix Et and the stairstep matrix Es:

(24) EP= EPL EP.a ]= [EL En ]=Et.
Now let M1 be a matrix of size (n ml) x n such that

(25) /}1- [ E
is nonsingular. It is quite easy to construct such an MI: use rows with leading
nonzeros in the (n- ml) columns in which the stairstep matrix E8 does not have
leading nonzeros. Think of M1 as generalizing the role that G1 played in BNP. In the
special case E Et, we would have M1 0 M ], where M plays the role of G12.

Finally, by analogy with (14), define

(26) BI=P/I-P
M1

We are now in a position to define the basis matrix N and the particular solution
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THEOREM 3.1. The vector yp Blp[b]satisfies the constraint Esy b for any
choice of v.

Proof. Note that B-1 [31PT, where /1 is defined in (25). Also, by an

argument similar to (21), we find that Es/}- I 0 ]. Use these two facts to
establish the result:

Eyp Es[3f1PTP b Ef3f b I 0
vV V

which is b as required, v1

The choices v 0 and v c are particularly convenient when using the results
of Theorem 3.1 to define yp; both are present naturally when initializing quantities in
advance of forming B1.

THEOREM 3.2. The columns ofN BIpR .form a basis .for the nullspace of the
stairstep matrix Es.

Proof. N is the proper size and has full column rank, so we need only establish
that EN O. Recall from the proof of Theorem 3.1 that B lpT and EsJ
I 0 ]. Also note that pTpR [] by orthogonality. So

EN EsB-IPR F--,f1PTPR I 0 I

which is zero as required, v1

We now implement the algorithm by applying the conjugate gradient algorithm
to the factored nullspace normal equations (16), with N and yp as given in the the-
orems. In the description below, Sk is the conjugate gradient direction vector, and
dk NTGT(c- Gyp) NTGTGNxk is the residual associated with the normal equa-
tions. The vector qk stores the product of the coefficient matrix with the direction
vector. We use a starting vector of x0 0 (so Y0 Yp), but an arbitrary starting
vector presents no difficulties.

IMPLICIT NULLSPACE METHOD (INM).
1. Use Gauss Elimination or orthogonal reduction on E and b to replace E with

its stairstep form Es.
2. Choose a convenient augmentation matrix M1, and store the interlacing in-

formation in a permutation vector.

B1 P
M1

and b0 P
0

4. Initialize:

x0 0
do PBTGT(c- GBbo),
8o do.

T5. For k 0, 1,..., until dk dk < tolerance:

qk PIBTFBIpRsk,

ak adk/Sqk,

f Xk-t-I ] [ Xk ] [ 8k ]dk+l dk nt- ak
--qk

flk+l Tdk+ldk+l/d’dk,
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Sk+l dk+ + flk+Sk.
6. Recover y B(PRx + bo) and exit.

The algorithm is easy to modify for problems in saddle-point form (4): when c and
G are not available, simply substitute s---(Tc in the nullspace normal equations
(16) to obtain the new right-hand side --NT(s + Fyp).

A number of obvious choices for the augmentation matrix M provide a menu of
potential algorithms. Some of these include:

INMI. Form B by interlacing the stairstep matrix E8 with rows of the identity
matrix I (this amounts to setting M1 P). The result is an interlaced version of the
nullspace method with NI as the basis matrix (18), and may be a reasonable choice
when G is unavailable, prohibitively dense, lacks full column rank, or is otherwise
unsuitable for interlacing. One would expect little preconditioning effect beyond the
order reduction itself. On the other hand, solves involving B can be coded to exploit
the presence of rows of the identity.

INM(]. Interlace E8 with rows of G. This is essentially BNP in nullspace form:
the coefficient matrices are identical, while the unknowns and right-hand sides differ
(when Cl 0, however, they differ only in sign). Depending on the structure of F
and G, it may be desirable to use the fact that GIBIPR I when computing the
direction vector sk. The algorithm may fail if G lacks full column rank, since the rows
of G needed to augment E may not be available.

INM(]I. Interlace E with rows of G when suitable rows are available, then
complete the construction of B1 by including rows of the identity matrix I. This
is another way of dealing with G when it lacks full column rank, and it proves to
be much more effective than INMI (see 4). As with INMI and INMG, there are
opportunities to code triangular solves and matrix-vector products efficiently. There
is, however, one subtlety: unless the elements of G and I are of roughly the same
order, the basis matrix associated with this algorithm will have columns of widely
varying magnitude, and the resulting normal equations will be badly conditioned [8].
We must scale either the matrix G or the interlaced rows to overcome this difficulty.

INMF. Use information from the matrix F to construct B1. Possibilities include
an incomplete Cholesky factorization of F, or a Cholesky factorization of a portion of
F (for example, the block diagonal portion). M1 can then be constructed from rows of
the resulting matrix. This approach may be particularly appropriate for saddle-point
problems.

The next section includes results of experiments with each of the above methods.

4. Numerical experiments. Here we test the algorithms on a series of test
problems based on the physical models shown in Figs. 5 and 6. We use two small
structural engineering problems (DAM2 and SOLID1) to compare the performance
of the conjugate gradient algorithms with the linear stationary methods 2-SOR and
3-AOR. We also test the conjugate gradient methods on larger, more realistic versions
of these problems (DAM10 and SOLID2). We then consider problems for which
algorithm BNP is not well suited. We test implicit nullspace methods on "damaged"
versions of the structures problems (DAM10D and SOLID2D), in which the matrix G
lacks full column rank. We also look at the marker-and-cell saddle-point formulation
of the Stokes problem inside the unit rectangle (problem FLOW). See [8] for a more
complete description of the problems, as well as more extensive experiments.
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All experiments were run on a two-processor Alliant FX/40 using sparse data
structures and double-precision arithmetic (vectorization on). The experiments con-
ducted on two processors employed the parallel techniques outlined in 2 (see dis-
cussion accompanying Fig. 4). To compute errors on the small engineering prob-
lems DAM2 and SOLID1, we obtained the "true" solution by solving the original
Kuhn-Tucker equations using LINPACK [3]. For the four larger structures problems
(DAM10, SOLID2, DAM10D, and SOLID2D), we validated the codes by running them
on smaller versions of the problems (comparing the solution to that produced by LIN-
PACK). We then took the true solution to be the result obtained by algorithm INMGI
with a stop tolerance of 10-l. The true continuous solution was used for error com-
putations in problem FLOW. The stop tolerances for the algorithms were adjusted
so that they each produced a relative error of 2.10-a for the structures problems,
and 3.10-5 for the flow problem. The execution times (in seconds), obtained using
the Alliant etime intrinsic, include all operations except input/output (for problem
FLOW, this includes the cost of generating the matrices). In all problems, however,
only the iteration times were significant: preprocessing, including factoring E and
forming B1, typically required only 1-2 percent of the cpu time.

Small full-rank structures problems. The first two test problems describe
small elastic engineering structures; we developed the models using techniques de-
scribed in Przemieniecki [14]. DAM2 (Fig. 5(a)) models a trapezoidal region intended
to be a rough approximation of a cross-section of a dam. The blocks in F are 5 5 for
the square elements, and 3 3 for triangular elements. The external load simulates a
body of water against the left vertical wall. This version of DAM has 104 constraints
and 244 unknowns. SOLID1 (Fig. 5(b)) is a rough model of a building subjected to
a steady wind approaching one of its vertical edges. This version of SOLID consists
of 60 solid tetrahedral elements. The problem involves 360 unknowns and 81 con-
straints; each of the 60 blocks in F is 6 6. The matrices for both problems reflect
two substructures. In practice, of course, both DAM2 and SOLID1 are too small to
justify substructuring techniques: the transition zones are far too large (15 percent
and 33 percent of the total number of columns, respectively), and the substructures
themselves are not well balanced. We developed substructured models primarily to
validate the codes.

We used these problems to compare the relative performance of the conjugate
gradient algorithms with the linear stationary methods. Since G has full column rank
for these problems, algorithms BNP, INMG, and INMGI are equivalent algorithms.
Since F is block diagonal with small diagonal blocks, it is easy to reduce G to upper
triangular form, and there is no need to consider algorithms that presume it is difficult
to do so. Thus, the only two implicit nullspace methods shown are INMI and BNP.
The SOR and AOR runs are for the approximate optimal values of the iteration
parameters (determined experimentally). The results are summarized in Table 1;
both the times and the iteration counts suggest that the linear stationary methods
are not competitive with BNP for this class of problems. We observed similar behavior
on several other test problems of comparable size, supporting the very conservative
theoretical results in [1] and [9]. Because of the poor performance of 2-SOR and
3-AOR on the small test problems, and the difficulty of determining appropriate
iteration parameters for these algorithms, we did not feel it necessary to test the
linear stationary methods on larger problems.

Larger full-rank structures problems. DAM10 and SOLID2 are larger ver-
sions of the models described above. In DAM10 there are 1,220 planar elements,
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(a) DAM (b) SOLID

FIG. 5. Structural engineering test problems.

TABLE
Numerical results: Small full-rank structures problems.

DAM2
(244 unknowns, 104 constraints)

BNP INMI 2-SOR 3-AOR

Iterations 52 78 818 5,991
2 proc. time .595 .791 8.24 60.8
1 proc. time .899 1.30 12.4 91.7

Speedup 1.51 1.64 1.50 1.51

SOLID1
(360 unknowns, 81 constraints)

BNP INMI 2-SOR 3-AOR
Iterations 41 88 208 609

2 proc. time .735 1.32 3.32 9.56
1 proc. time 1.08 2.06 4.81 14.0

Speedup 1.47 1.56 1.45 1.46

producing a problem with 2,440 constraints and 6,020 unknowns. We consider two
versions of the problem: one involving no substructuring of the physical domain, and
another with two substructures of fairly equal size (and 178 columns in the transition
zone). SOLID2 models a tall rectangular solid; there are 220 free nodes and 660 te-
trahedral elements in this model, producing a problem with 660 constraints and 3,960
unknowns. As with DAM10, we consider one version with no substructuring, and a
second version with two substructures. Even though the matrices are fairly large for
this problem, the geometry of the model does not allow a small transition zone: there
are 360 transition columns in SOLID2, which is almost 10 percent of the total number
of columns in the equilibrium matrix.
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TABLE 2
Numerical results: Large 1Cull-rank structures problems.

DAM10 SOLID2
(E is 2,440 x 6,020) (E is 660 x 3,960)

Two Substructures: Two Substructures:

BNP INMI
Iterations 910 1,416

2 proc. time 227. 355.
1 proc. time 386. 603.

Speedup 1’70 1.70

BNP INMI
223 689
63.3 191.
87.5 277.
1.38 1.45

No Substructuring: No Substructuring:

BNP INMI BNP INMI
Iterations 782 1,139 ’429 1,146

lproc, time 304. 444. 112" 291.

Once again, G has full column rank for these problems, so BNP, INMG, and
INMGI are equivalent algorithms. Moreover, it is easy to produce G in upper trian-
gular (in fact, block diagonal) form, so there is no need to consider algorithms that
presume G is difficult to use. Thus, we test only BNP and INMI. The results are
summarized in Table 2. Algorithm BNP outperforms INMI by a wide margin on both
problems. This supports what intuition might suggest: it is best to use rows of G to
form the preconditioner when it is possible to do so.

Comparing the results with and without substructuring is also quite interesting:
the problems change character completely when we change the partitioning of the
physical domain. For DAM10, convergence is significantly better without substruc-
turing, while for SOLID2, it it significantly better with two substructures. On both
problems, however, the results with two substructures on two processors are superior
to those obtained with one processor on one substructure. Speedups (comparing sub-
structured results on one versus two processors) were not as good as we would have
liked, but clearly reflect the size of the transition.zones: tests on SOLID2, which has
a large transition zone, exhibit significantly poorer parallel performance.

Rank-deficient structures problems. To test our ability to solve problem
LSE when the matrix G lacks full column rank, we modified the problems DAM10 and
SOLID2 to simulate the presence of "damaged" elements. We did this by adjusting
the physical parameters so that selected elements are "damaged" in the sense that
the associated blocks of F are rank deficient. In problem SOLID2D, we "damaged"
a collection of elements along an edge facing the wind (the shaded area in Fig. 5(b));
the result is a problem with 660 constraints, 3,960 unknowns, and 20 rank-deficient
blocks in F. The rank of G is 3,940, which is 20 short of the number of columns in
the matrix. Similarly, DAM10D is a modified version of DAM10. The "damaged"
region consists of 100 elements, or 8 percent of the total area of the model. The rank
of G is 5,920, which is 100 short of the total number of columns in G.

Because the matrix G lacks full column rank in each of these problems, algorithms
BNP and INMG cannot be used; the same is true of the block SOR and AOR methods.
Two examples of more general implicit nullspace methods handle the problems nicely,
however (Table 3). Both INMI and INMGI successfully solve the problems, with
INMGI producing substantially better results. In fact, INMGI comes very close to
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TABLE 3
Numerical results: Rank-deficient structures problems.

DAM10D SOLID2D
(E is 2,440 x 6,020) (E is 660 3,960)

Two Substructures:

INMGI INMI
Iterations 1,645 2,380

2 proc. time 410. 591.
1 proc. time 713. 1,020.

Speedup 1.74 1.73

Two Substructures:

INMGI
1,266
349.
478.
1.37

INMI
1,802
497.
692.
1.39

FIG. 6. Marker and cell grid for Stokes problem.

achieving a preconditioner based entirely on rows of G. On problem DAM10D, INMGI
used only 10 rows of the scaled identity to produce an upper triangular matrix B1.
On problem SOLID2D, INMGI needed only 12 rows of the identity matrix. Again,
the results support intuition: apparently, the more rows of G we can use in the
preconditioner, the better the convergence.

Saddle-point problems. To test implicit nullspace methods on a saddle-point
problem, we consider problem FLOW, a discretization of the Stokes equations subject
to Dirichlet boundary conditions on the unit square

V2v- Vp g,

V.v-- f,
v--v0 on the boundary.

The variables are defined in 1. We employ the MAC (marker-and-cell) finite dif-
ferencing described in Hall [6], in which pressure is specified at nodes placed at the
center of rectangular cells, and velocity is specified at the centers of edges connect-
ing the pressure nodes (Fig. 6). The reported test problem has 100 cells in each
direction, resulting in 19,800 unknown velocity components and 9,999 pressure values
(constraints). We test the algorithm on an artificial "flow" that is irrotational but
has nonzero divergence:

vl 2x cos y,
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TABLE 4
Summary of results for problem FLOW.

Two Subdomains:

INMI INMF
Iterations 8,34 8,352

2 proc. time 2,990. 3,400.
1 proc. time 5,180. 6,090.

Speedup 1.73 1.79

INMG
1,132
463:
835:
1.80

No Domain Decomposition:

INMI INMF INMG
Iterations 385

1 proc. time 274.

v2 --X2 sin y,

p xy2.

Before substructuring, the matrix F is block diagonal with two large blocks, each of
which reflects a five-point discretization of the Laplacian. Its Cholesky factor is too
dense to be used efficiently as G; instead, we take G in INMG to be two copies of the
discretized gradient operator. For algorithm INMF, we compute the Cholesky factor
of the block diagonal portion of F (each block in the diagonal of F is a tridiagonal
matrix), and use rows of the resulting matrix to construct M1.

Table 4 shows the results of experiments on FLOW. Here again, algorithm BNP
cannot be used: the vector c is not explicitly available. On the other hand, algo-
rithm INMG, the nullspace version of BNP, is well suited to deal with this problem.
Here we compare INMG (which uses rows of the discrete divergence G to form the
preconditioner), INMI (which uses rows of the identity), and INMF (which uses rows
of F, the negative of the Laplacian). We observe that the tridiagonal portion of F
produces a poor preconditioner in INMF. It seems clear we cannot afford to ignore
the information in the outer bands of F when constructing the preconditioner, espe-
cially when we are only using selected rows of the factorization we obtain. Similarly,
INMI performs poorly. INMG, on the other hand, performs fairly well; once again,
the results suggest that we should use rows of G whenever possible when constructing
the preconditioner.

Notice that we obtain more reasonable speedups on the flow problem: the tran-
sition zone is quite small (1.5 percent of the dimension of F), and the subdomains
are virtually identical in structure. On the other hand, the results for INMG without
domain decomposition reflect an extraordinary reduction in the number of iterations.
The change in the rate of convergence is so dramatic that the time required to solve the
problem on one processor without domain decomposition is almost half that needed
for the substructured problem on two processors. Clearly, we would need a more so-
phisticated approach to constructing M1 to have any hope of overcoming the penalty
associated with this type of domain decomposition applied to the Stokes problem.
Incomplete Cholesky decompositions offer one possibility worth exploring.

We believe the results suggest that implicit nullspace methods provide a promising
alternative to existing iterative methods for solving constrained minimization prob-
lems. The INM approach offers considerable flexibility in the construction of the
preconditioner, allowing us to exploit special characteristics of the matrices (e.g.,
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substructured form) as well as to overcome difficulties inherent in the problem (e.g.,
a rank-deficient G). We are convinced that further research on more effective ways to
produce the augmentation matrix M1 will prove fruitful.
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ACCELERATION OF RELAXATION METHODS FOR
NON-HERMITIAN LINEAR SYSTEMS*

M. EIERMANNt, W. NIETHAMMERt, AND R. S. VARGA

Abstract. Let A I- B E Cn’n, with diag(B) =0, denote a nonsingular non-Hermitian
matrix. To iteratively solve the linear system Ax b, two splittings of A, together with induced
relaxation methods, have been recently investigated in [W. Niethammer and R. S. Varga, Results in
Math., 16 (1989), pp. 308-320]. The Hermitian splitting of A is defined by A Mn Nn, where
Mn := (A+ A*)/2 is the Hermitian part of A. The skw-Hrmitian splitting of A is similarly defined
byA=Ms-N with M :--I+(A-A*)/2.

This paper considers k-step iterative methods to accelerate the relaxation schemes (involving a
relaxation factor w) that are generated by these two splittings. The primary interest is not to deter-
mine the optimal relaxation factor w that minimizes the spectral radius of the associated iteration
operator. Rather, a value of w is sought such that the resulting relaxation method can be most effi-
ciently accelerated by a k-step method. For the Hermitian splitting, the choice w 1 (together with
a suitable Chebyshev acceleration) turns out to be optimal in this sense. For the skew-Hermitian
splitting, a hybrid scheme is proposed that is nearly optimal.

As another application of this latter hybrid procedure, the block Jacobi method arising from a
model equation for a convection-diffusion problem is analyzed.

Key words, iterative methods for non-Hermitian matrix equations, relaxation methods, Her-
mitian splittings, skew-Hermitian splittings, Chebyshev acceleration

AMS(MOS) subject classification. 65F10

1. Introduction. To solve a nonsingular linear system of algebraic equations

(1.1) Ax x- Bx b (A, B E Cn’n, diag(B) 0, b E C)

whose coefficient matrix A is non-Hermitian, Niethammer and Varga [11] recently
studied relaxation methods based on either the Hermitian or the skew-Hermitian
splitting of A I- B. Letting

(1.2) F’=(B+B*)/2 and G:=(B-B*)/2

denote, respectively, the Hermitian and skew-Hermitian parts of B, then the Hermi-
tian splitting of A is defined by

(1.3) A Mh Nh with Mh :- I- F and Nh
": G

(here, we assume that Mh is invertible, which is, for instance, guaranteed if the
Hermitian part Mh of A is positive definite). The naturally associated skew-Hermitian
splitting of A is given by

(1.4) A--M-Ns withM:=I-G and N’=F.

It should be mentioned that Concus and Golub [2] earlier introduced the Hermitian
splitting (1.3) of A. Under the assumption that Mh is positive definite, they chose
Mh as a preconditioner for an associated conjugate gradient method.
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Each splitting A M- N of A gives rise to a class of one-parameter relaxation
schemes for the solution of (1.1), namely,

(1.5) {(1 w)I + wM} Xm := {(1 w)I + wN} Xm-1 + wb,

or equivalently,

(1.6) Xm TXm_ + co (m 1,2,...),

where w : 0 is an arbitrary complex number for which (1 -w)I + wM is nonsingular
and

T := {(1 w)I + wM}-{(1 w)I + wN}, c := w((1 w)I + wM}-b.

In this way, the specific splittings defined in (1.3) and (1.4) generate the following two
relaxation methods:

h (m 1,2,..),(1.7) Xm /:Xm_ -- Cwwhere

Th := (I wF)-{(1 w)I + wG}, h W(I wF)-b,

and

(1.8) Xm := TXm_l +c (m 1,2,...),

where

T. := (I wG)-{(1 w)I + C :-- cO(I wG)-lb,

these methods each depending on a single relaxation parameter w.
Under the assumption (cf. (1.2)) that I- F is Hermitian and positive definite,

Niethammer and Varga [11] determined inclusion sets for the eigenvalues of the cor-
responding relaxation matrices Th and T. To be more precise, they showed that the
spectrum a(Th) of Th is contained in a certai.n rectangle (which degenerates to an
interval on the imaginary axis when w 1) (cf. [11, Fig. 1]), whereas a(T) is con-
tained in a bow-tie region (cf. [11, Fig. 2]). In this paper, we examine the question of
whether these facts can be used to effectively accelerate the procedures (1.7) and (1.8)
by the application of k-step iterative methods, such as the Chebyshev semi-iterative
method (when k 2).

To go beyond the special schemes (1.7) and (1.8), we need some additional ter-
minology. Let

(1.9) Xm Txm-1 + c (m--- 1,2,...),

with 1 a(T), be called a basic iteration for the solution of (1.1) which results from
a splitting of the matrix A. We assume that we have a priori information about the
eigenvalues of T of the form

(1.10) a(T) C_

where is a compact subset of the complex plane with 1 Ft. In addition, with the
notation C := C t2 {cx}, we always require that t has no isolated points and that



ACCELERATION OF RELAXATION METHODS 981

\ t is of finite connectivity. Note that for a(Th) of (1.7), as well as for a(T*) of
(1.8), inclusions of this type are available, as previously mentioned. To (1.9), we now

(cf.

(1.11) Ym "= #m,o(Tym-1 + c) + #re,lYre-1 +/Zm,2Ym-2 +"" + #,,kYm-k

kwhere #m,j E C (#m,j "= 0 for j > m) and Y-j=0 #m,j 1 (m 1, 2,...), in order to
accelerate the convergence of the basic iterations (1.9). It is well known that these k-
step methods belong to the class of semi-iterative methods or polynomial acceleration
methods applied to (1.9) (cf. Varga [12]). The error vectors em :-- (I- T)-lc- Ym,
associated with the mth iterate Ym of (1.11), can be written as em= p,(T)eo, where

mthe polynomials p,(z) =o rm,jZJ are recursively defined by p,(z) :-- 0 (m < 0),
po(z) := 1 and

p,(z) :-(#m,OZ+#m,)Pm-(Z)+#m,2P,-2(Z)+’"+#m,kPm-k(Z) (m-- 1,2,...).

For notational convenience, we collect the Taylor coefficients of each of the polyno-
mials Pm into an infinite lower triangular matrix P (rm,j),>j>o which we call the
generating matrix for the k-step method (1.11). Then it is known (cf. [4]) that, for a
given P, the value of

(T, P) := limsup sup [llell]/

depends only on the structure of the Jordan canonical form of the matrix T. With
regard to (1.10), we therefore define the asymptotic convergence factor of the k-step
method (1.11), with respect to the information a(T) c_ gt, by

(1.12) (, P):= max{(T, P)" T e (n,n, n

_
1, with a(T) g }.

The best, i.e., smallest, convergence factor we can hope to achieve by any k-step
method (k 1, 2,...) in this worst-case philosophy is the asymptotic convergence
factor of , defined by

(1.13) a(gt):= inf{a(,P) P generates a k-step method, k 1, 2,...}.

The infimum in (1.13) is actually a minimum (cf. [4]), and each k-step method for
which this minimum is attained will be called asymptotically optimal with respect to
t. The best-known examples of asymptotically optimal methods are the Chebyshev
semi-iterative methods studied by Manteuffel [9]. In [9], is an ellipse with either
real foci or complex conjugate foci, with. 1 t, and in these cases there exists a
Chebyshev semi-iterative method, i.e., a two-step method, which is asymptotically
optimal with respect to . (We note, more generally, that any ellipse in C with
1 admits an asymptotically optimal two-step method (cf. [10]).)

The quantity a() of (1.13) has some interesting capacity-like properties. For
example, it is known that

(1.14) a(O) < a(2)

if is a proper subset of 2 (cf. [3, Prop. 3]). To compare the convergence f:ctors
of two compact sets tl and t2 with 1 g: gt2 and t2 g t, another observation is



982 M. EIERMANN, W. NIETHAMMER, AND R. S. VARGA

helpful. Let gt be a compact subset of C with 1 t, and let t, Hm be a polynomial
of the exact degree m satisfying tm (1) 1 and the condition

tin(z) 1 implies z

Then it is known (cf. [3, Lemma 4]) that

(1.15) a(Ft) <_ [a(t,(t))]/’

where tm (gt) denotes the image of under the polynomial transformation z tm (z).
Moreover, equality holds in (1.15) if and only if the implication

(1.16) z Ft implies tin(z) tm(gt)

is valid for every z e C (cf. [3, Thm. 6]).
If ( \ is simply connected, and if denotes the Riemann mapping function that

maps the complement of gt conformally onto the exterior of the unit circle such that
the points at infinity correspond to each other, then a(Ft) can be expressed explicitly
(cf. [4, Thm. 11])as

1
(1.17) a(gt)

10(1)1 < 1,

the last inequality in (1.17) following from the assumption that I f. In what
follows, (1.17) turns out to be useful when one must decide whether it is worthwhile
to apply a k-step method of the form (1.11) to given basic iteration (1.9) whose
operator T satisfies a(T)

We briefly describe the contents of this paper. For the relaxation method (1.7)
associated with the Hermitian splitting of A, we examine in 2 which choice of w in

(1.7) is best. Here, we are not interested in merely minimizing p(Th) as

rather, we seek a value of w such that (1.7) can be most efficiently accelerated by a k-
step method. It turns out that the choice w I is best in this sense. For the relaxation
method (1.8) associated with the skew-Hermitian splitting of A, we accelerate (1.8),
in 3, by means of a new hybrid scheme, consisting of a polynomiM transformation of
the given linear system, together with the pplication of a stationary one-step method
to the transformed equations. An optimized Chebyshev acceleration of (1.8), as given
in Chin and Mnteuffel [i], will be shown here to converge more slowly thn this
hybrid method. In 4, we apply our hybrid procedure to the block Jacobi method for
a model equation of a convection-diffusion problem. Again, we make use of results
due to Chin and Manteuffel [I], who determined sets in the complex plane containing
all eigenvalues of the block Jacobi matrix in this example. Finally, a comparison with
the associated block successive overrelaxation (SOR) method is given.

2. The Hermitian splitting. We first consider the Hermitian splitting (1.3) of
A and its associated relaxation methods (1.7). Let {’j}j__ denote the eigenvalues
of F (cf. (1.2)) with a := /1 _< 2 _< <_ n =: /. We always assume that the
Hermitian part of A, namely I- F, is positive definite. This assumption, coupled
with the hypothesis of (1.1) that the trace of F is zero, implies that

(2.1) a<_0<_<l.

For all w (0, 1//), the matrix I- wF is evidently nonsingular and the relaxation
matrix Th of (1.7) is thus defined for these values of w. From [11, (3.13) and Fig. 1],
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we further have the inclusion

(2.2)
{zeC’d<Rez<c, lImzl<f},

if0<w<l,
if w= 1,
ifl <w < 1/,

where

1 -co 1 -w
c c(w) :=

1- wo’ d d(w) :=
1- ooZ’ and f f(w) :=

1 -wfl"
In every case, the rectangle f is contained in the open unit disk if and only if
d2(w) + f2(w) < 1, which is equivalent (cf. [11, Thm. 3.2]) to

(2.3) 2(1 )O < w < cog :=
l+p2(G)-/2"

The relaxation method (1.7) is therefore guaranteed to converge for any w in the
interval (0, cog).

A natural question now is which choice of w is optimal. The classical concept of
optimality seeks a minimum of the spectral radius p(Th) as a function of w. With
our limited information, a(Th) c_ f,o, i.e.,

p(Th) < (w):= v/d2(w)+ f2(co),

we seek to minimize t3(w) for w e (0, COg). An easy calculation shows that 3 has exactly
one minimum in (0,w), which is attained at

1 p(G)(2.4) w* with 3(w*)=
1 + p2(G) V/(1 + p2(G

The question is whether this definition of optimality really makes sense in our context.
Let us consider the following example. For p(G) 1 and 0.5, we obtain from
(2.4) that co. gl and P(3) < 3(co*) 2/v 0.8944.. On the other hand, if we

choose co 1, then ftl reduces to a line segment, i.e., fi [-2i, 2i], and T1h may be
divergent. But the Chebyshev semi-iterative method for this interval, or equivalently,
the stationary two-step method

(2.5) Ym #0(Tlhym-1 + Cl)-4- #lYre-1 -4- #2Ym-2 (m 2, 3,...)

with

#0 := (v/-l)/2, #l=0, and #2=1-#0

has an asymptotic convergence factor of (x/- 1)/2 0.6180... (cf. Niethammer and
? At this stage, thisVarga [10, Ex. 2]). Is co 1 therefore a better choice than CO g.
h hcould be a hasty conclusion since we can also accelerate x, T1/3x,_l + c/3 by

a Chebyshev procedure or another k-step method, with the goal of constructing an
even faster scheme.

After these considerations, we believe that it is more appropriate to determine an
CO that minimizes (Ft) (cf. (1.13)), rather than t(CO). The assertion of the following
theorem is that CO 1 is optimal in this sense, i.e., the introduction of a relaxation
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parameter w 1 does not improve the iterative method based on the Hermitian
splitting (1.3) of A.

THEOREM 1. For each rectangle f (cf. (2.2))with 0 < w < COg (cf. (2.3)) and
co 1, there holds

>
1 -/ + V/(1 -/)2 + p2(G

Proof. Let co be arbitrary (but fixed) in (O, cog) with co 1. The interval

Io, :-- [d(co) if(co), d(co) + if(co)]

(cf. (2.2)) is a proper subset of the rectangle f. The polynomial (in H1) defined by

1
t(z) co(1 -/) (z 1) + 1 (t(1) 1),

induces a bijection of I, onto 1. From (1.14) and (1.15), we therefore obtain

>

The explicit expression for () has been derived in [10, Ex. 2]. [:1

We conclude this section with a simple example which shows that the bounds of
(2.2) may be a considerable overestimation of the spectrum of Th.

Example 2.1. If we discretize the boundary value problem

(2.6) u"(t)

(T > 0), by using central differences with mesh size h 1/(n + 1), a linear system
results whose coefficient matrix A is an n x n Toeplitz tridiagonal matrix. Normalizing
its diagonal entries to be equal to 1, we have

(2.7) A tridiag[-(1 + R)/2, 1,-(1 R)/2]

with the mesh Reynolds number R := rh/2 (cf. Elman and Golub [5, 2]). Thus, its
Hermitian splitting is given (cf. (1.3)) by

(2.8) A (I tridiag[1/2, 0, 1/2]) tridiag[R/2, 0,-R/2].

Since the eigenvalues of the matrix tridiag[a, 0, b] cn,n are known (cf. [5, Lemma
2]) to be

A} 2Vcos
1

we deduce from (2.2) the estimate

<
1 cos(rh) r2h + O(h) (h -+ O)

(where, because of Theorem 1, we only consider co 1). On the other hand, in this
simple example, the eigenvalues A of T1h (I- F)-IG can be computed explicitly.
Let A be such an eigenvalue. If A 0, then

1 [ 1-R/A I+R/A(I- F) G- tridiag [- ----, 1, -----
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must be singular, or equivalently, there must be a k E {1, 2,..., n} such that

R2
2

4 4A2 cos(rkh)= 1.

From this, it is easy to see that the eigenvalues of Th (I- F)-IG are given by

k 1,2,...,n/2, if n is even,+Rcot(rkh)i, k 1, 2,..., (n 1)/2, if n is odd.

(If n is odd, then Th has in addition the eigenvalue A 0.) This implies that

T
p(lh) Rcot(rh) + O(h2) (h 0),

which is an order of magnitude smaller than the estimate (2.9).
3. The skew-Hermitian splitting. We turn now to the investigation of the

relaxation methods (1.8) induced by the skew-Hermitian splitting A (I- G) F
(cf. (1.4)) of A. As in the previous section, we again assume that the Hermitian part
Mh I- F of A is positive definite, i.e., for the eigenvalues a "1 _< <_ n
of F, there holds, as in (2.1),

a_<0_<<l.

For the relaxation matrix T of (1.8) with w > 0, Niethammer and Varga [11] derived
the eigenvalue inclusion

where

c(w)" 1-w+w/3 1-w+wa
2

c2(w) "=
2

They actually proved more, namely, that _a(T8) is contained in a bow-tie region (cf.
[11, Fig. 2]), which is itself contained in f. These bow-tie regions depend on the
spectral radius p(G) of the skew-Hermitian part G of A, and fill out f as p(G) tends
to infinity. The estimate (3.1) has the advantage of being independent of p(G).

Note that under the given assumption on a and , we have

< <

i.e., p(T) < 1 if c2(w) > -, which is equivalent to p(T) < 1 for 0 < w < Wg
2/(1 -a) (cf. [11, Whm. 4.1]). The optimal relaxation factor w0, with respect to the
information (3.1), occurs when the condition c2(wo) -c (wo) holds, i.e.,

2
(3.2) w0 2 (a / fl)

with p(To) <
2 (a +/3)

(cf. [11, Thm. 4.1]). In this latter case, we give the associated bow-tie region in Fig. 1.
We now apply these results to the example already discussed in the last section.
Example 3.1. The skew-Hermitian splitting (1.4) of the matrix A of (2.7) has the

form A (I- G)- F, where F tridiag[1/2, 0, 1/2] and G tridiag[R/2, 0,-R/2]
(cf. (2.8)). With a cos(rh) and --cos(rh), we have w0 1 and

p(T8) _< cos(rh) < 1.
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FIG. 1. Shape of the bow-tie region containing a(T) (cf. (3.1)) together with Ac (cf. (3.4)),
where cl(w) -c2(w)(felt-hand side). A (cy. (3.9)) and the enclosing ("embracing") disk

D(f(#)), r(to)) (cf. Proposition 3.2)(right-hand side).

Thus, the matrix T18 is convergent for any value of the parameter T (cf. (2.6)) and
for any mesh size h. As in the case of Th, the eigenvalues of Ts can be calculated
explicitly in this simple example. With the technique used in Example 1, we see that
the spectrum of T1 consists of the points

if n is even,cos(Trkh) k 1, 2,..., 3,A=_
/ n--1 if n is odd.R2cos2(Trkh) + 1’ k 1,2,..., 2

(If n is odd, we again note that T has the additional eigenvalue A 0.) Note further
that a(T*) possesses only real elements. We thus conclude that

cos(rrh)P(Ts) V/R2 cos2(Trh) + 1

To accelerate the convergence of the basic iteration (1.8), the Chebyshev semi-iterative
method can be applied to the interval [-p(T18), p(Tl*)].

The problem we wish to consider now is hQw we can use the information of (3.1)
to accelerate the convergence of the basic iterative method xm := TSXm-1 + c.

To simplify our notation, we consider the basic iteration method

(3.3) Xm Txm-1 + c (m 1,2,...),

where we assume that a(T) c_ Ac, where

(3.4) hc:={zeC:lz-cI<c or Iz+cI<c},
(Note that fi of (3.1) has this form for w w0.)with0<c< 3"

We first wish to design a stationary two-step method

(3.5) Ym #0(Tyro-1 + c) + #lYre--1 + #2Ym--2 (m 2, 3,’’ ")

(with #0 +/zl + #2 1), which is compatible with this information for a(T). Re-
cently, Chin and Manteuffel [1] solved an analogous problem. They determined the
optimal relaxation parameter w of the SOR method under the assumption that the
corresponding Jacobi matrix T is weakly cyclic of index 2 and satisfies the condition
(3.4). Their result is the following proposition.
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PROPOSITION 3.1. [1, 3.4]. For 0 < c < 1/2, define the positive numbers t E

(/, 2) and I’;,2 e (0, 1) by

t2.
3+x/5-4c2 /t/l (1-x/1-c2t2)(3.6) 2(1+c2)

and a2:=V ct

Then, the asymptotic convergence factor a(Ac, P)(cf. (1.12)) of any stationary two-
step method (3.5) satisfies the inequality

a(h, P) _> 32,

with equality holding if and only if the parameters {# 2}j=0 are chosen to be

#0-1+322, #-0, and #2 -32
The quantity 32 of Proposition 3.1 also represents the best asymptotic convergence
factor that can be obtained by applying a Chebyshev acceleration to (3.3), since these
Chebyshev procedures are asymptotically stationary two-step methods (cf. Golub and
Varga [7]).

But neither a Chebyshev method nor a stationary two-step method is asymp-
totically optimal with respect to the information a(T) c_ A, where A is defined in

(3.4). The asymptotic convergence factor of such a method, i.e., the quantity a(A)
of (1.13), is given by

1 cos(rc)(3.7) a(Ac)
sin(rc)

This follows from (1.17), together with the fact that the exterior mapping function
(I) of hc is known in closed form (cf. [8, 5.7]). Knowing (I), we can construct an
asymptotically optimal nonstationary one-step method based, for example, on the
Fejr nodes of h (cf. [6]).

Finally, we present a hybrid scheme that is nearly optimal with respect to the
information a(T) C_ Ac (0 < c < ). Instead of x- Tx4-c, we consider the equivalent
linear system

(3.8) x T2x + Tc + c.

The eigenvalues of T2 are contained in A2, whose boundary is the cardioid

(3.9) 0A2 {z e C’lz 2c2(1 + cos(argz))}.

Since h2 can be easily enclosed ("embraced") by a circle, we solve (3.8) by the follow-
ing stationary one-step method, often also called a stationary first-order Richardson
method:

(3.10) x, #0(T2Xm_l -- Tc + c) + (1 #0)Xm_l (m 1, 2,...)

(#0 C, #0 0). In general, as it certainly is not efficient to compute T2 explicitly
(especially if T is sparse), we divide (3.10) into two half-steps:

(3.11) Xm-1/2 Txm_ + c,

Xm #0(Tx,-/2 + c) + (1 #0)Xm- (m- 1, 2,...).
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Before we answer the question as to which choice of #0 is optimal (with respect to
the given information a(T2) C_ h2), a remark concerning the asymptotic convergence
factor of a hybrid method such as (3.10) or (3.11) should be made. If we apply a k-step
method, as in (1.11) for instance, we must perform one matrix-vector multiplication by
T in each iteration step. The hybrid method (3.11), however, requires two such matrix-
vector multiplications per step. To compare both schemes fairly, we must compare g2

of Proposition 3.1 with [(A2, P(#0))] 1/2, where P(#0) denotes the generating matrix
(cf. (1.13)) of the stationary first-order Richardson extrapolation with parameter #0.
Our new result is found in Proposition 3.2.

PROPOSITION 3.2. For 0 < c < 1/2, the effective convergence factor

th(#0) [t(Ac2, P(#0))] 1/2

of any hybrid scheme of the form (3.11) satisfies the inequality

(a le) >
1 c2

--(1 C2) ---: t

with equality holding if and only if

2+c2

# 2- 2c2

Proof. Since the residual polynomials associated with a stationary first-order
Richardson method are pm(Z) [#oZ + 1 #0]m (m 0, 1,...), the convergence
factor (h2, P(#o))is given by

n(A2 P(#o)) max I#oz + 1 #01- max
zEh2 zEh2

where (#0):= 1 1/#0. Writing 2c2t, observe that to minimize (3.13) as a
function of , we can confine our attention to those t that are contained in [0, 2]. For
the function r(t):- maxzeh Iz- 2c2tl, there holds

24c4(t-2)2 for0_t_ ,
2<t<2"r2 (t) 8ca 2t-1 for

Furthermore, 2(A2, P(#o)) r2(t)/(1 2c2t) 2 (with #0 1/(1 2c2t)) is monoton-
2 2] at to 3/(4 + 2c2).ically decreasing for t [0, ] and attains its minimum in [,

Therefore,

1 2 +c2

# 1-2c2t0 2-2c2

is the optimal extrapolation parameter, and substituting this into (3.13) gives the
desired result of (3.12). D

The asymptotic convergence factors of the relaxation method (1.8) with w of (3.2),
of the stationary two-step (or Chebyshev) acceleration (3.5) described in Proposition
3.1, of the hybrid procedure (3.11) (cf. Proposition 3.2), and finally, of an asymptoti-
cally optimal method with respect to Ac (cf. (3.7)), are compared in Table 1.
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TABLE 1

Convergence factor of equation
c (1.8/ (3.6/ (3.12/I (3.7/

0.2 0.4000 0.3420 0.3324 0.3249
0.4 0.8000 0.7451 0.7348 0.7265
0.45 0.9000 0.8661 0.8595 0.8541
0.495 0.9900 0.9s59 0.9s5 0.9s44

The entries of the last two columns of the table below are seen to be more nearly
More precisely, on settingequal as c increases to 3" - (0< withC =-: 2

g" < 1 small)

it can be verified from (3.12) that, as a function of e,

25 _2 4373ah(#)) 1 3S + --e -- + O(s4) ( --. 0),

whereas (3.7), as a function of , is

7r2 71-3 3a(Al/e_) 1-re+--e -- +O(e4) (e+0).

In terms of rates of convergence, we have that

lim {-lgn(A/2-)}
_

1.0471...
-0 log/h() 3

Thus for e small, the loss in the rate of convergence of the hybrid method (3.11) over
that of the best rate of convergence, i.e., -log a(A/2_), is less than 5 percent. (In
fact, from the numerical evaluation of the quantity in braces above, it appears that
this loss in the rate of convergence never exceeds 5 percent for any c with 0 < c < 3")

4. An example. The constant coefficient convection-diffusion equation

(4.1) Au + rUx f
(r _> 0) on the unit square (0, 1) x (0, 1), with Dirichlet boundary conditions, is often
used to construct test problems for iterative methods (el., e.g., Chin and Manteuffel
[1] or Elman and Golub [5]). The standard central difference discretization with
mesh size h 1/(n + 1) in both coordinate directions leads to a linear system whose
coefficient matrix A has the block tridiagonal form

A- tridiag[-I,K,-I] E 1:nz’n2 with K= tridiag[-(l+Rx),4,-(1-Rx)] E In’n,

where Rx :-- Th/2 for the rowwise natural ordering of the mesh points. The corre-
sponding block Jacobi matrix T has the eigenvalues

cos(rkh)(4.2) (k, 2,...,
2 V/1 R2 cos(/h)

(cf. [5, Thm. 1]). For Rx _< 1, the eigenvalues of T are therefore all real with

Ak, (k,l-1 2,...,n).
2- V/1- R2 2- V/1- R2
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If, however, R _> 1, then from (3.4),

a(T) C_ A1/4.
This inclusion is not sharp: Chin and Manteuffel showed that a(T) is contained in a
certain bow-tie region (cf. [1, Fig. 2.2]) whose size depends on R. As R becomes
larger, however, these bow-tie regions fill out A1/a. (Besides that, we have ignored
the factor cos(rh), which is not essential for our analysis.)

For R > 1, we now apply the hybrid scheme (3.11) to the block Jacobi method,
which has the asymptotic convergence factor

ah(#0) 0.4229... for the optimal #o 1.1 (when c 1/4)
(cf. Proposition 3.2). For the same problem, Chin and Manteuffel [1, (4.15)] found
the spectral radius of the associated block SOR matrix/: (with optimal relaxation
parameter) which is p() 0.1885... if R _> 1.7177. Clearly, the straightforward
application of the hybrid procedure (3.11) is not competitive with the block SOR
method for this model problem.

However, the block Jacobi matrix T in our example is weakly cyclic of index 2
(cf. [13, p. 39]), i.e., there exists an n n permutation matrix Q such that

(4.3) =QTQ*=
T2 0

where the null submatrices on the diagonal are square. The transformed system
x 2x/c+ c, which was the starting point of the hybrid scheme (3.11), then has
the form

(4.4)
X2

where the vectors x and :- c + c are partitioned conformally with respect to the
partitioning of (4.3). In view of (4.4), it is sufficient to solve the reduced problem

x: TTlX: +c + c:

for the vector x2. Since a(T2TI) \ {0} a(T2) \ {0}, we have a(T2T1) C A a, and/
thus the optimal extrapolation parameter #0 of the cyclically reduced hybrid scheme

Xm--1/2 TlXm-1 -]-

Xm t-to(T2xm-/2 + c2)+ (1 -/-tO)Xm-- (m 1, 2,...)

is again given by Proposition 3.2. One step of the iterative method (4.5) requires one
matrix-vector multiplication by each of the blocks T1 and T2. The effective asymptotic
convergence factor of (4.5) (with optimal #0 1.1) is therefore [/h(0)]2 0.1789...,
indicating that (4.5) is marginally faster than the block SOR method, since p(w)
0.1885... for this latter method when R _> 1.7177.
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Abstract. This paper discusses multimatrix generalizations of two well-known orthogonal rank
factorizations of a matrix: the generalized singular value decomposition and the generalized QR-
(or URV-) decomposition. These generalizations can be obtained for any number of matrices of
compatible dimensions. This paper discusses in detail the structure of these generalizations and
their mutual relations and gives a constructive proof for the generalized QR-decompositions.

Key words, singular value decomposition, QR-factorization, URV-decomposition, complete
orthogonal decomposition
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1. Introduction. In this paper, we present multimatrix generalizations of some
well-known orthogonal rank factorizations. We show how the idea of a QR-decompo-
sition (QRD), a URV-decomposition (URVD), and a singular value decomposition
(SVD) for one matrix can be generalized to any number of matrices. While gener-
alizations of the SVD for any number of matrices have been derived in [9], one of
the main contributions of this paper is the constructive derivation of a generalization
for the QRD (or URVD) for any number of matrices of compatible dimensions. The
idea is to reduce the set of matrices A1, A2,..., Ak to a simpler form using unitary
transformations only. Hereby, we avoid explicit products and inverses of the matrices
that are involved. We show that these generalized QR-decompositions (GQRD) can
be considered as a preliminary reduction for any generalized singular value decompo-
sition (GSVD). The reason is that there is a certain one-to-one relation between the
structure of a GQRD and the "corresponding" GSVD, which is explained in detail
below.

This paper is organized as follows. In 2, we provide a summary of orthogonal
rank factorizations for one matrix. We briefly review the SVD, the QRD, and the
URVD as special cases. In 3, we give a survey o1 existing generalizations of the SVD
and QRD for two or three matrices. In 4, we summarize the results on GSVDs for
any number of matrices of compatible dimensions. Section 5, which contains the main
new contribution of this paper, describes a generalization of the QRD and the URVD
for any number of matrices. We derive a constructive, inductive proof which shows
that a GQRD can be used as a preliminary reduction for a corresponding GSVD. In
6, we analyze in detail the structure of the GQRDs and GSVDs and show that there
is a one-to-one relation between the two generalizations. This relation is elaborated
in more detail in 7, where we illustrate how a GQRD can be used as a preliminary
Step in the derivation of a corresponding GSVD.
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While all results in this paper are stated for complex matrices, they can be spe-
cialized to the real case without much difficulty. This can be done in much the same
way as with the SVD for complex and real matrices. In particular, it suffices to re-
state most results using the term real orthonormal instead of unitary and to replace
a superscript "." (which denotes the complex conjugate transpose of a matrix) by a
superscript "t" (which is the transpose of a matrix).

2. Orthogonal rank factorizations. Any matrix A E Cmn can be factorized
as

where R Cnxn is upper trapezoidal and H is a real n x n permutation matrix
that permutes the columns of A so that the first ra rank(A) columns are linearly
independent. The matrix Q Cmxm is unitary and can be partitioned as

IFa m ra
).

If we partition R accordingly as R (Rll R12), where Rll Crxra is upper
triangular and nonsingular, we obtain

A=QI(RI Rle)H
which is sometimes cMled the QR-factorization of A.

If we rewrite (1) as

Q’A-( R

we see that Q is an orthogonal transformation that compresses the rows of A. There-
fore, it is called a row compression. A similar construction exists, of course, for a
column compression. A complete orthogonal factorization of an m x matrix A is any
factoriation of the form

(2) A U ( T 0 V*

where T is rax ra square nonsingular nd ra rank(A). One particular case is the
SVD, which has become an important tool in the nalysis and numericM solution
of numerous problems, especially since the development of numericMly robust algo-
rithms by Golub nd his coworkers [15], [16], [17]. The SVD is complete orthogonM
factorization where the matrix T is diagonal with positive diagonM elements:

A UEV*.

Here U Cmxm and V Cnxn are unitary and E mxn is of the form

(71 0 0 0
0 a2 0 0

0 0 rra 0
0 0 0 0

In this paper, we use the convention that zero blocks may be "empty" matrices, i.e., certain
block dimensions may be 0.
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The positive numbers 0-1

_
0"2

_ _
0-ra > 0 are called the singular values of A,

while the columns of U and V are the left and right singular vectors.
In applications where m >> n, it is often a good idea to use the QRD of the matrix

as a preliminary step in the computation of its SVD. The SVD of A is obtained via
the SVD of its triangular factor as

A QR- Q(UrE.V?) (QUr)ErV?.

This idea of combining the QRD and the SVD of the triangular matrix, in order
to compute the SVD of the full matrix, is mentioned in [22, p. 119] and more fully
analyzed in [3]. In [18] the method is referred to as R-bidiagonalization. Its flop count
is (mn2+n3), as compared to (2mn2-2/3n3) for a bidiagonalization of the full matrix.
Hence, whenever m _> 5/3n, it is more advantageous to use the R-bidiagonalization
algorithm.

There exist still other complete orthogonal factorizations of the form (2) where
only T is required to be triangular (upper or lower) (see, e.g., [18]). Such a factoriza-
tion was called a URV-decomposition in [27]. Here

where U E Cm m V C
gular upper triangular.

are unitary matrices and R Cra xr is square nonsin-

It is well known that the QR-factorization of a singular matrix A and of its
transpose A* can be used for finding the image and kernel of A (URV-decompositions
actually give both at once). In this paper, we try to extend these ideas to several
matrices. Suppose we have a sequence of matrices Ai, 1,..., k, and we want to
know the kernels (or null spaces) of each partial product A1. A2... Aj. We could form
these products and compute QR-decompositions of each of them. That can, in fact,
be avoided, as shown below. Let us take the "special" example Ai A, 1, 2, 3,
with

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

It is well known that the null spaces of A in fact give the Jordan structure of A, and
this structure is already obvious from the form of A. But let us reconstruct it from a
sequence of QR-decompositions (in fact we need here RQ-decompositions of A). The
first one is, of course, a column compression of A1, for which we use the permutation
of columns 2 and 4 (denoted by the matrix P24):

0
0
0
0
0

0 1 0
1 0 0
0 0 0
0 0 1
0 0 0

The separation line here indicates that the first two columns of P24 (i.e., el and ea)
span the kernel of A A. For the kernel of A2 AIA2 we do not form this product,
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but apply the inverse of the orthogonal transform P24 (which is again P24) to the rows
of A2 A:

0 1 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0

Since A1A2 (AIP24)(P24A2), it is clear that the kernel of AIA2 is also the kernel
of the bottom part of P24A2. The following column compression of P24A2 actually
yields the kernel of both A2 and the product AA2. Perform indeed the orthogonal
transformation P24P35:

P24A2P24P35

0 0 0 1 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

We see that the kernel of A2 comprises the first two columns of P24P35 (i.e., el and e4
as before) and the kernel of A1A2 comprises the first four columns of P24P35, i.e.,
e2, e4, and e5. An additional step of this procedure finally shows that the kernel of
the product A1A2A3 (AIP24)(P24A2P24P35)(P35P24A3) is that of the bottom part
of the matrix

0 1 0 0 0
0 0 0 0 1

P35P24A3-- 0 0 0 0 0
0 0 1 0 0
0 0 0 0 0

which is a zero matrix. Hence the kernel of A3 is the whole space, as expected.
The interesting part of this simple example" is the fact that we have not formed the
intermediate products to get their corresponding kernels. The case treated here of
equal matrices Ai is a simple one (and could be solved using the results of [19]), but
in the next few sections we show how this can also be done for arbitrary sequences of
matrices. The key idea is that at each step we do a number of QR-factorizations on
the blocks of a partitioned matrix (column blocks in our case). This then induces a
new partitioning on the rows of this matrix, on the columns of the next matrix, and
so on.

3. Generalizations for two or three matrices. In the last decade or so,
several generalizations for the SVD have been derived. The motivation is basically
the necessity to avoid the explicit formation of products and matrix quotients in the
computation of the SVD of products and quotients of matrices. Let A and B be
nonsingular square matrices and assume that we need the SVD of AB-* USV*.2

It is well known that the explicit calculation of B-1, followed by the computation
of the product, may result in loss of numerical precision (digit cancellation), even
before any factorization is attempted! The reason is the finite machine precision of

The notation B-* refers to the complex conjugate transpose of the inverse of the matrix B.
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any calculator. Therefore, it seems more appropriate to come up with an implicit
combined factorization of A and B separately, such as

A UD1X-1,
(3) B=X-*D2V*,

where U and V are unitary and X nonsingular. The matrices D1 and D2 are real but
"sparse" (quasi-diagonal), and the product DID is diagonal with positive diagonal
elements. Then we find

AB-* UDIX-1XDtV U(DDt)v*.

A factorization as in (3) is always possible for two square nonsingular matrices. In
fact, it is always possible for two matrices AE Cmn and B E Cnv (as long as the
number of columns of A is the same as the number of rows of B, which we refer to as a
compatibility condition). In general, the matrices A and B may even be rank deficient.
The combined factorization (3) is called the quotient singular value decomposition
(QSVD) and was first suggested in [32] and refined in [23] (it was originally called the
generalized SVD, but we have suggested a standardized nomenclature in [6]).

A similar idea might be exploited for the SVD of the product of two matrices
AB USV*, via the so-called product singular value decomposition (PSVD)

A UD1X-l,
(4) B XD2V*,

so that AB U(DID2)V*, which is an SVD of AB. The combined factorization (4)
was proposed in [13] as a formalization of ideas in [21]. In the general case, for two
compatible matrices A and B (which may be rank deficient), the PSVD of (4) always
exists and provides the SVD of AB without the explicit construction of the product.
Similarly, if A and B are compatible, the QSVD always exists. However, it does not
always deliver the SVD of ABt when B is rank deficient (Bt is the pseudoinverse
of B).

Another generalization, this time for three matrices, is the restricted singular
value decomposition (RSVD). It was proposed n [35], and numerous applications
were reviewed in [7]. It was soon found that all of these generalized SVDs for two or
three matrices are special cases of a general theorem, presented in [9]. The main result
is that there exist GSVDs for any number of matrices AI,A.,...,Ak of compatible
dimensions. The general structure of these GSVDs was further analyzed in {10]. The
dimensions of the blocks that occur in any GSVD can be expressed as ranks of the
matrices involved and as certain products and concatenations of these. We present a
summary of the results below.

As for generalizations of the QRD, it is mainly Paige {25] who pointed out the
importance of generalized QRDs for two matrices as a basic conceptual and math-
ematical tool. The motivation is that in some applications, we need the QRD of a
product of two matrices AB where A mx and B nxp. For general matrices
A and B such a computation avoids forming the product explicitly, and transforms
A and B separately to obtain the desired results. Paige [25] refers to such a factor-
ization as a product QR factorization. Similarly, in some applications we need the
QR-factorization of AB- where B is square and nonsingular. A general numerically
robust algorithm would not compute the inverse of B nor the product explicitly, but
would transform A and B separately. Paige [25] proposed calling such a combined
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decomposition of two matrices a generalized QR factorization, following [20]. We pro-
pose here to reserve the name generalized QRD for the complete set of generalizations
of the QR-decompositions, which are developed in this paper. We also propose a novel
nomenclature, as we did for the generalizations of the SVD in [6].

Stoer [28] appears to be the first to have given a reliable computation of this type
of generalized QR-factorization for two matrices (see [14]). Computational methods
for producing the two types of generalized QR factorizations for two matrices, as de-
scribed above, have appeared regularly in the literature as (intermediate) steps in the
solution of some problems. In this paper, we derive a constructive proof of generaliza-
tions of the QRD for any number of matrices. As we see below, our generalized QRDs
can also be considered the appropriate generalization of the URVD of a matrix.

4. Generalized singular value decompositions. In this section, we present a
general theorem that can be considered the appropriate generalization for any number
of matrices of the SVD of one matrix. It contains the existing generalizations of the
SVD for two matrices (i.e., the PSVD and the QSVD) and three matrices (i.e., the
RSVD) as special cases. A constructive proof can be found in [9].

THEOREM 4.1 (generalized singular value decompositions for k matrices). Con-
sider a set of k matrices with compatible dimensions: A1 (no nl),A2 (nl n2),...,
Ak-1 (nk-2 nk-1),Ak (nk-1 nk). Then there exist

--Unitary matrices UI (no no) and Vk (nk nk).
--Matrices Dj, j 1, 2,..., (k 1) of the form

nj_ nj

where

(6)

(7)

rj_ rj
2

rj
2 2

rj_ rj
rj

J
rj

J
nj-1 rj-1 rj

2 3 J
nj -rj

[
rj rj rj rj
I 0 0 0 0
0 0 0 0 0
0 I 0 0 0
0 0 0 0 0
0 0 I 0 0
0 0 0

0 I 0

0 0 0 0

ro O,

A matrix Sk of the form

rk
rk- rkr

2r_l rk
rk

J
rank(Aj).rj E rj

i=1

kr r r rk nk rk

o o o o
0 0 0 0 0
0 S 0 0 0
0 0 0 0 0
0 0 S 0 0
0 0 0

nk-l rk-l rk \ 0 0
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where

(8) rk Er rank(A)
i--1

and the rk rk matrices S are diagonal with positive diagonal elements. Expressions
for the integers rj are given in 6 a

Nonsingular matrices Xj (n n) and Zi, j 1, 2,..., (k- 1) where Z is
either Zj X* or Z Xi (i.e., both choices are always possible), such that the
given matrices can be factorized as

A1 U1D1X1,
A2 ZID2X1,
A3- Z2D3X1,

Ai- Zi-IDiX-1,

Ak Zk- SkV;

Observe that the matrices Dj in (5) and Sk in (7) are generally not diagonal.
Their only nonzero blocks, however, are diagonal block matrices. We propose to label
them as quasi-diagonal matrices. The matrices Dj, j 1,..., k- 1 are quasi-diagonal,
their only nonzero blocks being identity matrices. The matrix Sk is quasi-diagonal
and its nonzero blocks are diagonal matrices with positive diagonal elements. Observe
that we always take the last factor in every factorization as the inverse of a nonsingular
matrix, which is only a matter of convention (another convention would result in a
modified definition of the matrices Zi). As for the name of a certain GSVD, we
propose to adopt the following convention (see also [9]).

DEFINITION 4.2 (the nomenclature for GSVDs). If k 1 in Theorem 4.1, then
the corresponding factorization of the matrix A1 will be called the (ordinary) singular
value decomposition. If for a matrix pair Ai, Ai+l, 1 <_ _< k- 1 in Theorem 4.1,
we have Zi Xi, then the factorization of the pair is said to be of P type. If, on
the other hand, for a matrix pair Ai, Ai+I, 1 <_ _< k- 1 in Theorem 4.1, we have
Zi X-*, then the factorization of the pair is said to be of Q type. The name of a
GSVD of the matrices Ai, 1, 2,... k > 1 as in Theorem 4.1, is then obtained by
simply enumerating the different factorization types.

Let us give some examples.
Example. Consider two matrices A (no n) and A2 (n n2). Then, we have

two possible GSVDs"

A1
P type Q type

U1D1X UID1X
XS:V X*S:V;

The P-type factorization is called the PSVD (see [8] and references therein), while
the Q-type factorization is called the QSVD.

In [9], these block dimensions follow from the constructive proof.
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Example. Let us write a PQQP-SVD for five matrices"

A1 U1DIX1,
A2 XID2Xf1,
A3 Xf*D3X1,
A4 Xf D4X1,
A X4SV.

We also introduce a notation using powers that symbolize a certain repetition of
a letter or of a sequence of letters:

p3Q2-SVD PPPQQ-SVD,
(PQ)2Q3(PPQ)2-SVD PQPQQQQPPQPPQ-SVD.

Despite the fact that there are 2k-1 different sequences of letters P and Q at level
k > 1, not all of these sequences correspond to different GSVDs. The reason for this
is that, for instance, the QP-SVD of (A1, A2, A3) can be obtained from the PQ-SVD
of ((A3) *, (A2) *, (A1)*). Similarly, the P2(Qp)3-SVD of (A1,... ,A9) is essentially the
same as the (PQ)3p2-SVD of ((A9)*,..., (A1)*). The number of different factoriza-

(2k-1 2k/2 (2k-1 (ktions for k matrices is, in fact, / for k even and / :2 -1)/2) for
k odd.

A possible way to visualize Theorem 4.1 is to build a tree with all different fac-
torizations for 1, 2, 3, etc matrices as follows:

O
P Q

p2 pQ Q2
p3 pQ pQp pQ QpQ Q3

5. Generalized URVDs. In this section, we derive a generalization for several
matrices, of the URVD of one matrix. We proceed in several stages. First, we show
how k matrices can be reduced to block tria.ngular matrices using unitary transfor-
mations only. Next, we show how the block triangular factors can be triangularized
further to triangular factors.

THEOREM 5.1 Given k complex matrices AI (no hi), A2 (hi n2), Ak
(nk-1 nk), there always exist unitary matrices Qo, Q1,..., Qk such that

where Ti is a block lower triangular or block upper triangular matrix (both cases are
always possible) with the following structures:

--Lower block triangular (denoted by a superscript l)

(9) T/t

2 i--1 r+lri ri r ri
ri_ Ti,1 0 0 0 0
2

ri_ * Ti,2 0 0 0

r_ T, 0
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--Upper block triangular (denoted by a superscript u)"

(10) T/u

2 i-1 r+lri ri r ri
ri-1 * 0
2 Ti,2 * * 0ri_

0 0 T, 0ri_

where Ti,j j 1,..., are full column rank matrices and each represents a nonzero
block. The block dimensions coincide with those of Theorem 4.1. In particular,

r no,

r+1 nullity(Ai) ni ri,

and

E j rank(A)r r
j--1

ri_ hi-1.
j=l

Our proof of Theorem 5.1 is inductive: We obtain the required factorization of
Ai from that of Ai-1.

Proof. The induction is initialized for 1 as follows. First, take the case where
T1 is to be lower block triangular. Use a unitary column compression matrix Q1 to
reduce the matrix A to

where

and

T=AIQ=r (TI,1 0),

r rank(T1,1) rank(A),
rl
2 nullity(A1) n rl,

r o.

The case where T1 is required to be upper block triangular is similar:

T* AIQ1 =r (T1,1 0 ).
Observe that we have taken Qo Ino.

Now, we can start our induction. Assume that we have the required factorization
for the first i- 1 matrices

=QoAQ,

Ti-1 Qi*_2Ai-l Qi-1,
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where the matrices Tj,j 1,... ,i- 1 have the block structure as in Theorem 5.1.
We now want to find a unitary matrix Qi such that Ti Q_IAQi is either lower
or upper block triangular. First, consider the case where Ti is to be lower block
triangular. The matrix Q-IA can be partitioned according to the dimensions of the
block columns of T_I as

(11)

ni

ri_
2r ,

Q_ n
ri_

It is always possible to construct a unitary matrix Q to compress the columns of each
of the block rows to the left as

(12)

1-1 /andwhere the subblocks Ti,j are of full column rank, denoted by r,r+1 nullity(A). Hereto, we first compress the first block row of (11) to the left
with unitary column transformations applied to the full matrix. Then we proceed with
the second block row in the deflated matrix (i.e., without modifying the previous block
column). By repeating this procedure times, we find the required form (12).

Obviously,

1_< l-l, i.(13) r ri_l,

The construction of Ti when it is required to be upper block triangular is similar.
Construct a unitary matrix Q that compresses the columns of the block rows of
Q-IAi to the right. The only difference is that we now start from the bottom to find
that

(14)

r+l 2
ri /’i ri

0 Til *ri-1
2 0 0 T2 *

T Q_IAiQi
ri-1

0 0 Ti,il’i-

We can now apply an additional (block) column permutation to the right of the matrix

T/ so as to find the matrix of (10). This completes the proof.
We now demonstrate that the matrices T,j can always be further reduced to

triangular form using unitary transformations into
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in the case when Ti is lower block triangular. Here, R,j is a lower triangular matrix
Similarly, we can always reduce Ti,j to

in the case where Ti is upper block triangular. Here R. is an upper triangular matrix3
In order to demonstrate this, we need the following result.

LEMMA 5.2. Let PI,..., Pk be k given complex matrices where Pi has dimensions
pi-1 pi, pi-1 >_ pi and rank(Pi) pi. Then there always exist unitary matrices
Q0, Q1,...,Qk such that

i--1

where Ri is either of the form

(15)

Pi

Ri-Pi-l-pi ( 0)piR
with R a lower triangular matrix, or

(16) R- pi

p- pi

Pi

with R upper triangular. For every 1,...,k, both choices, (15) and (16), are
always possible.

Proof. Again, the proof is by induction, but now for decreasing index i. For the
initialization, start with k and obtain a QR-decomposition of Pk with either an
upper or a lower triangular factor as required. This defines the unitary matrix Qk-.
We take Qk Ipk. Hence, we find

--Lower triangular:

(0)
--Upper triangular:

Pk lk-lRk Qk-1

We can now start the. induction for k 1, k 2,..., 1. Therefore, assume that
we have the required factorizations for the matrices Pk, Pk-1,..-, Pi+"

Rk (*k_ Pk k

Rk-1 l*k_2Pk- lk-1,

Ri+ (Pi+ (i+1"
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Then, if Ri is to be lower triangular, obtain a QR-decomposition of the product PiQi
as

(o)PiQi Qi-lRi Qi-1 R
so that

R Q-IPQ"

If Ri is required to be upper triangular, obtain a QR-decomposition as

PiQi Qi-IRi Qi-1

so that

R Q-IPQi.

This completes the construction.
We now repeatedly apply Lemma 5.2 on the full rank blocks in the matrices Ti

in (9) and (10). First, we apply Lemma 5.2 to the sequence of k subblocks

Next, we apply it to the sequence of the k 1 subblocks

In general, we apply Lemma 5.2 k times to the k sequences of subblocks

Tj,j,Tj+I,j,...,Tk,j for j 1,...,k.

In applying Lemma 5.2 to the jth of these sequences, we can find a sequence of unitary
matrices QJ] QJ] [J] and matrices Ri,j such thatUdk-j+l

Ti,j o[J] Ri,j’i-j+li-j i=j,...,k,

where

or

We now define the unitary matrices (i for 0,..., k, which are block diagonal with
blocks

(i- diag(Qll], Q2_] 1, Qi] ’00[i-t-1] )’ 0,...,k,
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with

Qk+l] I.

Next we define

Qi_ TiOi, i=O,...,k.

Then, it can be verified that for the lower triangular case we obtain

2 r+lr r r

ri_l ,1 0 0 0
2 Ri,2 0 0I’i_

ri_l * * Ri,i 0

and for the upper triangular case we find that

(18)

i--1 r+lr r r

ri_l ,1 * * 0
9. R,9. 0ri_

0 0 R, 0ri_

If we now combine (9)-(17) and (10)-(18), we obtain a combined factorization of the
form

Hence, we have proved the following theorem.
THEOREM 5.3 (generalized URVDs). Given k complex matrices A1 (no x nl), A2

(n, x n9), Ak (nk- x nk), there always exist unitary matrices Qo,Q,...,Qk
such that

where is a lower triangular or upper triangular matrix (both cases are always
possible) with the following structures:

--Lower triangular (denoted by a superscript l)"

where

2 r+lr r r

11 Ri,1 0 0 0
2

,li ri-1 * Ri,2 0 0

ri_l * * Ri,i 0
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and R,j is a square nonsingular lower triangular matrix.
--Upper triangular (denoted by a superscript u)"

i--1 ri+lr r r

ri_l ,1 * * 0
2 Ri,2 0ri_

0 0 Ri,i 0ri_

where

and R is a square nonsingular upper triangular matrix. The block dimensions co-
incide with those of Theorem 4.1.

As for the nomenclature of these generalized URVDs, we propose the following
definition.

DEFINITION 5.4 (nomenclature for generalized URV). The name of a generalized
URVD of k matrices of compatible dimensions is generated by enumerating the letters
L (for lower) and U (for upper), according to the lower or upper triangularity of the
matrices T, 1,..., k in the decomposition of Theorem 5.3.

For k matrices, there are 2k different sequences with two letters. For instance, for
k 3, there are eight generalized URVD (LLL, LLU, LUL, LUU, ULL, ULU, UUL,
VVV).

Remarks. The decompositions in Theorems 5.1 and 5.3 both use column and
row compressions of a matrix as a cornerstone for the rank determination of the
individual blocks. As already pointed out in 2, the rank determination can be done
via an ordinary SVD (OSVD), but a more economical method uses the QRD as initial
step, since typically the matrices involved here have many more columns than rows
or vice versa. A further alternative would be to replace the OSVD of the triangular
matrix resulting from the initial QRD by a rank-revealing QRD. Since the time of
the initial paper drawing attention to this [5], much progress has been made in this
area, and we only want to stress here that such alternatives can only benefit our
decomposition.

The overall complexity of this GQRD is easily seen to be comparable to that of
performing two QRDs of each matrix A involved. For each A we indeed apply the
left transformation Q-I derived from the previous matrix and then apply a "special"
compression Q of the resulting matrix while respecting its block structure. Both
steps have a complexity comparable to a QRD of a matrix of the same dimensions.
For parallel machines we can check that the "block" algorithms [18] for one-sided
orthogonal transformations such as the QRD can also be applied to the present de-
composition, and that they will yield satisfactory speedups. The main reason for this
is that the two-sided orthogonal transforms applied to each Ai are done separately,
and hence they can essentially be considered one-sided for parallellization purposes.

6. On the structure of the GSVD and the GQRD. In this section, we
first point out how for each GSVD there are two generalized URVDs, and we clarify
the correspondence between the two types of generalized decompositions. Next, we

J in Theorems 4.1 and 5.1give a summary of expressions for the block dimensions r
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in terms of the ranks of the matrices A1,..., Ak and concatenations and products
thereof. These expressions were derived in [10].

Recall the nomenclature for the generalized URVDs (Definition 5.4) and the
GSVDs (Definition 4.2). The relationship between these two definitions is as follows.
A pair of identical letters, i.e., L-L or U-U, that occurs in the factorization of Ai, Ai+l
corresponds to a P-type factorization of the pair. A pair of alternating letters, i.e.,
L-U or U-L, that occurs in the factorization of A, Ai+l corresponds to a Q-type fac-
torization of the pair. As an example, for a PQP-SVD of four matrices, there are
two possible corresponding generalized URVDs, namely an LLUL-decomposition and
a UULU-decomposition. As with the GSVD, we can also introduce the convention to
use powers of (a sequence of) letters. For instance, for a p3Q2-SVD, there are two
GURVs, namely, an LnUL-URV and a U4LU-URV.

j 4 Let us first consider theWe now derive expressions for the block dimensions r.
case of a GSVD that consists only of P-type factorizations. Denote the rank of the
product of the matrices A,A+I,..., Aj with _< j by

ri(i+l)...(j-1)j rank(AA+l Aj_IAj).

THEOREM 6.1 (on the structure of Pk-I-SVD, Lk-URV, and Uk-URV). Con-
sider any of the factorizations above for the matrices A1, A2,..., Ak. Then, the block
dimensions rji that appear in Theorems 4.1, 5.1, and 5.3 are given by:

(19)
(20)

--r(rj 1)(2)...(j),

rj ri(i+l)...(j r(i-1)(i)...(j),

with rj ri if j.
Next, consider the case of a GSVD that only consists of Q-type factorizations.

Denote the rank of the block bidiagonal matrix

(21)

A 0 0 0 0 0

Ai*+l A+e 0 0 0 0
0 Ai*+3 Ai+4 0 0 0
0 0
0 A_3 Aj_2 0
0 0 A_ Aj

(by rili+ll...lj_llj).
THEOREM 6.2 (on the structure of Qk-I-SVD, (LU)k/2-URV (k even), (UL)k/2-

URV (k even), (UL)(k-1)/2U-URV (k odd), and (LU)(k-1)/2L-URV (k odd)). Con-
sider any of the above factorizations for the matrices A1, Ae,..., Ak. Then,

Ifj-iiseven,

2 it}+2 r}+4 j--2 j
ril...Ij ril...Ij-1 -t- (r + rj +... + rj) -t- -t- -t- + rj -t- rj;

Ifj-i is odd,

4 Recall that the subscript refers to the ith matrix, while the superscript j refers to the jth
block in that matrix.
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For the general case, we need a mixture of the two preceding notations for block
bidiagonal matrices, the blocks of which can be products of matrices, such as

(A A. ..A3_1 0 0
(A3 Ai4-1) Ai4 A-I 0

0 A, Aj

where 1 _< io < il < i2 < i3 < < it _< j _< k. Their rank is denoted by

For instance, the rank of the matrix

A2A3 0 0
A? A5A6A7 0
0 (A8A9)* AlO

is represented by r(2)(3)141(5)(6)(7)1(8)(9)l(10).
THEOREM 6.3 (on the structure of a GSVD and a GURV).

r(io)(io+l)...(i-l)li...(i.-1)l...li...j can be derived as follows:
i=1,2,., l+l"1. Calculate the following + 1 integers By,

The rank

2 r}Osj rj -[-rj
2 ro+l rO+2 rlsj + +...+

2. Depending on even or odd there are two cases:
--I even:

t odd:

Observe that Theorems 6.1 and 6.2 are special cases of Theorem 6.3. While
in terms of differencesTheorem 6.1 provides a direct expression of the dimensions rj

of ranks of products, Theorems 6.2 and 6.3 do so only implicitly. This is illustrated
in the following examples.

Example. Let us determine the block dimensions of the quasi-diagonal matrix $4
in a QPP-SVD of the matrices A1, A2, A3, A4 (which are also the block dimensions of
an LUUU- or a ULLL-decomposition). From Theorem 6.2 we find that

From Theorem 6.3, we find that
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and

r(1)1(2)(3)(4 rl + s42,

so that

r42 r11(2)(3)(4 rl.

Finally, since r4 r + r + r4
3 + r44, we find that

r rl + r(2)(3)(4) r11(2)(3)(4).

Observe that this last relation can be interpreted geometrically as the dimension of
the intersection between the row spaces of A1 and A2A3A4:

r41 dim spanrow(A1) + dim spanrow(A2A3A4 dim spanro A2A3A3

Example. Consider the determination of r, r, r53, r, r in a PQ3-SVD of five
matrices A1,A2, A3, A4, A5 with Theorem 6.3, which coincides with the structure of
a UULUL-URV or an LLULU-URV (see Table 1).

TABLE

r415

r2J314[5

r(1)(2)J3J4J5

8 r 4+r +r +r
8 r55
8 =-r5 + r5 + r5

85 r5
1+}_28 r r

82 r3

3 __r485
8 r55

3s --r + r5

These relations can be used to set up a set of equations for the unknowns r, r,
r53, r5, r55, using Theorem 6.3 as

1 1 1 1 1 r r5
0 0 0 0 1 r52 r415 r4
1 1 1 0 1 r53 r3j4j 5 r3] 4
0 0 1 0 1 r54 r2131415 r2J314
0 1 1 0 1 r55 r(1)(2)J3J4J5 r(1)(2)J3J4

the solution of which is

r T314] 5 r3l4 -}- T(1)(2)13[4 r(1)(2)1314]5
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r r(1)(2)131415 r(1)(2)1314 r2131415 -- r21314,

r r2131415 r21314 r415 + ra,

r54 r5 r31415 - r314,

r55 r415 r4.

7. A further block diagonalization of the GQRD. In this section, we note
that a further block diagonalization of a GQRD can be interpreted as a preliminary
step towards the corresponding GSVD. We proceed in two stages. First, we observe
that each upper or lower triangular matrix in the generalized URVD of Theorem
5.3 can be block diagonalized. Next, we show how these block diagonalizations can
be propagated backward through the GQRD. The first step is the factorization of
the upper and lower triangular matrices Ti of Theorem 5.3 into an upper or lower
triangular matrix and a block diagonal matrix. For lower triangular matrices i /,
we can obtain a factorization of the form

where
2 i--1

ri_l ri_l ri_ ri_l

I 0 0 0ri_
2

ri_ * I 0 0

?i-1 * * * I

2 r+l/’i /’i

ri_l ,1 0 0 0
2 Ri 2 0 0

0 0 Ri,i 0i--

Since the diagonal blocks Ri,j are of full column rank, such a factorization is al-
ways possible. In a similar way, for upper iangular matrices i /u, we find a
factorization of the form

with Ui an upper triangular block matrix with identity matrices on the block diagonal:
2 i--1

ri--1 i--1 ri--1 i--1
Iri_

2 0 Iri_

0 0 0 Iri_

2 r+lri ?i l’i

ri-1 ,1 0 0 0
Ri,2 0 0

r_ 0 0 Ri,i 0
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Now suppose that we have done this for all matrices i, 1,..., k in a GQRD
of Theorem 5.3. We show how we can propagate a further block diagonalization
backward through the GQRD, in a way that is completely consistent with the corre-
sponding GSVD of Theorem 4.1. To simplify the notation, we simply replace Ti by
Ti and Di by D in the following.

First, assume that Tk is lower block triangular. It then follows from the previous
section that we can factorize Tk as

Tk LD.
Depending on whether T-I is upper or lower triangular, we have two cases"

.T-I T_ lower triangular. In this case, the product Tk_ILk is lower trian-
gular as well, and we can obtain a similar decomposition

Tkt-lLa La_Da_,

where La_ is again lower triangular and D_ has the same diagonal blocks Ri, as

Tk-1 Tkl upper triangular. In this case, the product T%L* is upper
triangular, and we can obtain a factorization

-Uk-lDkT_IL;*
where U-I is upper triangular and Dk-1 has the same diagonal blocks R,y as Tkl.

It is easily verified that when Tk is upper triangular, similar conclusions can be
obtained.

In generM, let T be lower triangular and assume that it is factorized as

T LDZ.
Assume that T_ is lower triangular. Then T-I can be fctored as

T_ L_D_L1.

If T_ is upper triangular, it can be factored as

TiL U_ D_1Li,

where U-I is upper triangular. The cases with T upper triangular are similar. Table
2 summarizes all possibilities.

Ti Lower triangular
Ti LiDZ
T Upper triangular

T UiDZ

TABLE 2

Ti- Lower triangular
Ti-1 Upper triangular

Ti-1 Lower triangular
Ti_ Upper triangular

Ti-1 Li-1 Di-1U
Ti-i Vi-1 Di_U-1

Example. Let us apply this result to a sequence of four matrices A1,A2,A3,A4
with compatible dimensions. If the required sequence is ULUU, then

A1 QoTQ* Qo(UD1L:)Q (QoU1)DI(QIL2)*
A: QIT2Q QI(L:DU)Q (QIL2)D2(Q2Ua)*,
A3 Q2TQ Q2(U3D3ui)Q (Q2U3)D3(Q3U4) -1

A4 Q3TQ Q3(U4D4)Q* *.4 (Q3U4)D4Q4
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Note that U1 Ino. This follows immediately from the block structure of U for 1.
Observe that the relationships between the common factors in the left-hand side of
these expressions conform with the requirements for a QQP-SVD. Only the middle
factors D, 1, 2, 3, 4 are not quasi-diagonal.

8. Conclusions. In this paper, a constructive proof was given of a multimatrix
generalization of the concept of rank factorization. The connection of this new de-
composition with the analogous GSVD was also shown. The block structure of both
generalizations and the ranks of the individual diagonal blocks in both decompositions
were indeed shown to be identical. As is shown in a forthcoming paper, the spaces
spanned by certain block columns of the orthogonal transformation matrices Q are,
in fact, identical to those of the GSVD. The difference lies only in a particular choice
of basis vectors for these spaces. The consequences of these connections are still under
investigation. We mention the following results here:

Updating the above decomposition to yield the GSVD requires nonorthogonal
transformation. These updating transformations can be chosen block triangular with
diagonal block sizes compatible with the index sets derived in Theorem 4.1.

A modified orthogonal decomposition can be defined where the compound
matrix is not triangularized but diagonalized. This new factorization is a variant of
the above decomposition where now a special coordinate system is chosen for each
of the individual orthogonal transformations Q. The result is an orthogonal decom-
position of the type of Theorem 5.3 where now the generalized singular values can
be extracted from the diagonal elements of some triangular blocks. The orthogo-
hal updating needed to obtain this new decomposition can be done with techniques
described in [2].

A geometric interpretation can be given of the bases obtained from the trans-
formation matrices Q in Theorem 5.1. As particular examples of these spaces we
retrieve the following well-known concepts.
(a) For the case A (A-I) the GQRD in fact reconstructs the nested null spaces

of the matrices (A aI), which reveal the Jordan structure of the matrix A at
the eigenvalue a (see also the example in 2).

(b) For the cases A2 (A-aB) and A2+1 B the decomposition reconstructs the
nested null spaces of the sequences [B-.I(A aB)] and [(A aB)B-1], which
reveal the Kronecker structure of the pencil AB- A at the generalized eigenvalue
c (see [30] and [31]).

(c) For the cases A D and A C. A-. B,i 1,..., the decomposition
reconstructs the invertibility subspaces of the discrete time system

Xk+l Axk + Buk,

Yk Cxk + Duk.

These are in fact also the spaces constructed by the structure algorithm of Sil-
verman [29], and they play a role in several key problems of geometrical systems
theory [34].
Other applications of GSVDs have been described in [7], [8], [11], [13], and [35],

while applications of the generalized QR-decompositions are described in [25] and
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generating the MATLAB code for the GSVD and the GQRD based on the constructive
proofs of the GSVD in [9] and of the GQRD of Theorem 5.3 of this paper.
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A SINGULAR VALUE DECOMPOSITION UPDATING ALGORITHM
FOR SUBSPACE TRACKING*

MARC MOONENt, PAUL VAN DOORENt, AND JOOS VANDEWALLEi

Abstract. In this paper, the well-known QR updating scheme is extended to a similar but more
versatile and generally applicable scheme for updating the singular value decomposition (SVD). This
is done by supplementing the QR updating with a Jacobi-type SVD procedure, where apparently
only a few SVD steps after each QR update suffice in order to restore an acceptable approximation
for the SVD. This then results in a reduced computational cost, comparable to the cost for merely
QR updating.

The usefulness of such an approximate updating scheme when applied to subspace tracking is
examined. It is shown how an (.0(n2) SVD updating algorithm can restore an acceptable approxi-
mation at every stage, with a fairly small tracking error of approximately the time variation in O(n)
time steps.

Finally, an error analysis is performed, proving that the algorithm is stable, when supplemented
with a Jacobi-type reorthogonali zation procedure, which can easily be incorporated into the updating
scheme.

Key words, singular value decomposition, recursive algorithms

AMS(MOS) subject classifications. 65F15, 65F25

C.R. classification. G.1.3

1. Introduction. In many signal processing applications, it is necessary to con-
tinuously update matrix decompositions as new measurement vectors are appended as
additional rows. Such problems frequently occur in beam forming, direction finding,
spectral analysis, etc. [21]. Efficient updating techniques have long been known for
the QR decomposition [8], while the more difficult problem of updating the (ordinary)
singular value decomposition (SVD) has only recently been addressed [1], [2], [4], [9],

Previously described techniques for row updating of the SVD mostly reduce to
computing the rank-one modification of the corresponding symmetric eigenvalue prob-
lem [1], [2], [9]. i major drawback is the necessary knowledge of the exact eigenstruc-
ture of the original matrix in order to comput the updated eigenstructure. For
real-time applications, where in each time step an exact updating is thus to be per-
formed, this results in an unacceptably heavy computational load, viz., (9(n3) per
update. Moreover, round-off errors due to the use of finite precision arithmetic are
likely to accumulate unboundedly.

In this paper, we derive a fast SVD updating technique as a combination of QR
updating on the one hand and a Jacobi-type SVD procedure on the other hand. The
updating scheme provides only an approximate decomposition after each update. It
has a low computational complexity--O(n2) per update--and it is particularly suited
to parallel implementation [18].
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When combined with exponential weighting, such an algorithm is seen to be highly
applicable to subspace tracking problems. SVD methods are known to be extremely
reliable in this respect, but are considered "too expensive" when it comes to real-time
applications (cf. the O(n3) complexity). Cheaper alternatives usually suffer from poor
numerical properties (see [4] for a survey). We will show how an O(n2) approximate
SVD updating algorithm can restore an acceptable approximation at every stage, with
a fairly small tracking error approximately equal to the time variation in O(n) time
steps.

Finally, an error analysis is performed, proving that the algorithm is stable, when
supplemented with a certain Jacobi-type reorthogonalization procedure, which can
easily be incorporated into the updating scheme.

The SVD updating procedure is developed in. 2. In 3 a performance analysis for
subspace tracking (in infinite precision arithmetic) is sketched. Finally, error build-up
issues (finite precision arithmetic) are addressed in 4.

2. An SVD updating algorithm. The SVD of a real matrix Amx, (m >_ n)
is a factorization of A into a product of three matrices [10]

where

A- U.E.Vv
rX rX X X

UT. U Znxn,
V. V Ixn,

and E is a diagonal matrix, with the singular values along the diagonal

E diag{(71, (72, (7n },

Updating the SVD after appending a new row consists of computing the SVD of the
modified matrix

A+= U+ E+.V
(m+l)Xn nxn nXn

by making use of the original SVD of A. In on-line applications, a new updating
often has to be performed after each sampling, and the data matrix at time step k is
defined in a recursive manner (k >_ n)

[ []" TA[-A[k
a[k]

kxn nn nxn

Factor A[k] is a weighting factor, and a[k] is the measurement vector at time instant
k. For the sake of brevity, we consider only the case where A[k] is a constant ,
although everything can easily be recast for the case where it is time-varying. Since
we will consider approximate decompositions below, we use an additional superscript
here to denote exact decompositions. Finally, in most applications the .U[]-matrix,

with growing matrix dimensions, need not be computed, and only VIii and Elk] are
explicitly updated.
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2.1. SVD updating, first version. An SVD updating algorithm (for infinite
precision arithmetic) is readily constructed by combining QR updating with a Jacobi-
type SVD diagonalization procedure (Kogbetliantz’s algorithm, modified for triangu-
lar matrices [14], [15]).

Suppose that at a certain time step k- 1, the A[k_l]-matrix is reduced to R[k-ll--
upper triangular and almost diagonal--with corresponding matrices U[k-1] and

A[k-ll U[k-ll R[k-1] v[kT-1]
TAfter appending a new row a[k], we have a decomposition of the type

A’A[k-1] ]A[k] T
a[k]

R[k-1] T
1 "V[k-l] J 1k-1]"

The updating can then be carried out in the following three steps.
1. Matrix-vector multiplication and exponential weighting. The triangular factor

is multiplied by the weighting factor, and the input vector a[k is transformed to
by making use of the current k_l]-matrix:

/[k-1] R[k-1],
-T T
a[] a[] -11.

2. QR updating with 5[k] in order to restore the triangular structure:

U[k-1]
1 ]’Q[k]’[[kll’y[kT-l]o
1

U[]

The QR updating is done by applying a sequence of Givens rotations (see, e.g., [8]
for details). Note that the QR updating does not alter the V-matrix. The U-matrix
does change, but it does not have to be stored anyway, as we are only interested in R
and V.

3. SVD steps in order to obtain a diagonal matrix. This diagonalization procedure
consists in applying a sequence of plane rotations as follows (see [14] and [15] for
details)"

R[]

for--1, ,
for = 1, ,-1
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TR[k] O[i,j,k] R[k] 2[i,j,k]
1 VIii [,j,]

end
end

The parameter is called the pivot index. The matrices O[i,j,k] and (I)[i,y,k] represent
rotations in the (i, + 1)-plane:

cos O[i,j,k sin
O[i’j’k] sin O[i,j,k COS O[i,j,k

I-1
COS )[i,j,k] sin [,j,k]O[,y,k] sin [i,j,k] COS [i,j,k]

where It is an identity matrix. The rotation angles O[,j,k] and [i,j,k] should be
chosen so as to annihilate the (i, + 1) element in R[k], while preserving R[k] in upper
triangular form. Each iteration thus essentially reduces to applying a 2 2 SVD on
the main diagonal. The SVD procedure then consists in performing r sequences of
n- 1 such plane rotations, where the pivot index repeatedly takes up all the values

1,...,n- 1. It is well known that if use is made of outer rotations (see [23]
and [16]), exactly n such sequences constitute a double sweep for a cyclic ordering
(pipelined forward and backward sweep). Each rotation reduces the off-norm in R[k],
and R[k] eventually converges to a diagonal matrix [6], so that finally we will have

R[k] Z[k],

With the above procedure, the diagonal structure of R can be restored after each
update. With r (.9(n) on the average, the operation count is (.9(n3) per update. In
practice, however, it generally suffices to keep R[k] "close" to a (block) diagonal matrix,
instead of completely reducing it to a diagonal matrix in each time step. In some sense
(see 3) V[k] is then "close" to VIii as well, which, for subspace tracking applications,
for instance (ESPRIT, systems identification, recursive total least squares), is the only
thing that matters. The number of rotations r(n- 1) in a certain time step can then
be fixed, turning an iterative algorithm into a seemingly noniterative one. Of course,
the crux is then to show how only a few SVD steps after each QR update can restore
an acceptable approximation at every stage.

From now on, we make a fairly arbitrary choice and set r equal to 1, so that after
each QR update, the pivot index takes up all values 1,..., n- 1 only once. In
this case, both the QR updating and the rotations following the update take (9(n2)
operations, which, e.g., results in an elegant parallel implementation [18]. It should
be stressed, however, that all of our further results can straightforwardly be recast
for other choices for r. In 3, the problem is addressed of "how closely" the obtained
estimates then approximate the exact decomposition--in particular for the subspace
tracking problem--and for this particular choice for r.
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For the time being, the updating procedure is thus summarized as follows (with
n- 1 rotations after each update).

Initialization

Loop

V[o] Ix,,
R[0] = Ox

for k-1, ,
1. input new measurement vector a[k]

a[k] a[k]

R[k-1] / R[k-1]

2. QR updating

0 Q[k] ~T

end

3. SVD steps
for/- 1,

end

,n-1

R[k] = O[,k] R[k] (T2[i,k],
VIii VIii [,]

2.2. Version 2, including reorthogonalizations. In view of round-off accu-
mulation (finite precision arithmetic), the above updating algorithm has one short-
coming. The stored matrix V is iteratively updated by orthogonal column transfor-
mations according to

Y[] Y[] [,].

While V[0] is orthogonal through the initialization, V[k] (k >> 1) is probably not, due to
round-off. The deviation from orthogonality apparently grows linearly with k, as can
be verified experimentally. Keeping V[k] close to orthogonal is crucial, however, for the
overall error propagation stability (see 4). Including some kind of reorthogonalization
procedure is therefore indispensable. An efficient procedure that elegantly combines
with the updating scheme (e.g., on a systolic array [18]) can be constructed as follows.

Suppose two vectors Xp and xq are almost orthonormal, in the sense that

Ilxpll2 1 +
Ilxqll2 1 /
T

Xp Xq 0(),
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TABLE

Number of sweeps [IXT X Ill F
1.7335e-01

1 2.0767e-03
2 1.5657e-06
3 0.6442e- 13
4

where e is a small number. We can easily verify that a (symmetrized) Gram-Schmidt-
like transformation

Xp .Xq

Xq T__xp .xq

yields two new vectors, which satisfy

IlXp112 1 + O(e2),
[[Xqll2 1 + O(e2),. . O(e)Xp Xq

Note that an exact Gram-Schmidt orthogonalization is computationally somewhat
more involved, while on the other hand it yields only marginally better results.

For an n x n close-to-orthogonal matrix

X- Xl X2 Xn ],
we can straightforwardly apply the 2 x 2 transformations in a cyclic manner.
(forward) sweep consists in computing transformations as follows.

Loop
for p--1, ,n-1
forq--p+l, ..., n

One

Xp "Xq

Xq xT,.Xq

end
end

The above algorithm is seen to be a one-sided Jacobi-type procedure with nonuni-
tary transformations, or two-sided if we consider the effect on XT X. Furthermore,
if IIXT. X IIIF O(e) for some small e, the 2 x 2 transformations are e close
to I2x2. By making use of this, we can easily prove that the procedure converges
quadratically, in other words, that IIXT. X- IIIF O(e2) after one sweep. It suffices
to copy Wilkinson’s proof [24] with appropriate substitutions. In Table 1 we show
the effect of the procedure on a random 10 x 10 X-matrix (i.e., not even close to an
orthogonal one).
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Let us now return to the SVD updating algorithm. If we choose

X=V

and interlace the above reorthogonalization with the updating procedure, the former
no longer converges quadratically, due to the updating transformations X X’O[i,k]
that clearly change XT. X as well and thus interfere with the reorthogonalization.
However, if we choose

X vT
in other words, if we apply the reorthogonalization scheme onto the rows of V, the
updating transformations do not change XT. X, at least not for (local) infinite pre-
cision arithmetic (xT [i,k] (i,k X XT X), so that apparently both processes
do not interfere. In finite precision, these processes of course do interfere. Both the
updating transformations and the reorthogonalization steps introduce new round-off
errors, which have to be annihilated by the reorthogonalization itself. On the other
hand, the reorthogonalization (slightly) changes the V[k] matrix in an abitrary manner
with respect to the data. These issues will be analyzed in detail in 4.

The updating and the reorthogonalization can now be interlaced. For instance,
we could alternately perform one updating rotation, one reorthogonalization step, etc.
The body of the inner "for"-loop in the updating algorithm then becomes

3. SVD steps and reorthogonalization
for 1, ,n-1

end

TR[k] O[i,k R[k] d2[i,k]
V[k] T[,k] V[k] [,kl

where T[i,k] is a reorthogonalization in the (p[i,k],q[i,k])-plane. Here the number of
pairwise reorthogonalizations per update equal the number of updating transfor-
mations. Again, this is an arbitrary choice, which in some cases might be overly
conservative. Further results on the obtained accuracy can however easily be recast
for other choices. Furthermore, e.g., in a systolic array implementation [18] with a
separate V-array and R-array, the above additional reorthogonalizations do not in-
troduce any computational overhead, but rather a load balancing between the two
arrays, so that there is no point in reducing the number of reorthogonalizations.

Finally, in view of efficient (parallel) implementation (see also [18]), the cyclic
reorthogonalization can of course be reordered, by making use of additional permu-
tations (outer transformations) and a pipelining of the forward and backward sweep
(so that P[i,k] and q[i,k] + 1). For the time being, however, we do not pursue
this, as it would considerably complicate our notation in the subsequent analysis.

3. Subspace tracking. In this section, we analyze the performance of the SVD
updating scheme, when applied to subspace tracking. We assume that all computa-
tions are performed with infinite precision, so that the reorthogonalization is super-
fluous. Round-off errors introduce second-order effects, which for the time being are
left out for the sake of simplicity.
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First of all, a data model is put forward, which applies to popular signal processing
applications, such as direction finding (ESPRIT, MUSIC) and system identification
[17]. For such applications, an SVD step is used to separate a signal subspace from
a noise subspace (see below), corresponding to certain submatrices of VIii. Further
information (e.g., the angles of arrival for ESPRIT) can then be computed from the
knowledge of these submatrices only. As for an approximate SVD with an approxi-
mately (block) diagonal triangular factor R[k], the corresponding subspace separation
error is shown to be related to the norm of some off-diagonal block of cross terms in
the triangular factor. The effect of the SVD procedure on this norm is investigated
and finally, all these are applied to the updating problem.

3.1. Data model. The data model we consider only assumes that at each time
step k the data matrix A[k as defined in 2 has a fixed number d of large singular
values

ailkl, i= 1,...,d

and a remaining number of small singular values

aiikl d + l, n.

The ratio

SN[k (Td[k]

can be interpreted as a signal-to-noise ratio, and is assumed to be large, e.g., at least
10 or 100, and lower bounded by a constant SN

SN[k] > SN.

The corresponding submatrices Vs[] and Vn[] in l] define the signal subspace
and the noise subspace Z4(Vn[]), orthogonal to 7(Vs[k]).

As we consider time-varying systems, we geed to define a measure of time variation
one way or another. In view of the applications at hand, it is indicated to make use
of the canonical angles 0i between 74(Vs[_1]) and 7Z([k]), the cosines of which are

the singular values of a corresponding matrix product [10]

cos0i- oi{Vs[[_l] gs[k]}.

We then define the time variation from time step k- 1 to time step k (for a
prespecified choice for d) as the distance between the corresponding signal subspaces,
which in turn can be defined in terms of the above canonical angles as follows:

def
TV[k_l]___,[k dist{?([_l]), :R(Vs[k])}

d=ef E tan20i.
i=1

The reason for this will become clear in what follows.
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3.2. Tracking error. The adaptive SVD algorithm of 2 at each time step stores
a triangular factor R[k] of the data matrix A[k], as well as an approximation V[k] for
the matrix of right singular vectors. Suppose that at a certain time step k, R[k] and
V[k] can be split up as follows:

R[k]_ [ RS[k] Rsn[k] ]0 Rn[k]
],

where IIRn[] and IlRsn[]ll are "small." For the time being, we thus assume that at
time instant k, the large diagonal elements in R[k] occupy adjacent positions, as this
considerably simplifies our further analysis. We return to this in Remark 2, below.

It is now clear that Vs[k] provides an approximate basis for the signal subspace.
We can then define the tracking error at time step k as follows:

def
TE[k] dist{Tt(Vs[k]), 7(VS[k]) }.

Our aim is to derive a useful estimate for the tracking error TE in terms of the time
variation TV. In order to obtain this, we can make use of a well-known property,
relating the tracking error to the distance of R[k] from a (block) diagonal matrix, as
follows. If denotes the Frobenius norm of the matrix with cross terms

and 6 is the gap between the singular values of Rs[k] and Rn[k],

6 amin{RS[k]} amax{Rn[k]},
and furthermore if

2 < 5,

then it is has been shown [3], [22] that

TE[k] < 2 e_
5"

In other words, the tracking error is proportional to the norm of the block of cross
terms in R[k].

3.3. Kogbetliantz’s algorithm. Suppose we would now perform a few sweeps
of Kogbetliantz’s SVD algorithm (without any QR updates!) and then again check the
norm of the cross terms. Classical convergence results for Kogbetliantz’s algorithm
turn out to be useless in this respect. Linear convergence bounds are extremely
conservative [5], [6], [11], [13], while ultimate quadratic convergence results do not
apply to the initial convergence, where the off-diagonal elements in Rs[k] can be very
large [3], [19], [24]. Jacobi-type algorithms are considered extremely fast, but for
the general case no estimates are available whatsoever for the speed of the initial
convergence. For our specific subspace separation problem, however, it is possible
to derive a useful estimate for the reduction of the cross terms in each sweep. In
Appendix A, the following rule of thumb is obtained.

If the cross terms are small compared to the gap and the large diagonal elements
are grouped, each double sweep in Kogbetliantz’s SVD algorithm reduces the cross
terms by a factor 1/SN2.
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TABLE 2

Number of sweeps e

2.3145e-02
2 0.7311e-06
4 0.6931e-10
6 0.7499e-14

Our derivation relies on a few simplifying assumptions, in order to avoid tedious
mathematics and overly conservative results. Our results, however, are practical, and
easy to verify by experiments.

Example 1. For a triangular factor R

3.7047 0.4920 0.4312 1.1988 0.8095 --0.0051 --0.0032 0.0009 --0.0019 --0.0014
3.0436 1.0955 1.1852 2.5027 0.0099 --0.0018 0.0038 --0.0093 --0.0061

2.8701 1.3763 0.6623 0.0050 0.0026 --0.0024 0.0013 --0.0020
1.4314 1.1373 0.0080 0.0027 0.0058 0.0055 0.0008

2.5905 0.0017 --0.0006 --0.0021 0.0070 0.0042

0.0133 0.0028 0.0031 0.0003 0.0072
0.0130 0.0011 0.0027 0.0004

0.0057 0.0031 0.0035
0.0089 0.0047

0.0056

with singular values

a 5.4467, 3.5381, 2.7569, 1.9772, 1.1424,
0.0173, 0.0126, 0.0104, 0.0051, 0.0043,

SN is approximately equal to 100. If the SVD procedure were carried out as such, the
cross terms would be reduced much faster than could be predicted with the above rule
of thumb. As the convergence soon turns into (much faster) quadratic convergence, the
1/SN2 reduction of the cross terms will not be visible. Therefore, it is more instructive
to see what happens if in each sweep only the cross terms are being annihilated, while
all other rotations are skipped (corresponding to Part (b) in Appendix A). Now the
1/SN2 reduction is much more clearly displayed (Table 2). Note, however, that in
our updating algorithm, all the rotations are performed, such that the cross-term
reduction is indeed much faster. The point is that no (sharper) bound is available for
this faster convergence. Also, as far as our algorithmic description is concerned, the
sizes of the subblocks thus need not be identified whatsoever (see also Remark 2).

From the above rule of thumb, we can straightforwardly infer an estimate for the
reduction of the subspace separation error. As this latter is bounded by the norm of
the cross terms IIRsn[k] ]IF, we can conclude that each double sweep in Kogbetliantz’s
SVD algorithm reduces the subspace separation error dist{T(Vs[k]),T(Vs[])} by a

factor (1/SN2).
Example 2. Similar to the experiment in Example 1, we checked the reduction of

the subspace separation error per double sweep (for three successive double sweeps),
for different triangular matrices. The matrix dimension n ranges from 10 through 50,
while the singular value spectra were chosen to be

n n
a--

2’2 1,...,2, 1,

n--1 11
SN n SN n SN
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for SN 10 and SN 100. For all cases, the reduction factor is seen to be ap-
proximately equal to 1/SN2. Apparently, the matrix dimension has little influence
on this.

3.4. Subspace tracking. Let us now return to the SVD updating algorithm,
applied to subspace tracking. In the adaptive algorithm, a pipelined double sweep
(n n- 1 rotations) is interlaced with n QR updates, one after each series of n- 1
rotations. If all these QR updates were performed after the double sweep, we would
end up with the following inequality:

The "_<" sign is due to the fact that the different terms in the right-hand side can
partially eliminate each other. The first term corresponds to the reduction of the sub-
space separation error in a double sweep (n time steps). The second term corresponds
to the time variation from time instant k to time instant k + n.

If the QR updates are interlaced in the double sweep, the subspace separation
error is expected to be even smaller, as time variations can then immediately be taken
into account and corrected correspondingly. Although we can easily think of set-ups
where the above statement does not even hold, in general it is confirmed by simulations
(see below for an example). The above inequality can therefore be assumed to provide
a reasonable estimate for the SVD updating scheme as well.

Furthermore, as we assumed that SN is fairly large (e.g., 100), it follows that

dist{T(Vs[k+n] ), T(YS[k_t_n] } dist{7(VS[k]), T(Vs[k+n] }

TE[k+M TV[k][+.d

In other words, we can conclude that the tracking error is bounded by the time
variation in n time steps.

A few remarks on the above derivations and results are as follows.
Remark 1. The above results were derived for the case where only one sequence

of n- 1 SVD rotations is performed after each QR update (r 1 in 2). For other
choices for r, we would obviously end up with

TE[k+I < TV[kl-[k+],
as one double sweep is then performed in time steps. In other words, the tracking
error is inversely proportional to r.

Remark 2. Throughout the computations (in Appendix A), we have assumed
that the small diagonal elements in the triangular factor occupy (circularly) adjacent
positions (cf. the configurations in Appendix A after each sequence of rotations). Note
that a similar assumption had to be made for the proof of the quadratic convergence for
matrices with pathologically close or repeated singular values [3], [24]. In an adaptive
scheme, obtaining such a set-up is sometimes merely a matter of careful initialization
(once the small elements are grouped, they do not change their "affiliation," at least
not for slowly time-varying systems). Furthermore, it is observed (by performing
simulations) that even when the large and small diagonal elements are not grouped,
the tracking error is still bounded by the time variation in n time steps. In other
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TABLE 3

SN 10

SN 100

n 10

2.8100e 02
8.2947e 05
3.4249e 07
1.4534e 09
2.0213e 02
4.7201e 07
2.3465e- 11
1.1801e- 15

n=20

2.0356e 02
8.6065e 05
5.6355e 07
3.7391e 09
2.01087 02
5.8845e 07
3.5926e 11
2.6241e- 15

n=50

1.8847e 02
5.8207e 05
4.2585e 07
3.5933e 09
1.9357e- 02
8.9264e 07
7.4129e 11
6.9677e- 15

words, this latter bound seems to be conservative enough, so that it applies to the
(disadvantageous) "nongrouped" case as well.

Remark 3. The above derivation particularly applies to cases where the signal-
to-noise ratio is fairly large (e.g., 100 or more). In practice, however, it is observed
that the obtained rules of thumb deliver fairly reasonable estimates for even smaller
values of SN (e.g., 10; see also Table 3).

Remark 4. For large values of the matrix dimension, it can be expected that
the performance slightly declines, much like it has been observed that the number
of necessary sweeps in a classical SVD procedure is slightly larger for large matrices
(e.g., n > 100). In these cases, we can easily double or triple the number of rotations
after each QR update accordingly. Strictly speaking, the computational complexity
of the updating algorithm could then become O(n2+a), where a is (much) smaller
than 1.

The following example from systems theory illustrates the above results.
Example 3 (adaptive system identification). Suppose we are given a simple first-

order time-varying system, with state space equations

( 27 k)’x[k]+U[k],X[k+l] .8" COS
2000

y[] x[k],

where u[], y[], and x[] are the input, output, and state at time instant k. For every
arbitrary input sequence, the output can be computed accordingly, by making use of
the state space equations. Conversely, the state space model at a time instant k can
(approximately) be computed from the input-output data, by making use of various
system identification techniques. In [17], it has been shown how a state space model
can be computed from the following exponentially weighted block Hankel matrix:

z[1]
z[2]

A[k] W[k]

z[k_]
Z[k-i+ 1]

Z[]-- U[] YI] ]’
W[k] diag{Ak-i, Ak-i-1

z[2] z[i]
z[3 z[i+l
z[4 z[i+2

Z[k_i+l] Z[k_l]
Z[k-+] Z[k]

For a good choice of A, the "signal" rank (i.e., the number of singular values larger
than the noise level) of this weighted block Hankel matrix equals i + 1 (i is the number
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FIG. 1. (a) Tracking error (lower curve) and time variation (upper curve) versus time (A
1 2-5). (b) Original pole (solid line) and identified poles (dashed and dotted lines) versus time

(A 1 2-5).

of columns with input data, 1 is the system order). The state space model at time
instant k can then essentially be computed from the (i + 1)-dimensional space 7(Vs[k])
(see [17] for further details). So, first, the aim is to track the signal subspace of A[k],
where in each time step a new row is appended. An adaptive system identification
can be performed, by making use of either an exact SVD scheme (in other words,
with a complete computation of the SVD at each time instance), or an adaptive SVD
scheme with, e.g., n- 1 rotations after each QR update. The parameter was set
equal to 5, so that the matrix size equals 10, with a six-dimensional signal subspace.

Figure l(b) shows the original system pole 0.8. cos((2/2000)k), solid line, to-
gether with the identified pole both for the exact scheme (dashed line) and the adap-
tive scheme (dotted line almost coinciding with the dashed line). The exponential
weighting factor A was set equal to 1 2-5. Figure l(a) shows the time variation in
n 10 time steps TV[k]-+[k+lo] (solid line), together with the tracking error at each
time instant TE[k] (dashed line). Clearly, the latter generally remains smaller than
the former, confirming the above rule of thumb. Finally, note that the time variation
of the data nicely reflects the time variation of the underlying system, viz., the system
pole.

In Fig. 2, the same quantities have been plotted for a different choice for the
weighting factor A 1 2-s. A different choice for A.is seen to hardly influence the
time variation and the approximation error. As for the identified pole, the 6xponential
weighting is seen to introduce a kind of time delay, which increases when A approaches
1. The adaptive scheme, however, still delivers quite the same system pole as the exact
scheme.

4. Error analysis. In the previous section, we analyzed the performance of
the updating algorithm in infinite precision arithmetic, resulting in an upper bound

nfor the distance between Vs[k] a d. Vs[k]. In finite precision arithmetic, there are a
few sources of additional error. Apart from round-off, of course, there is also the
reorthogonalization scheme. Both processes change the V-matrix in an arbitrary
manner with respect to the original data. As we are only interested in the right
singular vectors, together with the singular values, we can define a relevant error
matrix in this respect as follows:

-(RIllA[] A[k] A[k (R[k] V[k]).
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FIG. 2. (a) Tracking error (lower curve) and time variation (upper curve) versus time (
1 2-s). (b) Original pole (solid line) and identified poles (dashed and dotted lines) versus time

( -).

This error matrix tells how far the information stored in R[k].V[] has drifted off from
the original data. If A[k] is small, the singular values of R[k] will be close to those of
A[k]. Furthermore, for large values of SN, the signal subspace of R[k]" V[kT] will then.
be close to the signal subspace of A[k].

In the sequel, upper bounds for the propagation of A[k] are derived, resulting in
a first-order difference equation

-A2A[k] A[k_l] + 5Elk]
where A is the exponential weighting factor (A < 1). As long as V[k] is close to an
orthogonal matrix, 5E[k contains only bounded local errors, independent of A[k_l].
In other words, the norm

def TII ZI lll- IIV  l Zll 
(where I is the identity matrix) should be kept small, in order to guarantee stability
of the error propagation. Therefore, we first derive an estimate for the above norm
by investigating the reorthogonalization scheme of 2. By making use of this, we
then derive the above error propagation formula, showing that the overall updating
procedure is stable.

4.1. An estimate for IIV[k] V[k I]lF. In finite precision arithmetic both the
updating and the reorthogonalization steps introduce new errors in the stored k]-
matrix. On the other hand, the reorthogonalization itself annihilates accumulated
errors up to machine precision. If the number of reorthogonalizations in the updating
scheme is chosen to be equal to the number of SVD rotations, one double sweep in
the reorthogonalization procedure is performed after each n time steps. If we let O[ac]
and T[ac] denote the accumulated right and left transformations applied to V in time
steps k through k + n- 1, we have

Y[k+n_l]-- l(T[ac]. Y[k_l]. (I)[ac])
T[ac]" V[k_l]" (I)[ac] + 5kac],

where 5kac] is an input of local errors in these time steps, and fl(.) refers to the com-
puter result after a sequence of transformations (in the right order). For a first-order
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analysis, the reorthogonalizations can be considered as orthogonal transformations,
so that Gentleman’s analysis [7] applies. The double sweep (with SVD steps and re-

orthogonalizations) then consists of 4n- 4 different "stages." Each such stage consists
of the simultaneous application of disjoint transformations. This then results in an
approximate upper bound for the local errors on V in one double sweep [7]"

I]V[ac] IIF _< (4n 4). kv.e. (1 + kve)4n-._
4n. kv .e.

where e is the largest number such that fl(1 + e) 1 (relative machine precision)
and ky is a constant depending on the specific implementation of both the Givens
rotations and the reorthogonalizations.

From the formula for V[k+n-1], we can derive a formal description for the error
build-up process as follows:

V[knt_n_l] T T T TY[k+n_,] T[ac].V[k_l].ff2[ac].g2[ac].V[k_l].T[ac]
+TIdal G-11" icl cl
q._(Y[ac] T T T[ac] -] T[c]
+O(),

T T T

+2. lilY,El IIF /
where [ac] is a factor describing the effect of the reorthogonalization steps.

As long as I]AI[k_l]]]g is small (< el/), it is reduced to machine precision by the
double sweep in the reorthogonalization scheme. The input of local errors, however,
interferes with this reorthogonalization, and this introduces additional errors of the
same order of magnitude. In conclusion, we end up with

IIXG/-ll IIF _< Icl" linG-1111F +2.

-- O() + S. k..
O(n) + 8n. kv.
k.n.,

which is then a bound for II/XI[klIIF for all values of k. The reorthogonalization
procedure thus keeps the stored V-matrix close to an orthogonal one.

4.2. Error propagation formulas. First of all, for the sake of conciseness, let
us assume that there exists an upper bound IIRIIF such that for all k,

The error matrix at time step k, viz. A[k], can then be computed from the error
matrix A[k_l] at time step k- 1 as follows.
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In a first step, appending a new row together with an exponential weighting
(weighting factor A) can be described as

a[] a[k] V[k_ [ 0/kL1]-+- T /kI[k_l]--a[k

5Ek]

where 5Ek is an "algorithmic" error due to V[k-1] not being orthogonal. Here we can
use the upper bound for AI of the previous section:

In a second step, additional round-off errors are introduced by the explicit com-
putation of

/[k-1] fl{)" R[k-1]} " R[k-1] -- (/[k-1],
-T T .y[k_X _1_ -T
a[k] fl{a]. V[/_I]} a[k] 5a[k].

Substituting this in the above equation, we obtain

/X. R[_] T_] ]
[ 0 1~T k-1] nt- -t- k-l] r- T /kL1]

a[k 0 --a[k

with first-order upper bounds (see [25])

115E]II _< he. Ila[k]ll" IIV[k-lllF <_ nv/- Ila[k] II + o(e2) nllRll.

In a third step, orthogonal row transformations are performed for the QR update,
introducing a round-off error 5/[k]. The rotation angles are chosen such that the last
row of the computer result transforms to zero:

By making use of this, we obtain

T Q[k]" Q[k]" ~T /k-1] -+- -+-
a[k] a[k]

([k] /[k]0 ]" VkL1] -+- 5Ek] -I-Ek -t-Ek
([k] (/[k] T

5Ek]
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Following the error analysis in [7],

IIEklll2 <_ IIEk]IIF <_ kae. n(1 + ]gG)n-1. 1l2[k]llF ]gG.n. IIRllF,

where ka is a constant (depending on the specific implementation of the Givens ro-

tations), and n is the number of different stages for one single QR update.
Finally, in a fourth step (SVD steps + reorthogonalizations), a sequence of left

and right transformations is applied. If we summarize these into left transformations

O[k] and T[kl, and a right transformation [k], we can proceed as follows (introducing
round-off errors 6R[k and 6kl):

R[k] fl{O[k "[k] O[k]" /[k] "[k] + 6R[k],

and

[ ]," R[k-ll V[k_l]
T QN" 0

+0().

--([k] R[k] ] T T
0 (I)[k]" Vk_l]" (T[k]- I)T

6E]

Again applying the error analysis in [7] results in

- kc;e. (2n- 2)(1 + ]G)2n-3. II[k]llF
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zcGe. (2n- 2)IIRIIF,

kGe. (2n- 2)(1 -I- kGe)2n-3. IIklll"_. (2- 2)v._. (2,- 2)IIRII.

The number of stages in the upper bounds for 5Ek and 5Ek equals 2n- 2, as n- 1
rotations are applied both to the left and to the right.

As for 5Ek], we can estimate an upper bound as follows:

7Note that 5Elk represents an additional error which is introduced by the reorthogona-
lization scheme. The reorthogonalization indeed changes the V-matrix in an arbitrary
manner with respect to the original data, and therefore contributes to A[k]. We can
easily check that liT[k]- IIIg must have an upper bound similar to IIV[k] V[k]T iiiF so
that finally

115E] I1 ZT" nx/" IIRI111

Adding all the above upper bounds, we obtain

"" R[k-1] Y[k-l] O[k] R[k] T
T Q[k] 0 "Y[k]

a[k]

6Ek
with

Multiplying the left- and right-hand sides with their transpose now results in

T)T T(RI.V (RI.VI)+/2. ([k-1]" kT-1])T (R[k-1]" v[kT_I]) + aN’aN
where

5E[] w-[] Q[]" 0 .Viii

with an upper bound

F"
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Substituting the definition of A[.] results in

and finally

2A[k] /k[k-1]-+-

or if we use norms,

The first term, /2 A[k_l] represents the error propagation, which is stable as
A < 1. The second term is an upper bound for local errors. If we assume that the
weighting factor is constant, we finally obtain (for all values of k)

I]/ [k]IIF < 2(kl + k2)
1 IIRII F "e,

or alternatively (a kind of relative error formulation),

In conclusion, the overall SVD updating scheme is found to be stable, if an expo-
nential weighting is applied, with weighting factor A < 1, and if a reorthogonalization
procedure is included, which keeps the stored V-matrix close to orthogonal. The ob-
tained upper bound for the error IIA[k]IIF is clearly overly conservative, as it consists
of an accumulation of several worst-case upper bounds.

5. Conclusion. An SVD updating procedure was constructed as a combination
of QR updating and a Jacobi-type SVD algorithm applied to a triangular matrix. As
for subspace tracking problems, it was shown how only very few SVD steps after each
QR updating can restore an acceptable approximation. Furthermore, the updating is
shown to be stable when supplemented with a Jacobi-type reorthogonalization scheme.
A systolic array for this updating algorithm is developed in [18].

Appendix A. Let us assume that the initial configuration is as follows (we con-
sider a small 6 6 example, from which the results for the general case obviously
follow)"

R[k]- Rs[k]O
rS

Rsn[k] ]Rn[k]

r r5655
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Time indices are omitted for brevity. We assume that

where

is the Frobenius norm of the matrix with cross terms, and

rmin{RS[k]} (max{Rn[k]}

is the gap between the singular values of Rs[k] and Rn[k]. As these are then known
to be (2/5)-close to the singular values of R [3], we end up with

( --- (7min {RS[k } for SN >> 1.

The aim is to investigate the effect on of one cyclic-by-rows sweep in Kog-
betliantz’s SVD algorithm (modified for triangular matrices). This essentially consists
of a number of 2 2 SVDs on the main diagonal, where the pivot index takes up the
values (see [15] and [23] for details)

1, 2, 3, 4, 5

1,2,3,4
1,2,3

1,2
1.

As a reminder, each 2 x 2 SVD can be described as

[ r, 0 ] I sin0cos0=
0 r+1,+1 cos 0 sin 0 [ r, r,+ I [ sin

0 ri+ 1,i+ COS (

where

cos ]sin

tan 20 2ri+l,i+l ri,i+l
r2.. 2 r2, ?i+l,i+l -- i,i-I

tan ri+l,i+l tan0 + ri#+l
ri,i

(for the sake of clarity, we prefer to use inner rotations + permutations, instead of
outer rotations).

First of all, we can slightly reorder the 2 2 transformations as follows:

Part (a)[ 1,2
1,

.,.,3,4,5
Part (b) 2, 3, 4

1,2,3,

Part (c)[ 1,2
1.
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Part (a) corresponds to rotations within the (approximate) signal subspace, re-
ducing the off-norm in Rs[k]. Both and 5 remain unchanged, so that for the time
being, these transformations are irrelevant.

Part (b) corresponds to annihilations of cross terms, and needs further investi-
gation. Referring to the initial configuration (which is basically not changed in Part
(a)), let us first remark that the diagonal entries in Rs[k] satisfy

’/ (7min {RS[k] }

(as Rs[k] is triangular), while on the other hand the diagonal entries in Rn[k] obviously
satisfy

n < Omx{Rn[k]}.?ii

We easily verify that the above upper and lower bounds remain valid throughout the
n elements decrease).computations in Part (b) (r elements always increase;

The first series of transformations, where the pivot index takes up the values

i .,.,3,4,5

turns the initial configuration into

(iteration indices are left out for the sake of clarity; subscripts ij refer to row and
column numberings in the full R-matrix).

When 3, the pivot element 34 is -small, from which we can estimate the
rotation angles as follows:

(Tmax{Rn[k]}
sin 0

___
tan 0

_
2O’min{RS[k]}

1
sin

___
tan

_
(9(e).

O’min {RS[k] }

From the fact that 0 (row transformation) is particularly small, it follows that the
pivot for 4 is e-small as well:

s35" cos8 r5. sin8 O(s) + amax{Rn[k]}" max{Rn[k] }
2

O’min {RS[k }

Finally, from a similar reasoning it follows that the pivot for 5 is also -small.
The estimates for tan 0 and tan therefore hold for 3 as well as for 4, 5.

nFrom the estimates for the rotation angles, we can estimate the magnitude of rij,
Q’j, j after the first series of transformations.
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n remain O’ma {Rn[k] }-small, which follows fromElements rij

amax{Rn[k]} O(c2rj. cos -- Ckj sin O(mx{R[k]} + min2{Rs[k] }

(/SN)-small, which follows fromCross terms Qj are

, n sin
k

amin{RS[k]}

0.
Cross terms eij remain e-small, which follows from

k

= o() + o()
ain{RsN }

= 0(),

where we made an opportunist (but mostly fair) assumption, namely, that rk
o(]]n]]o) 5 in{R}. Thi orponds to rti. dgr o conrg.
within Rs[k], brought about by Part (a).

We can now repeat this reasoning for the second and the third series of transfor-
mations in Part (b)

in turn transforming the triangular factor into

-r81 [

and
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where all cross terms Qj are seen to remain (/SN)-small.
Finally, subsequent transformations in Part (c) do not alter the norm of the

submatrix with cross terms.
As a main conclusion, we can state that the matrix with cross terms is (5/SN)-

small after the forward sweep. The backward sweep, returning the triangular matrix to
the original configuration, again reduces this norm by a factor 1/SN (where this time
the column transformations are particularly small). A double sweep thus corresponds
to a reduction by a factor (1/SN)2.
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ALGORITHMS FOR MINIMUM TRACE FACTOR ANALYSIS*
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Abstract. Minimum trace factor analysis is a commonly used technique for providing the greatest lower
bound to reliability, and a modification of the basic problem involves the maximization of this greatest lower
bound with respect to suitably chosen weights. The underlying mathematical problems can be expressed as
optimization problems with eigenvalue constraints, and it is well known that these can be nondifferentiable in
the presence of multiple eigenvalues. In this paper, some recent developments in methods for working with
constraints of this kind are exploited to provide methods which are second-order independent ofthe eigenvalue
multiplicities. The effectiveness of the algorithms is demonstrated on some test problems.

Key words, minimum trace factor analysis, convex programming, eigenvalue constraints, nondifferentiable
optimization
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1. Introduction. Let S be a symmetric positive definite n n matrix, and consider
the problem of finding a diagonal matrix D to minimize the trace of S D, subject to
the condition that S- D is positive semidefinite. The problem corresponds to the min-
imization of p, where

e TDe
(1.1) p--- eTSe
with e (1, l, 1)T. This problem arises in minimum trace factor analysis, and
gives the greatest lower bound to reliability in statistical analysis, as measured by the size
of p. It provides an alternative to the problem in canonical factor analysis of minimizing
the rank of S- D (see, for example, Ledermann [7] and Bentler [1]). Negative entries
in D cannot be excluded without the addition of nonnegativity constraints, and this
modified problem has been considered by a number ofauthors (see, for example, Jackson
and Agunwamba 6 ], Woodhouse and Jackson 16 ], Bentler and Woodward 2 ], and
Shapiro [13 ]); it is referred to as the problem of constrained minimum trace factor
analysis. The expression (1.1) may be interpreted as using a vector e of unit weights,
and a generalization involves the replacement of e by w n, so that p becomes

WTDw
(1.2) p= wTSw
Alternatively, trace W( S- D)W is being minimized over appropriate D, where W is
the diagonal matrix with the components of w on the diagonal. When the diagonal
elements of D are constrained to be nonnegative, this is referred to as the constrained
minimum trace problem with weight vector w.

A difficulty with the above approach is that it is scale dependent, and this has led
to the idea of maximizing the greatest lower bound to reliability as a function of the
weights. Following Shapiro [13], define L(S) by

L(S)= {dr’,S-D>=O,D>=O},
where d (d, ,dn) , D diag { d, d, }, and the convention is adopted that
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A >_- 0 if and only ifA is a symmetric positive semidefinite matrix. Then the value p, is
sought such that

(1.3) o, max min o(d, w),
w4=0 dL(S)

where p is given by 1.2). This problem is referred to as the problem ofweighted minimum
trace factor analysis.

Shapiro 13 examines the relationship of 1.3 with the dual problem ofcalculating

(1.4) p* min max p(d, w).
d L(S) w4=0

Under conditions that are frequently satisfied, the values of p * and p, are equal, so that
the primal problem of calculating p, can often be solved via the dual problem of cal-
culating p *, a problem that turns out to be much more tractable. A method for obtaining
1.4) is given by Shapiro 13 ]. However, in common with methods for minimizing 1.2)

(see, for example, Bentler [1 ], Woodhouse and Jackson [16 ], Bentler and Woodward
2 ], Ten Berge, Snijders, and Zegers 14 ), it is of first order, and it appears that methods
which are of higher order have not so far been seriously considered. The purpose of this
paper is to show how second-order convergent methods may be applied to (1.2) and
(1.4). Since methods for 1.3 require a sequence of minimizations of 1.2 ), the analysis
given here is also relevant to that problem. The solution of problems with (1.2) is con-
sidered in 2, and the treatment of 1.4) is considered in 3. Finally, in 4 the solution
ofthe primal problem is considered, using a method suggested by Shapiro 13 ], and with
the subproblems solved by the method developed in 2. Some numerical results are
presented for all the algorithms, using test problems that have appeared in the literature.
The techniques presented here exploit recent work on eigenvalue constraints by Fletcher
4 ]; Friedland, Nocedal, and Overton 5 ]; Overton 9 ], 10 ]; and Watson 15 ].

2. The solution of the constrained minimum trace problem. Consider the minimi-
zation of (1.2) over vectors d 6 L(S), where w 6 n is given. This corresponds to

(2.1)
maximize wrDw
subject to S- D >= 0, D >_- 0.

Let "yi(D), 1, n, denote the eigenvalues of the matrix M S-/2DS-/2. Then
(2.1) is equivalent to

minimize , wdi
i=1

(2.2) subject to "yi(D) -< 1, 1, n,

d>=O, i= l,...,n.

Assume that the eigenvalues are ordered so that "n =< =< , and at any feasible D,
the multiplicity of 3’1 is r. If r at a solution, then (2.2) is just a smooth optimization
problem and methods with a fast rate of convergence may be developed in a straight-
forward way. However, when r > 1, techniques of nondifferentiable optimization are
required to recover rapid convergence, and it is in the ability to deal with this case in a
satisfactory manner that the methods presented here are superior to methods previously
applied to the problem. For a particular model problem, the treatment of constraints on
eigenvalues is analyzed in the papers by Overton [9 ], [10] and also in a forthcoming
paper by Overton and Womersley [11 ]. The intention is to use similar techniques here.
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For given D, let the eigenvalue/eigenvector decomposition ofM be

M= QFQ,
where Q Rn" is orthogonal and I" diag { 3"1, 3"n}. Then letting Q [Q" ],
where Q Rr, it follows that

or

(2.3)

where V S-/2Q. Because

MQ Q

(S- D)V O,

xTMx
(2.4) 3"(D) max--T--

xO X X

it follows that 3"1 is a convex function of D and so (2.2) is a convex programming
problem. Necessary and sufficient conditions for D* to be a solution may be obtained
by standard methods of convex analysis (for example, Rockafellar [12, 28]). The fol-
lowing result is also obtained by Della Riccia and Shapiro [3] and Ten Berge, Snijders,
and Zegers 14 ].

THEOREM 1. Necessary and sufficient conditionsfor D* to solve (2.2) are that there
exists a matrix T r r, T >= O, such that for allj, j 1, n,

2 eTV1TVTe, d; 4: O,(2.5a) w
2 < ejT. v, TVTe, aft O,(2.5b) wj

where ej is the jth coordinate vector in
If r* is the multiplicity of the unit eigenvalue at a solution D*, then locally the

problem (2.2) can be posed as

minimize , wdi
i=1

(2.6) subject to "yi(D) 1, 1, r*,

di>=O, i= l,...,n.

Let g -wj2. j 1, n, and, for given D, let M (0M/0dj.), j 1, n, and let
Q * be a matrix of order n r* whose columns are orthonormal eigenvectors corre-
sponding to 3’1(D), %.(D). The basic iteration of a method for (2.6) is defined by
the quadratic programming problem

minimize g T/i + 1/2 i

(2.7) subject to 6;O TM;Q
j=l

dj. + 6>= O, j= 1, n,

where/i represents the variation in d, and the equality constraints of (2.7) are a result
of the linearization of a differentiable system of 1/2 r* (r* + nonlinear equations char-
acterizing the conditions

3"i(D) 1, 1,-.., r*.
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The correct system is based on a matrix exponential formulation given by Friedland,
Nocedal, and Overton [5]; further details are given in [10] and [11]. In order for an
iteration based on (2.7) to give a second-order convergent process, the matrix H should
be set to the Hessian matrix of the appropriate Lagrangian function, given by 9, eq.
(4.12) ]. In this context, the matrix TofTheorem is just a matrix ofLagrange multipliers.

In fact, some modifications of(2.7) are required to ensure convergence from a poor
initial approximation. In particular, the correct value of r* would not normally be known
in advance, so a guessed value r’ must be used, to be adjusted adaptively at each iteration.
An appropriate quadratic programming problem defined at a feasible point D can be
stated as

minimize g

subject to "i /qMqi >_- O, 1, n,
(2.8)

] 6j.qiTMq=0, i, k= l, r’, < k,
j=l

d+6>=O, j= 1,... ,n,

where i is the ith column ofa current matrix Q ofeigenvectors, and where the eigenvalues
and coefficients d are scaled so that -y(D) 1. The scaling ensures that feasibility ofD
can be maintained with respect to all the constraints of (2.2). The incorporation of
inequality constraints rather than equalities for the diagonal components of the matrix
constraints corresponding to (2.7) reflects the original form ofthe problem (2.2); it may
be overly restrictive to force constraints to hold with equality in the event that r’ is
incorrect. On the other hand, the equality constraints in (2.8) have no meaning if the
corresponding inequality constraint is inactive, so there is also merit in treating the first
r’ inequality constraints as equalities. If care is taken in the strategy that allows r’ to
increase, there need be no difference in practice in these alternative approaches. The
presence of the additional inequality constraints ensures that linearizations of "r i,
r’ + 1, n (assumed simple) give values no greater than 1. This can also be helpful
in that activity (or inactivity) of these constraints can be useful in the adjustment of r’.

As already explained, the matrix H is fiormally set to the Hessian matrix of the
appropriate Lagrangian function, with appropriate estimates of the components of T
included. These are usually obtained by solving in the least squares sense the system of
equations corresponding to (2.5). Using the fact that

Mj AejeA, j 1,..., n,

where A S-/, a straightforward calculation using [9, eq. (4.12)] shows that the (i,
j) element ofH is given by

2 , T,a G,jGi GliGlj/( "Yl)
a,B r +

where G QTA. This choice permits the solution/i of (2.8) to give the Newton step for
satisfying the conditions ofTheorem 1, and therefore a second-order rate ofconvergence
is possible (see, for example, Nocedal and Overton [8 ]). In the special case when the
number of constraints of (2.8) eventually holding with equality is precisely n, then a
second-order rate of convergence is obtained irrespective ofH because the method just
becomes Newton’s method for solving the equalities holding at a solution to (2.2).
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Methods based on the use of (2.8) also have a global convergence capability, as the
following theorem illustrates. It is based on the fact that if feasibility with respect to the
nonnegativity constraints is maintained, (2.2) is equivalent to the unconstrainedproblem

_y,in_ 2
-1 widi(2.9) find d " to minimize f(D)

",(D)

using the homogeneity of the objective function.
THEOREM 2. Let H be positive definite, and let solve (2.8) defined at D >= O,

scaled so that "yl(D and with r’ selected so that r’ >= r (the actual multiplicity of
3’ D ). Then A diag { 61, 6n} is a descent direction forfat D.

Proof. As previously explained, 3’1 is a convex function of D; furthermore, it has
subdifferential (see, for example, 13, Lemma 4.3

&Y D {AQ1UQA U >= O, trace (U) }.
By using the chain rule for the directional derivative of a quotient of convex functions
(see, for example, Rockafeller [12, p. 217 ), it follows that the directional derivative of
f(D) in the direction A is given by

(2.10) max -yl(D) -2 trace(AF) widi-’yl(D) wi6i
FeO’yI(D) i= i=

Now Kuhn-Tucker conditions for the problem (2.8) give the existence of nonnegative
numbers Xi, 1, n, i, 1, n, and numbers Xik, i, k 1, r’, < k,
such that

(2.11)

so that

g q- H3 + Xi[qMlqi, "",qMnqi] T

i=1

+ Xik[qM, qk,""", qfM,q]- fl 0
i,k

Tg -I- TH -}- ki(1 "J/i) -Jr- dT 0,
i=1

using the constraints and the complementary slackness conditions. It follows that

(2.12) iTg < 0 if/ 4: 0.

Now QT y.= 6jMQ1 ,’= 6jQT[AeefAQ1 which, using (2.8), is a diagonal matrix
with nonnegative diagonal elements. Therefore, if U >= 0 is otherwise arbitrary,

(
o

)trace UQI Z 62Mj.Q1 ., 62efAQ1UQ(Ae2
j=l j=l

is nonpositive. It follows that

(2.13) trace (AF) _-< 0 VF E 0"’ (D),

and so using (2.12) the directional derivative (2.10) is negative. Therefore, A defined in
this way is a descent direction forf(D) at D.

Because H is not necessarily positive definite, some modification to the basic sub-
problem is required to exploit Theorem 2. One possibility is to add a positive multiple
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of the unit matrix to H and to use a line search. However, a more satisfactory strategy
is to introduce a step length restriction on i in (2.8), making a conventional trust region
approach. Additional constraints

(2.14) -r <= 6i <= r, 1, n

are added to the constraints of(2.8), with r adjusted adaptively and reduced systematically
ifnecessary to ensure thatf( D + A) <f(D) at each iteration. This is a standard approach
to this kind of problem, and effective prescriptions are available for adjusting the value
of z. If eventually the constraints (2.14) are inactive, then a second-order rate of con-
vergence is not inhibited.

The way in which r’ is adjusted is also obviously important. One possibility is to
determine the number of eigenvalues satisfying

3’ "Y < tol 1, 2, n,

for a given value of tol 1, but it is also appropriate to check on activity with respect to
the inequality constraints of the quadratic programming problem; if the above test is
satisfied by an eigenvalue but the corresponding constraint is not active, then it is not
necessarily fight to include the index in the set defining r’. If 6 solving (2.8), (2.14) is
forced to zero, with the sequence of values of r bounded away from zero, then it follows
from (2.11 that there is a symmetric matrix T, with nonnegative diagonal elements,
such that

gi + trace (TQ’(MiQI) [Ji O, i= 1, n,

where/3i >= 0 and i 0 if di > 0, and so (2.5) is satisfied. Therefore, if T is also positive
semidefinite, the current D solves (2.1).

The algorithm can now be summarized. All the data for the subproblems can be
conveniently computed from the elements of the matrix QTA.
1. Choose an initial diagonal matrix D >= 0, set r’ (usually to ), and set r to 1.
(Start iteration number k.)
2. Perform an eigenvalue/eigenvector decomposition of M ADA, and adjust r’ if

necessary. Scale D and the eigenvalues so that 3’1(D) 1. Determine the multipliers
T by solving the least squares problem

2efAQTQT[Ae 13 w,

where/3j is absent if d > 0 and form the Hessian matrix H.
3. Solve the quadratic programming problem (2.8), (2.14) for/i. If I111 < tol then

go to Step 4. Iff( D + A) <f(D), set D to D + A and go to Step 2 with multiplied
by 4; otherwise divide by 4 (or set z to 1/2 I111 if this is necessary) and repeat
Step 3.

(End iteration number k.)
4. Check the matrix Tof multipliers for positive semidefiniteness, and terminate if this

is satisfied. (Otherwise it is necessary to reduce the value of r’ by removing an index
corresponding to a negative eigenvalue of T.)

In an implementation of this algorithm, no provision was made for the failure of
the test in Step 4. However, this situation can be provided for, as in the methods described
by Overton 9 or Watson 15 ]. The value of tol was taken to be 0.1, and the following
calculations were done on a SUN system 3 / 50, for which single length precision is about
seven decimal places. The eigendecompositions and least squares solutions were obtained
using the NAG subroutines F02AMF and F04AMF, respectively, and the quadratic pro-
gramming problems were solved using the Harwell subroutine VE02A.



ALGORITHMS FOR MINIMUM TRACE FACTOR ANALYSIS 1045

TABLE

k -f(D) r’ QSP I111o

0.007177 0.365557
2 0.022227 0.094095
3 0.022871 0.038634
4 0.023564 0.005063
5 0.023598 0.000228
6 0.023598 0.000001

Example 1. This is the social class data example from Bentler ], with n 6, and
unit weights (scaled so that w rSw ). The performance of the algorithm is shown in
Table 1, from the initial approximation d e. The table shows the value of r’ at each
iteration, the objective functionf(D), the number of times (2.8) and (2.14) have to be
solved (QSP), and the value of II/i The solution is

d * (0.0, 0.0, 0.249525, 0.188007, 0.221789, 0.0) ,
and the value ofp is 0.976402. This differs from the value quoted by Bentler ]; however,
it is readily established that the conditions of Theorem are satisfied: the eigenvector of
S-D* corresponding to the unit eigenvalue is

v (-1.470138, 3.328967, -1.231549,-1.231549, -1.231549, 1.618697) T,
so that (2.5a), (2.5b) are satisfied with T the scalar 0.023598. In fact, if r is the vector
with ith component wi e fV Tvr ei, 1, n, then

r (-0.015211, -0.225722, 0.0, 0.0, 0.0,-0.026040) r.
Note that the value of T is just -f( D* ). This is no coincidence and, in fact, it follows
from the complementary slackness conditions for (2.4) that

(2.15 trace (T) -f( D* ).

Example 2. This is the WAIS intelligence example from Bentler ], which has
n 11 with unit weights. This turns out to be quite a difficult example for the algorithm
because the value of r* is not easy to identify. The correct value is r* 2, although a

TABLE 2

0.026594 1.0
2 0.039900 2 1.0
3 0.045432 2 1.0
4 0.048964 4 0.0625
5 0.049535 2 2 0.0625
6 0.049825 2 3 0.015625
7 0.049904 2 0.0625
8 0.049980 2 0.25
9 0.050252 2 2 0.25
10 0.050446 2 0.245339
11 0.050488 2 0.029942
12 0.050547 2 0.004118
13 0.050552 2 0.000360
14 0.050552 2 0.000001

k -f(D) r’ QSP I111o
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third eigenvalue is very close to at the solution. Starting from d e, the algorithm sets
r’ to 2 at iteration number 5, but the trust region bound remains active until iteration
number 9, after which fast convergence is achieved. Table 2 shows the progress of the
algorithm, with the information displayed similar to that given in Table 1. The final
vector d* is (0.987033, 2.300717, 3.782821, 2.540044, 4.769281, 1.385407, 4.045103,
2.976816, 2.916875, 2.290365, 3.030018) r, and the value of p is 0.949448. The final
multiplier matrix is

[0.0221890.0000691T=
0.000069 0.028364

which is positive definite, and satisfies (2.15 ).

3. The solution of the dual problem. This section is concerned with the determi-
nation of p * defined by (1.4). Letting as before, "ri(D) denote the eigenvalues of S-D
in descending order of magnitude, it is clear that this problem can be solved by means
of the solution to the problem

(3.1) maximize 3’,(D) subject to " (D) =< 1.

If D* solves 3.1 ), then

Tn(D*)
p*=l--

"y1 (D*)

As before, "Y1 is a convex function of D. Furthermore,

--),,=max,,,0 xTx J’
which is also convex. Thus (3.1) is a convex optimization problem. Strictly speaking,
(3.1) should be supplemented by the restrictions that the diagonal elements of D be
nonnegative; however, it is clear from the formulation of(3.1 that no diagonal component
can be zero, so the nonnegativity constraints play a much lesser role than they did in the
problem considered in 2. For convenience, in what follows, these conditions will simply
be ignored. The problem 3.1 is equivalent to the problem ofbest 12 scaling ofthe matrix
LD with respect to all diagonal matrices D, here LLT is the Cholesky factorization of
S. The algorithm presented here is therefore similar to the algorithm for such problems
given in Watson 15 ].

An alternative formulation of (3.1) is

maximize h

(3.2) subject to ’’i(D) =< 1, 1, n,

3"i(D) >= h, 1, n.

For given D, let the multiplicity of 3’1 be r and the multiplicity of y, be s. Let V1 be
defined as in (2.3), an n r matrix of orthonormal eigenvectors of S-1D corresponding
to the eigenvalue Y l, and let V2 denote an n s matrix of orthonormal eigenvectors
corresponding to 3’.. Then necessary and sufficient conditions for a solution can be given
in the following form (see, for example, Shapiro [13]).

THEOREM 3. D* solves (3.1) ifand only ifthere exists T rr, T >= O, Z ;ss,
Z >= O, with trace (Z) 1, such that

(3.3) efg2z Vfe efV1TVre, j 1, ..., n.
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The problem (3.2) can be solved through a sequence of quadratic programming
problems analogous to (2.8). An appropriate problem can have the form

minimize p + 1/2/i rH/i

subject to "i(M) h + , 6jtlMtli p >= O, n s’ + 1, n,
j=l

t3jtlffMjtl/=0, i,k=n-s’+ 1,...,n, i<k,
j=l

(3.4) -y;(M) jlTMj’li . O, 1,..., r’,
j=l

di.qMqk=0, i,k 1,...,r’,
i=1

i<k.

In this case, two estimates must be kept of the multiplicity r’ of 3’1 and s’ of "Yn; these
are approximations to the true multiplicity r* and s*, respectively, at a solution. If the
matrix H is set to the Hessian matrix of the appropriate Lagrangian function, then a
second-order rate of convergence to a point satisfying (3.3) can be obtained. For the
special case when 1/2 r*(r* + + 1/2 s*(s* + n + 1, then a second-order rate of
convergence is obtained irrespective of the choice of H, for the method just becomes
Newton’s method for solving the system of equalities defined by constraints of (3.4)
active at a solution.

There are some modifications of(3.4) that could be used. For example, n inequality
constraints could be maintained for each set of inequalities in (3.2) (rather than just r’
and s’, respectively, as is done here). There could be some merit in a compromise,
keeping two separate estimates that are adjusted at each iteration. Also, just as for (2.8),
some of the inequalities (here r’ + s’) could be treated as equalities.

If the eigenvalues (and parameters) are scaled so that "Y1 and h is set to
feasibility is maintained with respect to the original problem constraints and progress
can be monitored with respect to the quotient q(D) -3,(D)/’yI(D). The following
theorem is important in this context; it is similar to Theorem 1, and also to 15, Thm.
2 ]; the details are therefore omitted.

THEOREM 4. Let H be positive definite, and let solve (3.4) defined at the positive
definite diagonal matrix D, where D is scaled so that 3’1(D) 1, where h "r(D), and
where r’ and s’ are chosen so that they are no less than the current actual multiplicities.
Then p >= 0; furthermore, (i) ifp > O, is a descent direction for q at D, and ii ifp
O, then there exist symmetric matrices T and Z such that (3.3) is satisfied.

As before, descent is achieved using a trust region strategy, so that the additional
constraints (2.14) are incorporated. When estimates of r’ and s’ have been established
based on the proximity of eigenvalues and activity in appropriate inequality constraints,
Lagrange multiplier estimates (that is, estimates of T and Z can be obtained by solving
in the least squares sense the system

(3.5) efAQ1TQAej- eAQ2ZQAe O, j 1,..., n, trace (Z) 1.

Because ofthe simple form ofM, all quantities can again be calculated from the elements
of the matrix QrA, where A S-1/. A summary of the algorithm is now given.

Choose an initial positive definite approximation D, and set r’ and s’ (usually to ),
and - to 1.
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(Start iteration number k.
2. Perform an eigenvalue/eigenvector decomposition ofM ADA, and adjust r’ and

s’ if necessary. Scale D and the eigenvalues so that 3‘1 1, and set h to 3‘n. Determine
multipliers by solving the least squares problem (3.5), and form the Hessian ma-
trix H.

3. Solve the quadratic programming problem (3.4), (2.14) for and p. If IIill < tol,
then go to Step 4. If q(D + A) < q(D), and D + A > 0, set D to D + A and go to
Step 2 with multiplied by 4; otherwise divide by 4 (or set to 1/2 I[/i IIo if necessary)
and repeat Step 3.

(End iteration number k.)
4. Check the multipliers T and Z for positive semidefiniteness, and terminate if this is

satisfied. (Otherwise it is necessary to reduce r’ or s’ by removing an index corre-
sponding to a negative eigenvalue.)

Eigenvalues were deemed to be coalescing if they became closer than 0.1 3’n (or
3’ ). No provision was made in the algorithm for the failure ofthe test in Step 4, although
a suitable strategy is given by Watson [15 ]. Some numerical examples are now given to
illustrate the performance of an implementation of the algorithm. The problems are
those solved by Shapiro [13 ], using a first-order method base on linearization of the
constraints of (3.2).

Example 3(a). This is the same social class data example from Bentler [1 ], with
n 6, as is used for Example 1. The performance of the algorithm is shown in Table 3,
from the initial approximation D I. The table shows the values of r’ and s’ used for
each iteration, the value q -3"n/3"1, the number of quadratic programming problems
required to be solved, and the value of [I/i Iloo, where/i solves the quadratic program-
ming problem. This is a completely straightforward smooth example; because both 3"1
and 3"n are simple at the solution, they are differentiable functions ofD. The solution ob-
tained was

d* (0.033388, 0.023388, 0.103285, 0.061308, 0.072562, 0.037834) r,
W* (0.252975, 0.364487, 0.074181, 0.127305, 0.105158, 0.191948) 7,

and o * o 0.990998. In this example, the vector of weights is unique up to a scalar
multiplier; the scaling used here was such that wrSw 1. The multiplier matrix T (just
a scalar in this case) is 0.0090021, which is just -q(D* ). In general it is the case that

(3.6) trace (T) -q(D* ).

Example 3 (b). This is the artificial example used by Shapiro [13] having

1.00 -0.05 -0.35 -0.4
-0.05 1.00 -0.2 -0.05

S=
-0.35 -0.2 1.00 -0.05
-0.4 -0.05 -0.05 1.00

TABLE 3

0.0071660 0.028508
2 0.0085330 0.026587
3 0.0089700 0.013846
4 0.0090017 0.002089
5 0.0090021 0.000033
6 0.0090021 0.000000005

k -q(D) r’ s’ QSP I111oo



ALGORITHMS FOR MINIMUM TRACE FACTOR ANALYSIS 1049

Again, this is a straightforward example, and the algorithm converges from d e
(q(D) -0.262750) in six iterations (I1 I1 10-8), with one quadratic programming
solution required per iteration, to

d* (0.409278, 0.362083, 0.396618, 0.396011 r,
w* (-0.534555,-0.202388, 0.410702, 0.404770) T.

Both 71 and 3’n are simple at D*, and q(D*) -0.263564, so that p* p. 0.736436.
Example 4. This is the WAIS intelligence example from Bentler used in Example

2, with n 11. Table 4 shows similar results to those shown in Table 3. Note that in
contrast to Examples 3 (a) and 3 (b), this is not a smooth problem. For the same reasons
as before, it is also a difficult problem inasmuch as the multiplicity of 3’1 could easily be
taken to be 3 rather than 2. No additional information is available because ofthe absence
of extra inequality constraints, and this example illustrates that a more sophisticated
strategy for choosing r’ and s’ would generally be required. The results shown in Table
4 are based on favorable decisions about the absence of a third coalescing eigenvalue.
The trust region radius was active until iteration number 12, and the final solution ob-
tained was

d* 1.265351, 2.573287, 3.587663, 2.327083, 4.521483, 1.382124,

3.802840, 2.638874, 3.173902, 2.332701, 2.666162) r,
w* (0.083006, 0.036680, 0.024414, 0.041380, 0.015716, 0.077872,

0.021939, 0.033439, 0.027752, 0.034520, 0.026087) r,
and p * p. 0.960379. Again w* is unique to a scalar multiplier. The matrix T at the
solution was

T [0.011271 0.004899]0.004899 0.028350

which is positive definite and satisfies (3.6).
Example 5. Let S be the 3 3 matrix I- 1/4 ee r. Then the performance of the

algorithm is shown in Table 5. The point of this relatively simple example is to show

TABLE 4

0.0263452 1.0
2 0.0362394 3 0.25
3 0.0375337 2 1.0
4 0.0384112 2 4 0.0625
5 0.0392416 2 2 0.0625
6 0.0393531 2 3 0.015625
7 0.0394118 2 2 0.015625
8 0.0394294 2 0.0625
9 0.0394533 2 0.25
10 0.0395221 2 2 0.25
11 0.0395790 2 2 0.25
12 0.0396018 2 0.095843
13 0.0396165 2 0.004885
14 0.0396210 2 0.000933
15 0.0396213 2 0.000019
16 0.0396213 2 0.00000005

k -q(D) r’ s’ QSP I111
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TABLE 5

k 2 3 r’ s’ QSP I111

0.2835037 0.1418721 2 0.25
2 0.2974130 0.1576195 0.269836
3 0.2625305 0.1822586 3 0.207583
4 0.2664593 0.2231516 2 0.051895
5 0.2528271 0.2470431 2 0.005600
6 0.2500420 0.2499580 2 0.000079
7 0.2500000 0.2500000 2 0.00000002

that it is possible for the multiplicity of "’n to exceed 1, and the actual values of the
eigenvalues are given (the value of 3’1 is always scaled to be 1, and so the quotient value
is just 3’3). This has consequences for the relationship between o * and o ,. Shapiro [13]
shows that if 3’, is simple at the solution to (3.2), then o * o ,, but otherwise equality
need not (and generally will not) hold. For this example,

d* (0.250000, 0.250000, 0.250000) r,
0 * 0.750000, and w* is any eigenvector ofS-D* corresponding to 3’3. The multiplier
matrices at the solution were

T [0.251.Z
0.0 0.5

4. The solution of the primal problem. Shapiro 13 considers in detail the primal
problem 1.3 and its relationship to the dual problem (1.4). The primal problem is not
a convex problem, and so a complete characterization of solutions is not possible; the
following theorem gives necessary conditions.

THEOREM 5 (Shapiro [13]). Let w*, d* solve (1.3). Then there exists # > 0
such that

(4.1) D’w* #Sw*,

andfurther, d* satisfies Theorem with w w*.
Because d * can have no zero componeni, the required conditions from Theorem

are just

(4.2) wj..2 ejT. V1TV e, j 1,..., n.

If d *, w * solve the dual problem 1.4 ), then (4.1) is satisfied with # 3’,. If 3’, is simple,
then V2 [w*]. The conditions of Theorem 3 coincide with (4.2), and (1.3) is also
solved. However, if the multiplicity of 3’n exceeds 1, this will not be the case unless the
matrix Z of Theorem 3 has rank 1.

Shapiro [13] gives an algorithm for the primal problem based on the fact that

(4.3) max WTOw <= min trace V SV ),
d L(S) diag VVT)

___
W

where V satisfies (2.3), with equality holding when

4.4 trace VTDV wrDw.
With this reformulation ofthe problem substituted into the expression for p,, the presence
of two minimizations (of the quotient on the fight-hand side of (1.2)) means that the
calculation of p, can be achieved iteratively. Fix w and minimize with respect to V (a
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problem of the form (2.1)); then for this V1, minimize with respect to w (a minimum
eigenvalue calculation) and so on. The calculation of V1 can be achieved as follows: if
W is the diagonal matrix with the current components of w on the diagonal, then solve
(2.1) with S replaced by WSWand w e (unit weights); then use (2.3) and (4.2). The
algorithm can be summarized as follows (for full details, see Shapiro [13]).

1. Choose w 1) n, normalized so that w 1)TSw 1) 1. Set k 1.
2. Solve (2.1)with w e (normalized so that wTSw 1) and Sreplaced by wk)swk).

Let the solution be Dk) and the objective function value be fk).
3. Identify V ]k) satisfying (2.3) in this case (a matrix ofeigenvectors of Wk)SW) 1Dk)

corresponding to the unit eigenvalue; the dimensions of V ]K will be n r ifthe unit
eigenvalue has multiplicity r), normalized so that

w)TD)w) trace (Vk)D)V)).
Compute Xk) such that

(k) k) (k) vk)X (k) diag { v )1, (v) } S diag { (vi),, ) }.
i=1

Determine 3,k) as the smallest eigenvalue of S-1X(k). If I’)’(k- 1) (k)] < 8, then
terminate the iteration. Otherwise set w + 1) to an eigenvector corresponding to the
smallest eigenvalue, correctly normalized, and go to Step 2 with k increased by 1.

The above algorithm will descend in the limit to vectors d* and w* satisfying the
conditions of Theorem 5, as shown by Shapiro 13]. Note, however, that it is possible
for this to correspond to a local rather than a global minimum, so that o. need not be
attained. Essentially the algorithm corresponds to the solution of a sequence ofproblems
ofthe type considered in 2, and their efficient treatment is important to the effectiveness
of the algorithm.

To illustrate, consider its application to Example 5 above, starting from w e
(correctly normalized) with d initially set also to e. For subsequent iterations, the initial
d for Step 2 is the current optimal value; in all iterations, r 1, and the smallest eigenvalue
in Step 4 is simple so that the new w is uniquely defined. Table 6 shows the progress of
the algorithm, including the number of iterations (No.) at each inner iteration (which is
in fact equal to the total number of problems (2.8) and (2.14) solved) to obtain six-
figure accuracy. The final vector d * was (0.211324, 0.211324, 0.316988 T, with O
0.732051. As explained before, this example is of interest mainly because o* 4= o., so
that solving the dual problem is not sufficient to give the primal solution. The eigenvalues
of S-1 D* are 0.211325, 0.267949, and 1.0. Of course, u 0.267949 is not the smallest
eigenvalue, otherwise the primal and dual solutions would coincide, which is not possible

TABLE 6

k wk) w2k) w3k) No. f,k)

1.154700 1.154700 1.154700 1.0 1.0
2 -0.595141 -1.074397 0.192350 6 0.579403 0.509164
3 -0.860357 -0.860357 0.248234 5 0.493477 0.470450
4 -0.819342 0.819342 0.312027 0.447548 0.412164
5 -0.752661 -0.752661 0.409148 0.377666 0.322777
6 0.639188 0.639187 -0.558846 5 0.285585 0.267949
7 0.563016 0.563016 -0.650115 4 0.267949 0.267949
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TABLE 7

k wk) wt2k) w3k) NO. ftk)

0.150958 -0.770395 0.619437 5 0.333333 0.326935
2 -0.157792 0.714938 -0.684101 4 0.326694 0.326425
3 -0.164185 0.714903 -0.682879 2 0.326145 0.325829
4 -0.171395 0.714831 -0.681472 2 0.325500 0.325124
5 -0.179610 0.714703 -0.679836 2 0.324731 0.324277
6 -0.189080 0.714498 -0.677905 2 0.323800 0.323242
7 -0.200148 0.714176 -0.675588 2 0.322646 0.321949
8 -0.213307 0.713679 -0.672748 3 0.321201 0.320292
9 -0.229278 0.712904 -0.669184 2 0.319317 0.318098
10 -0.249176 0.711679 -0.664552 3 0.316779 0.315071
11 0.274814 -0.709667 0.658278 3 0.313199 0.310658
12 0.309351 -0.706167 0.649280 3 0.307824 0.303719
13 0.358780 -0.699541 0.635301 3 0.299031 0.291572
14 0.435686 -0.685273 0.610916 3 0.282792 0.267949
15 0.563016 -0.650115 0.563016 5 0.267949 0.267949

for this example. In general, if the second smallest eigenvalue is obtained in a situation
where the dual solution does not also provide the primal solution, then it may be assumed
that the primal problem has been correctly solved. However, the primal solution process
may well provide some other eigenvalue, having converged to a local minimum.

Since it is usually much easier to solve the dual problem, then it is reasonable to
suppose that that problem is always solved first. Therefore, a dual solution is available
to provide starting information to the primal algorithm. If the primal solution is not
obtained, then, as explained above, the smallest eigenvalue of S-D is not simple, and
the corresponding eigenvector is not uniquely defined. However, it might seem appropriate
to take one of the eigenvectors as w t) for the primal solution. The effect of doing this is
illustrated in Table 7, and it is seen that convergence in this case is actually much slower,
although again only one solution of (2.8), (2.14) was required at each iteration. This
example demonstrates, therefore, that the method has the potential for slow convergence.
Notice that the answer differs only in the ordering of the components.

5. Concluding remarks. The purpose of this paper has been to demonstrate how
recent developments in the provision of methods for nondifferentiable optimization
problems involving eigenvalue constraints can be used to facilitate the solution ofproblems
ofminimum trace factor analysis. Details ofsome possible algorithms have been presented
and numerical results given for some problems that have appeared in the literature. The
intention at this stage has not been to provide extremely robust methods that will cope
in a satisfactory manner with all eventualities. However, it is hoped that the analysis and
examples illustrate that the methods are potentially very powerful for solving the classes
of problems considered. In fact, for problems with a fixed weight.vector and for the dual
problem, it would seem that algorithms of the general type described are likely to be
optimal. However, the method used to solve the primal problem involves a sequence of
infinite problems, and this is not entirely satisfactory. Also, the rate of convergence of
the outer algorithm can be slow, although in the examples tried only a small number of
problems (2.1) was required in total. It would be interesting to establish whether or not
the primal can be solved by the application ofa sequence offinite problems (for example,
quadratic programming problems), although at the present time this remains an open
question. Another aspect of the primal is that it is not a convex problem (unlike the
dual) and so the possibility of convergence to a local minimum is left open.
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COMPUTING THE STRUCTURED SINGULAR VALUE*

G. A. WATSON]"

Abstract. The concept of the structured singular value was introduced by J. C. Doyle as a tool for the
analysis and synthesis of feedback systems with structured uncertainties. There are different ways in which this
quantity can be computed and some methods are considered here. One method, due to Doyle, involves minimizing
the largest singular value of a given matrix: this is a convex problem, which can give the structured singular
value in some cases; otherwise it provides an upper bound. Another approach leads to a real minimax problem:
this is nonconvex, and solves the original problem if the global solution is found; otherwise it gives a lower
bound. Different formulations of this latter problem have been presented. In this paper, the minimax problem
is developed as a special case of a class of problems whose solutions lead to generalizations of the structured
singular value, when different matrix norms are permitted in the original problem statement. Efficient com-
putational methods are developed, and some numerical results are presented.

Key words, structured singular value, minimizing maximum singular value, minimax optimization

AMS(MOS) subject classifications. 65F30, 65K10

1. Introduction. In multivariable control theory, methods based on singular values
are well known for the treatment of feedback systems. For the development of multiloop
generalizations of classical single-loop techniques, however, conventional singular value
methods have serious limitations because they do not exploit information on the structure
of the underlying perturbations. Therefore, the concept of structured singular value was
introduced by Doyle 2 for the analysis and synthesis offeedback systems with structured
uncertainties. It permits the design of control systems under joint robustness and per-
formance specifications, and it complements the H approach to control system design.
For some appropriate references, see [2].

There are different ways in which the structured singular value can be computed.
The main purpose of this paper is to examine some algorithms which appear to be more
efficient than others that have been used, and also to give some numerical examples. In
the rest of this introductory section, the structured singular value is defined, and some
notation is introduced. In 2, a particular approach to the solution of the problem, due
to Doyle 2 ], is considered, and some numerical results ofthe application ofan algorithm
to some problems are given. The problem solved is a convex problem, which always
provides an upper bound for the structured singular value, and is equal to it in some
cases. In 3, a method is considered based on exploiting the equivalence of the original
problem to a (smooth) minimax problem. This result, in a slightly different form, first
appeared in Fan and Tits 4 ], but the development given here is one that is relevant to
a much wider class of problems and contains the known results as a special case. The
minimax problem is no longer convex, but any local solution gives a lower bound for
the structured singular value, and is equal to it ifthe global solution is obtained. Numerical
results are given for an algorithm based on this approach, which may be used as a com-
parison with those previously obtained. However, it may be desirable to use both tech-
niques to generate both upper and lower bounds, so the methods need not necessarily
be regarded as competitors.

Let M C x n be any complex square matrix, and let k (kl, km)r Z r be
a vector of positive integers summing to n. Let I[" denote the 12 operator or spectral
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norm on matrices of any dimension, and for any positive scalar 6 (possibly De define

X { block diag (A, ..., Am): A Cki ki satisfying [1Ai < it}.
DEFINITION 1. The structured singular value (M) ofM e C"" with respect to

block structure k is the positive number having the property that

det(I+MA):/:0 V&rX iff6< 1.

Alternatively, t(M) is zero if there is no A Xo such that det (I + MA) 0.
Otherwise,

u(M) (minax { IIAII: det (I + MA) 0 } )-1.
It is possible to extend the above definition to allow repeated blocks; in other words, to
force equality in some of the A;: this case is not considered here. It follows from 1.1
that the structured singular value can be computed by considering the problem

(1.2) find A e Xoo to minimize zx subject to det (I + MA) 0.

For the special case when rn 1, it may be shown that g(M) M I[, in other words,
the largest singular value ofM, and this explains the naming of(M) in the more general
structured situation described above. It is assumed in what follows that the feasible region
of (1.2) is nonempty.

2. The method of Doyle. Let D be the set of diagonal matrices

D { block diag (dl Ik,, dmlkm): di or. R, 1, m }.
Then for any D D, and any A 6 Xoo feasible in (1.2), there exists x, xHx such that

Thus

and it follows that

(I + eDMe-DA)x O.

a -1 eDMe-D 11,

(2.1) #(M) _-< inf eDMe-D 11.
DD

The following result is given by Doyle [2].
THEOREM 1. Equality holds in (2.1) ifm <= 3 or the minimum on the right-hand

side is attained with the largest singular value being simple.
It follows that the structured singular value can often be computed by solving the

problem

(2.2) minimize eDMe-D II.
DD

Let d (dl, din- T and A A (d)) eDMe-D, and let

OA
Ai Odi

1, m- 1,

02A
Aij OdiOdj.’

i,j 1, 2, ..., m 1,

where it is assumed that the degree of freedom in (2.2) is used up by fixing dm 0. Let
the singular value decomposition ofA be

A UZVH,
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where diag { a trk> ak / >= >= tr,, }, U and V are unitary matrices, and
the superscript H denotes the complex conjugate transpose. Let u;, v; denote the ith
column of U and V, respectively, and let Ul, Vl denote the first k columns of U, V,
respectively (which are, of course, not uniquely defined if k > ). Let 01[" denote the
subdifferential of [1" II,

OlIAI[ a C" [Inll >-- I[A[I / Retrace Gn(B A), for all B cnn}.
Then it is readily established that G 11A if and only if

(i) IIGI[* =< ,
(ii) Re trace (GnA) a II,

where [[. * denotes the dual norm.
The following result may be obtained from standard analysis carried over from the

real vector case (see, for example, Rockafellar 10 ]).
LEMMA (directional derivative).

IlA(tl + s)l[ -IlA(d)ll m-
lim max , diRe trace (GnAj).
3,-0/ aOllhll j=

LEMMA 2 (characterization of 011All see, for example, Berens and Finzel [1 ]).
G 0[IAII ifand only ifG U1AV, where A is a k k Hermitian positive semidefinite
matrix with trace A 1.

Now define the k k Hermitian matrices

Hs 1/2(UAV1 + VAU1), j 1, 2,..., m- 1.

Also, letM Ckj" refer to thejth block row ofM, let xs Ckj denote the corresponding
elements of x Cn, and let Uls, Vs denote the jth block row of Ul and V1, respectively.

THEOREM 2. A vector d R solves (2.2) if and only if there exists a k k
Hermitian positive semidefinite matrix A, with trace A 1, such that

(2.3) trace (A//) 0, j 1, 2, m 1.

Proof. Using Lemma 1, it follows that necessary conditions for d to be a solution
are that there exists G O[[A such that

Re trace (GnAj) O, j 1, m 1.

That (2.3) is necessary follows from Lemma 2 and the definition ofthe matrices/-/. The
result is completed from the fact that the objective function of (2.2) may be shown to
be a convex function of d 11 ], so that the necessary conditions are also sufficient. []

COROLLARY. A vector d gm-1 solves (2.2) ifand only ifthere exist real numbers
"Yi - O, 1, k, summing to and vectors ci Ck, c/ci 1, 1, k such
that

k k

Z ; Uc; 2 E /i VljCi 2, j 1, m.
i---1 i=1

Proof. This follows by writing the singular value decomposition of A as

k

A E yiCiC/"H,
i=1

and using the specific form ofA. Note that the result for j m is a consequence of the
others. Z]
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THEOREM 3. Let d solve (2.2) andassume that there is a rank-one matrix 3, satisfying
(2.3), say A ccn, where cI4c 1. Let

e-dVljc(Mje-DVIc H

(2.4) A Me-OVc = j 1, m,

except that A is set to zero ifthe corresponding denominator is zero. Then equality holds
in (2.1) and A defined by (2.4) solves 1.2 ).

Proof. By virtue of the fact that d solves (2.2), and the assumption about A, it
follows from the above corollary that

11VljC uljc II, j 1, m.(2.5)

Let

Now

so that

X
c-DvIc
e-Z’Vc

eDMe-DVI ai U,

Me-DVlc o. e-DUIc.
Thus ifMe-DVc 0 for anyj, it follows that UljC 0 so that xj. 0. A straightforward
calculation shows that

AjMx -x, j 1, ..., m,

so that A is feasible for (1.2). Furthermore, for any j, j 1, m, with Uj.c 4: 0,

e-d’ W,c

so that ]IAI[ a Thus the inequality in (2.1) is also reversed, and the result fol-
lows.

Theorem may be intereted as a consequence of Theorem 3: A has rank one
trivially if k 1; in general, what is required for (2.5) to hold is the convexity of the set

{s.s c".,- vv,)c,j , m, c% }.

There is nothing to prove when m 1, because V]] U[ 1, and convexity is
established by Doyle [2] for m 2 and 3. An advantage of the paicular form of the
statement in Theorem 3 is that if a general algorithm is used to solve (2.2), then an
explicit A is likely to be available, so that it would be possible to check (when k > for
a solution to (1.2). In addition, an explicit form of the minimizing is provided.

Note that at any d with k 1, G is unique, and

0uAv, []A]], j 1, 2, ..., m 1,

so that the conditions of Theorem 2 just reduce to the usual zero derivative conditions.
In paicular, it is easy to define descent directions for ]]AI] at such points. Descent
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directions may also be defined for arbitrary points d: for any d ’- , let

K {s m-: sj trace(AHj),j 1, m 1, A >- 0, trace (A) 1},
where here (and subsequently) we use the convention that A >- 0 means that the matrix
A is Hermitian, positive semidefinite.

THEOREM 4. For given d, let -s* m- solve

(2.6) find s e K to minimize Ilsll.
Then either s* O, in which case d solves (2.2), or s * is a descent direction for IIA
at d.

Proof. The first part follows immediately from Lemma 2. Assume that -s* 4 0
solves (2.6). Then using convexity,

s*t < 0 VtK,

so that
m-1

max s* trace (AHj) < 0,
A_O

j=l
trace (A)

and the descent property is established using Lemmas and 2. [B

At any point d where the largest singular value of A is simple, first and second
derivatives of the objective function in (2.2) exist and may be calculated. These are

where

U1HAiv1

Olijk uAjVk

+ ReufAov,

for all relevant i, j, k, and the bar denotes the complex conjugate. Thus, if the largest
singular value is simple at a solution, Newton’s method is available, and so locally a
second-order rate of convergence is possible. Because the objective function in (2.2) is
convex, the Newton step is a descent step, so that a globally convergent algorithm can
be obtained by using a line search. However, if the largest singular value at the solution
has multiplicity greater than one, these derivatives are not defined there and, in particular,
the solution is no longer a point of attraction for Newton’s method.

The problem of dealing with multiplicity of o" can be approached in various ways.
For example, the steepest descent step of Theorem 4 is always available (at least in
theory), leading to a generally applicable first-order method. The problem (2.6) of com-
puting the steepest descent step is, of course, not a finite problem, but different methods
may be used for its solution: for example, algorithms are given in [2] and [3]. A first-
order method for (2.2) is also given by Polak and Wardi [9]. An algorithm for (2.2)
based on the use of Newton’s method, which reverts to the steepest descent step in the
presence of multiple singular values, is given by Fan [3 ]. The problem of recovering a
second-order convergence rate, when there is multiplicity of the largest singular value at
the solution of problems similar to (2.2), has recently received some attention. An al-
gorithm based on work of Friedland, Nocedal, and Overton 7] on numerical methods
for inverse eigenvalue problems, and involving the solution of a sequence of quadratic
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programming problems, has been developed by Overton 8]: it seems likely to lead to a
very efficient method for solving problems of the type (2.2) under very general circum-
stances.

However, the interesting thing about the class of problems (2.2) is that the usual
situation appears to be that the second alternative in Theorem holds, so that the solution
to (2.2) occurs for a simple maximum singular value, and this seems to be a phenomenon
that is independent of the size of m. Not only does this make the computational process
easier (and obviate, or at least reduce, the need for sophisticated methods), it also guar-
antees that the structured singular value is found even when m > 3. Therefore, variants
of Newton’s method appear to be very effective in solving (1.2), and numerical results
were obtained for the application of Newton’s method to a range of problems with real
M. In the event that the full Newton step did not reduce the function, a strategy involving
successive halving of the step length was used to ensure a reduction. The initial approx-
imation d 0 appeared to be an excellent one for the examples tried, so that only local
properties of the method were being tested, and the expected rapid convergence to the
solution was obtained in a few iterations.

Some numerical results are displayed in Table forMgiven by the Fortran random
number generator RAND. The singular value decompositions were obtained from the
NAG subroutine F02WEF, and the system of equations defining the Newton step was
solved by the NAG subroutine F04ASF. In the results given, ki was constant for each
pair of values of n, m. Initial and final values of a are given (the blanks imply that the
same initial approximation as in the line above was used), together with the number of
iterations (I) and seconds of CPU time for a Fortran program run on a SUN 3/50 to
achieve the stopping criterion of Ilsll < 0.000001, where s is the Newton step. Double
precision was used because this was required by the system for calls to the NAG subrou-
tines. The times were obtained from the TIME function.

It is known that counterexamples exist to the conjecture that k always at solutions
to (2.2); therefore, using a method based on this assumption, holding is not a completely
foolproof strategy. However, for the purposes of numerical comparisons with alternative
methods for 1.2), the quoted computer times give lower bounds on the times taken for
any more sophisticated algorithm to solve the problems; also, the occurrence of multiple
a when m > 3 means that even if (2.2) is solved correctly, the structured singular value
may not be obtained.

TABLE

5 10 2 4 2.2 5.06351 5.05416
2 10 5 5 4.8 5.04482

10 10 5 9.0 5.01613
10 20 2 3 8.2 10.2930 10.2904
5 20 4 4 16.2 10.2828
4 20 5 4 19.0 10.2614
2 20 10 5 43.7 10.2330

20 20 6 129.1 10.2096
15 30 2 3 25.4 15.4437 15.4412
10 30 3 3 31.1 15.4419
6 30 5 4 56.5 15.4282
3 30 10 5 125.5 15.3970
2 30 15 5 194.3 15.3164

30 30 7 703.1 15.2664

ki n m I CPU r r
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3. An equivalent smooth minimax problem and some generalizations. The solution
ofthe problem (2.2) seems an attractive way ofcomputing the structured singular value,
particularly if it can be treated effectively as a smooth convex unconstrained optimization
problem in just (m variables. However, it involves a complete singular value de-
composition of the n X n matrix A at each iteration, and this becomes increasingly
expensive with increasing n. In this section, an alternative approach is considered that
avoids these expensive decompositions. In fact, the method of development given here
has the additional advantage that it readily generalizes to enable (1.2) to be solved for
other norms on the matrix A. Ofinterest here is an important range ofunitarily invariant
norms; in particular, we consider the problem

(3.1) find A X to minimize I[/X I[, subject to det (I + MA) 0,

with I1" IIs defined by

where a(A) is a vector in n whose components are the singular values of A, and where
the norm on n is the usual lp vector norm, p >_- 1" this matrix norm is usually referred
to as the Schatten-p norm. For this more general problem, us(M) denotes the expression
analogous to that defined by 1.1 ). Clearly, the special case p gives 1.2); another
important norm is the Frobenius norm, which corresponds to p 2. As additional pieces
of notation, let ai)(Ai) denote the vector in k whose components are the k; singular
values of Ai for each i, 1, m, and define

II/i Ils O" (i)(/xi)ll,
where the subscript s is used to reflect the fact that although the matrices here are of
different dimension, the norm is being defined in the same way. It follows from these
definitions that I[/xlls IIz[Ip, where z m with zi IIxills, 1, m.

Now consider the problem

minimize h lip

(3.2) subject to I[xi =< hi M/xll, 1, m,

xHx 1,

where unadorned norms are 12 norms just as before, and where h m, with components
h/-, 1, rn. The connection of (3.2) with (3.1) is the subject of the following
theorem.

THEOREM 5. Let , (a solve (3.2). Then zs(M) ]]fi]l-1, and (3.1) is solved by
taking A , where

otherwise,

H tt
XiX iV1

A
IIM,.II 2 ifM,, 4: 0;

Proof. Let A* solve (3.1). Then since det (I + MA*) 0, it follows that det (I +
/X’M) 0, and so there exists x*, x*/x * 1, such that

/x/mix* + xi* 0, 1, ..., m.

Thus

(3.3) IIx?l[ =< [l;)(x?)liliMx*ll, 1, "", m,
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so that x* and h i* a (i)( m lip, 1, m, are feasible for (3.2). Now a straight-
forward calculation shows that

so that

(I+ //) 0

det (I + Mh) O,

and 5, is feasible for (3.1). Furthermore,

(3.4) IIh, lls

because h is a rank-one matrix. Thus

The result follows.

A* IIs < IIh IIs

ifM; # O,

I111, say, where i hi Ils,

:< I111
----< h* I1, by definition of h,

It is a consequence of this theorem that h is always a rank-one matrix, so that/
is rank m. However, the solution to (3.1) is not unique: for example, let again solve
(3.2) and let Ri be k; X ki unitary matrices satisfying

I1.11 RiMi MiII, ifMi # O.

Let

otherwise,

Then

[l,i
Ri ifMi # 0;

(I+ /)i O,

; Ils ifM. # 0,
IIMiIi

and a similar argument to that used in Theorem 5 shows that is also a solution
of(3.1).

It is clear that equality will hold in the constraints of (3.2) at a solution. Indeed, if
we define

hi(x)
IIMxll

1, 2,... m,

then (3.2) may be restated in the form

minimize h(x) I[ subject to xHx 1,
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where h(x) denotes the vector in m with components hi (x), 1, m. Reverting
to the original problem 1.2 (the casep ), the structured singular value can therefore
be computed by minimizing

{ ]]xi]’
i= m}max

11Mixl[

This is a real minimax problem in 2n real unknowns, these being the real and imaginary
parts of x e Cn. Note that this formula immediately shows that tz(M) is the largest
singular value of M when m 1; it also provides an intuitively pleasing alternative
definition of the structured singular value. An equivalent statement of this problem is

minimize h

(3.5) subject to Ilxi hi[ Mixll, 1, m,

xHx 1.

The formulation 3.5 is also given in Fan, Tits, and Doyle 5 ], 6 ], where it is extended
to deal with the case of more general uncertainty structures. In fact, the inequalities in
(3.5) actually hold with equality at a solution, and this is very useful from the point of
view of the actual calculation. A key result is the following lemma.

LEMMA 3 (see, for example, 2 ). Let p(d) be a polynomial ofdegree q in d m,
and consider the problem:

minimize d subject to p(d) 0.

Let 1 be a solution. Then there exists a solution d* such that

d,.* [Idll , 1, m.

The result of the next theorem is essentially a reformulation of results in [4 ], but
a proof is given here for completeness.

THEOREM 6. There exists a solution to (3.5) with the constraints homing with
equality.

Proof. Let solve (3.5) and define

di
;

ifMi =/= 0;IIMII
otherwise, d; 0. Then there exists a ki ki unitary matrix R,. such that

diRiMi i, 1, m,

or

IRM ,
where/ D and R block diag { R,... Rm }. Therefore, det (I-/RM) 0, or
p(]) 0, where (all, m) r, with p a polynomial of degree n. Thus I]d]l is
minimized subject to p(d) 0 by d . By Lemma 3, there is a solution with

d, Ilall, 1, ..., m.

Thus

det (I hRM) O,

where h lid I1, It follows that there exists x*, IIx*ll such that

(I- hRM)x* 0,
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SO that

x,.* h M;x* II, 1, m.

The result is proved. []

We may consider, therefore, the problem (3.5) posed in the form

minimize 3’

(3.6) subject to x; 2 M;xll 2, 1, m,

Ilxll 2 .
This is a smooth optimization problem in (2n + real variables (3, and the real and
imaginary parts of x), and may be solved in a standard way through the solution of a
sequence ofequality-constrained quadratic programming problems. There is no need for
an artificial penalty function, because descent can be obtained with respect to the natural
merit function

IIx/ll 2

(3.7) max
M/xll ="

A version of this problem is given in [4], having the form

maximize Mx[I

(3.8) subject to ]Ix/II 21[ Mxll 2 Mixll 2, 1, m,

Ilxll = 1.

If solves (3.8), then

#(M) MII.
The solution of 3.8 is considered in 4 ], using a general method for solving constrained
optimization problems. Thus advantage is not being taken of the minimax formulation,
but nevertheless the numerical results show that this process can still be considerably
more efficient than solving (2.2).

An algorithm for (3.6) when M is a real matrix has been implemented as a FOR-
TRAN program to run on the same SUN 3 / 50 system used for the results ofthe previous
section. At each approximation to the solution, 3’ was reset to the current value of (3.7),
and an equality-constrained quadratic programming problem was generated based on
linearizations of the constraints and a quadratic approximation to the objective function
of (3.6) with Hessian matrix that of the Lagrangian function. Approximations to the
Lagrange multipliers were obtained in a standard way by solving a least-squares problem
derived from the Kuhn-Tucker conditions. The linear equality constraints may be elim-
inated, again in a standard way, by a QR factorization technique, so that it is necessary
to work only with the reduced Hessian matrix, and an efficient method can therefore be
developed. To improve the global convergence capabilities of the method, at first the
Hessian matrix was, in fact, augmented by adding a positive multiple of the unit matrix
(initially one), and this multiple was adjusted as the computation proceeded based on
the progress of the method.

The solution of the quadratic programming problem is a descent direction for the
merit function (3.7), provided that the quadratic Hessian is positive definite (although
this is not a necessary condition), and on a successful full step in this direction, the
multiple of the unit matrix was reduced by a factor of 4. When less than 0.1, it was set
to zero. Descent can be obtained, if necessary, by a line search (here based on successive
halving of the step length), or if the solution of the quadratic programming problem is
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TABLE 2

ki n m I CPU 7 7 1/7

5 10 2 6 1.0 0.042554 0.039147 5.05416
2 10 5 6 1.3 0.043077 0.039292 5.04482

10 10 4 1.1 0.057499 0.039743 5.01613
10 20 2 5 3.4 0.010195 0.009443 10.2904
5 20 4 5 3.9 0.010836 0.009457 10.2828
4 20 5 5 4.4 0.010821 0.009497 10.2614
2 20 10 6 6.3 0.019213 0.009550 10.2330

20 20 4 5.7 0.021693 0.009594 10.2096
15 30 2 5 9.3 0.004355 0.004194 15.4412
10 30 3 6 11.9 0.004246 0.004193 15.4419
6 30 5 6 12.9 0.004506 0.004201 15.4282
3 30 10 6 16.1 0.005398 0.004218 15.3970
2 30 15 6 18.3 0.007870 0.004263 15.3164

30 30 4 16.3 0.008553 0.004291 15.2664

not a descent direction, by repeating the iteration with the multiplier restored to one (or
multiplied by 4 if appropriate). Eventually, the original Hessian can be used, resulting
in a process which may be shown to be asymptotically equivalent to Newton’s method
for satisfying the Kuhn-Tucker conditions, and so a second-order rate of convergence
may be obtained.

Some numerical results are presented in Table 2, which may be used for comparison
with those obtained in Table 1. The initial approximation was always taken to be x
(1, 1, )T (suitably normalized), and a comparable stopping criterion was used.
Here, too, a very good initial approximation appears to be available, as this choice gives
an excellent starting value in every case. For the purposes of comparison, note that the
optimal value of 3’ is the square of the inverse of the structured singular value as defined
before, provided that the global (rather than just a local) minimum has been obtained.
There is, of course, no guarantee of termination at a global minimum, because (3.6) is
not a convex problem, and, in this respect, the method is not as good as that of the
previous section. Nevertheless, it would appear from numerical experiments that it is
usual for the global minimum to be found.

A few results using the initial approximation x 1, 0, 0) T are given in Table
3 to give a better idea of the global capability of the algorithm. This is important, as the
matrices used here are not necessarily typical ofthe kind ofmatrices that occur in practice.
It was found to be useful to allow the multiple of the unit matrix added to the Hessian
to go more slowly to zero and, in the results quoted, this value was set to zero if otherwise
it would be less than 0.01. Results for some slightly larger problems with different vectors
k are also given in Table 4, again with the initial approximation x (1, 1, )T.

TABLE 3

ki n m I CPU 3"0 3’

5 10 2 9 1.5 0.315962 0.039147
4 20 5 15 12.2 0.444655 0.009497
6 30 5 16 33.4 0.342729 0.004201
3 30 10 19 49.2 0.998851 0.004218



STRUCTURED SINGULAR VALUE 1065

TABLE 4

k n m I CPU 3’0 3" V/3"

kl 40 6 5 23.1 0.002474 0.002395 20.4337
k2 50 5 6 47.8 0.001585 0.001544 25.4493
k3 50 8 6 52.6 0.001627 0.001545 25.4411
k4 60 8 5 70.9 0.001168 0.001079 30.4431
k5 100 5 5 270.2 0.000423 0.000398 50.1255

For the examples, the vectors k were chosen, for no particular reason, to be

kl (6, 5, 5, 8, 7, 9),

k2 (12, 5, 10, 8, 15)7",

k3 (8, 5, 7, 4, 9, 3, 6, 8)7",

k4 (7, 9, 11, 4, 6, 14, 3, 6) 7",

k5 18, 31, 16, 23, 12)7".
It is clear from Tables 2 and 4 that, for the problems considered here, the approach based
on (3.6) appears to give a very efficient way of solving (1.2).

4. Concluding remarks. Some methods for computing the structured singular value
have been discussed in this paper, and some numerical evidence given to indicate the
efficiency of two of these methods. The stopping criteria used for the calculations were
based on the step lengths in the increments in d and x being sufficiently small, and while
this is appropriate if these quantities are required to a particular accuracy, it is generally
an exaggeration of the amount of computation required to obtain the same accuracy in
the structured singular values; therefore these quantities are being obtained to greater
accuracy than the number of figures displayed. Algorithms based on solving (2.2) have
the advantage that if this problem is correctly solved, then the structured singular value
is always obtained if m =< 3. Otherwise, it is possible for a solution to (2.2) to fail to
provide the correct value, although numerical evidence supports the view. that this does
not happen much in practice with real matrices. However, a referee has made the comment
that the phenomenon of repeated maximum singular values does occur with more fre-
quency for large matrices when the matrices are complex. At worst, an upper bound will
be obtained.

The numerical results presented here suggest that algorithms based on (3.6) are
considerably more efficient, mainly (although not entirely) because they avoid compu-
tationally expensive singular value decompositions, and this offsets the effect ofthe larger
number ofunknowns. Ofcourse, the difference becomes more pronounced as m becomes
large relative to n. It is clear that the structure of the problem (3.6) makes it computa-
tionally attractive, and may be exploited to permit accurate solutions to be obtained in
an efficient manner. Another advantage of methods based on this problem is that they
have no restriction on the value of m. On the other hand, (3.6) is not a convex problem,
so that there is no guarantee that a local and not a global solution is obtained. For the
problems used here, an excellent initial approximation is available, and the numerical
evidence is that this potential difficulty does not arise. However, the method will, at
worst, provide a lower bound.

Although the numerical results quoted here are all for real problems, they should
be useful as a guide to the more general situation, and should be a valid basis for a
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comparison of algorithms. It seems likely that the relative efficiency of the use of (3.6)
over (2.2) would be increased in more general cases, but the extent of this remains to be
established. In any event, it may be desirable to include both techniques in any package
for solving (1.2) so as to generate both upper and lower bounds.

Finally, the analysis given in 3 may be further generalized in different directions.
For example, the restriction to the particular class of unitarily invariant norms is not
necessary, and the results can extend to wider classes of norms occurring in (1.2). There
is also no difficulty, in principle, in extending the analysis to the treatment of rectangular
matrices M, and with randomly structured matrices A.

Acknowledgment. I am grateful to the referees for a number of helpful comments
and suggestions.

REFERENCES

H. BERENS AND M. FINZEL, A continuous selection ofthe metric projection in matrix spaces, in Numerical
Methods of Approximation Theory, Vol. 8, L. Collatz, G. Meinardus, and G. Nurnberger, eds.,
Birkhauser-Verlag, Basel, Germany, 1987, pp. 21-29.

[2] J. C. DOYLE, Analysis offeedback systems with structured uncertainties, Proc. ILL-D, 129 (1982), pp.
242-250.

3 M. K.-H. FAN, An algorithm to compute the structured singular value, Electrical Engineering Department
and Systems Research Center, University of Maryland, College Park, MD, 1988, preprint.

4 M. K.-H. FAN AND A. L. TITS, Characterization and efficient computation ofthe structured singular value,
IEEE Trans. Automat. Control, AC-31 (1986), pp. 734-743.

5 M. K.-H. FAN, A. L. TITS, AND J. C. DOYLE, Robustness in the presence ofjoint parametric uncertainty
and unmodeled dynamics, in Proc. 1988 IEEE American Control Conference, 1988, pp. 1195-1200.

6 ,Robustness in the presence ofmixedparametric uncertainty and unmodeled dynamics, University
of Maryland Systems Research Center Tech. Report SRC TR 88-55R1, College Park, MD, 1988;
IEEE Trans. Automat. Control, to appear.

[7] S. FRIEDLAND, J. NOCEDAL, AND M. L. OVERTON, Theformulation and analysis ofnumerical methods
for inverse eigenvalue problems, SIAM J. Numer. Anal., 24 (1987), pp. 634-667.

8 M. L. OVERTON, On minimizing the maximum eigenvalue ofa symmetric matrix, SIAM J. Matrix Anal.
Appl., 9 (1988), pp. 256-268.

[9] E. POLAK AND Y. WARDI, Nondifferentiable optimization algorithmfor designing control systems having
singular value inequalities, Automatica, 18 (1982), pp. 267-283.

10] R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
11 R. SEZGINER AND M. L. OVERTON, The largest singular value of eXAoe is convex on convex sets of

commuting matrices, IEEE Trans. Automat. Control, 35 (1990), pp. 229-230.



SIAM J. MATRIX ANAL. APPL.
Vol. 13, No. 4, pp. 1067-1084, October 1992

(C) 1992 Society for Industrial and Applied Mathematics
005
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Abstract. This paper presents some convergence properties of the inverse of the autocovariance matrix of
a vector autoregressive moving average model. Under causality and invertibility conditions, the inverse has
bounded on-diagonal blocks and exponentially declining off-diagonal blocks and some elements of the inverse
converge to limiting values at exponential rates. These properties lead to similar convergence rates for filter
weights and prediction error autocovariances in a latent-variable prediction problem. Uniform convergence
rates and the convergence properties of some matrix derivatives are also discussed. These results are useful in
developing some distributional properties of estimated autocovariance matrix inverses and estimated latent-
variable filter weights.

Key words, time series, vector autoregressive moving average model, filter weights, geometric convergence,
latent variables
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1. Introduction and notation. The mathematical and statistical literature has often
noted the exponential convergence properties ofsome matrix inverses and filter coefficients
related to time series analysis. For example, Demko l] found conditions under which
the elements of the inverse of a band matrix decay exponentially away from the main
diagonal. Also, de Boor [2, p. 906] discussed the exponential rate of convergence to
limiting values of the interior elements of the inverse of an m-banded, bounded, and
boundedly invertible matrix; he also [2, pp. 894, 900 reviewed some exponential con-
vergence properties of inverses of banded Toeplitz matrices. In addition, Harrison and
Stevens [3; p. 216], Smith [4, pp. 375-376], Anderson and Moore [5, p. 83 ], and others
have noted the close relation between state-space model predictors and exponentially
weighted moving average predictors, and have discussed the convergence ofoptimal filter
weights and prediction error variances to time-invariant values. See also [6] and [7].

The purpose ofthis paper is to obtain similar exponential convergence rates, uniform
over a certain parameter set, for the inverse ofthe autocovariance matrix of a causal and
invertible vector autoregressive moving average model, for some related latent-variable
filter weights, and for derivatives of the inverse and filter matrices.

These results are based on the following model and definitions. Let { Zt be a k-
dimensional time series which follows an autoregressive moving average (p, q) model

1.1 ,I,( B)Z O( B)g, e,
i.i.d.

where the shocks { gt } are k-dimensional, gt (0, .gg)’ det (gg) ::/= 0" the autoregressive
and moving average polynomials are defined by the expressions I,(B) ZPj=o jB and

i=o OiBi, respectively; B is the backshift operator; { I,, j 0, 1, p } and
{ Oi, 0, 1, q } are sequences of k k real matrices with I’o Ik (R)o; and e is
the set of all integers. Following [8, pp. 408-409 ], assume that the coefficient matrices

Received by the editors July 5, 1989; accepted for publication (in revised form) January 15, 1991. Initial
work for this paper was done while the author was at the Department of Statistics, Iowa State University, Ames,
Iowa. This research was supported in part by National Institutes of Health grant GM39015-01A1.- Department of Statistics, Texas A&M University, College Station, Texas 77843-3143
(jeltinge@stat.tamu.edu).
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of model 1.1 satisfy the causality criterion

(1.2a) det[(w)]g=O for allweCg such that [w[ -< 1,

and the invertibility criterion

(1.2b) det [(R)(w) 4:0 for all w e cg such that [w[ _-< 1,
def

where qf is the set of complex numbers. Then Z(r) (Z’r, Z’r_l, Z’)’l has an
invertible autocovariance matrix Var (Z(r)) I’(rr), say.

-1Convergence results developed below for r (rr) and related matrices use the following
definitions ofexponentially declining sequences of matrices and of matrices with bounded
on-diagonal blocks and exponentially declining off-diagonal blocks. These definitions
use the standard matrix norm [[B][ suplx __<1 ]Bx], where Ix] denotes the Euclidean
norm ofx (see, e.g., [9, p. 176]). This norm, however, is applied only to fixed-dimensional
matrices and blocks, and the causality and invertibility conditions will impose bounds
and coefficients ofexponential decline that are uniform over all elements ofa given block.
Consequently, the results developed below also apply if we use other matrix norms, e.g.,
IIBI] [tr (B’B)] 1/2 [10, p. 10].

DEFINITION 1.1. Let V" be the set of nonnegative integers and let e + be the set
of positive integers.

(a) A sequence of r k-dimensional real matrices { Bj., j 6 V" is said to be declining
exponentially in j if there exist finite positive real numbers K and c such that for all j
V’, I[BjI[ -< K exp (-cj).

(b) A set of sequences of r k-dimensional real matrices { Brj, j }, T e +,
is said to be declining exponentially in j, uniformly in T, if there exist finite positive real
numbers K and c such that for all j V’, supr o+ ]]Brj. _-< K exp cj).

(c) Let a (al, a2, ao)’ l be a vector of fixed dimension Q, where /is
a fixed subset of the Q-dimensional real numbers Q. Let So c_ sd. For each
and T e +, let { Br;(a), j e ,4/’} be a set of sequences of r k real matrices. The set
Brj(a), j e , T e+, a /} is said to be declining exponentially in j, uniformly

in T e f+ and a e /0, if there exist finite positive real numbers K and c such that for
all j l/’, supr .+ sup. I[BTj(a)]1 -<- K exp (- cj).

DEFINITION 1.2. (a) Let At, T e +} be a sequence of Tr Tk-dimensional
matrices with (i, j)th r k block denoted Ara, i, j 1, 2, T.

(a.i) The sequence { At} is said to have bounded on-diagonal blocks and expo-
nentially declining off-diagonal blocks if there exist some positive real numbers K and c
such that ][Ara <- K exp (-cli -j I) for all T e+ and all i, j 1, 2, T.

(a.ii) The sequence { At} is said to be declining exponentially in T if there exist
some positive real numbers K and c such that I[Ara =< K exp (-c T) for all T +

and all i,j 1, 2, T.
(b) Let a (al, a2, aQ)’ e /be a vector of fixed dimension Q, where

is a fixed subset of 9t o. For each a s/, let { At(a), T + } be a sequence of Tr
Tk matrices with (i, j)th r k block denoted Ar0(a), i, j 1, 2, T. Let ,o

(b.i) The set of sequences { At(a), T e +}, a s’, is said to have bounded
on-diagonal blocks and exponentially declining off-diagonal blocks uniformly in
a e S/o if there exist positive real numbers K and c such that sup.u I]Ara(a)[[ _-<
Kexp (-cli -J I) for all T6 f/ and all i,j 1, 2, T.

(b.ii) The set of sequences { At(a), T e +}, a e s/, is said to be declining ex-
ponentially in T, uniformly in a e S/o, if there exist positive real numbers K and c such
that sup .0 A ra(a) =< K exp c T) for all T e (+, and all i, j 1, 2, T.
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The constants Kand c will be referred to as the "coefficients ofexponential decline,"
and sequences which satisfy Definitions 1.1 (c) or 1.2 (b) will be said to have coefficients
of exponential decline that are uniform in a e 0.

The remainder of this paper is organized as follows.. Section 2 uses the ideas of[11]
and 12 to express the inverse of I’(TT)as a function ofthe matrices j., Oi, and -,gg. For
large T, the decomposition of I’-rr) in 2 corresponds approximately to an infinite
autoregressive form ofmodel 1.1 )-( 1.2). Section 3 uses the details ofthis approximation
to show that with increasing T, the inverse I’-TIT) has bounded on-diagonal blocks and
exponentially declining off-diagonal blocks, and that some elements of I’-rv) converge
to limiting values at exponential rates. In 4, the convergence results for autocovariance
matrix inverses lead to similar convergence properties for the filter weights used in the
minimum mean squared error linear prediction of a time series { xt related to the
observed sequence { Z }. Section 5 considers a general parameterization of the { Z } and
{ xt } models, discusses rates of convergence that are uniform over a compact subspace
of the parameter space, and extends the results of the previous two sections to some
derivative matrices. Section 6 summarizes the main ideas of the paper. Appendix A
presents some implications of the causality and invertibility criteria, and Appendix B
gives two lemmas associated with Definitions 1.1 and 1.2, and presents the proofs of the
main results in 5.

2. Inversion of the covariance matrix of a vector autoregressive moving average
model. Exact expressions for the inverse of the autocovariance matrix of a univariate
autoregressive moving average model may be found in 11 ]-[ 14 ]. Section 2.1 uses slight
variants of the arguments and notation of 11 and [12 to extend their results to the
multivariate case. Sections 2.2 and 2.3 then discuss properties oftwo terms ofthe matrix
inverse expression.

2.1. The inverse of the autocovariance matrix. For s >= T > 0, define the Tk-di-
mensional random vectors

(2.1) Z,T (Z, Z_, Zs-T+)

and gs,v (gs, gs 1, gs- v+ 1)’. Note that T is the number of periods represented
in Z,v and gs,, and s is the index of the final period represented. Given a fixed set of
k k matrices {/0,/, ,/3r }, define U,,r(/3) to be the nk nk-dimensional block
upper triangular matrix with ith k nk-dimensional row block equal to [0k (i-)k, B0,
[I, min(r.n-i), Ok [n-i-min(r..-i)]] and define Lr(/)to be the rk rk-dimensional
block lower triangular matrix with ith k kr-dimensional row block equal to [3r-i+,
/r-i+ 2, 13r, Ok(r-i)k], 1, 2, r. Let m max (p, q). Then under model
(1.1), for any s > T>m,

(2.2) UT,p(() Zs,T UT,q(O)gs,T + (Ok Lq(O) g- T,q
Lp(

Moreover, gs,r is uncorrelated with g_ T,q and with Z_ r,p, so I’(rr) Var (Zs,r) satisfies
the relation

UT,p( O) Y’( rr)[ Uv,p( ’I’)

(Ok(T-m)k(T-m) Ok(T-m) km)(2.3)
UT q(O)(IT ( gg)[UT,q(O)] "- Okmxk(T-m) V
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where V is the km km-dimensional covariance matrix of Lgs-T,q

L1 =(Ok(m-q)kq) and L2=[Ok(m-p)kp)Lq(O) \ L()

L2Zs- T,p,

Define A Ur,q((R))(Ir (R) .gg’) UT,q(O) t. Theorem 2.1 presents a general expression for
I’- in terms ofUr,p() A- and V(TT)

THEOREM 2.1 (cf. [12, (2.7)]). Let the sequence (Zt, } follow model 1.1 )-
(1.2). Then

(2.4) I’- U,p(O)[C- CEVI/e(V/eE’CEV/2 + I)-Iv1/2E’C]Ur,(O),
where

(2.5) C
def
A-l= U,q(O) ]-1 (IT (R) -gg )[ UT,q() -1,

E [Omr-m, Im]’, and V/ is the symmetric square root ofthe matrix V.
Proofof Theorem 2.1. Recall the standard algebraic result (cf. 12, (2.6) ),

(D + D2D) -1 Di-1 D-D_(DD-ID_ + I)-IDD-,
where nl is an invertible square symmetric matrix and D is conformable in the multi-
plication DD2. Rewrite (2.3) in the form Ur,(O)I’U,(O) A + EVE’. Since
U,(O) and UT-,q(@) are nonsingular by construction and Xgg is nonsingular by as-
sumption, (2.3) implies that A and I’tr are invertible. Then with D2 EV /2,

{Ur,p(O)I’(7;7oU,p(O)} - A-_ A-EV/2(V1/E,A-EV1/- + I)-V/E’A-and the results follows.
Expression (2.4) leads us to consider the role of the matrices C and V in the inverse

I’--r). First, the convergence properties of I’-r) will depernd primarily on the conver-
gence properties of the matrix C and the related matrix B U,p()CUr,p(,b). Section
2.2 discusses these matrices in more detail. Second, the inverse expression (2.4) is more
complex than inverse expressions developed previously for the univariate case. This ad-
ditional complexity arises from the fact that for general dimension k, the matrix may
be singular. Section 2.3 discusses the representation and invertibility of V.

2.2. Convergence properties of the matrices C and B. We may approach the con-
vergence properties of the matrices C and B as follows. A multivariate form of [12,
(2.12)] indicates that the matrix P [Ur,q((R))] - has the same block upper triangular
form as Ur,q(O), with k k main diagonal blocks equal to Po Ik and (i, + d + )th
k k submatrix equal to

min (q,d)

(2.6) Pd+ Od+ 1-/PI,
l=1

d 0, 1, ..-, T- 2. Note that the elements of Pa do not depend on T. Moreover,
standard arguments associated with the inversion of a matrix polynomial indicate that
under condition (1.2b), the elements of Pd are declining exponentially in d.

By expressions (2.5) and (2.6), C P’(I (R) 2g)P has (r, s)th k k block equal
to

rain (r,s)

(2.7) Crs-- P’r-i,-gPs-i,
i=1

so for fixed r, s +, Crs is not a function of T. In addition, B U ,p(I,)CU,p(I,)
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has (r, s)th k k block equal to

min T,p + r) min T,p + s) min (i,j)

Brs Z i rP-,.,-1gg Pj-lj-s
(2.8)

min T- r,p) min T- s,p)

iCi+ r,j+ ;.
i=0 j =0

Thus, some elements of B are functions of T, but the exponentially declining property
of the Pd matrices implies that the matrices C and B have bounded on-diagonal blocks
and exponentially declining off-diagonal blocks.

2.3. The residual matrix V. In light of Theorem 2.1, it is useful to express the
matrix V as a function of the parameters of model 1.1 )-(1.2), and to discuss the in-
vertibility of V. Although [11 and [12 do not present an explicit expression for V, we
may do so as follows. Appendix A gives the infinite moving average representation

(2.9) Zt-- qcigt-i,
i=0

so that Cov( Zt, g_ i) ’igg, where i 0 for < 0. Let R be a kp kq-dimensional
matrix with ith k kq-dimensional row block equal to [l-i, 2-;, q-i], 1,
2, p. Then Cov (Zs_ r,p, gs-r,q) R(Iq (R) gg), SO

V Var (Lgs- T,q L2Zs- T,p)

L,(lq (R) gg)L LR(Iq (R) gg)L L(Iq (R) g)R,L + Lr,,)L.
Stationarity of model 1.1 implies that V is not a function of T.

Now consider the invertibility of V. For the case k 1, it follows immediately that
for an autoregressive moving average model with minimal orders p and q, the matrix V
is invertible. For the case k > 1, this may not be true (cf. the discussion of identifiability
of vector ARMA models in [15]). For a pure moving average process, V Lq(O)(I (R)

,gg)Lq(O) ’, SO for nonsingular ,gg, V is nonsingular if and only if det (Oq) 4 0. For the
general case, let hs-T,p be a kp-dimensional vector with ith k block equal to

= q-i+lxlgs T-i-l+l, 1, 2, p. Note that h_ ,, is independent of g_ ,q.
Then by expression (2.9),

Z_ T,p R.
g- T,q +

hs_ T,p

SO

(2.10) V (L L2R)(Iq (R) Zgg)(L L2R)’ + L2 Var (hs_ r,p)L.

Thus, two sets of sufficient conditions for the invertibility of V are as follows.
(1) Assume that det (,gg) 4 0 and L1 L2R has full row rank. Then the first

addend of expression (2.10) is nonsingular.
(2) Assume that p => q, det [Var (hs-T,p)] =/= 0, and det (I,p) 4 0. Then

det (L) det (I,p) ]P 4 0, so the second addend of expression (2.10) is nonsingular.

3. Convergence properties of the inverse. This section uses the results of 2 to
develop some limiting properties ofthe inverse matrix I’-lv) and some associated matrix
functions. These properties depend on the Tk Tk-dimensional symmetric matrices (2
and B, where C has (r, r + d)th k k block equal to (d = 0 PlZgg P+ d, d > 0,
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and B has (r, s)th k X k block equal to
min T- r,p) min T- s,p)

(3.1) r E E (j+s--r;.
i=0 j =0

The matrices Ca are declining exponentially in d, so the matrices B have bounded on-
diagonal blocks and exponentially declining off-diagonal blocks. Moreover, if r -< T- p
and d >= 0, then

p p

(3.2) tr+d,r-- r,r+d E E i’j+d-iCf,
i=0j=0

and we may define Ba B’_a to equal expression (3.2). Theorem 3.1 presents some
convergence properties associated with the matrices I’-), B, and .

THEOREM 3.1. Let { Zt, } satisfy model (1.1)-(1.2). Define B and B by
expressions (2.8) and (3 respectively Let GrTr -) have (r, s)th k X k block
GTTrs. Then

(a) The sequence { Br,r+ d- Br,r+ d is declining exponentially in r, uniformly in T
and d, and is declining exponentially in d, uniformly in T and r.

b Forfixed r +, the sequence { GT-v B,s is declining exponentially in T,
uniformly in s /.

c Let { r(T), T 2+ } be a sequence ofpositive integers such that T r(T) is
increasing without bound. Then the sequence { Gvrr)s BrfT)s } is declining exponentially
in T- r(T), uniformly in s 2 +.

(d) The elements ofGrr are bounded uniformly in T.
e The matrices in the sequence { Gvv ) have bounded on-diagonal blocks and ex-

ponentially declining off-diagonal blocks.
Proofof Theorem 3.1. (a) Note first that for d >= 0,

(3 3) Cr,r+d ’d E -1Pgg P+a,
l=r+l

which is declining exponentially in r, uniformly in d, and is also declining exponentially
in d, uniformly in r. For d >= 0,

min T- r,p) min T- d,p)

(3.4) nr,r+d nr,r+d E E ti(Ci+r,j+r+d Cj+d-i)f,
i=0 j =0

which for some K > 0 and c > 0 is bounded in norm by K exp [-c(Irl + r + d l)].
Thus Br,r/ a Br,r+ d is declining exponentially in r, uniformly in Tand d, and is declining
exponentially in d, uniformly in T and r.

(b) By expression (2.4) and the definition of B,

GTTrs- Brs -DrV/2(V/2E’A-EV /2 + I)-V/2Dj,(3.)

where

(3.6)
r+p j

Dr E E j-rPj-lZglpT-I
j=rl=l

is the rth k k-dimensional block of U,p()A-E. For fixed r, Dr is declining expo-
nentially in Tdue to the factor PT-t. Also, IIDrll is bounded uniformly in r and T. Now

T-1

(3.7) E’A-E= P’ -lgg Pt
l=0
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is positive definite, V1/2 is nonnegative definite, and both terms are bounded uniformly
in T. Thus vI/Z(v1/ZE’A-IEV 1/2 + I)-IV1/2 is bounded uniformly in T. Part (b) then
follows from expression 3.5 ).

(c) The proof of part (c) is identical to the proof of part (b), except that the index
r is replaced by r(T), and the following property of Dr(r) is noted. Since the Pd are
declining exponentially in d, (3.6) implies that there exist K > 0, c > 0 such that

r(T)+p j

[[Dr(T) -< K exp [-c(j + T l)]
(3.8) j= r(T) l=

<= Kp[1 exp (-2c)]- exp -c[ T r( T)] }.
Thus, Dr(T) is declining exponentially in T- r(T).

(d) By expression (2.7) and the exponentially declining property of the matrices
Pd, the elements of the matrices Crs and Brs are bounded uniformly in r, s, and T. Part
(d) then follows from expression (3.5) and the uniform boundedness of I’ and Dr in r
and T.

(e) Finally, note that for d >- 0, the inequalities =< r, r + d =< T imply that N r _-<
T d, so by (3.6), there exist K > 0 and c > 0 such that I[Dr < pK += exp [- c( T
/)] =< pK[1 exp (-c)] - exp [-c(d- p)]. Then by (3.5), GTrr,r+d Br,r+d
DrV1/2(v1/ZE,A-1EV 1/2

__
I)-Iv/zD, + d is declining exponentially in d >= O, uniformly

in T, and in =< r =< T- d. Part (e) then follows from the fact that the matrices B have
bounded on-diagonal blocks and exponentially declining off-diagonal blocks. V]

Note that in the proof of Theorem 3.1, the causality criterion ensures the existence
of the autocovariances I’zz(d), and the invertibility criterion ensures the existence of
the inverse I’-) and the exponentially declining properties ofthe matrices Pd, and thus
of C, B, and B, as well.

As noted in 1, and 2 have developed results similar to Theorem 3.1 for the
inverses of certain banded matrices. The results of Theorem 3.1 may also be approached
through a study ofthe exponential rates ofconvergence ofinnovation sequence variances
and coefficients to the associated moving average model terms. See, for example, [8, pp.
414, 445 ]. Also,_ following 8, p. 384 ], we may give an intuitive interpretation of the
limiting values Bd of the autocovariance matrix inverse. Appendix A shows that the
invertibility criterion leads to the infinite autoregressive representation T(B)Zt
(R)-(B)I,(B)Zt g. This leads to the approximation T(T)Z(T) g(T), where T(T) is a
kT kTupper-triangular matrix with ith k kTblock row equal to Tv)i. (0i-),
To, T v- i). Then for large T and upper-triangular Z,-J/2, the matrix
-l/2.(T)igg approximates the ith row ofthe Cholesky decomposition matrix Ia-1/2(TT). Con-
sequently, for large and T and fixed d >_- 0, the (i, + d)th k k block o_f r-Tr) is- -1 ldasi--approximated by i TZgg Tz+d, which converges to :0 Tlgg Tl+d. Thus we may view the convergence properties of the autocovariance matrix inverse
as dependent on the convergence properties of the rational matrix function T(B), or
equivalently, as dependent on the roots of the matrix polynomials ,I,(B) and (R)(B).

4. Application to a latent-variable prediction problem. Theorem 3.1 may be applied
to the following latent-variable prediction problem. In addition to the observed vectors
Z following model 1.1 )-(1.2), let { xt, e } be a sequence of r-dimensional random
vectors such that Wt (x;, Z;)’ follows an (r + k)-dimensional stationary autoregressive
moving average (pw, qw) model,

(4.1) w(B)W, Ow(B)gw,
def

where Zgeww Var (gwt), e, is invertible, and the coefficient matrices of the poly-



1074 JOHN L. ELTINGE

nomials w(B) and Ow(B) satisfy the causality and invertibility criteria, respectively.
Using the notation of expression (2.1), define xt + T,s + + (Xt + T, X + - ,
X

_
s)’, the values of the latent vector from s periods before the current period T to

periods ahead of T. Define I’xzt =Cov (xt + r,+t+ 1, Zr)), which has typical r X k
block I’xz(i j) Coy (x_ i, Z_ j), e, and define I’xx Var (xt + r, + + ).
Then the minimum mean squared error predictor of xt+ r,+t+ 1, which is linear in

def
ZT), is 5t IxzstI(rr)Z(r), and VF Var ( x) ixx ixZst i-I(TT)IxZst.t Define the
(s + + )r Tk-dimensional matrix Fr) FxzstF-(r) and let Fr) be the r k block
of Fr) which gives the coefficients of Zr-+ in the prediction of XT-;"

T

(4.2) FT)/j I’xz(i--l + 1)Grr0,
l=1

i=-t,-t+ 1,..-,s;j= 1,2,...,T. Also, notethatVFhas(i+t+ 1,j+t+ 1)th
k k block equal to

T

vCrFijdeZ r(i-j) , Fr),,r’z(j n + 1)
n=l

(4.3)
T T

=Fx(i-j)- , E Fxz( + 1)GvTFz(j-n+ 1),
l=ln=l

the covafiance matrix of the prediction errors for XT-i and xr--, i, j -t, -t + 1,
s. Define

T

(4.4) FBO rxz(i + B0,
/=1

T

(4.5) VBij rxx(i j) , FBinrz(j n + ),
n=l

T

(4.6) f’j rz(i-l+ 1)0,
/=1

T T

(4.7) /j rx(i-j)- , I’xz(i- l+ 1)nrz(j- n + 1),
/=ln=l

(4.8) F(i-j) I’xz(i-l+ 1)-l,
/=1

and

(4.9) z(i-j) r(i-j)- E rz(i- l)f._r’z(j- n).
1=0 n=0

Theorem 4.1 describes the convergence properties ofthe elements ofthe F and V matrices.
THEORFM 4.1. Let { Wt (x;, Z;)’, 6 e } satisfy model (4.1), where the auto-

regressive coefficientsw satisfy the causality criterion,_ and the { Z_t } vectors satisfy model
1.1 )-(1.2). Define F(T)ij, Vrij, FBij, VBij, ij, 9ij, (i -j), and(i -j) by expressions

(4.2)-(4.9), respectively. Let 0 < e < and let { r( T + } be a sequence ofpositive
integers such that T <= r(T) < 2-Tfor sufficiently large T +. Then

(a) The matrices FT);j FBij are declining exponentially in T, uniformly in j and
inT-i>=T.
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(b) The matrices Vf-j Vij are declining exponentially in T, uniformly in T-
>= T and in T-j > T.

(c) Forfixed T- i, F(r)ij- Fij is declining exponentially in T, uniformly inj.
(d) Forfixed T- and T-j, Vrij Vij is declining exponentially in T.
(e) The matrices F(r)ij- F(i -j) are declining exponentially in T, uniformly in j

and in r(T) <= <= T- r(T).
(f) The matrices Vrij V j) are declining exponentially in r(T), uniformly in

r(T) <= i,j <- T- r(T).
(g) Forfixed T- i, F(r)ij is declining exponentially in -Jl, uniformly in T.
(h) For s T- and for fixed t, VF has exponentially declining off-diagonal

blocks.
ProofofTheorem 4.1. Detailed proofs are given for parts (a), (c), e ), and (g) only.

Parts (b), (d), (f), and (h) then follow immediately from expressions (4.3), (4.5), (4.7),
and (4.9).

(a) First,

Tl
(4.10a) Fr)a F/ 2 I’xz(i + )(Grrtj BO)

/=1

T

(4.10b) + , ’xz(i l + 1)(GTr0 Bo),
I=TI+I

where T1 [ T 2-1Tq and [. ] denotes the least-integer function. Then by the uniform
boundedness of I’xz(i + in and and by Theorem 3.1 (c), there exist K1 > 0,
Cl > 0 such that expression (4.10a) is bounded in norm by Kl(T- 2-T) exp [-c(T-
2- T) and thus is declining exponentially in T. Moreover, by the uniform boundedness
of GTj. Bo and the exponentially declining property of I’xz(d), the inequalities T-

>_- T and l >_- T- 2 -1T imply that there exist constants K2 > 0, c2 > 0 such that
expression (4.10b) is bounded in norm by

T

K2 exp c) + _-< K22-1T exp c2 T 2-1T)
/=TI+I

and is thus declining exponentially in T.
(c) Note that F(r)ij- Fij F(r)ij- FBij -t- FBij- Fij. By Theorem 4.1 (a), F(r)i-

F0 is declining exponentially in T, uniformly in j. Also,

T

(4.1 Fij Fi2 I’xz(d + T + i)[BT-a,2 Br-a,j.].
d=0

(4.12)

By Theorem 3.1 (a) and the exponentially declining property of rxz(/), there exist con-
stants K3 > 0, c3 > 0 such that expression (4.11 is bounded in norm by

T-1

K3 exp [-c3(IT- i- d- II + IT- d-jl + IT- dl)]
d=0

r2-1Tq T

=< K3 exp (-c3l T- d I) / K3 exp (-c31 T- d- I).
d=0 d=r2-T-I

The first sum of expression (4.12) is bounded above by K3T exp (-c32- T) and, since
T- is fixed, the second sum ofexpression (4.12) is bounded above by K3Texp c34- T)
for sufficiently large T, so’ part (c) follows.
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(e) Now

(4.13a)

FCT)O- F(i- j) F)o- FBij

T2-1
+ rxZ( l + (B0. lj)

l=1

T

+ rz(i- l + 1)(B0 0)
l= T2

T3-1
+ 2 r(i- l + 1)(0 j-l)

/=1

(4.13b)

+ E rz(i- l + 1)(0 j_),
I= T

where T2 2-1r(T)] and T3 T- [2-1r(T)]. By Theorem 3.1(a), FT)ij Fij is
declining exponentially in T, uniformly in j and in T- >= r(T). Since I’xz(d) is
declining exponentially in dl, and B0 B0 and B0 B_ are bounded in norm uniformly
in and j, there exist K4 > 0 and c4 > 0 such that the first sum of (4.13a) is bounded in
norm by

T2-1

K4 exp c4 l + =< K4r(T) exp c42- r(T)
/=1

for all r(T) _-< i, j =< T- r(T). A similar argument shows that the second sum in
expression (4.13b) is bounded in norm by Kr(T) exp [-c2-r(T)] for some K5 > 0,
c > 0 and all r(T) =< i, j -< T- r(T). Also, by (3.4) and the uniform boundedness of
Fxz(d) in d, there exist K6 > 0 and c6 > 0 such that the second sum in (4.13a) is bounded
in norm by

T

K6 exp [- 6( 11 + Jl =< K6T exp [- c62-’r(T) ].
l= T2

Finally, note that for sufficiently large T, =< T3 and r(T) =< j =< T- r(T) imply that l,
j =< T- p, so by (3.2), the first sum in (4.13b) is identically zero, and part (e) is
established.

(g) Part (g) follows immediately from expression (4.2), Theorem 4.1 (e), and
Lemma B.2.

Theorem 4.1 may be interpreted as follows. Part (a) indicates that for large T, and
T- >= T", the "filter weight" FT)0 in the prediction of xT-i may be approximated
uniformly inj by the weights F0, which are dependent on B rather than on GTT. Similarly,
the corresponding mean squared prediction error VF0 is approximated by V0, which
depends on B, T, i, and j.

Part (c) indicates that for fixed values of T i, the FT)0 converge to "limiting
weights" F0. These limiting weights depend only on the specific values of T- and
T -j employed. However, for fixed T- i, we do not have a similar convergence ofF,T)0
to F(i -j), say. In part (d), the corresponding mean squared prediction error VF0
converges to V0, which is dependent on T- and T- j, and not just on -j.

Part (e) indicates that for a period T- distant from the two ends of the observed
series, the "filter weight" F(T)ij in the prediction of XT_ is approximated by F(i j),
which depends only on -j and not on T. Part (f) shows that for periods T- and
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T-j both distant from the two ends of the observed series, the corresponding mean
squared prediction error Veij is approximated by V (i -j), which again depends only
on -j. For parts (e) and (f), the rate of exponential convergence r(T) depends on the
distance of and j from either end of the observed series; two examples of the rate are
r(T)= Tandr(T)=fiT,0<<2-.

Part (g) gives a form of the commonly encountered result that observations have a
declining effect on prediction of values far away in time. Similarly, part (h) notes the
decreasing correlation between predicted values at increasingly distant periods.

Theorem 4.1 generalizes comments by Harrison and Stevens 3, p. 216 ], Smith 4,
pp. 375-376 ], and others on the relation ofstate-space model predictors to exponentially
weighted moving average predictors and on the convergence of predictor weights and
prediction error variances to values independent of T. See also 16, Chap. 7 ]. In addition,
the duality between autoregressive moving average models and state-space models implies
that the expression F(T)ij F( -j) gives the difference between the optimal filter weight
and the (subopti_mal) time-invariant filter weight discussed in 5, p. 83 ]. Similarly, the
matrices VF0 V (i -j) give the difference between the mean squared prediction error
for xt / r.s/t/ under optimal filtering and the nominal mean squared prediction error
under time-invariant filtering. The principal distinction between such optimal filtering
results and Theorem 4.1 is that the former work focuses on convergence ofthe coefficients
of one-step-ahead prediction and updating equations, while the latter considers prediction
for any period and emphasizes the dependence of the convergence of the direct filter
weights on the corresponding convergence properties ofthe autocovariance matrix inverse.
The relationship between Theorem 4.1 and convergence and stability results in the optimal
filtering literature will not be discussed further here. Instead, 5 extends Theorems 3.1
and 4.1 to a general parameterization of model (4.1).

5. Derivatives and uniform rates of convergence. Sections 2-4 presented some
-1properties of I’ TT) and associated filter weights. In practice (see, e.g., 17 ), these matrices

may depend on a fixed-dimensional parameter a (a, a2, ao)’, which must be
estimated. Extension of 2-4 to estimated inverses and filter weights thus requires
additional results on matrix derivatives and uniform rates of convergence. This section
develops the necessary mathematical results. The application of these results will be
considered elsewhere. Let M(m) denote a matrix of first derivatives of a real matrix M
taken with respect to am, and let Mtm’") denote the corresponding matrix of second
derivatives taken with respect to Om and a. Theorem 5.1 extends Theorem 3.1 to the

(m,n)approximation ofG) and G TT by derivatives of B, , and . Theorem 5.2 presents
some convergence properties ofthe first and second derivatives ofFtT) and VF. Theorem

(m,n)(m) (mn)5.3 extends Theorem_ 4.1 to the approximation of F(T), F(Ti VtFm), and VF by
derivatives ofFs, F, F, V, V, and V. Finally, Theorem 5.4 discusses rates ofexponential
convergence that are uniform in some neighborhood of a. The proofs of these
theorems are similar to the proofs of the theorems in 3 and 4, and thus are placed in
Appendix B.

THEOREM 5.1. Let { Zt, } satisfy model (1.1). Assume that the coefficient
matrices and the error covariance matrix are twice continuously differentiablefunctions
{ ,bj(a), j O, 1, p }, { (R)i(a), O, l, q }, and ,gg(a) ofsome parameter a of
fixed dimension Q. Let 1 be an open subset of1Q such thatfor all a 1, the conditions
of Theorem 3.1 are satisfied. Then for all a 1 and all <= m, n <= Q

a Conclusions a through e of Theorem 3.1 are satisfied when we replace GTT
with G tT B with Btm) with tm) and

withBm).
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b Conclusions a through e of Theorem 3.1 are satisfied when we replace GTT
(m,n)with GTr B with B(m’n) with m,n), and

B with B m’").

THZORZM 5.2. Let { Wt (x, Z’)’, } satisfy model (4.1). Assume that the
coefficient matrices and the error covariance matrix are twice continuously differentiable
functions { wj(a), j O, 1,..., pw}, { (R)wi(a), j O, 1,..., qw}, and ,ggww(a) of
some parameter offixed dimension Q. Let 1 be an open subset of 1a such that for
all , the coefficient matrices ’bwj(a) satisfy the causality criterion and the { Zt }
vectors satisfy model 1.1 )-(1.2). Then for all 1:

(m,n)(a) For fixed T- i, the matrices Fm) and F i are declining exponentially in
i- J I, uniformly in T, <= m, n <= Q.

(m,n)(b) For s Tandfixed t, the matrices VFm) andVF have exponentially declining
off-diagonal blocks.

Theorem 5.3 extends the convergence results (a) through (f) ofTheorem 4.1 to the
matrices of first and second derivatives of the "filter weights" Fr), the prediction error
variances YF, and their approximations. The proof of Theorem 5.3 is very similar to the
proofs of Theorems 5.1 and 5.2 and is therefore omitted.

THEOREM 5.3. Assume the conditions of Theorem 5.2. Then for all 1 and all
<- m, n <= Q, thefollowing statements hold.

(a) Conclusions (a) through (f) of Theorem 4.1 are satisfied when we replace FT)
with m) m)Fr), VF wtth VF F with F(m), V with V(m), 1 with m) gr with m), with
(m) and

V with "7 (m).

(b) Conclusions (a) through (f) of Theorem 4.1 are satisfied when we replace
m,n , m,n -;r m,n m,nF(T) with_ F (T) _, VF with V(Fre’n), F with , V with . F with gr with

gr(m,,), with (m,,), and

gr with V (m,n).

Finally, Theorem 5.4 extends the conclusions of Theorems 3.1, 4.1, 5.1, 5.2, and
5.3 to indicate that for each a 6 the coefficients of exponential decline are uniform
in some neighborhood ofa. As with Theorem 5.3, this extension is useful in the discussion
of estimated autocovariance matrices.

TnZORZM 5.4. Assume the conditions of Theorem 5.2. Then for all 1, there
exists some neighborhood A,, ofa such that in the conclusions of Theorems 3.1, 4.1, 5.1,
5.2, and 5.3 the coefficients ofexponential decline are uniform in 3 1.

6. Conclusion. This paper amplifies and extends several authors’ work on the inverse
of an autocovariance matrix and on the convergence of weights in the prediction of
unobserved linear processes. In 2, slight extensions of[1 l] and [12] to multiple time
series lead to general expressions for the inverse of the autocovariance matrix of a causal
and invertible vector autoregressive moving average model. Section 3 outlines the limiting
properties ofthe elements ofthe autocovariance matrix inverse. In particular, the inverse
has exponentially declining off-diagonal blocks, and some elements ofthe inverse converge
to limiting values at exponential rates. Demko [1], de Boor [2], and others have noted
similar properties ofthe inverses ofsome band matrices. Section 3 also notes the relation
of its results to similar convergence properties of innovation sequence coefficients and
variances discussed in [8] and elsewhere. For some comments on the relation of the

-1inverse ITr) to the inverse autocorrelation function [18 and other frequency-domain
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ideas, see [19] and [20]. Section 4 uses the results of 3 to develop similar convergence
properties for some latent-variable prediction coefficients, where the latent and observed
variables follow a vector autoregressive moving average model. These results extend
similar ideas on one-step-ahead prediction and updating in the optimal filtering literature
(e.g., 5 ]) to prediction of a latent variable for any period. Finally, 5 considers the
parameterization of a vector autoregressive moving average model by a fixed-dimensional
vector a. Uniform convergence rates for parameters in a neighborhood ofa are developed.
In addition, convergence ofsome associated matrix derivatives is discussed. These results
are useful in the estimation of autocovariance matrix inverses and the estimation of
latent-variable filter coefficients.

Appendix A. Implications of the causality and invertibility criteria. Assume that
the k-dimensional random vectors { Zt, I, 2, T} follow model (I. and that
conditions 1.2a, b) are satisfied. Then we may make the following remarks about the
covafiance matrix I’(TT) and associated derivatives.

First, Lemma A.I extends [8, Thms. 11.3.1, 11.3.2 to a functionally dependent
parameterization of a vector autoregressive moving average model.

LEMMA A. 1. Assume model 1.1 ). Let the coefficient and variance matrices be con-
tinuous functions { .(a), j 0, 1, p }, {(R)i(a), 0, 1, ..., q }, and ,gg(a) ofa
fixed-dimensional parameter vector a (al, a2, aa)’ and define the matrix poly-
nomials ,b(a, o) and O(a, o) accordingly. Let o be a compact subset of 1 o.

a Ifcondition (1.2a) is satisfiedfor all a o, then there exists afinite positive
real number e such that"

(a.i) the polynomial (a, o) is invertiblefor all a o and all o c such that
I01 =< / e;

(a.ii) for each a 1o, the rationalfunction ofco, (a, o) ]-(R)(a, o) has a unique
power series expansion

[I)(o, 0))]-10(O, 0)) I/i(O)O)i-" I/(o,
i=0

say, for all o e c such that I1 -<- + e; and
(a.iii) the sequence (j(a), j e / } is declining exponentially in j, uniformly in

a e lo.
(b) Ifcondition (1.2b) is satisfiedfor all a o, then there exists anitepositive

real number e such that:
(b.i) the polynomial (R)(, o) is invertible for all o andfor all o c such

that Iol -<- / ;
(b.ii) for all a o, the rationalfunction ofz, [(R)(a, o)]-(a, o) has a unique

power series expansion

[O(a, )]-(a, o) (a) T(a, o),
j=0

say, for all o e c such that wl =< + e; and
(b.iii) the sequence { Tj(a), j e e } is declining exponentially in j, uniformly in

(c) Let 1 be an open subset of Q such thatfor all a , 1.2a, b) are satisfied
and det [g(a)] > 0. Then for all a 1, there exists some 6 > 0 such that for all
elements t ofthe set 1 ae=f { B Q" I a <= 6 }, conclusions (a) and (b) hold and
inf {det [,gg(fl)], B l } > O.
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The proof of Lemma A. follows from the proofs of 8, Thms. 11.3.1, 11.3.2 and
some additional uniform continuity arguments.

ProofofLemma A.1. Only the proof for parts (a) and (c) will be given. The proof
for parts (a) and (b) is identical except for changes in notation.

(a) Note first that for any finite e >= 0, the function f(a, o) det (a, o) ]1 is
uniformly continuous in (a, o) on the compact set o cg,, where c, { o e cg

I1 --< + e } and denotes the usual Cartesian product oftwo spaces. Thus, the image
ofo cg underf(a, o) is compact. For e 0, 1.2a) implies that the image ofo
cg, underf(c, o) is bounded away from zero. Hence, there also exists some e > 0 such
that the image ofo cgc underf(a, o) is bounded away from zero. For this e and all
a d20, tI-I (a, 0)) exists for all o e and tI)--I (a, 0)) has the power series expansion
o-l(a, 60) =0 Ai(o0 6oi A(a, o), o e c,, say. Moreover, the uniform continuity
of O-l(a, o) in (a, o) on o c, implies that the elements of Ai(a) are continuous
in a, uniformly in a e o and in e ff. Thus limi_ IIAi(a) + e) 0 uniformly
in a e o, so there exists some K > 0 such that I[Ai(a)I[ -<- K( + e)-i for all a o
and all e ff. Taking c In + e) > 0, it follows that the sequence { Ai(a),
is declining exponentially in i, uniformly in a e o. Since (trivially) the sequence { (R)i(a),

0, l, q } is declining exponentially in i, uniformly in a e o, it follows from
Lemma B. that the sequence { #i(a), e ff } is declining exponentially in i, uniformly
ina 0.

(c) The polynomial results for part (c) follow immediately from parts (a) and (b)
and the observation that for all a , there exists 6 > 0 such that the compact set
{ B [a -/3[ =< 6 } is contained in /. The determinant result for part (c) follows from
the observation that on any compact subset0 of, det Z,gg(/3) is uniformly continuous
in/3 0 and thus has a compact image bounded away from zero.

Lemma A. (a) leads to an infinite moving average representation of model 1.1 ),
while Lemma A. (b) leads to an infinite autoregressive representation ofthe same model.
For a given a 6 0, computational formulas for the matrices { i(a) } and { T(a) } are
given in [8, p. 409].

Note that Lemma A.1 (a) ensures the covariance stationarity of the observations
{ Zt }. Moreover, the relationship,

(A.1) rzz(l) Cov (Zt, Zt+t) i.gg+l,
i=0

ff, leads to the following result.
LEMMA A.2. Assume model 1.1 ). Let the coefficient and variance matrices be con-

tinuousfunctions { j(a), j 1, 2, p }, { (R)i(a), 1, 2, q }, and Zgg(a) ofa
fixed-dimensional parameter vector a (al, a2, ae)’. Let s be some open subset
oflo such thatfor all a e s, (1.2a) is satisfied and { ,bj(a) }, { Oi(a) }, and Z,gg(a) are
twice continuously differentiable in . Let So be some compact subset of sO.

(a) Then the lagged autocovariance matrices { rzz( l) } are twice continuously dif-
ferentiablefunctions ofa.

Moreover, thefollowing sequences ofmatrices are all declining exponentially in the
lags e +, uniformly in a e /0:

(b) the lagged autocovariances rzz(/);
(c) thefirst derivative matrices [rzz(/)] (i), 1, 2, Q; and
(d) the second derivative matrices rzz(l) ](0), i, j 1, 2, Q.
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ProofofLemma A.2. (a) By [8, 11.3.12)],
J

%(iX) E tij(iX)%_ i(O) + {j(iX), j +,
i=1

where 9(a) 0, j < 0, O(a) 0, j > p, and @i(a) 0, > q. Lemma A.2(a) then
follows from (A.1) and Fubini’s Theorem.

(b) By Lemma A. (a), let K and c be positive numbers such thin i(a)
K exp (-ci) for all and all a M0. Then

IIr  (Z)ll E II ,( )ll-IlZeg( )ll.
i=0

IIgg()llg2 exp (-el) exp (-2ci)
i=0

and Lemma A.2 (b) follows.
(c) and (d) Again using the notation of [8, p. 408], let A(a, o) 7=o Aj(a)w

it)( O, 60
--1 and note that the matrices { Aj(a) } are declining exponentially inj, uniformly

in ct e o. Repeating the arguments for Lemma A.2 (a), the matrices { Aj(a) ) are twice
continuously differentiable in a. Fubini’s Theorem, the relations,

E -a(A,) ==o
[A(a, )l A(a, o) [I’(a, )l A(o, ),

collection of the coefficients of w, +, and Lemma B.1 imply that the matrices
{ (d/da)[I’zz(l)]) are declining exponentially in l, uniformly in a e 0. Lemma A.2(d)
follows from similar arguments.

Appendix B. Lemmas and proofs. Proofs of the main theorems in this paper use
the following two algebraic results associated with Definitions 1.1 and 1.2.

LEMMA B. 1. Using the notation ofDefinition 1.1 c for each T + and each
a 1, let { ATe(a), j e ff and { BT-(a), j e ff } be two sequences of matrices of
dimensions r X k and k x n, respectively, which are declining exponentially in j, uniformly
in T, and in a 1o. Then the convolution

k

CT,(a) AT,_9(a)BT)(a), k 6
j=0

is declining exponentially in k, uniformly in T and in a 1o.
Proof of Lemma B.1. Let KA, Ka, CA, and ca be the coefficients of exponential

decline for { ATe(a) } and { BTj.(a) } required by Definition 1.1 (c). Assume first that
CB > CA. Then the norm inequality IIA,-()n-(a) --< IIA,-(c0 I1" liBel(c0 [9, p.
197 implies that

k

IICTk()[I ----< E IIAT,k-()II" IIBT’()II ----< KAKa{ exp [-(ca CA)] }-I exp (--CAk)
j=0

and Lemma B. follows. The cases CA > Ca and CA Ca are argued similarly.
LEMMA B.2. Using the notation ofDefinition 1.2 (b), for each 1, let { AT(a),

T + } and { BT(a), T 6 + } be two sequences ofreal matrices ofdimensions Tr
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Tk and Tk Tn, respectively, which have bounded on-diagonal blocks and exponentially
declining off-diagonal blocks uniformly in a ,1o. Define CT(a) AT(a)BT(a). Then
the sequences { CT(a), T Ae + } also have bounded on-diagonal blocks and exponentially
declining off-diagonal blocks uniformly in a 1o.

ProofofLemma B.2. The result follows immediately from the proof ofLemma B.
and the inequalities,

T T

[ICTik(Ot)[[ E I[ATij(Ot)[l’[IBTjk(Ot)l[ <= KAKB exp {--(CAli--j[ + c[j-- k[)},

where KA, K, CA, and c are the K and c constants of { AT(a) } and { Br(a) } required
by Definition 1.2 (b).

ProofofTheorem 5.1. Only proofs for the first derivative results are presented here.
The second derivative results follow from similar arguments. Also, Fubini’s Theorem
will be used repeatedly without further comment.

(a) Note from (3.3) that for d >= 0,

.(m) _,(dm)_ -ggPl+d + Pl"ggrl+d Pl-gg-(g7)- Pl+d)(B. 1) .’r,r+a-- (pm), -1 -ll)(m)__ -1 -I
gg

/=r+l

By (2.6) and the proof ofLemma A.2(c), the matrices pm) are declining exponentially
in I. Also, Z-lgg g(n)-lgg is bounded in norm for fixed a 6 z. Thus expression (B.1) is
declining exponentially in r, uniformly in d, and declining exponentially in d, uniformly
in r. Next, note from (3.4) that for d >_- 0,

p

liB (m) (m) (m)
r,r+d ,r+l] <- Z ][I)i (Ci+r,j+r+d Cj+d-i)cTj

i,j=O

p

(B.2) +
i,j 0

P

+ E [l,(c i+r,j+r+d Cj+d-i)j
i,j 0

For fixed a , -,!m) is bounded uniformly in < < p, so three separate repetitions
of the arguments for (3.4) indicate that there exist K > 0 and c > 0 such that each of
the sums on the fight-hand side of (B.2) is bounded by K exp [-c(]rl + ]r + d I)].

l (m) (m)Thus, .or,r+ d -r,r+ d is declining exponentially in r, uniformly in T and d, and is
declining exponentially in d, uniformly in T and r.

(b) By expression (3.5),
(m) ?) r(m)v ,A-1 1/2 -1v [2(B.3a) Grrrs- B D 2(V /2E EV + I) Ds

(B.3b) + DrV/2(V/2E’A-EV 1/2 + I)-V/2[D(sm)]

(B.3c) + Dr[V/2(V/2E’A-EVi/2 + I)-V/2](m)D.
Note that by (3.6), there exists some K > 0 such that Dm) is bounded in norm by

r+p j
(m)_ (m)t,p_ (m)’.-1 PT- II)(B.4) K Z Z (llPg-/2:iglpw-,ll + IlPj-zggPT-zll + IlP-/2ig-gg -gg

j=rl=l

Repetition of the arguments in the proof of Theorem 3.1 (b) indicates that (13.4)
and (B.3a) are declining exponentially in T for fixed r. These same arguments in-
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dicate that D (m) is bounded uniformly in s and T, so (B.3b) is declining exponentially
in T. Finally, note that by (3.7) and the functional independence ofV from T, [V/2

(v1/ZE,A-EV 1/2 / l) -lv1/Z (m) is bounded in norm uniformly in T. Thus (B.3c) is
declining exponentially in T, uniformly in s e +.

(c) The proof of part (c) is identical to the proof of part (b), except that the index
r is replaced by r(T) and, using arguments similar to those for (3.8), the derivative
matrices D m)

(r) are seen to be declining exponentially in T- r(T) and to be bounded
uniformly in r(T) and T.

(m) (m)(d) and (e) Note that G rr -GrrI’ rr),Jrr, and recall from Theorem 3.1 (e)
(m)and Lemma A.2 that Grv and I’rr) have exponentially declining off-diagonal blocks.

Part (e) then follows immediately from Lemma B.2. Part (d) follows from the additional
remark that if a sequence of matrices have exponentially declining off-diagonal blocks,
then their elements are uniformly bounded.

Proof of Theorem 5.2. The theorem follows immediately from the derivative
expressions

V(Fm) r(xxm) l’(m) 1" l-(m) -1 (m) 1"-1

_-< m =< Q, similar expressions for F(m’n) and V(Fm’n), Lemma A.2, Lemma B.2, and
parts (g) and (h) of Theorem 4.1.

Proof of Theorem 5.4. For any a e , there exists 6 > 0 such that , de__f {
Q I/3 a[ < 6} c . For this 6, the arguments in the proofs of Lemmas A. and
A.2 indicate that the coefficients of exponential decline for the matrices I’xz(l) and Pl
are uniform in/3 e ,, so each of the coefficients of exponential decline in the proofs
of Theorems 3.1, 4.1, 5.1-5.3 may be replaced by coefficients that are uniform in. Theorem 5.4 then follows immediately from Lemmas A. 1, A.2, B. 1, and B.2.
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A TWO-DIMENSIONAL BISECTION METHOD FOR SOLVING
TWO-PARAMETER EIGENVALUE PROBLEMS*

XINGZHI JI"

Abstract. It has long been known that separation of variables can be applied to the Helmholtz equation
in 11 three-dimensional coordinate systems. As a result, a multiparameter eigenvalue problem is formed. In
this paper, the well-known bisection method for ordinary eigenvalue problems is generalized to a special class
of discrete two-parameter eigenvalue problems. The range of the real roots of the problem is discussed and
some numerical results are given.

Key words, two-parameter eigenvalue problem, two-dimensional bisection, range of real roots
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1. Introduction. It is well known that the bisection method is very effective for some
eigenvalue problems of a real symmetric matrix [8, p. 305]. The main objective of this
paper is to extend the bisection method to the following two-parameter eigenvalue prob-
lem:

(1.1) (TI+kBI +#CI)Xl =0,

(1.2) (T2 + kB2 + tCz)x2 O,

where T;, Bi, C (i 1, 2) satisfy the following condition (TBC for short): Ti
are irreducible symmetric tridiagonal matrices; B, Cg nn are nonsingular diagonal
matrices: Bi diag (bi,1,’", bi,n), C/ diag (ci,1,’", ci,,), sign (bi,l) sign (bi,j),
sign (C,l) sign (c;,j), j 2, n. The real pairs , u) and xl, x2 are the eigenvalues
and the corresponding eigenvectors to be found.

The motivation for investigating the problem 1.1 ), (1.2) is the numerical study of
two-parameter Sturm-Liouville (S-L) eigenvalue problems such as

-X" + ql(X)X (XSl(X) + ttl(X))X,

(1.3) -Y" + q(y)Y= (Xs2(y) + tt(y))Y,

X(a) X(b) 0,

Y(a2) Y(b2) 0,

where qi, &, ti (i 1, 2) are real-valued, piecewise continuous functions. The above
problems arise from solving the Helmholtz equation by separation of variables. For
example, consider the problem

(1.4) I-Au= u in

u 0 on Oft,

where ft is bounded by symmetric orthogonal parabolas confocal to the origin, and
Oft is the boundary of 2. Applying the method of separation of variables to the problem
(1.4) in a parabolic coordinate system will lead to the following two-parameter S-L
problem (cf. 9 ):
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-X"= ( + ux2)X,
-Y"= (-X + #y2)y,

X(O) X(1) O,

Y(-1) Y(1) O.

Using the second central-difference approximation for X" and Y", (1.3) leads to the two-
parameter discrete eigenvalue problem 1.1 ), (1.2). It is easy to see that the condition
TBC will hold if si, ti (i 1, 2) do not change sign.

It is well known that there are 11 three-dimensional coordinate systems in which
the Helmholtz equation (also the Laplace equation) is directly separable ], 10 ], 13 ].
In some cases (e.g., rectangular coordinate), separation constants are not coupled. Then
the method ofBlum and Reid 4] can be used with inhomogeneous boundary conditions.
In other cases, however, the separation constants cannot themselves be decoupled. They
appear as spectral parameters in each of the attendant ordinary differential equations,
and multiparameter S-L problems are consequently formed [10 ], [12 ].

In 2 ], through Priifer phase transformation, Bailey presented an alternating pa-
rameter iterative method for general two-parameter S-L problems and gave some nu-
merical examples that show the algorithm to be rather effective. Fox, Blum, and others
also investigated three-point boundary value problems very similar to problems 1.3 or
(1.1), (1.2) (see [5]-[7]).

The two-dimensional bisection method presented in the following section can locate
the eigenvalues of the problem (1.1) and (1.2) in any specified rectangle with sides
parallel to the coordinate axes. Being a generalization of the ordinary bisection method,
the algorithm is stable and the results are accurate. In 3, we discuss the range of the
real roots of the problem 1.1 ), (1.2). Some numerical results are given in 4.

For the sake of simplicity, we have let the order of the matrices in 1.1 be equal
to that in (1.2). But all results follow analogously for the nonequal case.

Throughout the paper, we use the notation [tii , tii, tii+]7- to denote the tri-
diagonal matrix

tl t2
t2 t22

tn 1,n

tn,n- tnn

2. Two-dimensional bisection method. Consider the double eigenvalue problem
1.1 ), (1.2). We define

j’] ), #) det TI + XB1 +/zC ),

A(), u)= det (T2 + )B2 + uC2).

Then our aim is to locate the intersection points of the two families of eigencurves
3] (), u) 0 and(), u) 0 in the ) plane. Since the eigenvalue is the continuous
function of the entries of a matrix, the following properties of the eigencurves, ]] 0
andj 0, can be easily derived due to the condition TBC.

PROPERTY 1. Any straight line ) )0 or # t0 has n noncoincident intersection
points with eigencurves ofjq 0 orj 0.
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PROPERTY 2. EachJ 0 (i 1, 2) has n eigencurves X’ (it) 0, X(ni)(#)
0, which are continuous in {- <.X < +a3,- < It < + }.

PROPERTY 3. The n eigencurves ofj 0 orJ 0 are strictly monotone.
Let [al, a2; bl, b2] denote a rectangle that is made of four straight lines:
a2, # bl, and # b. It follows from the above properties that if an eigenpair

(X, It) of the problem 1.1 and (1.2) lies in the rectangle [al, a2; bl, b2], there must be
eigencurves of both j] 0 andJ 0 that cross through at least one of any three sides
of that rectangle. By constructing Sturm sequences, we can check whether there are
eigencurves through any given side of the rectangle.

Let us denote J,k(, It) as the leading k k principal minors of Ti + XBi + Itfi
(i 1, 2; k 1, 2, n). And let f,.,0 1,j,-1 0, X X0. We have the three-term
recurrence formulas:

.(i)2fi,j(kO, It) [(jjt!i’) 21- bi,jko) + Ci,jit]fi,j- (k0, It) lj,j_ lfi,j- 2(k0, It),

1,2; j= 1,2,...,n.

As the polynomial sequences in It, { J,.( X0, It)}’=0 (i 1, 2) satisfy the following:
J,0 has no real roots; (2) For j 1, n 1, J,j_ 0, It0)fi,j / (o, It0) < 0 if Ito is a
real root ofJ,(X0,

Hence, {J,(h0, It)} g (i 1, 2) are Sturm sequences about It. Furthermore, the
number of roots ofJ,(h0, #) in (a, b) equals IV(a) V(b)l, where neither a nor b
is a root of J,,(X0, It), and V(a) and V(b) are the numbers of sign changes of
{j,(X0, It) } g at It a and It b, respectively [11].

Therefore, we obtain the following two-dimensional bisection algorithm for solving
the eigenvalues of the problem 1.1 and (1.2) in a rectangle [al, a; bl, b], where e is
a suitable criterion for termination.

ALGORITHM.
Calculate respectively for {J,} g, {j,} g the number of sign changes at the

vertices of three sides k al, a_, and It bl and form differences between the two
corresponding numbers for each side. Let Vl, Vl_, Vl3 and Val, V__, V:3 denote the
absolute values of these differences for { J,j } g and {J,} g, respectively. Set Vl V +
v_ + V3, v_ v_ + V + v3.

(2) If Vl V 0, then there is no solution in al, a2; bl, b2 ].
(3) If V1,V2 4: 0:

(i) ifmax { a a:l, b b:l } --< e, then we have an approximate eigenvalue
pair Xo (a + a:z)/2, #o (b + b:)/2; otherwise,

(ii) taking a3 (a + a:z)/2, b3 (b + b:)/2, we obtain four smaller rectangles.
(4) Repeat the above steps )-( 3 for each smaller rectangle obtained.

During computation, we may adopt adjustable arrays to store the coordinates of
increasing vertices. If lai + ail <-- e but bi / bil > e, then we use bisection for
bibi /1 and not for aiai

In order to prevent underflow and overflow, we can adopt the technique described
in 14 ]. That is, we apply the algorithm to the sequence

s;,(h, It) J,(h, It)/fi,-l(h, It), 1, 2; j 0, 1, n.

It is worth noting that even if Vl. V2 # 0 in step (3) of the above algorithm, one
cannot assert that there exist solutions in that rectangle. Then further computation is
needed. For this reason, the two-dimensional bisection method is inferior to the ordinary
bisection. However, the two-dimensional bisection is still very stable and can be extended
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to the full matrix cases where Ti are symmetric and Bi, C; are positive/negative definite
(i 1, 2) (see [3]).

3. Range of the roots. In application, an initial rectangle may be chosen according
to various practical needs. However, we hope to obtain a rectangle that contains all the
roots of the problem. We expect, as in the Gershgorin circle theorem, that the range of
real roots can be found in advance by simple computation. In this section, we discuss
the problem.

Let us consider a tridiagonal matrix containing two parameters k and t:

(3.1) A 3‘, t.t l? Ol + 3‘ + "y t.t, =
and define for 1, 2, n

Pi =--i/’i, Mi (1/]i-1] +]ail + Iil)/[’Yi], where /0 /, 0.
(3.2) o= min {v), a= max {v}; M= max {M,.}.

l<-_i_n l<i_n l_i_n

Obviously, o, a, and M are easily computed. We use these values to give the range
of the real roots.

LEMMA 3.1. Assume that "y 4: O, 1,..., n. The range of the real roots of
det A( 3‘, u) 0 are bounded by thefollowingfour half-lines cf. Fig,. 3.1 ):

(3.3) On 3‘ >= 0 half-plane l: t o 3, M,

(3.4) /2: t 3‘ + M,

(3.5) On 3‘ <= 0 half-plane/3: t o 3‘ + M,

(3.6) /4: =3‘-M.

Proof. Applying the Gerschgorin theorem to the matrix A(3‘, ), we obtain the
following inequalities:

i= 1,2,..-,n.

L3

FIG. 3.1
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Hence

I/ik / i/.t[ Irti-ll / I1 + Iil, 1, 2, ..., n.

Since "’i /= 0 (i 1, 2, n),

-(1;-1 / Iil + I/I)/l’;I -< ik/"Yi /

=<(Ir//-ll / lail / Ii[)/l’Yi[, 1,2,...,n.

Or

Pik M # pik / Mi, 1, 2, n.

All the real eigenvalues ofA (X, #) are located in the union of the regions determined
by these n inequalities. Hence it follows that they fall into the region bounded by the
four half-lines:

On h >= 0 half-plane: p ), M -< g =< ah + M,

On h -< 0 half-plane:

LEMMA 3.2. The region bounded by the rays ll, 12, 13, and 14 is symmetric about
the origin.

Similarly, we can define p ’, a’, and M’ for

(3.7) A2(k, #) [r//’-i a/’ //[X / "y;#, /’]-

The real roots of det A2(X, #) 0 in the fight half-plane fall between l and l, where

(3.8) l" g p’h- M’,

(3.9) l_" g a’X + M’.

In line with Lemma 3.2, it is sufficient to discuss the range of real roots of

det AI(X, g) 0, det A2(h, ) 0

in the >= 0 half-plane.
Let P { Ii 12; l l } denote the intersection set of the two regions on the fight

half-plane formed by ll, 12 and l, l, respectively.
DEFINITION. P { ll 12; l l } is said to be closed if it is bounded; otherwise it is

said to be nonclosed.
Without loss of generality, we assume that M’ >= M. We also suppose that M and

M’ are not equal to 0, because P { ll 12; l’1 l } is always nonclosed ifM M’ 0.
LEMMA 3.3. IfP{ l 12; l l } is closed, then either l crosses Ii and 12 (when

M M’, l and 12 cross at point (0, M)), or l crosses 11 and 12 (when M M’, Ii and
l cross at point (0, -M)). l and l cannot cross 11 or 12 at the same time.

THZORZM 3.4. P{ Ii -/2; l l } is closed ifand only if
[p, o-1 c [p’, o-’1 o.

Proof. (1) Proofofsufficiency ofthe condition by constructive method. If [p,
,a’]=0, theneithero >aor0>a.
Suppose o’ > a; then l’1 crosses ll and 12. Solving systems of linear equations (3.8),

(3.3) and 3.8 ), (3.4) we obtain two intersection points:

{X (M’- M)/(p’- p) >=0, { (M’ + M)/(p’- P) >= 0,
3.10 and

# (pM’- p’M)l(p’- p), # (aM’ + p’M)/(p’- a).
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If p > a’, then l crosses ll and 12. Solving systems (3.9), (3.3) and (3.9), (3.4), we
obtain two intersection points

{ (M’ + M)/(p a’) > O, { (M’- M)/(- a’) >-_ O,
3.11

’M
and

# (p + pM’)/(p a’), # (aM’- a’m)/(a- a’).

We thus obtain a quadrilateral, the vertices ofwhich are the above-computed points and
(0, M) and (0, M). This quadrilateral and its symmetric region about the origin contain
all the real roots of

det A 0, det A2 0.

(2) Proof of necessity of the condition by reduction to absurdity. Assume that
[p, a] f [# 4: 0. Without loss of generality, we suppose that # [#, a]. It divides
into two cases:

(i) #’ # l//ll or p’ a l’l//12. So l’ cannot cross 12; at the same time, l
cannot cross ll.

(ii) p’ (p, a); then l cannot cross 12, and l cannot cross ll.
By Lemma 3.3, either (i) or (ii) shows that P{ ll 12; l l } is nonclosed, which

is a contradiction. [2]

An an example, let us determine the range of the real roots of the following model
problem:

h-# )=0,3.12 det
), t

(3.13) det
), + #

For (3.12), we have from (3.2)

Consequently,

(3.14)

(3.15)

And for (3.13), we have

p= 1, a= 1, M= 1.

ll" /z= X- 1,

12" t, ), + 1.

(3.16) l" u=-h- 1,

(3.17) l" # -), + 1.

Since p > a’ 1, we solve (by Theorem 3.4) (3.14), (3.17) and (3.15 ), 3.17 ),
to obtain two points (),,/) 1, 0) and (0, ).

Adding two points (0, M) (0, 1) and (0, -M) (0, -1 ), we have a triangle.
This is a degenerate case. Therefore, all the real roots of (3.12) and (3.13) are located
in a rhombus, as shown in Fig. 3.2.

By simple computation, the four exact solutions of the problem (3.12), 3.13 are
just four vertices of this rhombus. This shows that, in general, the theorem cannOt be
improved.
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(-1,0)

FIG. 3.2

(1,0) ,

We should point out that, even ifP{ Ii 12; l l } is nonclosed, we cannot assume
that the solutions of the problem run to infinity. This shows the limitation of Theo-
rem 3.4.

4. Numerical results. To test the bisection method described above, a program for
the problem 1.1 ), (1.2) has been written in FORTRAN 77 on Honeywell DPS 8. The
program is subdivided into three subroutines:

SUBROUTINE (i). Compute the number of sign changes of a given Sturm sequence
at two vertices of a segment.

SUBROUTINE (ii). Check whether eigencurves off (X, ) 0 orj(X, #) 0 pass
through the rectangle ABCD, where ABCD { a, b; c, d } denotes the rectangle formed
by X a, X b, # c and/ d.

SUBROUTINE (iii). Compute all the roots of the problem in the given rectangle.
Example 1. First consider a model problem

(4.1) X+# X2

X /,t Y2

The exact solutions are (X,/) (0, __1 ), (+__ 1, 0).
Now given e 10 -6, ABCD { 0.5, 2.0; -1.0, 0.5 }. Using the two-dimensional

bisection algorithm, we obtain X 0.999 999 9E + 00 and 0.119 209 3E- 06.
Adopting the root range {- 1, 1; -1, } given in 3, we solve for all the roots:

(’1, 1) (-0.100 000E + 01, 0.476 837E- 06),

(-0.476 837E 06, 0.100 000E + 01 ),

(k3, 3) (0.100 000E + 01, -0.476 837E- 06),

k4, 4) --0.476 837E 06, --0.100 000E + 01 ).
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Example 2 (see 5 and 7 ]). Consider the two-parameter Sturm-Liouville problem

+ X + x2)y 2t- -t- UX + x2)yl 0, on (--1, 0),

3_ X 3_ xZ)y2 3f_ qt.. ix -Jr- X2)y2 0, on (0, ),
(4.2)

y,(-) y(o),

y_(0) y().

It is known that this problem has the eigenpair (;% t) 12.135, 9.604).
We introduce p(x) + x + x-), q(x) 1/p(x), s(x) x/p(x), r( x) x-/

p(x); then (4.2) becomes

y + ()q(x) + ls(x) + r(x))y 0, on (-1, 0)

y’ + (Xq(x) + Us(x) + r(x))y2 O, on (0, l)
(4.3)

y(-1) y(O),

y_(0) y.().

Taking step size h ! 100 and grid points x_/. -1 + i, h in [-1, 0 ], Xi i, h in
0, (i 1, 2, 99), and replacing y" by the second central difference, we obtain a
two-parameter algebraic eigenvalue problem:

[1,-2 + h2()q_i + IdS_i -4- r-i), 1]’= y 0, in [--1, 0],

(4.4) [1,--2 + h2()qi + usi + ri), 1]= y2 0, in [0, 1],

Yl,n --Y2,1

where y,, and Y2, are the first and last components of y and Y2, respectively, q-i

q(x-i), s-i s(x-i), r-i r(x_i), qi q(xi ), si s(xi ), ri r(xi ).
For e 10 -4 and ABCD { 11, 14; 8, 12 }, we get an eigenvalue pair (), t)

12.1351, 9.6037).
Now let e 10-6, ABCD 100, 100; 100, 100 }. We have

(0.364 987E + 02, 0.683 313E + 02),
(0.121 250E + 02, 0.959 622E + 01),
(0.503 453E + 02, 0.362 203E + 02),
(0.235 932E + 02, -0.167 225E + 02),
(0.417 165E + 02, -0.628 952E + 02),
(0.691 972E + 02, -0.623 948E + 01 ),
(0.963 565E + 02, -0.652 450E + 02).

The corresponding eigenvectors Y,i, Y2,i (i 1, 2, 7) can be obtained by the
inverse iteration. This problem will be discussed in detail in a future paper. Here we only
use the double precision routine DEVFSB in IMSL to compute eigenvectors and let
Y,i y2, (i 1, 2, 7); then the maximum residual of all seven eigenpairs

is

max (II(T + XiB1 + #iC1)Yl,i][oo, 11(T2 + iB2 + tif2)y2,illoo)= 1.838 10 -4.
___<_ i=<

Example 3. Let us consider the problem (1.5). Take grid points xi i, h(i 1,
2, 100) for the first equation, and grid points yj -1 + j, h (j 1, 2, 201
for the second equation, where h / 101, and use central differences to approximate
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TABLE
Results ofExample 3.

0 2 3

1.8782 -6.199E-4
25.5327 30.9153
17.8523 17.6674
73.6537 74.3426

-8.3373 -17.6674
52.6877 74.3302

X" and Y". The order ofthe two discrete equations obtained are not the same. We adopt
e 10 -4, and calculate the eigenvalues in the rectangle ABCD {- 100, 100; -100,
100, }. As a result, six eigenpairs (;, ;), 1, 2, ..., 6 are obtained and listed in
Table 1, in which rn and n stand for the oscillation numbers of the eigenvectors X and
Y, respectively, corresponding to the numbers of zero points ofthe eigenfunctions X(x)
and Y(y) in the open intervals (0, and (-1, ).

The corresponding eigenvectors Xi, Yi (i 1, 2, 6) are computed as in Example
2. The maximum residual of all six eigenpairs is

max (l[(Z, + iB + #iC,)Xil[, [[(T2 + )kiB2 + ziCz)Yill)= 1.258 10 -5.
1=<i=<6

The discretization error of replacing (1.3) by 1.1 ), (1.2) is discussed in [3].

Acknowledgments. The author is indebted to Professor H. F. Weinberger and the
referee for their helpful comments and suggestions.
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ESTIMATING THE LARGEST EIGENVALUE BY THE POWER AND
LANCZOS ALGORITHMS WITH A RANDOM START*

J. KUCZYlqSKFf AND H. WONIAKOWSKI:I:

Abstract. This paper addresses the problem of computing an approximation to the largest eigenvalue of
an n n large symmetric positive definite matrix with relative error at most e. Only algorithms that use Krylov
information b, Ab, Akb] consisting of k matrix-vector multiplications for some unit vector b are considered.
If the vector b is chosen deterministically, then the problem cannot be solved no matter how many matrix-
vector multiplications are performed and what algorithm is used. If, however, the vector b is chosen randomly
with respect to the uniform distribution over the unit sphere, then the problem can be solved on the average
and probabilistically. More precisely, for a randomly chosen vector b, the power and Lanczos algorithms are
studied. For the power algorithm (method), sharp bounds on the average relative error and on the probabilistic
relative failure are proven. For the Lanczos algorithm only upper bounds are presented. In particular, In (n)/k
characterizes the average relative error of the power algorithm, whereas O((ln (n)/k)a) is an upper bound on
the average relative error of the Lanczos algorithm. In the probabilistic case, the algorithm is characterized by
its probabilistic relative failure, which is defined as the measure of the set of vectors b for which the algorithm
fails. It is shown that the probabilistic relative failure goes to zero roughly as V e)k for the power algorithm
and at most as fe-tak-) for the Lanczos algorithm. These bounds are for a worst case distribution of
eigenvalues which may depend on k. The behavior in the average and probabilistic cases of the two algorithms
for a fixed matrix A is also studied as the number of matrix-vector multiplications k increases. The bounds for
the power algorithm depend then on the ratio ofthe two largest eigenvalues and their multiplicities. The bounds
for the Lanczos algorithm depend on the ratio between the difference of the two largest eigenvalues and the
difference of the largest and the smallest eigenvalues.

Key words, largest eigenvalue, power and Lanczos algorithms, random start

AMS(MOS) subject classification. 65

1. Introduction. In this paper we address the problem of approximating the largest
eigenvalue k ofan n n large symmetric positive definite matrix A. We wish to compute
an approximation with relative error at most e, i.e., kl 1 =< ek. Typically the
matrix A is sparse and it is reasonable to use Krylov information consisting of k matrix-
vector multiplications b, Ab, A kb for some unit vector b. Examples of algorithms
for this problem are the power algorithm, which has rather limited practical value, and
the far superior Lanczos algorithm. It is well known that convergence ofboth algorithms
depends on the distribution of eigenvalues and on the angle between the vector b and
the eigenvector nl corresponding to the largest eigenvalue (see 2 for references). In
particular, if the vector b is chosen deterministically and independently on the matrix
A, then it may happen that b is orthogonal to . In such a case the two algorithms fail
to approximate the largest eigenvalue. It is easy to extend this negative result by showing
that as long as Krylov information is used with a deterministic unit vector b, then there
exists no algorithm that can approximate the largest eigenvalue for all symmetric positive
matrices (see 2 for details). Also if Krylov information is replaced by any k matrix-
vector multiplications, then the problem cannot be solved for all symmetric positive
matrices as long as k =< n since all the vectors might be orthogonal to Ol (see Re-
mark 7.1 ).
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On the other hand, a closer look at the analysis of convergence of the power or
Lanczos algorithm yields the impression that it is very unlikely that the position of the
vector b will be so unfortunate and that it should not really happen with a randomly
chosen vector b. This is exactly the point of departure of our paper. We assume that the
vector b is chosen randomly with uniform distribution over the unit sphere of n-dimen-
sional space. Then we define the average relative error of an algorithm as the expected
relative error while integrating over the vectors b of the unit sphere. We also analyze the
probabilistic relative failure, which is defined as the measure of the set of vectors b for
which the algorithm fails to approximate the largest eigenvalue with relative error at
most e.

For the average case we find sharp bounds on the relative error ofthe power algorithm
(see Theorem 3.1). Namely, no matter what the distribution ofeigenvalues ofthe matrix
A, the relative error is bounded from above, for large n, by roughly 0.564 In (n)/
(k ). This bound is sharp in the sense that for each k there exists a symmetric positive
definite matrix A for which the relative error is at least roughly 0.5 In (n) /(k ). Hence,
the relative error of the power algorithm tends to zero as k goes to +m, although the
speed of convergence is quite slow. Observe that the dimension n of the problem affects
the speed of convergence only logarithmically.

For the Lanczos algorithm, we are only able to present upper bounds on its average
relative error (see Theorem 3.2). We show that independent of the distribution of ei-
genvalues of the matrix A, the relative error is bounded by 2.575(ln (n)/(k ))2 for
k e [4, n ], and that the relative error is zero if k is no less than the total number of
distinct eigenvalues. To check the quality of this upper bound, we performed many
numerical tests. They are reported in 6. Numerical tests for the matrix whose eigenvalues
are shifted zeros of the Chebyshev polynomial of the first kind of degree n seem to
indicate that the relative error of the Lanczos algorithm behaves like k-2. If so, then the
factor In 2 (n) in our upper bound is an overestimate.

Comparing the two algorithms, we see, not surprisingly, the superiority ofthe Lanczos
algorithm. The ratio of steps of the power and Lanczos algorithms needed to achieve
error at most e is roughly at least equal to 0.35e -1/2. Thus the smaller the e, the more
superior the Lanczos algorithm.

So far we have discussed the bounds for a worst case distribution of eigenvalues.
We also study the behavior ofthe average relative errors for a fixed matrix A and increasing
k. For the power algorithm, we obtain formulas for the rate ofconvergence, which depends
on the ratio 0 of the two largest eigenvalues and on their multiplicities (see Theorem
3.1 (c)). In particular, the best rate is obtained ifthe multiplicity p ofthe largest eigenvalue
is at least 3 and then it is equal to 02(k- 1). For p 1, the rate is p- 1. Observe that for
a deterministic vector b which is not orthogonal to the eigenvector rtl, the rate is o(- 1).
In 3 we explain why for p _-< 2 the rate decreases in the average case. For the Lanczos
algorithm we obtain only an upper bound on the ratio, which depends on the difference
ofthe two largest eigenvalues over the difference ofthe largest and the smallest eigenvalues
(see Theorem 3.2(b)).

We now turn to the probabilistic case. As before, we find sharp bounds for the
probabilistic relative failure ofthe power algorithm that are independent ofthe distribution
of eigenvalues (see Theorem 4.1 ). The failure goes to zero roughly as V-n( e). Note
that now the dimension n affects the failure much more substantially than in the average
case. Although the failure goes to zero exponentially, for small e the speed ofconvergence
is quite slow.

The failure of the Lanczos algorithm is zero if k is no less than the total number of
distinct eigenvalues, and is bounded by roughly 1.648ne-(- 1) for any k (see Theorem
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4.2). Hence, we have the same dependence on the dimension n, but the dependence on
e is much improved.

Ifwe compare the number of steps needed to obtain a failure of at most 6, then the
ratio between the steps of the power and Lanczos algorithms is independent of 6 and is
roughly at least 2e -1/2. Thus, in both the average and probabilistic cases the ratio is
proportional to e -1/2.

We also study the probabilistic relative failure for a fixed matrix A and increasing
k. The rate of convergence ofthe power algorithm depends on multiplicity p and is given
by ppk- l). Hence, the rate increases with multiplicity. On the other hand, the asymptotic
constant for large p and small e is huge (see Theorem 4.1 (c)). As before, for the Lanczos
algorithm we only obtain an upper bound on the ratio, which depends on the two largest
and the smallest eigenvalues.

The proofs of theorems from 3 and 4 are presented in 5. It turns out that the
proof technique for the power algorithm can be applied for the Lanczos algorithm with
the use ofChebyshev polynomials ofthe first kind for the average case and ofthe second
kind for the probabilistic case. We think that getting a sharp lower bound on the error
or failure of the Lanczos algorithm will require a more sophisticated analysis.

In Remark 7.3 we briefly mention a modified power algorithm which was analyzed
in the probabilistic case by Dixon [3]. We extend his analysis to the average case and
conclude that the power algorithm is better.

In this paper, we do not address the termination criterion. Termination is inherently
difficult due to the negative result for deterministic vectors b. Furthermore, for the Lanczos
algorithm a "misconvergence phenomenon" takes place as indicated in Parlett, Simon,
and Stringer 15 ]. We also experienced this in our tests as reported in 6. Nevertheless
we hope that average and probabilistic bounds can be useful in deriving a reliable ter-
mination criterion for which we can prove how the algorithm works on the average or
probabilistically. It should be added that it is often the case in engineering that the quality
ofthe computed approximation can be verified for moderate n by performing triangular
factorization of I- A and checking that no negative pivot occurs. Here, is a computed
upper bound on the largest eigenvalue ). For example, if we believe that is an ap-
proximation to with relative error at most e, then , _-< /( e), and we can set
l /(1 e).

Of course, approximating the largest eigenvalue is only one of many interesting
eigenvalue problems. To list a few, we mention approximating the mth largest eigenvalue,
the smallest eigenvalue, or corresponding eigenvectors. Since the negative result for de-
terministic vectors b extends also to these new problems, it is quite natural to use random
vectors and, hopefully, to get positive results on the average or probabilistically. In par-
ticular, it seems to us that a similar proof technique can work for approximating the
smallest eigenvalue and the condition number of a symmetric positive definite matrix.
We hope to report this in the near future.

Finally, we add a remark on replacing the standard relative error criterion by one
depending on the eigenvalue spread ,n, where ? is the rightmost and Xn is the
leftmost eigenvalue (see Parlett 14 ).

The gap ratio is defined (see Parlett [13]) as (1 k2)/( 2 n), where 2 is the
second largest eigen.v.alue, and it occurs in the analysis of the rate of convergence of
Krylov subspace methods to . The natural extension for our problem is to seek an
approximation to X that satisfies

Since this error criterion for the Lanczos algorithm is shift invariant, the bounds presented
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in this paper for standard relative error also hold for the error relative to the eigenvalue
spread k kn, as given above. The significant advantage of using the spread is that our
results apply to all symmetric matrices, positive definite or not. In contrast to the Lanczos
algorithm, the error of the power algorithm relative to the eigenvalue spread is not shift
invariant and there is no sense in modifying the standard relative error criterion. Details
are given in Remark 7.5.

2. Definition of the problem. Let A be an n n large symmetric positive definite
matrix. Let k i(A) denote the eigenvalues of the matrix A,
),n(A > 0. We want to compute an approximation to the largest eigenvalue X (A). More
precisely, for a given (presumably small) positive number e, we want to compute a
number ( ((A) such that the relative error between Xl(A) and ((A) does not ex-
ceed e:

(1)
((A) X,(A) =< e.

Xl(A)

Obviously, if e >_- 1, ((A) 0 satisfies ). To avoid this trivial case, we assume that
[0, ).

If is larBe, say, of order 10 +3 or 10 +, then it is prohibitively expensive to use well-
known algorithms such as QR or QL. Instead, it is reasonable to assume that the infor-
mation about the matrix A is supplied by a subroutine that computes Az for any vector
z. If" A is sparse, which often is the case, the time and storage needed to perform the
matrix-vector multiplication Az is proportional to ,.

We therefore assume that Krylo information consistin of k matrix-vector multi-
plications, k >= 1,

(2) Ng(A, b) [b, Ab, ,Agb],

is used to compute the approximation ((A). That is, ((A) 4)(N(A, b)) for some
mapping R" + l)

__
R. Here, b is a nonzero vector which, without loss of generality,

may be normalized such that Ilb[I 1, where I[" stands for the Euclidean norm of
vectors.

Krylov information can be written as z, z2, z + l] with z b and z; Az_ 1.

This shows that it can be computed using k matrix-vector multiplications.
Examples of algorithms that use Krylov information include the power and (simple)

Lanczos algorithms. For the power algorithm (pow we have

(3) ((A) PW(A, b, k)
(Ax, x)

with x A- b z,
(x,x)

whereas for the Lanczos algorithm (Lan we have

(4) ((A) (n(A, b, k) max
(x,x)

"0g=xespan(b’"’’A-b)

The analysis of convergence of the power algorithm is straightforward and may be
found in most books on numerical analysis. The analysis of convergence of the Lanczos
algorithm is more complex and some of it may be found in, e.g., Wilkinson 20 ], Kaniel
6 ], Paige 11 ], 12 ], Kahan and Parlett 5 ], Scott 17 ], Parlett 13 ], and Saad 16 ].

In both cases, convergence depends on distributions of eigenvalues of the matrix A
and on the vector b. In particular, if b is orthogonal to the eigenvector rl, Ar Xll,
then both algorithms fail to converge to hi. This means that cannot always be satisfied.
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It is then natural to ask if there exists an algorithm using Krylov information (with
sufficiently large k) for which is satisfied for some e and for all symmetric and positive
definite matrices. It is easy to verify that, unfortunately, this is not the case.

We now present a simple argument why this is so (see also Remark 7.1, where
further discussion may be found). For arbitrary A, b, and k, let

d d(A, b, k) dim span (b, Ab, Ak-lb).
Clearly, <= d <= min (k, n) and both bounds can be achieved. Let (A)=
dpk(Nk(A, b)), where k is an arbitrary mapping.

Assume that d -< n 1. Then there exists a matrix , r > 0, such that
(A (A and

(5)
(A)- kl(A)- > e,

Xl(A)

that is, (A) does not satisfy for the matrix A. The matrix A is of the form A A +
auu, where a is a positive constant and u is a nonzero vector orthogonal to b, Ab,
Ak- b. Such a vector exists since d _-< n 1. By induction we get

ASb=ASb forj=0, 1,...,k.

Thus Nk(A, b) N(A, b) and therefore (A) (A). Observe that the trace of A is
given by

trace () trace (A) + a u 2

and it goes to infinity as a -- +c. Therefore the largest eigenvalue X (A) goes to infinity
as well. We thus have

(A)- XI(A) (A)- - asa---+.
X,(A)

Hence, there exists a positive a for which (5) holds, as claimed.
Observe that for large a, the largest eigenvalue (A) of A is close to a and the

eigenvector corresponding to ), (A) is close to u. The vector u is orthogonal to all but
the last vectors of Krylov information. Thus N,(A, b) contains almost no information
on the vector u and therefore no matter how is chosen, (A) 4,(Nk(A, b)) cannot
approximate (A) with relative error at most e.

To prove (5), we needed to assume that d(A, b, k) =< n 1. Observe that this
inequality holds for all A and b as long as k -_< n 1. Thus, if we perform fewer than n
matrix-vector multiplications, there always exists a symmetric and positive definite matrix
A which shares the same information as A and for which it is impossible to approximate
its largest eigenvalue with relative error at most e. We stress that e need not be small.
The only assumption is e < 1.

Clearly, if for any A we have d(A, b, k) n, then it is possible to satisfy ). Indeed,
the vectors b, Ab, A- b span the whole space and the matrix A can be uniquely
recovered from the computed Krylov information N(A, b). Knowing A, we have, at
least conceptually, enough information to recover the largest eigenvalue (A) even
exactly.

Can we thus guarantee that d(A, b, k) n for some k >= n? Clearly, not always.
For any vector b, there exists a matrix A A v > 0 such that b is its eigenvector, say,
Ab ab. Then d(A, b, k) for all k, and no matter how many matrix-vector mul-
tiplications are performed, cannot be satisfied for some symmetric and positive definite
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matrices. It can also happen that d(A, b, p) d(A, b, p + for some p, where =<
p _-< n 1. Then d(A, b, k) d(A, b, p) for all k >= p, and still cannot always hold.
We have d(A, b, k) n if and only if k >- n and vectors b, Ab, A lb are linearly
independent.

Observe that b, Ab, ..., A b are linearly independent if and only if all the ei-
genvalues ofA are distinct and the projections of the vector b onto the eigenvectors ni
of the matrix A are nonzero, that is, (b, i) 4:0 for 1, 2, n. This property is
guaranteed if, for example, A is unreduced tridiagonal and b [1, 0, 0].

Although it is impossible to guarantee that b, rti) 4:0 for all e 1, n ], it is intuitively
clear that (b, i) 4:0 should hold for "almost all" vectors b. This is definitely the case if
the vector b is chosen randomly, say, with uniform distribution on the n-dimensional
sphere of radius 1. The reader may consult Knuth [7, p. 130 ], where it is explained how
such a vector can be generated computationally. Then (b, rti) 0 holds with probability
0 and d(A, b, k) kwith probability ifand only ifA has at least k distinct eigenvalues.

The last fact follows by noting that b, Ab, Ak- b in the basis of eigenvectors
ofA is equal to the product of the diagonal matrix D whose entries are components of
b, and the Vandermonde matrix V whose entries are powers of eigenvalues of A. The
matrix D is nonsingular with probability whereas the matrix V has rank k if and only
ifA has at least k distinct eigenvalues.

This discussion suggests that although cannot be satisfied for all symmetric and
positive definite matrices with a deterministically chosen vector b, there is hope that this
problem can be solved by introducing a random initial vector b of Krylov information,
that is, for all symmetric and positive definite matrices we wish to have the average
relative error with respect to vectors b to be at most e. Or we may wish to solve the
problem with high probability, i.e., for vectors b that form a set of measure close to 1.

We now formalize this idea. Let be a distribution of the initial vectors b. How
should we select for the power and Lanczos algorithms? Observe that for both of them
we have

(A, b, k) (A, ab, k) Va 4: O,

ti,(A, b, k) t( QrAQ, QTb, k) VQ orthogonal.

It is then natural to choose # which shares these two properties, that is, # should be
concentrated on the unit sphere of R and should be orthogonally invariant. Therefore,
we assume in this paper that # is a uniform distribution over the unit sphere of Rn,
#({beRn: Ilbll-- 1))- 1.

For any symmetric and positive definite matrix A, we select a random vector b
according to the distribution #. Then we compute Krylov information Nk(A, b) and the
approximation (A, b, k) of the largest eigenvalue X (A) by the power or Lanczos al-
gorithm (3) or (4). Then

(6) eavg(, A, k) flbll (A, b, k) h (A,I
denotes the average relative error. Let

(7) fprob(, A, k, e) #Ib E Rn ]]hi] 1,
(A, b,kl (A)k)- XI(A)[ > e}

denote the probability that the algorithm fails to approximate the largest eigenvalue with
relative error at most e. We call (7) the probabilistic relative failure of .
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In Remark 7.2 we show that (6) and (7) remain the same if we integrate over the
unit ball Bn with respect to normalized Lebesgue measure.

3. Average case. In this section, we present bounds on the average relative error
(6) for both the power and Lanczos algorithms. Proofs are given in 5. To simplify some
estimates, we assume that n >= 8. We begin with the power algorithm.

THEOREM 3.1. Let vow be the power algorithm defined by (3).
a For any symmetric positive definite matrix A andfor any k >= 2, we have

In n
e,vg((pow, A, k) =< a(n)

k

where r -1/2 =< a(n) -< 0.871 and, for large n, a(n) - r-/2 0.564
(b) For any k > + 1/2 In (n/In n), let A be any symmetric matrix with exactly two

distinct eigenvalues > 0 and )k )kl( In (n/In n)/(2(k ))),for 2, 3,
n. Then for large n and k,

In n
evg((W’A’k)>-O’5k l(1 +o(1)).

c For any symmetric positive definite matrix A, let p, p < n, and q denote the
multoolicities ofthe two largest eigenvalues X and )tp +l. Then

lim

e,Vg((ow, A, k)
lim

k-- +oo (Up+ 1/Xl) 2(k- 1)

eavg(pow, A, k)
k-*+oo (k )(X3/kl) 2(k- 1)

eaVg(r,ow, A, k)
lim
k-+ (X/X)-

q
1- for >

p- 2 "’X’" p= 3,

=q 1--- ln3 forp=2,

f I’((q + 1)/2) (1r(q/2)
forp l.

Part (a) of Theorem 3.1 states that no matter what the distribution of eigenvalues
ofA is nor how poorly the dominant eigenvalue is separated from the next largest eigen-
value, the average relative error of the power algorithm is bounded by 0.871 In (n)/
(k ). For large n, the constant 0.871 can be replaced by roughly 0.564.

Part (b) of Theorem 3.1 states that this upper bound is essentially sharp since for
each k there exists a matrix A A T > 0 with only two distinct eigenvalues for which the
average relative error of the power algorithm is at least roughly 0.5 In (n)/(k ).

The average relative error of the power algorithm depends only logarithmically on
the dimension n. Thus, even for large n, the constant 0.564 In (n) is quite moderate and
the error is a modest multiple of (k )-1. Of course, (k )-l tends to zero slowly,
and to guarantee

eavg(pow, A, k) N e VA A T > 0,

we have to perform roughly k + 0.564 In (n)/e] steps. For small e, such a number
ofsteps cannot be realistically done. As we shall see in Theorem 3.2, the Lanczos algorithm
is, not surprisingly, much better and therefore the power algorithm is of limited value in
numerical practice.

We now comment on the paper of O’Leary, Stewart, and Vandergraft [10 ]. They
analyzed the power algorithm for fixed eigenvectors r/l, r2, rn and for a fixed vector
b, ]lbll 1. They showed that for a worst case distribution of eigenvalues, the power
algorithm takes roughly k In (r)/e steps to compute an e-approximation to the largest
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eigenvalue. Here z tan 101, where 0 is the angle between b and rtl. If all bi (b, rti)
are more or less equal, then z

_
Vn and k - In (n)/e. Hence, also in this case, In (n)/e

exhibits the behavior of the power algorithm.
We turn to Theorem 3.1 (c), which explains the asymptotic behavior ofthe average

relative errors ofthe power algorithm. The rate ofconvergence depends on the multiplicity
p of the largest eigenvalue. We assumed that p < n. Note that the case p n is not
interesting since then A is proportional to the identity matrix and one step of the power
algorithm recovers exactly the largest eigenvalue.

The worst rate is for p and in this case is proportional to (),2/),1)-. This
should be compared with the deterministic case for which the rate is proportional to
(,2/)2k-1) whenever b (b, r/l) 4: 0. More precisely, for any vector b, let 0k(b)
(k W(A, b, k))/kl. As before, let bi (b, rti). Assuming that bl 4: 0, we have

T,
+’

l-T, +o T,
where q is the multiplicity of the second largest eigenvalue.

To explain the difference in the rate of convergence, note that the average value of
pk(b) with respect to b cannot be proportional to (2/)2(k- 1) since

b2 + + bq+
bl[ b2 t(db) +.

The complete analysis shows that we lose a factor (2/kl)k-1 when integrating
and therefore the average value of 0k(b) is proportional to (A2/,)k-l, as claimed in
part (c) for p 1.

For p >_- 2, the situation is different since

2(k-1) bZp+__ bp+q + o
+1Ok(b)

Xp + .Af_ _[._ 2 kp +

X b21 DI- -1- b-p k \ k

whenever bl2 + + bp2 4 0. For p > 3, the integral

b 2p + AV -1- b 2p + q

ll: b + + b-p u(db) < +,

which explains why the rate of convergence is proportional to (Xp+/, )2(k- 1).
For p 2, the integral above is "barely" infinite and the complete analysis shows

that we lose the factor In (X3/X)2(k- 1) 2(k In (,3/) when integrating ok(b).
As claimed in part (c) for p 2, the rate of convergence is therefore proportional to
(k )(k3/k2) 2(k- 1).

Theorem 3.1 (c) shows that the asymptotic constant depends also on the multiplicity
q of the second largest eigenvalue and on the ratio ?p/ 1/Xl. The multiplicity q may
depend on the dimension n, and it can happen that q n p. In this case and for ?p / i/

not too close to 1, the asymptotic constant is huge.
We wish to add that a similar analysis may be performed for a modified power

algorithm (moow, where

mpw(A, b, k) (Akb, b) l/k, Ilbll 1.

For the modified power algorithm, In (n) / (k is a sharp upper bound on the average
relative error, which is roughly 1.8 times worse than the corresponding error bound of
the power algorithm. Unlike the power algorithm, In (n)/(k is also a sharp upper
bound on the asymptotic behavior of the average relative error of the modified power
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algorithm. This shows that the power algorithm is superior to the modified power algo-
rithm. Details are presented in Remark 7.3.

We now proceed to the Lanczos algorithm. The analysis of this algorithm is much
more complex and we are able to present only upper bounds. We verify some of our
estimates by numerical tests, which will be reported here and in more detail in 6.
Obviously

(8) eavg(Lan, A, k) -< eavg(pw, A, k) VA and k.

Therefore we can also apply upper estimates of the power algorithm to the Lanczos
algorithm. Ofcourse, since the Lanczos algorithm is much more powerful than the power
algorithm, we hope to get much better estimates of convergence. This will be confirmed
by the following theorem. To simplify some formulas, we assume that k >= 4 and (as
before) that n >- 8.

THEOREM 3.2. Let La. be the Lanczos algorithm defined by (4).
(a) For any symmetric positive definite matrix A, let m denote the number ofdistinct

eigenvalues ofA. Then for k >= m,
eavg(Lan, A, k) O;

for k e [4, m 1],

eavg(Landk) ___< 0.103(ln (n(k-1)4))2

<- 2.575 (lnnk- )2k-1

b For any symmetric positive definite matrix A, let p, p < n, denote the multiplicity
ofthe largest eigenvalue , and let ?+1 and 2 be the second largest and the smallest
eigenvalues ofA. Then

eavg(Lan A k)=< 2.589V-( --V()kl--kP+l_)/(kl--kn))k-I
Theorem 3.2 states that the Lanczos algorithm converges in m steps, m <- n, which

confirms our intuition that it can fail only on a set of vectors b of measure 0. For k
essentially less than n, the average relative error of the Lanczos algorithm is roughly
bounded by 0. (In (n) / k) . Since In (n) /k is a sharp estimate of the average relative
error of the power algorithm, we see that the Lanczos algorithm is far superior. If we
want to guarantee that eav(, A, k) =< e, then the power algorithm needs to perform
roughly kow 0.564 In (n)/e steps, whereas the Lanczos algorithm will take roughly
kTM -< 1.605 In (n)/ steps. Thus

kow 0.35
kLan=

As already indicated, we do not know if the upper bound for the Lanczos algorithm
presented in part (a) is sharp. We verify the sharpness of this bound by many numerical
tests. These tests seem to indicate that

eavg(Lan, A, k) O(k-2)
with the constant in the 0 notation independent of n. If this is the case, then the bound
in part (a) is an overestimate by the factor In n. Details of numerical tests are reported
in6.

Theorem 3.2(b) yields a nonasymptotic estimate in terms of the two largest eigen-
values and the smallest eigenvalue ofA. Observe that the bound in part (b) is better than
the bound in (a) if (, ,; /1)/(? ,,) is not too close to 0.
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4. Probabilistic case. In this section, we present bounds for the probabilistic relative
failure (7) for the power and Lanczos algorithms. Proofs are given in 5. As in 3, we
begin with the power algorithm.

It is easy to check that for e 0, the probabilistic relative failure of the power
algorithm is fprob(pow, A, k, 0) for all matrices A with at least two distinct eigenvalues,
andfprb(pw, A, k, 0) 0 for all matrices A having only one distinct eigenvalue. That
is why we assume in Theorem 4.1 that e > 0. The probabilistic relative failure of the
power algorithm depends on the function g defined by

e) k- 1/2( 1/(2k ))-1
k>_-2.(9) g(e, k)

/(1 e)2-1(1 1/(2k- 1)) 2tg-1) + 2(k- 1)e

Note that

g(e, k) =< e)- 1/2,

e) k- 1/2

g(e,k)- V /e(k- 1)
(1 + o(1)) ask-- + fore>0,

with a negative o( term.
THEOREM 4.1. Let pow be the power algorithm defined by (3) and let e > O.
a For any symmetric positive definite matrix A andfor any k >= 2 we have

/prob(pow, A, k, e) < 0.824Vn fg(c,) 2) n- 1)/2 dt
d0

0.354 }n(1 e)k-1/2_-<min 0.824,
/e(k 1)

b For any integer k >- 2, let A be any symmetric matrix with two distinct eigenvalues
)l > O and )i )l(1- e)(1- 1/(2k 1)) for 2, 3, n. Then

max /prob(pow, A, k, e) fprob(pow, z, k, e)
A =AT>0

>= 0.797fn / n) 2) (n 1)/2 dt,
dO

andfor large n and k,

fprob(pow , k, e) a/ e)k- 1/2

k-- (1 + o(1)),

where a 1//re 0.342....
c For any symmetric and positive definite matrix A, let p, p < n, and q denote

the multiplicities ofthe two largest eigenvalues 1 and p+ 1. If p+ 1/1 < e, then

fprob(pow, A k e) 2(1 e Xp+ 1/kl)p/2 F((p + q)/2)
lim

k--+o (kp+ l/kl)p(k-1) pep/2 F(p/2)I’(q/2)

Parts (a) and (b) of Theorem 4.1 present sharp bounds on the probabilistic relative
failure ofthe power algorithm. The failure tends to 0 with the rate ofconvergence roughly
(1 e)- 1/2. For small e, this is quite unsatisfactory. On the other hand, if we are
interested in a rough estimate of the largest eigenvalue, say e 0.5, then the rate is
quite good.

The dependence of the probabilistic relative failure on the dimension n is through
Vn. This shows that the dimension n affects the probabilistic case for the power algorithm
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in a much more substantial way than the average case, which depends only through
In n.

Consider now the minimal number of steps needed to get

fprb(pW,A,k,e)<=6 VA=AT>O,
where 6 denotes the measure of a set for which the power algorithm may fail.

Then k - In (n/62)/(2e). Hence the dimension n and the parameter 6 affect
the number of steps only logarithmically. Even for huge n and very small 8, the factor
In (n ! 62)/2 is quite moderate. The dependence on e is much more crucial since k goes
linearly to infinity with e -1. Observe that the dimension n and the parameter e affect the
number of steps in the same way in the average and probabilistic cases.

Theorem 4.1 (c) presents the asymptotic behavior ofthe probabilistic relative failure
of the power algorithm. The rate of convergence depends on the multiplicity p of the
largest eigenvalue, and the rate improves as p increases. On the other hand, the asymptotic
constant gets huge for large p and small e.

Part (c) holds under the assumption that the ratio of two largest eigenvalues is not
too close to one, kp + ! < e. Ofcourse, this holds for sufficiently small e. If, however,
Xp+/X >= e, then we do not know the asymptotic behavior of the probabilistic
relative failure of the power algorithm and we suspect that its behavior may be quite
different from that presented in part (c).

We wish to add that the modified power algorithm in the probabilistic case was
analyzed by Dixon 3 ]. We present his result in Remark 7.3.

We now turn to the Lanczos algorithm. As was the case for the average case, we are
able to present only upper bounds. Also in the probabilistic case we have

(10) fprob(Lan, A, k, e) _-< fprob(pow, A, k, e) ’A and k

and upper bounds of Theorem 4.1 can be used for the Lanczos algorithm. The following
theorem presents some better bounds.

THEOREM 4.2. Let Lan be the Lanczos algorithm defined by (4) and let [0, ).
a For any symmetric positive definite matrix A, let m denote the number ofdistinct

eigenvalues ofA. Then for k >= m,

for any k,

fprob(Lan, A, k, e) 0;

4 Ve(2kfprob(Lan A k, e) =< 1.6 8Vne- -1

b For any symmetric positive definite matrix A, let p, p < n, denote the multiplicity
ofthe largest eigenvalue 1, and let + and Xn be the second largest and the smallest
eigenvalues ofA. Then for e > O,

fPrb(LanAk, e)_<5 1.648 (1 /(kl kP+ -)/(kl kn))k-’
Theorem 4.2 states that also in the probabilistic case the Lanczos algorithm converges

in m steps. For any k and for small e the probabilistic relative failure of the Lanczos
algorithm is roughly bounded by fn exp (-Ve(2k )). This should be compared
with a sharp bound for the power algorithm given by fn/e( e)k//. Once more we
see the superiority of the Lanczos algorithm. If we want to guarantee a b-failure,
fprob , A, k, e) 8, then we have to perform roughly kw In (n/ (6 2 )) / (2e) steps by
the power algorithm and roughly kLan =< In (n / 6 2) / (4fe) by the Lanczos algorithm.
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Thus

Observe a weak dependence on ti which only logarithmically affects the number of steps.
The dependence on e is more crucial.

As in the average case, Theorem 4.2(b) presents a nonasymptotic bound on the
probabilistic relative failure of the Lanczos algorithm. Observe that the bound in part
(b) is better then the bound in part (a) if (k kp+)/(k kn) >= e.

5. Proofs of theorems. In this section, we present proofs oftheorems from 3 and
4. We begin with Theorem 3.1, which deals with convergence of the power algorithm in
the average case.

Proof of Theorem 3.1. Let A be any symmetric positive matrix with eigenpairs
(hi, r/i), where the eigenvectors r/i form an orthonormal basis ofR and k >= )2 >= >-
) > 0, that is,

Ar/i )kir/i, (r/i, r/j) 6i,j,

Let b : =1 bir/i. From (3) we get

i,j 1,2,...,n.

pow pOW(A b, k) Z b Xk 6/2 X/2.(k-1)/
Let x )ki/)k1E (0, 1]. Then

-2 bixi (-1)

From Remark 7.2 we know that the average relative error can be defined through the
integration over the unit ball B,

_pow eavg pow __1 fB )kl PW(A, b, k)
db,(11) ek ( ,A,k)=c ),1

where c, 7r
n/2 / F( + n / 2) is the Lebesgue measure ofthe unit ball Bn. Since Lebesgue

measure is orthogonally invariant, we can integrate in 11 with respect to hi"

bx-’)( x) bx-’)

Cn i=

arctan (h (b)) d,

where B’ is the (n )-dimensional unit ball Ilbll 2 Z 7- b 2 d stands for rib2--2 i

db,,, and

h(b) (- Ilbll

_
b--’>n-1)/E-2 i.’,i

Schwartz’s inequality for sums,

yz <= y z
i= i=



1106 J. KUCZYIISKI AND H. WONIAKOWSKI

with Yi bixi and zi bixi-l xi), yields

eOOW< 2 f ( )1/2k b2ix2i(k -1)(1 Xi) 2

Cn
arctan h (b) d.

Now, using Schwartz’s inequality for integrals, we get

_pow __2 d- bx(k-1)( xi) 2 arctan 2 (h(b)) d-’k
Cn

arctan 2 (h (b)) b2iXi2(k Xi) 2

Cn i: xi <-- [3

bi Xi Xi) d-
i: xi 15

for any number/3 [0, 1]. Here, cn-1 r n- 1)/2/1’(1 + (n 1)/2) is the Lebesgue
measure of the (n )-dimensional unit ball.

Consider the function H(t) (1 t)zt2- 1). The maximum of H is attained
at to 1/k and H is increasing in [0, to]. Let/3 =< to. Since arctan z _-< r/2 and
arctan z =< z, then

n

x(k-1) (’ff’l2 Z b/2- 1)(1arctan 2(h(b)) , b (1-xi)2 <
\/-i: x <= 15

arctan 2 (h(b)) , b.2’.2(-1)(,., xi) 2 < h2(b) b2.’2.(-1)(,., -/3) 2

i:xi> 15 2

(1- }lbll 2.-1)(1
Combining these bounds, we obtain

pow < 2C--1 )2 2(k-1)

2c_1
( ) (- Ilbll- d +

Cn Cn-

Recall that for any measurable function f" [0, r] -- R, we have

12 f( b db ic t-1f(t) dr,
Ri, llbll =<

where ci ri/Z/F( + i/2) (see, e.g., Gradshteyn and Ryzhik [4, 4.642]). Forf(t) 2

we get

From this we have

eOOW < 2c-1 /3)\ /r_2 n

Cn
(1-

/ 4
/32-1)

n+
2

n+l

(1 13) -1) + -.
n 17
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Observe that

(13)
n < cn n nVI’(n/2)_< a a- < 1.032.

c, V(n/2 + 1/2) 105]/-

Indeed, it is enough to show that xI’(x)/F(x + 1/2 [1, a] for x n/2 >_- 4. To show
this, consider

H(x) In F(x) + 1/2 In x- In I’(x + 1/2 ).
From Gradshteyn and Ryzhik [4, 8.360, 8.365, 8.372], we have H’(x) (x) +
1/(2x) k(x + 1/2 =< 0 for the psi function ft. Thus

0 H(+) <- H(x) <= H(4) In a,

as claimed.
Note that for k _-< 71"-1/2 In n, Theorem 3.1 (a) trivially holds since

ePOW< < -1/2
k =Tr lnn/(k- 1).

Assume thus that k > "/1
"-1/2 In n. Now take/3 In n/(2(k 1)). Then

(0, to] for n >= 8 and/32(k-1) /n. Thus we have

ePOW < 2a

__
Inn 7rnn 2 7r2+ 8 lnn

k 2(k 1)
+-= a

n 8r k-
=< 0.871

In n

This proves that c(n) =< 0.871 for all n >= 8.
For large n, take /3 alnn/(2(k- 1)) with a + 1/lnlnn. Then

/32(-1) =< 1/n a and

< 2c_1 In n r/ 2 In nePOW=a +-=a(n)
c 2(k- 1) / 4n n k-

Since c,,_ 1/c,, ]/n/27r and 1/na- goes to 0, we have

a(n) - 7- 0.564"

which completes the proof of Theorem 3.1 (a).
We now prove part (b) ofTheorem 3.1. Consider the matrix A from part (b). Then

hi 1-2(k- 1)’ i=2,3,...,n, c=ln

-(- ) In (n)/n( + o(1)). For the matrixWe have x O//(2(k- )) and/3 x
A, 11 takes the form

eavg(pw A k)
a /37- b +bZ-b2

cn2(k- 1) bZ+/3ZT-_zb;2 db

c, 2(k- 1) Cn ,b + E’/= b

-c2(k- 1)
c,,-

.-1b2 + E7--2 b
db
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Since/3- >= 1, then

O/
eavg(pow, A, k) >--

c, 2(k-1)

c, 2(k- 1) cn --n
In (n/ln n) (2(k- 1)

1-
+ o(1) / =0.5

lnn

lnn] k-
(1 + o(1)),

B( i, j) 2 t2i-(1 t2)j- dt
r(i)r(j)

F(i +j)

(see, e.g., Gradshteyn and Ryzhik [4, 8.380 and 8.384 ]), we have
pow

+ o() 3’2 (1 -x2)l+(n-p)]2xp-3 dx (1 t2)(n-P-q)/2tq+ dt

4 2 2 2

(14)

where 3’1 (aqCn-p-qCq)/Cn and 3"2 (apqCn-p-qCpCq)/Cn.
Consider now the case p >_- 3. Then the last double integral is finite even for a 0.

Recalling the definition of the beta function,

fo X2)I+(n-p)/2xP-ltq+I( t2) (n-p-q)
"’- -; ii 7)t dtdx,

as claimed.
We proceed to prove Theorem 3.1 (c). Recall that p and q are multiplicities of the

two largest distinct eigenvalues ofA. From 11 we can write

pow f -wZ{k
-p+ i- 1)( Xp+l) Ep+q b2ii=p+l

ek js -- --.i 2(k- ) ,p+q -i db(1 +o(1)) ask--+oz.
Cn i= bi + p+l i=p+l

.2(k 1) 2(k- 1)Let a p+ i- (Xp+ /X) and a (1 xp+)a. Integrating with respect to
bp + u + bn we get

OlCn-p-q P+q (n -q)/2

+ o(1) c, +o Z p bZi + a Zp+q 2 db,
i=-p+ hi

where Bi is the/-dimensional unit ball and c; is its measure. We rewrite the last integral
as an integral over the unit ball Bp and the ball Z p+u b < Zp bi=p+

Let ti bi/(1 ,Pj=, b) /2 for p + 1, p + q and let IlbII 2 Z pi=l b [It[[ 2

P+q t,2. Then we havei=p+l

ePOWk Cn
+ o(

(1 Ilbll2) +u/2lltII2( IIbII 2 ( IIbIl2)lltll2) (--)/2
],i - ai T 2 Ilbll 2)iit]i

dt db.

Using 12 first for the second integral and then for the first integral, we get

ePOW fB fo (1-- [[b[[2)l+(n-p)/2tq+l(1--12)(n-p-q)/2k

+ o(1)
"r, I[ + a(1 -[[bli) dt db
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Expressing ci’s and B’s in terms of the gamma function, we finally get

apqI’(-1 +p/2)= Xp+l /X+I q

+o(1) 4 r(1 +p/2) Xl \ Xl

which proves Theorem 3.1 (c) for p >- 3.
Assume now that p 2. Observe that for a -+ 0 we have

x(1 -x2)/2
x2 + a( x2)/2

dx

X
dx + O dx

(1 at)x + at (1 at)x + at

X
dx + 0 x dx 1/2 In (x + at)l + 0(1)

x + at

+ o().

Therefore, we have
pow

ek

+ o() 1 2)(n_q 2)/2 ( )’’2 tq+(1 In aa dt

,-q)2
(1 + o(1)),

where now "Y2 (2qOtCn-q-2CqC2)/Cn. This yields
pow

+ o(1) qaln-aa q -- -] (k-1)ln 3--,
which proves Theorem 3.1 (c) for p 2.

Finally, assume that p 1. Then for a - 0 we have

(1 x2) (n+ 1)/2 1x2 + a( -X-2"ii 2 dx x2 + at2 dx + 0(1)

x l 7r+ O(l)- tf2tV arctan aao - 0(1).

Thus we have

pow

+ o() l’2 -a tq( t2) (n-q- 1)/2 dt

7r (q+ n-q+
"Y2 a B

2 2 = 1- r(q/2)

with 72 (aqc,- q-- CqCl / Cn. This completes the proof of Theorem 3.1.
Proof of Theorem 3.2. The Lanczos algorithm takes the maximum of (Ax, x)/

(x, x) for 0 4 x span (b, Ab, Ak- b); see (4). This means that x P(A)b for a
nonzero polynomial from the class k of polynomials of degree less than or equal to
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k- 1. We have , ]- b hiP:Z(Lan Lan(A b k)-- max ,_ b2P2Pk -1

The relative eor of the Lanczos algorithm is given by

I Lan Z- bp2
min -2 (Xi)(1 Xi/X).

Xl Pk Z- 2- bi PZ(hi)

Using a continuity argument, we may restrict ourselves to polynomials P such that
P(X) 0. Let Q(t) P(t)/P(). Then Q 6 and Q(1) 1. Let ( denote
such polynomials. Thus, for xi i/ (0, ], we have

Lan Z - b Q2(xi)(1 xi)
(15) X inf -2

k O{) b + =2 b Q2(xi)

As for the power algorithm, we conclude that the average relative eor of the Lanczos
algorithm is given by

f Z 7= 2 b Q2(x)( x)
(16) ean= inf db.e(tan’A’k)=cn .0 b + ZT=2bQ2(xi)

Assume first that k m. This means that the set { x, x2, x } contains m
distinct elements { t, &, tm} with t 1. Take

Q(x) I-[ (x- ti)/(1 ti).
i=2

Then Q e k( and the integrand in (16) vanishes for bl 4 0. Since b 0 for a set of
measure zero, we have e}an 0, as claimed.

Assume now that k e 4, m ]. We find an upper bound on e} by changing the
order of integration and taking the infimum

2Q2ean < inf ’ ’]- b (xi)( xi)
c, Oek{) b,2" + Y, 7=2 b O2(xi)

Observe that to estimate the integral we can repeat the same reasoning as for the power
algorithm with the polynomial Q instead ofxk- i. Therefore, for any/3 0, we have

eIan<2n-I inf (1 7r2fB Z
Cn QePk(I Cn_ -4" i:xi.<6

b2i Q2(xi) xi) 2 d-

fB )1/2
Let

(17) w(/3) inf max Q2(x)(1 x) 2.
Q k(1) O= X_<C/

Then

ean < 2 Cn- ( 71-2
c. -a-w()+

2(1 n-/)2)1/2
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and using (13) we have

(18) ean =< 0.412/r-nw(/3) + 8(1 )2.
To get an upper bound on e we thus need to find an upper bound on w(/3) and

select a proper/3 (see also Remark 7.4). Take

Q(x) T,_l((2/)x- 1)/T,_1((2/13)- 1),

where Tk- is the Chebyshev polynomial of the first kind of degree k 1. Then

(19) w()<T-Z_l((2/13) 1)_-<4(1 /1 )2k- 1)
_< 4e-4(- 1)-

//1_

Let " /1 -/3 e 0, ]. Then

ean < 0.824/Tr2ne-4-i) / 2,y4.

Note that for k =< /0.103 In (n(k- )4), Theorem 3.2(a) trivially holds since

ean < < 0.103(ln n(k-1 )4)2k-1

Assume thus that k > ]/0.103 In n(k )4. Now take

128r2n(k 1)4= In
4(k (In n(k )4)4

Since 128r 2 =< (In n(k )4)4 for n >= 8 and k >= 4, we have " -< 1. Clearly, q >= 0. A
simple calculation yields

ean < 0.103(ln n(k-1 )4)2k-1

as claimed in Theorem 3.2 (a).
To prove part (b), define/31 Xn/1 and/32 ,p+ 1/1. Repeating the same reasoning

that led to (18), we conclude that the sum for Xi > 2 of the upper bound on e
disappears and

ean < 0.412/Tr2nw(31,/32),
where

w(/3,/32) inf max Q2(x)(1 x) 2.
Q gk(1)

For/3 (,p+ n)/( ’n), take

(2(x--31)_l)/T,_l((2/3)_l)"Q(x) T,-
2 1

"then w(/1, 2) --< T21((2//3) and using the second inequality of(19), we get part
(b). This completes the proof of Theorem 3.2.

Proofof Theorem 4.1. We need to find the measure of the set

2 i""i xi)z- b R". Ilbll ’-b + Z- b2’2(k- 1)
-2 i.,,,i

b e Rn" Ilbll b 2 Xi)x](k-1)i(1-e- >eb
i=2

where, as before, xi hi.
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Note that H(x) e x)x2(k- ) for x e [0, 1] attains its maximum value at
x* (1 e)(1 1/(2k- 1)) and H(x*) (1 e)2k-l(1 1/(2k- 1))2(k- 1)/
(2k ). Then

E b e xi)x(k-) -<- H(x*) , b2i
i=2 i=2

and Z c Z *, where

i=2

with

Obviously,

We have

e (2k- 1)e
H(x*) e) zk- 1( 1/(2k ))2(k- 1)"

fPr’(PW, A, k, e) It(Z) _-< u(Z*).

dbIt(Z*)
Cn ZT=2b<--min{l-b2,ab2}

2cn- min {1 , at2}(n-)/2 dt.
Cn

Observe that min {1 2, at2) at2 for _-< 1//1 + a g(k, e) (see (9) for the
definition of g), and min { 2, at2 } 2 for >= g(k, e). Therefore,

#(Z*) "y (at2) j dt + (1 t2) j dt
dO k,e)

n/l/a +a + (1-t) jdt-,o (1-t2) jdt

wherej (n )/2 and "y 2c_ 1/c,. Since c, 2c,_ f /2)(n-1)/2 dt, we get

(20) It(Z*)- 2Cn- (f0(k’c) 2) (n 1)/2 dt g(k’e)(a)(n-l)Cn n +x
From (13) we have 3’ --< 2.064/n/(27r) and

(21) It(Z*) < 0.824fn t) (n- 1)/2 dt <= 0.824ng(k, e).

This and (9) complete the proof of Theorem 4.1 (a).
We proceed to part (b). It is clear that

fvob((vow, A, k, e) u(Z*) max fpob((pow, A, k, e).
A =AT>0

To estimate It(Z *) from below, note that 3’ >= /2n/r due to (13), and

(’) ( a )(-1)/(l-t2) (n-1)/2dt>=g(k,e)
+ a
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Therefore,

#(Z*) > 0.797fn ( ) f0g(k’c) t2) (n- 1)/2 dt,
n

as claimed. The asymptotic formula follows from the estimates of (9).
To prove Theorem 4.1 (c), note that we need to find the measure of the set

W {b . In" [Ib[[ 1,
p+q

i=p+l

2(k- 1)
P

sincefprb(w, A, k, e) z(W)( + o( )) as k -- c.
Denote by/3 e/((1 e Xp+ )..2(-1)p+), ap ,P,= bZi ap+ q ,-+_ b ap

p+q 2
i= p + bi We have

z(W)
c, <= _min{1-ap.flap} 7=p+q+lb2i<=l-ap+q

Cn --p-- q

Cn =< _-< min ap,flap
(1 ap- ap) (n-p-q)

where db’ dbl...dbp+ q. Using (12) twice we get

1- z(W)
qCqC’-P-q

<=1 dofmin {1-ap’[3ap} ’/2

q- 1(1 ap- 12) (n-p-q) dt

xp fmin x2,flx2} 1/2

0

q- ( x2 2) (n-p-q)/2 dt

with o pqcpCqC p q/ Cn.
Observe that by formally setting/3 +, we get (W) 0 and

(22) w xp- q- 1( x2 t2) (n-p-q) dt) dx 1.

We thus have for h(t, x) q- 1( X2 t2)(n-p-q) and a g(W))/w,

+ V-x
a x- h(t, x) dt dx + x-"o /+

h( t, x) dt dx

xp- h(t, x) dt dx

Due to (22) we get

xp j h(t, x) dt dx.

u(W) o fo/+ xp- tq-l( X2 t2) (n-p-q) dt dx.

Changing variables by u x/1 +/3, we obtain

tq-l(1 1+3

n-p-q)/2

dt dr.
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Note that/3 - + as k -- + oe. Therefore, we have

+ o(
up- tq-( 2) (n-p-q)/2 dt du

-/ P- d tq-l(1 t2) (n-p-q)/2 d

pBp/
tP+q-1( t2) (n-p-q)/2 d

2p/
B

2 2

the last equality due to (14). To complete the proof it is enough to obsee that

(p + q n p q
+ l) pqr(1 + n/2)r((p + q)/2)r(j)

pB pr( + p/)r( + q/)r(j)r( + n/)

qr((p + q) / r((p + q)/

r(p/ ) r(q/ 2 ) p r(p/ r(q/

where j + (n p q) / 2.
Proofof Theorem 4.2. We need to find an upper bound on the measure of the set

Lan(A b k) > $1 }z- {b’llbll-- l, ,l

Due to 15 we have

z b" Ilbll l, inf b Q(xi)(1 e xi) > be
Qe ak(1) i=2

Obviously

fan fprob(Lan, A, k, e) z(Z).

Assume first that k >- m. As in the proof of Theorem 3.2, {x, x2, Xn }
{ t, t2,"" tm} with distinct ti and t 1. Setting Q(x) I-IT= 2 (X ti)/( ti) we
get Z . Thus f an 0, as claimed.

Take now an arbitrary k. For e 0, the remaining bound ofTheorem 4.2 (a) trivially
holds. (In fact, it is easy to see that for k < m, we havefrb(Lan, A, k, 0) 1.) Assume
thus that e > 0 and let

(23) Wk inf max ""etx)t e x)."
Q k(l) 0----<x

Then

zz*- b’[lbll=, b > bZi e/ Wk
i=2

and fan /z(Z * ).
Observe that an upper bound on the measure of the set Z * was found in (21 )"

(24)
n

fan 0.824V-ng(k, e) 0.824 + e/Wk
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where now g(k, e) /l/l + a with a e/w,. We prove that

+ ] ’i"+"
t U2(- be the Chebyshev polynomial ofthe second nd ofdegee 2(k ). Consider

Q(x) Ua(k-l)(X/(1 --e))//U2(k-1)(1/l --e), X[0, 11.
Since U2(-) is even, Q is a polynomial of degree k 1. Clearly, Q( 1, so Q e
( ). Let

n(x) xa(x), x e [0, 1.
For

ti e) cos 2 (2i )r
1, 2, k,

2(2k- 1)’
the extremal points of U2- ) yield

H(ti)
U2(k-1)(1/]/1 e)

(--1)i-1"

Note that

Wk----<a’= max H2(x)= =4ec(1-c)-2,
O--x----<l--e U2(k-1)(1/ gl e)

where c ((1 fe)/(1 + l/e)) 2k- 1.
Assume that Wk < a. Then there exists a polynomial P e k( such that

p2 x) < Wk. The sign of the functionmaxxe[O, ll (x)( e

h(x) /1 e x(Q(x) P(x)), xe [0, el,

alternates at t; for 1, 2, k. Thus, Q P has at least k zeros in [0, 1, e).
Since x is also a zero of Q P, we conclude that Q P, which is a contradiction.
Hence wk a, as claimed.

From this and (24) we finally get

fan _< 0.824/4n/(4 + (1 c)2/c)
-< 0.824/4n/(2 + 1/c) <= 1.648cn.

Theorem 4.2 (a) follows by noting that c -_< exp Ve).
To prove part (b), let/31 kn/kl, 2 kp+ 1/hi, and

u(B,/32) inf max Q2(x)(1 e- x).
Qe k(l) t3--< x-t32

(Observe that u(0, /2) Wk for/32 >= e.) Then

z b’l[bll 1, b > b2e/U(l,
i=2

and fa, __< 0.824//(1 + e/u(B,/32)) --< 0.8241/nu(B1, B2)/e. We need to estimate
u(3,/32). Changing the variables x -/31 )t + 31, we get

u(31,Ct2)_-< max Q2(t) VQe k(1),
O_--<t_-< -X*
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where X* X Xp + / X Xn). We can use now the estimate (19) with/ X*
to get

U(fll,fl2)<4(1 f-)2(k-l)

which yields Theorem 4.2 (b) and completes the proof. [5]

6. Numerical tests. We have tested the Lanczos algorithm with reorthogonalization
in single precision for several matrices and many (pseudo)random vectors b. We report
numerical results for one matrix A for which the relative errors ofthe Lanczos algorithm
were the largest. The matrix A was chosen as follows. Observe that for any orthogonal
matrix Q we have Lan(QTAQ, Qrb, k) Lan(A, b, k). Note also that the uniform
distribution on the unit sphere of vectors b implies the same distribution ofvectors Q rb.
This shows that without loss of generality we can restrict ourselves to diagonal matrices
while testing the Lanczos algorithm. Therefore, the matrix A was taken as diagonal. We
chose the dimension n 250 and the eigenvalues ofA as

(2i- 1)Tr
Xi= +cos

2n
i= 1,2,...,n,

that is, the eigenvalues ofA are shifted zeros of the Chebyshev polynomial Tn and X
+ cos 7r / (2n))

_
2. (The shift by is needed to guarantee that A is positive definite.)

We have performed numerical tests for this matrix with 30 pseudorandom vectors
b uniformly distributed over the unit sphere of R. To get such a distribution we used
the fact that if X (X1, X2, X) is a random variable whose components are in-
dependent random variables with a normal distribution N(0, ), then X/[[ X is uniformly
distributed over the unit sphere (see Knuth 7, p. 116 ]). The normal distribution was
in turn generated from the uniform distribution over (0, using the formula Z
(-2 In R )1/2 cos 2rR_, where R1 and R2 are independent random variables uniformly
distributed over (0, (see Box and Muller [1]). The variables Ri were produced using
a number generator similar to the one used for testing EISPACK procedures (see Smith
et al. [18]).

For each pseudorandom vector b we performed the Lanczos algorithm for k 1,
2,--., k*, where k* was chosen as the minimal k for which the relative error
(,l Lan(A, b, k))/X was no greater than e. For some tests k* was around 150. We
compared the relative error with k-e. For all tested b and k, we obtained

0.1241 -_< xl Lan(A’ b, k) k2 __< 1.62.

In fact, in most cases, (X Lan(A, b, k))/Xlk2 was between 0.286 and 1.25.
In Table 6.1 we report the average errors achieved after k steps of the Lanczos

algorithm for ten different values of k which are listed in the first column. The second
column contains the average errors defined as, Xl Lan(A, bi, k)ave 3--- ;

i=1

where bi is the ith pseudorandom vector. The third column presents upper bounds on
the Lanczos errors from Theorem 3.2, i.e.,

up= 0.103( In (n(k-1 )4))2k-1
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TABLE 6.1

k- ave up /’1 /’2 emin max

10 0.004830 0.2235 46.273 2.070 0.003782 0.006868
20 0.001333 0.0789 59.185 1.875 0.000853 0.002109
30 0.000623 0.0419 67.288 1.786 0.000329 0.001454
40 0.000360 0.0265 73.632 1.739 0.000145 0.000943
50 0.000226 0.0185 81.714 1.770 0.000080 0.000463
60 0.000156 0.0137 87.596 1.773 0.000051 0.000295
70 0.000115 0.0107 92.897 1.779 0.000040 0.000230
80 0.000090 0.0086 95.875 1.752 0.000034 0.000182
90 0.000072 0.0070 97.765 1.716 0.000028 0.000159
100 0.000061 0.0059 97.360 1.649 0.000028 0.000132

We compute the ratios between the observed errors and their upper bounds in the fourth
column, rl cuP/ave. The fifth column displays how rl is related to the possibly unnec-
essary factor in the theoretical bound,

r2 0.103r/ln 2 (n(k- 1)4).
The last two columns show the minimal e min and maximal e relative errors over the
set of initial vectors at each step k- 1, respectively.

The fifth column ofthe table seems to suggest that the error ofthe Lanczos algorithm
for the matrix with Chebyshevian distribution of eigenvalues behaves like k-2 and the
factor 0.103 In 2 (n(k- )4) is probably an overestimate of the upper bound.

In Table 6.2 we indicate how many steps were needed to achieve relative error no
greater than e for six different values of e. The values of e are displayed in the first row
of the table. The second row of the table shows the average number k of performed
steps with k 0.=1 k(A, bi)/30, where k(A, bi) was the number of steps needed for
the pseudorandom vector bi. The third row gives the minimal k kup such that

0.103 (ln (n(k-lk_l )4))2 <$,=
which is one of the two theoretical bounds for the Lanczos algorithm (see Theorem
3.2(a)). The fourth row presents the ratios between these two numbers, r kUp/kave.

As we see, the theoretical bound exceeds the actual value by a factor of at most 15.
This indicates once more that the factor In 2 (n(k )4) may be an overestimate in the
theoretical bound. Observe also that all kUp’s are greater than the dimension n 250
and the second bound of Theorem 3.2(a) gives a better estimate.

We complete this section by reporting an interesting property of the computed
sequences k Lan(A b, k) of the Lanczos algorithm. In some cases they have a "mis-
convergence" phenomenon (see Parlett, Simon, and Stringer 15 ), that is, before reaching
the largest eigenvalue kl, the sequence k remained constant (to a machine accuracy)

TABLE 6.2

5.010 4 2.50 4 2.00 4 1.5o 4 1.00 4 5.00 5

k 35.27 48.03 53.13 62.27 76.33 110.67
kup 428 638 724 853 1075 1590
r 12.13 13.28 13.63 13.70 14.08 14.38
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TABLE 6.3

e 2.50 4 20 4 1.50 4 1.00 4 5.010 5

p 0 6.67 46.67 80 100

for some consecutive steps, k k+1 k+t and the value of was sometimes
quite large. The misconvergence phenomenon occurred when the sequence approached
the second largest eigenvalue )2 and sometimes even when g passed the third largest
eigenvalue )3. For instance, for some vectors b the sequence g stabilized close to 22 for
28 consecutive steps. Table 6.3 shows the percentage (p) of the vectors b for which the
misconvergence phenomenon occurred before the relative error reached e.

7. Remarks.
Remark 7.1. As we know from 2 it is impossible to compute an e-approximation

to the largest eigenvalue by algorithms using Krylov information with a deterministically
chosen vector b. We may interpret this by saying that Krylov information is poor and
hope that more general information may lead to a positive result. Indeed, using matrix-
vector multiplications, we may compute [AZl, Az2, Azk], where zl b and zi can
be an arbitrary function of the already computed Az, Az2, , Azi_ 1. Is it possible to
define vectors z; such that 4(Az, Az_, Az), for some 4, yields an e-approximation
to the largest eigenvalue of any symmetric positive definite matrix A? The answer is still
no as long as k -< n (see Traub, Wasilkowski, and Woniakowski [19, pp. 183-186
for this and related results). Thus Krylov information as well as any other deterministic
information with k =< n does not supply enough knowledge ofA to compute an e-

approximation to the largest eigenvalue.
On the other hand, ifwe are willing to settle for an e-approximation to any eigenvalue,

which is not necessarily the largest, then it can be done by using min { n, e-11 } matrix-
vector multiplications. This can be achieved by using deterministic Krylov information
and the generalized minimal residual algorithm (see Kuczyfiski [8 ]). The number
min { n, fe -13 } is within a factor of at most 2 of being minimal, as shown by Chou 2 ],
whose analysis is based on Nemirovsky and Yudin [9 ].

Remark 7.2. As before, Bn is the unit ball of Rn. Let f: Bn -- R be a measurable
function such that fdoes not depend on the norm of b, f(b) f(cb) for all a > 0, and
fdoes not depend on signs of bi,f(Slbl, $262, snbn) f(bl, b2, bn) for all Si -{- 1, }. The error of the power or Lanczos algorithm as a function of b satisfies these
properties.

For such functions f, the average value of fover the unit sphere is the same as the
average value over the unit ball, i.e.,

ftt f(b)u(db) f(b) db,
bll Cn

where c, is the measure of the unit ball in R".
Indeed, using the polar coordinates b (t) b (t), b(t)] with t

[r, tl, t-l] e [0, 1] [0, r] and

cos t cos/2" "cos t_ 1,

4i+1 =rsint;costi+l""costn-1, i= 1,2,-..,n- 1,
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we have Idet (’)l r"-llcos t2 COS :2 t3"" "COSn-2 t,-l r"-g(t) and

ac. f f(b) db ft f(4(t))r"-lg(t) drdt(.),
0,1] [0,r]

where dttn)stands for dtl.., dtn_ 1" Sincef($(t)) does not depend on r, we can integrate
over r to get

a f(4(t))g(t) dt().
nCn 0,,1

Change the variables once more by setting bi 4i(t)/r for 2, 3, n. Then for

we have

f(4(t)) f(cb(t)/r) f(+b,, b_, b.) f(b,, bz, "", b.)

and

db.) db db. Icos t cos t2"-’cos tn- dtn).
Therefore, g(t)dt(.) [COS tl "’COS tn- ]-ldb(n) Z 2 b 2i )-1 ]2 db(.) and

2 fb f(/1--Z-bZi b-"’" b")db.)--a f(b)u(db)

as claimed
Remark 7.3. The modified power algorithm is defined by

/mpow(/, b, k) (Akb, b) 1/ Ilbll

We show that

sup
A =AT>0

eaVg(mpow, A, b) eavg(moo,, A *, k)
I’(n/2)I’(0.5 + 1/k) In n

I’(n/2 + 1/k)I’(0.5) k

where A * is a symmetric matrix with eigenvalues X > 0, and )k 0 for >= 2.
Indeed, for any A A T > 0 with xi Xi/X1, we have

eaVg(mpw, A, k) bxki i(db) <= eavg(mpw, a *, k)
bll i--

b= b/u(db)

=1
2 t"
l (I b b2n) ’/’)-’/2) db2...db,,

ncn .11,,_

:o2a tn-2(1 t2) /)-/2) dt aB
n-
2

=1-
I’(n/2)I’(0.5 + 1/k)
I’(n/2 + 1/k)I’(0.5)
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where a (n )c,_ 2/(ncn). For large k and any a we have

I’(a + 1/k) I"(a)
( + o()).

[’(a) I’(a) k

For a n/2 and a 1/2 we have from Gradshteyn and Ryzhik [4, 8.360, 8.362, and
8.366]

I"(n/2) I"(1/2)_
In n/2, -C- 2 In 2 -1.9365...,

I’(n/2) I’(1/2)

where C is the Euler constant. This implies the error behavior In (n)/k, as claimed.
Comparing this bound with parts (a) and (b) ofTheorem 3.1, we see that the power

algorithm has an error bound roughly 1.8 times smaller.
We can also compare the algorithms pow and mpow asymptotically. Assume for

simplicity that the largest eigenvalue is of multiplicity p 1. Then part (c) of Theorem
3.1 yields that the rate of convergence of the power algorithm is exponential and pro-
portional to (2/1 )k- 1. For the modified power algorithm, it is easy to show that the
rate is only linear and roughly equal to In (n)/ k. Thus the power algorithm is far superior
asymptotically in the average case to the modified power algorithm.

We now turn to the probabilistic case. The modified power algorithm was analyzed
in this case by Dixon 3 ], who proved that

sup fprb(mpw, A, k, e) --fprb(mpw, A*, k, e) _-< 0.8fn(1 .)k/2.
A =AT>0

For large n and k we have

fprob(mpow, A*, k, e,) 2VVn (1 e)k/2(1 + 0(1))

and V/Tr 0.7978.-..
This should be compared with the power algorithm, whose rate of convergence is

roughly the square of the rate of the modified power algorithm.
It is easy to check that the asymptotic behavior of moow does not depend on the

distribution of eigenvalues but on the multiplicity p of the largest eigenvalue

fprob(mpow, A, k, e)
n p I’( + n/2) 8)pk/2( qt_ O( )).
n I’(1 + p/2)I’(1 + (n p)/2)

For the power algorithm with Xp+/X < e, the asymptotic rate of convergence is
proportional to p+ /,1)p(k- 1), which obviously tends to 0 faster.

Remark 7.4. For/3 close to 1, it is easy to find the exact value w(/3); see (17).
Namely, we have

sin 2 (Tr/(2k)) 71-2
w(/3) k2 + cos (r/(2k))) 2 - l6k4

for B 6 [cos 2 (r/(2k))/cos2 (Tr/(4k)), 1].
Indeed, let ’k cos (r/(2k)) denote the largest zero of T. Take

Tk((k + 1)X-- 1)
Q(x)

x- (’k + 1)T(’k)

Note that Q is a polynomial of degree =< k and Q( 1. For 1, 2, k, let
X + cos(ir/k))/( + ’k) cos2 (ir/(2k))/cos (Tr/(4k)). Then xi 6 [0,/3] and

Tk(COS (irr/k)) (-1)i sin (Tr/(2k))
(xi )O(xi)

(’ + 1)T(’) + cos (Tr/(2k)) k
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Suppose there exists P e ik( such that

max P2(x)( x2) < max Q2(x)( x) 2.
[0,]

Then h(x) x)(Q(x) P(x)) has a double zero at one. Since sign h(xi) (-1)/,
h has at least k zeros in [0, ). Thus h O, which is a contradiction. Hence,

sin 2 (r/(2k))
w(/3) max O2(x)(1 x)2

xt0,l + cos (Tr/(2k))) 2 k2’

as claimed.
Remark 7.5. We now consider an error relative to spread (see Parlett 14 instead

of the relative error as the error criterion, that is, we wish to compute such that

IX,(A)- l --< e(X,(A)- X,(A)),

where, as before, X (A) and X,(A) denote the largest and the smallest eigenvalues ofA.
This error is a natural error criterion for the Lanczos algorithm since Lan(A + od,

b, k) Lan(A, b, k) + a and

kl(A -[- cd) Lan(A q- aI, b, k) ,l(A) Lan(A, b, k)
XI(A + aI)- X,,(A + aI) XI(A)-

Thus, for the Lanczos algorithm the error relative to spread is shift invariant.
It is easy to see that the bounds for the Lanczos algorithm presented in Theorems

3.2 and 4.2 also hold for the error relative to spread. This follows by noting that

Xl(A) tan(A, b, k) Xl(B) tan(B, b, k)
Xl(A)- X,(A) hi(B)

where B A ,,I and B B* >= O.
Although B is not positive definite, a continuity argument yields that we can use

estimates of Theorems 3.2 and 4.2 for the matrix B. Part (a) of both theorems will give
estimates independent of eigenvalue distributions ofB (or A ). Part (b) of both theorems
presents estimates that are shift invariant and therefore are the same for the matrix B as
for the matrix A. Observe also that for the error relative to spread we need only to assume
that A is symmetric but not necessarily positive definite.

For the power algorithm, we have different results since, in general, P’(A + aI,
b, k) 4: vOW(A, b, k) + a. To derive bounds for the power algorithm under the error
relative to spread, consider the average case and the matrix A from part (b) of Theorem
3.1, that is, A has exactly two distinct eigenvalues ),l and X, Xl( In (n/ln n)/
(2 (k ))). Then the estimate of Theorem 3.2 (b) yields for large k and n,

Xl (vW(A, b, k) eavg(pw, A, k)
bll )k X,

#(db)
kn/k

+ o(1).

Thus, no matter how many matrix-vector multiplications are performed, there exists a
matrix A for which the average error of the power algorithm under the error relative to
spread is about 1.

Similarly we can check that in the probabilistic case, the failure ofthe power algorithm
under the error relative to spread for the matrix A with the two distinct eigenvalues
andXl(1 1/(2k- 1)) is equal to + o(1).

Obviously, the asymptotic bounds for the power algorithm under the error relative
to spread can be easily obtained from part (c) of Theorems 3.1 and 4.1. For the average
case, the only difference is to multiply the asymptotic constants by X,/Xl, whereas
for the probabilistic case, e should be replaced by e( X,/Xl ).
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EXPLICIT SOLUTIONS OF THE MATRIX EQUATION AiXDi C*

HARALD K. WIMMER-

Abstract. A module theoretic approach is developed to study the linear matrix equation , A iXDg C.
If the solution X is unique it can be expressed in the form X , AkCGk. The matrices Gk can be determined
from an auxiliary equation which involves the companion matrix of the characteristic polynomial of A. A
connection is made with realizations of the inverse of the associated polynomial matrix D(x) , Dgxi. The
more general equation Y AXD C is discussed under the assumption that the matrices A are pairwise
commutative.

Key words, linear matrix equations, Sylvester equations, realizations, simultaneous triangular form

AMS(MOS) subject classification. 15A24

1. Introduction. Linear matrix equations have been studied since the time of
Sylvester [10]. They are important in numerous applications (see, e.g., [5] with the
regulator problem as a more recent example). An algebraic approach that originated
with Kalman 7 ], 8 was elaborated by Djaferis and Mitter to yield explicit solutions
of equations ofthe form F, fkA iXBk C (see also 12 and 13 ). In this note, we adapt
the module theoretic point ofview ofthose papers and consider the more general equation

p-I

(1.1) _, AiXDi C.
i=0

We first review some known facts concerning the equation
p-I q-I

(1.2) , Z fikAiXBk=C,
i=0 k=0

which should direct us towards corresponding results on 1.1 ). All matrices in 1.1 and
(1.2) are assumed to be complex, in particular, A Cpp, B, Di Cqu, C Cz’q.
Furthermore, the polynomial

f( x, y) ., , f,xiyk

is in C x, y]. For the results of this section, we refer to ], 12 ], and 15 ].
Let Xl, "", Xp be the eigenvalue ofA and let

a(x) ao + + ap-lX
p-l + Xp

be the characteristic polynomial ofA. Define a companion matrix of a(x) by

t o -a tFa Oo
-ap-1

Let B have eigenvalues 1, #q and characteristic polynomial b(x). The ideal in
C[x, y] generated by a(x) and b(y) will be denoted by , i.e.,

q (a(x), b(y)).

Received by the editors October 3 l, 1988; accepted for publication (in revised form) December 13, 1990.
f Mathematisches Institut, Un{versit/it Wtirzburg, D-8700 Wtirzburg, Germany.
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Equation (1.2) is called universally solvable if it has a solution for every C (which is
necessarily unique).

For h : hikxiyk C[x, y] and M e Cpq, let a product h* Mbe defined by

h M , hikAiMBk.
i,k

The Cayley-Hamilton theorem implies that d M 0 for all d . Hence it is meaningful
to define

(H + ),M h, M

such that Cpq becomes a module over the ring C[x, y]/. Then (1.2) can be written
as(f+ ),Y C.

THEOREM 1.1. Thefollowing statements are equivalent:
(i) Equation (1.2) is universally solvable.
(ii) Thefollowing holds:

(1.3) f i, #j) 4: 0 for 1, p, j= 1, q.

(iii) The element f+ is a unit ofthe ring C[x, y]/.
(iv) There exists a unique polynomial g C[x, y] such that

(1.4) fg l(mod )

and the degree ofg in x is less than p and the degree in y is less than q.
v The equation

p-1 q-1

(1.5) _, , fFY(F{)= (1, O, O)Tp(1, O,
i=0 k=0

is consistent.
Under condition (iii) above, the solution X can be expressed as X (f+ )-l, C

and we have the following representation ofX.
THEOREM 1.2. If(1.2) is universally solvable and g(x, y) , grsXry is the poly-

nomial given by 1.4), then
p-1 q-1

(1.6) X grsArCB
r=0 s=0

is the solution of(1.2).
The polynomial g in (1.4) can be obtained from the auxiliary equation 1.5 ).
THEOREM 1.3. Let Y G Cp q be the solution of(1.5). Then

g(x, y) (1, x, xP-’)G(1, y, yp-)r

is the polynomial with the properties of(iv) in Theorem 1.1.
The representation of X in (1.6) yields a bound for the rank of X. For L Cpr

and R 6 C q, put
K(A, L) (L, AL, ..., AP- L)(1.7)

and

D(B,R)

R
RB

RB’O
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then
THEOREM 1.4. If(1.2) is universally solvable and if C is factorized as C LR,

rank X _-< min { rank K(A, L), rank D(B, R) }.
2. An algebraic approach to explicit solutions. We now consider our target equation

p-1

(1.1) AiXDi C.
i=0

Whether 1.1 is universally solvable or not depends on the eigenvalues Xi ofA and on
a polynomial matrix D cqXq[x],

p-1

D(x) Di xi.
i=0

THEOREM 2.1 (see 2 ], 4 ], or 14 ). Equation (1.1) is solvable for all C if and
only if
(2.1) detD(i)4=0 fori 1, p.

The left-hand side of 1.1 will be regarded as a product of X and D. For that
purpose, let us define for F Z Fi xi (.qq[x] and for M Cpq the operation

(2.2) M* F AiMFi.
Then Cpq becomes a fight module over the ring cqq[x]. Recall that a(x) is the char-
acteristic polynomial ofA and put

d a(x)CqXq[x]

such that @ is the ideal in cqq[x] generated by a(x)I. By the Cayley-Hamilton theorem,
we have M, H 0 for all H . Hence it makes sense to define

(2.3) M, (F + ) M, F,

and it is easy to verify that Cpxq together with the operation (2.3) is a unitary fight
module over the ring cqXq[x]/O. For a nonzero polynomial matrix H 2;’=0 Hix
with Hm =/= 0 we put deg H m. In the case H 0 we set deg H -o. Obviously, in
each coset F + there is a unique representative of degree less than p, p deg a.

Let us write 1.1 as

(2.4) X, (D + ) C.

It is clear that (2.4) can be solved ifD + q is invertible in cqXq[x]/O.
THEOREM 2.2. The following statements and ii are equivalent to condition

(2.1)for the universal solvability of( 1.1 ):
D + is a unit in the ring C q q[X /.

(ii) There exists a unique matrix G e Cq x q[x] such that

(2.5) DG GD-- I(mod ), deg G < p.

Proof. We assume first that (2.1) holds. Then d(x) det D and a(x) have no zeros
in common. Hence we have a3‘ + d6 for some polynomials 3’ and 6. If Q e .qq[x]
is the adjoint matrix of D, then QD DQ dI. Division of 6Q by aI yields polynomial
matrices B and G such that 6Q aB + G, deg G < deg a p. From 6QD D6Q
I a3"I we see that G satisfies (2.5). The condition det G < p together with (2.5) assures
that the matrix G in (2.5) is uniquely determined. Obviously, (ii) implies (i). Finally, if
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(i) holds, then 1.1 is solvable and

(2.6) X= C, (D + )-
is the unique solution.

From (2.6) we obtain the solution X in the following closed form.
THEOREM 2.3. If( 1.1 is universally solvable and

p-I

(2.7) G(x) Gix
i=0

is the polynomial given by (2.5), then
p--I

(2.8) X= AiCGi
i=0

is the unique solution of( 1.1 ).
The coefficient matrices Gi of (2.7) can be determined from an auxiliary equation

which involves the companion matrix Fa of a(x). For two matrices, P (P0) and S, the
Kronecker product is defined as P (R) S (poS). The identity matrix in (2.9) and (2.10)
below is of size q q.

THEOREM 2.4 (i) Let G p- xi= o G be given and put

Go I

(2.9) ( G E 0

Then G satisfies DG GD I(mod ) ifand only if
p-I

(2.10) , (Fa (R) I)iDi E
i=0

holds.
(ii) The equation

p-1

(Fa (R) I)iyDi E
i=0

is consistent ifand only if(2.1 holds.
Proof. (i) Because of deg a p, there exists a unique matrix U (I, Ix,...,

Ixp- l) Cq q[x], which satisfies GD U(mod ). We want to show that /3 is the
matrix on the left-hand side of (2.10). Put . 1, x, xp- ). From xp -a0

ap xp- + a(x), we obtain

Yx (x, xp) YFa + a(x)(O, O, 1)

and Yx .Fia + avi for some v,. C P[x]. Because of G (Y (R) I)(, we have

p-I p-1

GD , ( (R) I)x,D [(.F + avi) (R) I]D
i=0 i=0

p-I p-I

(. (R) I1 Z (F (R) I)i(D, + a Z (v (R) I1 riD,.
i=0 i=0
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Hence
p-I

(Fa (R) I)irDi
i=0

Clearly, I ( (R) I)E and U ( (R) I)r. Therefore, U I is equivalent to (2.10).
Theorem 2.4(ii) follows immediately from Theorem 2.2.

We consider now a particular case where D(x) has only one invariant factor (different
from 1).Pute=(1,0,...,0) r eeCp

THEOREM 2.5. Assume that there exists a vector v C q such that

D(z))(2.11 rank q for all z C.

Then the equation

p-1

(2.12) , FaZD, ev
i=0

.is consistent ifand only if

(2.1 ’)

for all eigenvalues Xi ofFa.

det D(Xi 4:0

Proof. Clearly, (2.1) implies the solvability of (2.12). Suppose now that
det D(X) 0 for some eigenvalue X of Fa and that (2.12) has a solution Z. Then
there exists a vector w (Wl, we) r, w O, such that D(X)w 0 and a vector u
ul, up), u 4 O, such that

(2.13) uFa ku.

From

and (2.11 follows vw 4: 0, and (2.13) yields ul 4 0. We multiply both sides of (2.12)
by u and w. On the left-hand side we obtain

u(G FaZD)w uZ(, D)w uZD(X)w O,

whereas on the fight-hand side we have u(vw) 0, which is a contradiction. Hence
under the assumption (2.11 the condition (2.1) is also necessary for the consistency of
(2.12).

To estimate the rank of the solution X of 1.1 ), we use the representation (2.8).
THEOREM 2.6. Assume that (2.1) holds and let C befactorized as C LR. Then

rank X =< min { rank K(A, L), rank (I (R) R)( },

where K(A, L) is defined by (1.7) and is given by (2.9).
Proof. Write X in (2.8) as

K(A, L)(I(R)X (L, AL, ’AP-IL)
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3. Realizations of D- As its elements are rational functions, the matrix D-1 can
be split into a proper rational and a polynomial part and thus be written as

(3.1) o-l(x) K(Ix F)-IM + S(I- Nx)-T,
where N is nilpotent and the eigenvalues of F are zeros of det D (see, e.g., 9 or 6 ).
By a slight abuse of standard terminology, we will call a decomposition ofthe form 3.1
a realization ofD- Whenever a realization ofD- is available, (1.1) can be reduced to
a pair of equations of simpler type.

It will be convenient to express the solution of 1.1 by a contour integral.
THEOREM 3.1 14 ]. Ifthe condition

(2.1) det( X,D det D(X,) :/: 0, v 1, ..., p
holds, then the solution of( 1.1 is given by

(3.2) X (Iz- A)-lCD-(z)dz,

where I’ is a positively orientated simple closed curve such that all eigenvalues ofA are
interior to I’ and all zeros ofdet D(z) are exterior to I’.

We single out two special equations.
COROLLARY 3.2. Let ,, Xp and #, u be the eigenvalues ofA and B,

respectively.
(i) If 3,i #j 4: O for 1, p,j 1, q, then

(3.3)

has the unique solution

AX- XB C

X (Iz- A)-IC(Iz- B) -1 dz,

where the Xi’s are in the interior of I’ and the ttj’s are outside of I’.
(ii) If ),i 4: O for 1, p,j 1, q, then

X- AXB C(3.4)

has the unique solution

X - (Iz- A)-C(I- zB)-dz,

where all Xi’s are inside of I’ andfor t 4:0 all the numbers tff are outside of I’.
Ifwe replace D-1 in the integrand of(3.2) by the realization (3.1) and apply Corollary

3.2, we are led to equations of type (3.3) and (3.4).
THEOREM 3.3. Assume that (2.1) holds and let (3.1) be a realization ofD-1 Then

the solution of( 1.1 is given by

X XIM + XzT
where X and X2 are the solutions of

and

respectively.

AX X F CK

X2 AXzN CS,



LINEAR MATRIX EQUATIONS 1129

4. A more general equation with commuting matrices. Let A1, An be complex
p p matrices which are pairwise commutative. In this section, we outline an algebraic
approach for the equation

in C(4.1) A AnXDil, ,i,

We assume that the i,’s are nonnegative integers and that the sum in (4.1) is finite. The
matrices Dil, ,i, are of size q q and C Cpxq.

Pairwise commutativity implies that the matricesA, , An can be simultaneously
triangularized [3]. Hence for some nonsingular S we have

S- AS diag X Xvi + Ni i= 1, n

where the matrices Ni are upper triangular and nilpotent. The vectors Xj (Xj.1,
,), j 1, p, are called joint eigentuples OfAl, An. We associate (4.1) with a
polynomial matrix D CqU[y] Cqq[y, Yn], where D is given by

D _, Di,,... ,i,Y]’,’’’, yi#.

It is well known (see, e.g., 11 that (4.1) is universally solvable if and only if

(4.2) det D(Xj) 0

for all joint eigentuples Xj ofA, A.
Let be the ideal of those polynomials in C[y] that vanish on { X, X, },

p

j=l

and let C [y] be the ideal given by

{f [f C[y],f(A,, A,) 0}.
Note that is determined by the semisimple pa of the matrices Ai, whereas also
involves the nilpotent pas. We have

which will allow us to work with q instead of in what follows. We extend T q to an
ideal in cqq[y],

{hUlh q, U cqq[y]}.

For F F,, ,k,y’, y" cqq[y] and M Cpq, we define

(4.3) M,(F + ) A’, ,A"MFK,,...,K,.

Then Cpq becomes a unita fight module over the ring cqq[y]/. Using Hilbe’s
Nullstellensatz, it can be shown that (4.2) holds ifand only ifD + is a unit in cqq[y]/

or, equivalently, if there exists a matrix G cqq[y] such that

(’4.4) DG GD I(mod ).

If G G,, ,K,Y’, Y" satisfies (4.4), then

x Z
is the solution of (4.1).
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LEAST-INDEX RESOLUTION OF DEGENERACY IN LINEAR
COMPLEMENTARITY PROBLEMS WITH SUFFICIENT MATRICES*
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Abstract. This paper deals with the principal pivoting method (PPM) for the linear complementarity
problem (LCP). It is shown here that when the matrix M of the LCP (q, M) is (row and column) sufficient,
the incorporation of a least-index pivot selection rule in the PPM makes it a finite algorithm even when the
LCP is degenerate.

Key words, linear complementarity problem, degeneracy resolution, least-index rule, sufficient matrices
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1. Introduction. The principal pivoting method (PPM) for the linear complemen-
tarity problem (LCP)

(1) w q + Mz,

(2) w>=0, z>=0,

(3) zTw 0

was originally established for the cases where the matrix M R is either a P-matrix
(all principal submatrices have positive determinants) or else is PSD (positive semi-
definite). See [2], [3], [7], and [5]. Furthermore, in all these papers it is assumed that
the problem at hand is nondegenerate, meaning that for each solution of ), at most n
ofthe 2n variables w, wn, Zl, zn are zero. Degeneracy was handled by allusion
to perturbation and lexicographic techniques. For LCPs with P-matrices, a different ap-
proach was proposed by Murty 10 who developed a Bard-type algorithm with a least-
index pivot selection rule. The present paper extends a technical report by Chang [1 in
which degeneracy problems arising in the PPM and Lemke’s method [9 are resolved
by means of least-index pivot selection criteria. It should be noted that the results of
are confined to the two aforementioned matrix classes.

Recently, Cottle, Pang, and Venkateswaran [6] introduced the class of sufficient
matrices that contains all P-matrices, all PSD-matrices, and other matrices as well. Ac-
tually, the class of sufficient matrices is the intersection of two other classes: the row

sufficient matrices and the column sufficient matrices. As shown in [6], the latter two
classes are intrinsically related to the LCP. Row sufficient matrices are linked to the
existence ofsolutions, whereas column sufficient matrices are associated with the convexity
of the solution set. (See [6] for details.)

More recently still, Cottle [4 showed that the PPM applies to nondegenerate LCPs
with row sufficient matrices. This left open the question of whether a least-index degen-
eracy resolution scheme could be developed for this extension of the algorithm. In the
present paper, we show that when the matrix M of the problem (q, M) is (both row and
column) sufficient and the least-index pivot selection rule introduced by Chang is
used, the PPM will process the LCP (q, 54) in a finite number of steps.
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Section 2 of this paper contains a quick review of some background needed for an
appreciation of the main result. This involves the basic definitions of row and column
sufficient matrices, a review ofprincipal pivoting, and some results on principal pivoting
in systems with row and/or column sufficient matrices. In 3, we state the PPM
with least-index .pivot selection criterion, and in 4 we prove that it processes the
LCP (q, M) whenever M is a sufficient matrix.

2. Background. Since the matrix classes with which we deal are not well known,
we recall what is meant by row (and column) sufficient matrices.

DEFINITION. The matrix M Rn is
row sufficient if

(4) xi(MVx)i<=O for alli= 1,...,nxi(MVx)i=0 for alli- 1,.--,n;

(ii) column sufficient if

xi(Mx)i<=O for alli= 1,...,nxi(Mx)i--O for alli= 1,...,n;

(iii) sufficient if it is row and column sufficient.
Another way to express the conditions above is through the notion ofthe Hadamard

product of vectors (or matrices). If u R and v e R", their Hadamard product is the
vector u, v e R defined by

(bl*l))i bli’l)i, 1, n.

To apply this notion to the definition of a column sufficient matrix, we let u x and
v Mx. Then the defining condition is

x,(Mx) <- 0 x,(Mx) O.

In the case of a row sufficient matrix, the defining condtion is

x*(MTx) <= 0 = x*(MTx) O.
It is demonstrated in 4 that sufficient matrices are different from P-matrices, adequate
matrices (see Ingleton [8]), and PSD-matrices; moreover, they are not necessarily pos-
itively scaled versions of such matrices.

As preparation for the brief summary to follow and for the statement of the least-
index PPM, it will be helpful at this point to review the notion of principal pivoting. In
equation we have an affine transformation of n-space into itself given by z w
q + Mz where M6 R and q R". For the present, let Mbe an arbitrary square matrix
with the property that for some index set a { 1, n } the principal submatrixM
is nonsingular. We may assume that the corresponding principal submatrix ofM, namely
M, is a leading principal submatrix of M. This is not a restrictive assumption, as it
can be brought about by the process called principal rearrangement, the simultaneous
permutation of row and column indices. Now consider the equation w q + Mz in
partitioned form:

w q + M,z +Mz,
(6)

w q + Mz +M za.
In this representation, the z-variables are nonbasic (independent) and the w-variables
are basic (dependent).

SinceM is nonsingular by hypothesis, we may exchange the roles of w and z,
thereby obtaining a system of the form

z q’ + M’w + M’ z,
(7)

w q + Mw +Mz,
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where

(8)

DEFINITION. The system (7) is said to be obtained from (6) by a principal
pivotal transformation on the matrix M,,. In this process, the matrix M,, is called the
pivot block.

The following facts are noteworthy.
1. Every row (column) sufficient matrix has nonnegative principal minors. See 6 ].
2. Every principal rearrangement of a row (column) sufficient matrix is row (col-

umn) sufficient. See 4 ].
3. Every principal submatrix of a row (column) sufficient matrix is row (column)

sufficient. See 4 ].
4. The class of row sufficient matrices and the class of column sufficient matrices

are invariant under principal pivoting. See [4].

3. The least-index PPM. In this section we tersely state the (symmetric) PPM
least-index pivot selection rule. This algorithm (without the least-index, tie-breaking
rules) has previously been extended to nondegenerate LCPs (q, M) in which the matrix
M is row sufficient. The proof is given in [4], which may also be consulted for further
details and references.

The PPM works with pivotal transforms of the system

(9) w q + Mz.

In the development below, we use the superscript u as an iteration counter. The initial
value of u will be 0, and the system shown in (9) will be written as

(10) wo qO + MOzo.
In general, after u principal pivots, the system will be

(11) w"=q"+M"z.
Genetically, the vectors w" and z ", which represent the system’s basic and nonbasic
variables, respectively, may each be composed of w and z variables. Principal rearrange-
ments can be used to make { wT, z } { wi, zi}, 1, n.

Systems like 11 are traditionally represented by a tableau (or schema)
V1 z’; z

w lm m
The symmetric version of the PPM executes principal pivotal transformations (with
pivot blocks of order or 2) in order to achieve one of two possible terminal sign con-
figurations in the tableau. The first is a nonnegative "constant column," that is, q >_- 0
for all 1, n. The other is a row of the form

q<0 and m<=O, j=l,...,n.

The first sign configuration signals that , 2") (q, 0) solves (q, M). The second sign
configuration indicates that the problem has no feasible solution. The PPM (as originally
conceived) does not actually check for this condition. It cannot occur when m > 0 as
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in the case of a P-matrix. In the more general row sufficient case, it can be inferred from
the condition

>0 Vi:Pr,q O, and mir< O, mrr
which would be detected during the "minimum ratio test."

The PPM consists of a sequence of major cycles, each of which begins with the
selection of a distinguished variable whose value is currently negative. That variable
remains the one and only distinguished variable throughout the major cycle. The object
during the major cycle is to make the value ofthe distinguished variable increase to zero,
if possible. Each iteration involves the increase ofa nonbasic variable in an effort to drive
the distinguished variable up to zero. This increasing nonbasic variable is called the
driving variable. According to the rules of the method, all variables whose values are
currently nonnegative must remain so. The initial trial solution is (w, z) (q, 0),
hence at least n ofthe variables must be nonnegative. For those variables w whose initial
value is q,O. < 0, we impose a negative lower bound ), where

X< min {q,.}.
l<=i<-n

Then, in addition to requiting all variables with currently nonnegative values to remain
so, the PPM also demands that the variables currently having a negative value remain
at least as large as X. This broadens the notion of basic solution; nonbasic variables are
now allowed to have the value 0 or X. (See [1 ]-[ 3 ].)

To distinguish between the names of variables and their particular values, we use
bars over the genetic variable names w and z. At the beginning of a major cycle in
which negative lower bounds X are in use, we will have ff 0 or X, 1, n.
Next, we use the notation

W(z) q + Mz.
The definition of the mapping W" is the same as that of w", but it emphasizes the argu-
ment z".

If, at the outset of a major cycle, the selected distinguished variable is basic, the first
driving variable is the complement ofthe distinguished variable. Thus, ifw is the distin-
guished variable for the current major cycle, then z is the first driving variable. The
distinguished variable need not be a basic variable, however. With the broader definition
ofbasic solution (given above), the current solution #", ") may have ff X < 0 at the
beginning of a major cycle. In such circumstances, z can be the distinguished variable
as well as the driving variable. In this event, the increase of the driving variable will
always be blocked, either when a basic variable blocks the driving variable, i.e., reaches
its (current) lower bound (0 or X) or when the distinguished variable increases to zero
(in which case the major cycle ends). The point of the least-index degeneracy resolution
scheme presented here is that ties in the choice of the blocking variable can be broken
so as to insure the finiteness of the PPM.

THE LEAST-INDEX RULE. In applying the PPM to the linear complementarity
problem (q, M), break ties among the blocking variables as follows:

(A) If the distinguished variable is among the tied blocking variables, choose it as
the blocking variable (and terminate the major cycle).

(B) Otherwise, choose the (basic) blocking variable with the smallest index as the
exiting variable.

This artifice is not needed when it is known that M P.
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SYMMETRIC PPM WITH LEAST-INDEX PIVOT SELECTION RULE.
Step 0. Set 0; define (, 0) (q0, 0). Let , be any number less than

mini q/O.
Step 1. If q" >_- 0 or if (", Y") >_- (0, 0), stop; (", Y") := (q", 0) is a solution.

Otherwise, 2 determine an index r such that yr }, or (if none such exist)
an index r such that < 0.

Step 2. Let ’ be the largest value of z >_- Y satisfying the following conditions:

(i) z=<0 ifz-"= .
(ii) W;(Y,’",_,z,+,’",)_-<O if#<0.
(iii) W(,...,_l,z,+l,...,,)>_-0 if>0.
(iv) W(Y,...,Y_I,z,Y+I,-..,)_>-h if# <0.

-u+Step 3. If ’ +, stop. No feasible solution exists. If ’ 0, let Z 0,
+1 for all 4: r, and letZi Zi

v+l my+ l(v+ 1) m,(v+ 1).
Return to Step with replaced by u + 1. If 0 < ’ < +oo, let s be the
unique index determined in Step 2 by the conditions (ii), (iii), (iv), and
the least-index rule.

/1 ’ and letStep 4. If m > 0, perform the principal pivot (Ws, z). Put r
+ Wv +Zs Ws(z, , ,Zr- fr Zr+-" Z,-") and ,+l_ l(f,+l)

If S r, return to Step with u replaced by + 1. If s :/: r, return to Step
2 with replaced by + 1. If m 0, perform the principal pivot
{<w, zT>, <wT, z>}. Put

-+ -+ -+, { }W, zs, W r, Zi Zi for alli r,s

and then

-"+ W;(,Zr Zr-1, ’, -u+!,Zr

[+’ W+’("+1) for all a {r, s}.
Return to Step 2 with u replaced by u + and r replaced by s.

4. The finiteness argument. In the following section, we show that the PPM with
the least-index rule (stated above) will process any LCP (q, M) in which M is sufficient.
It is interesting to observe that the mechanics of the algorithm itself appears to require
only the row sufficiency property. The finite termination ofthe algorithm (with or without
the least-index rule) is assured if each major cycle is finite, for the total number of
negative variables is nonincreasing during each major cycle and decreases strictly at the
end of the major cycle. Such finiteness is realized when the problem is nondegenerate.
We show here that, even for degenerate problems, the major cycles of the PPM are finite
provided the least-index rule is enforced in the pivot selection criterion. As will be seen
below, the finiteness ofthe PPM with the least-index rule hinges on the column sufficiency
property. This is why we assume that the matrix is both row and column sufficient.

If cycling occurs in a major cycle it is not restrictive to assume that it is one in
which wl is the distinguished variable. It follows from 4, Thm. 4 that since wl and zl

At the beginning of a major cycle, for each index r, at most one of w, z can be negative.
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are monotonically increasing, both w and z are fixed during cycling. However, the
algorithm tries to increase w or Zl in this major cycle. Hence stalling occurs during these
steps. Accordingly, if we delete all the variables that are not involved during cycling, the
PPM with the least-index rule merely looks for the index such that

s min {i" mTl < 0}
and then pivots on ms (if mss 4: O) or it pivots on

ml ms ifm"ss O.m ms]

Without loss of generality, we may assume that all the variables are involved in the
pivoting during cycling. Then, during cycling, the PPM with the least-index rule performs
the same pivoting sequence as the following scheme does.

SCHEME.
Step 0. Start with the system w" q" + Mz", v 0, where w qO + MOzo is the

initial system. (In the following, M.- represents the column ofM corre-
sponding to the nonbasic variable z7 at iteration v. Similarly, MT. represents
the row ofM corresponding to the basic variable w7 .)

Step 1. IfM. >= 0, stop. The driving variable z can be increased strictly. Otherwise,
let s min {i" ml < 0}.

Step 2. If ms > 0, perform a pivot on m and return to Step with v replaced by
v + 1. Otherwise, perform a block pivot oforder 2 on the principal submatrix

(ml m)msl mss
and return to Step with u replaced by u + 1.

If we can show that M. >_- 0 after a finite number of pivots in the above scheme,
then, since the driving variable z7 can be increased strictly at this step, we obtain a
contradiction to the assumption that cycling occurs in a major cycle (in which w is the
distinguished variable) of the PPM with the least-index rule.

Before proceeding, we present a small result on sufficient matrices.
LEMMA 1. Let M R"" be column (row) sufficient. Thenfor any real numbers a,

b, c such that ab < 0 <= c, the matrix

ml m2 mln a

m. m22 m2n 0

0 0 c

is also column (row) sufficient.
Proof. It suffices to prove the assertion for column sufficient matrices. Assume that

the vector .f (x, x2, xn, xn+ )T satisfies the inequalities x,.(hr)i =< 0 for
1, ..-, n + 1. Then, in particular,

xl(mllXl + + mlnXn) <=--aXlXn+l

and

bXlXn+ --CX2n+ O.
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Since ab < 0 it follows that -axl Xn+ <= O. Thus

x mox <= O,
j

Since M is column sufficient,

Xi mijxj O,
j

i= 1,...,n.

i= 1,-..,n.

(12)
Now

(13) Ml-- and M-

For simplicity, we represent (TI) without using superscripts.

In particular, it follows that XlXn+I 0. This, in turn, implies that 2.(21712) O.
Notice that Lemma provides a mechanism for generating sufficient matrices of

arbitrarily large order.
LEMMA 2. In the above scheme, a pivot in row s, where s >- 2, must befollowed by

a pivot in some row with a larger index before another pivot in row s can occur.
Proof. The proof is by induction. If the matrix M is of order or 2, the lemma is

trivial. Suppose the lemma holds when the order ofM is less than n and now consider
the case when M is of order n.

We shall examine the situation where two pivots occur in row s and

2<=s<=n-1.

If, between these two pivots, there is no pivot in some row with a larger index, then by
deleting M. and M., a contradiction to the inductive hypothesis can be derived. There-
fore, it suffices to show that there is at most one pivot in row n.

Suppose a pivot occurs in row n at iteration v. Let (T denote the corresponding
tableau at this iteration.

1 z Z

Wl !1mll." mln..
Wn mnl mnn

TABLEAU (T1)

By the choice of the pivot row, we have mil >= 0 for all

_
n and mn < 0 in (T ).

Suppose the next occurrence ofa pivot in row n is at iteration 2. When this occurs,
Zn must be the exiting basic variable and wl is either basic (Case I) or nonbasic
(Case II ).

Case I. (w is a basic variable at iteration 2.) Let r be the set of indices such that
w is nonbasic at iteration P2. Note that a. Let M denote the principal transform of
M at this iteration. Clearly, M can be obtained from M by performing a block pivot on
the principal submatrix M. Thus

MI M-1Ml.



1138 R. W. COTTLE AND Y.-Y. CHANG

Being a (nonsingular) principal submatrix of a sufficient matrix, M is also a sufficient
matrix (see [4]). From (12) and (13), we have

which is impossible since M-2 is column sufficient.
Case II. (wl is a nonbasic variable at iteration u2.) Let the definition of r be as in

Case I, but note that now we have . SinceM is sufficient, the diagonal entry rfill
is nonnegative. There are two cases.

Case II.1 (rfil > 0.) The pivot on rfil would not change the sign configuration of
MI, namely,

Once this pivot is performed, we have Case I (with a different index set r).
Case 11.2. (rfi 0.) Here there are two more cases.
Case 11.2.1. (m > 0.) By performing a pivot on ml in schema (T1), the variable

w becomes nonbasic and the sign configuration of M.1 is unchanged. Therefore, as in
Case I, a contradiction can be derived.

Case 11.2.2. (ml 0.) Let (T2) denote the tableau at iteration u2.

1 Wr z
zo o Moo Mo
w - Mo Me

TABLEAU (T2)

In this tableau, { 1, n \r.
Now let qn +1 R be arbitrary and enlarge (T1) to (T *) as follows.

W1

Wn+

1 Z1 Z2 Zn Zn +

ql mll m12 mln ---_1
Oq2 m21 m22 m2n

qn mnl mn2 mnn 0

qn+ 1 0 0 1

TABLEAU (TI*)

By Lemma 1, the bordered matrix of(T * is sufficient. The block pivot on the principal
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submatrixM in (T *) produces (T2 *) having (T2) as a subtableau.

1 wo z
zo q- Moo Mo
w8 q- Mo M
Wn+ n+

Zn+

Mn + 1, Mn + 1,8

mg,n +

m&n +

mn+ 1,n+

TABLEAU (T2*)

Note that (T2 * has the same basic z-variables as (T2), hence (T2 * is the corresponding
enlargement of (T2).

Enlargement

Pivot onM
(T1) -- (T2)

Enlargement
(T1 * -- (T2 *

Pivot onM
By pivotal algebra, we have

/n+ 1,1 (Mn+ 1,aMar)l Mn+ 1,aMrl (1, 0, 0)M Hll 0.

Now the matrix

mn+ 1,1 mn+ 1,n+

is nonsingular and can be used as a pivot block in (T * ). Denote the resulting tableau
by (T2 * * ). In it, Wl and w, + are nonbasic while all the other wi are basic.

1 W Z2 Zn Wn +

Z1 1 /’/11 t’/12 /ln ?’/1,n +
W2 2 /’/21 /’/22 /2n /2,n +

Wn On nn fln2 ?’lnn ln,n +

Zn+l n+l /n+ 1,1 /’/n + 1,2 lln+l,n //n+ 1,n+

TABLEAU (T2**)

In (T1 *), we have

mll --0, mil >--O, 2,’", n- 1, toni < O, m,+ 1,1 1.

Hence

/’11 1, //il >= 0, 2, .--, n- 1, mnl < 0, mn+l,1 =--1.

Now, since both (T2*) and (T2**) are principal transforms of (T1 *), it follows
that (T2 * *) is a principal transform of (T2 *). In fact, if we define the index set o
(a\ {1}) t_J { n + 1}, then (T2**) can be obtained_ by performing a block pivot on
the principal submatrix 20op in (T2 *). Therefore Mpl- _Mo,,ol.--1 The indices n and
n + belong to o and

rh, l<0, rhn+l,1 =0, thai<0, m+l,l=--l,



1140 R. W. COTTLE AND Y.-Y. CHANG

while rfiil >= 0 and rfiil >-- 0 for-all other E o. Accordingly, we obtain

--1MpoJlpl)

--1But this is impossible since Moo is (column) sufficient. [3
LEMMA 3. lrl T ), M. >- 0 after afinite number ofiterations.
Proof. For j > 1, let u(j) be the number of pivots that occur in row j. In the proof

ofLemma 2, we have shown that u(n) =< 1. Furthermore, it follows from Lemma 2 that

#(j)=< 1-1- Z #(i).
i=j+l

In other words,

t(n- 1) =< t(n) + _-< 2,

u(n- 2) _-< 2 2,

t(n- i)_-< + 2 i-1 + 2 i-2 + q- 2 + 2 o 2 i.

Therefore, the scheme will terminate after a finite number of iterations. V1
THEOREM. In the case ofan LCP q, M) with a sufficient matrix M, every major

cycle ofthe PPM with the least-index rule consists ofa finite number ofpivots.
Proof. Suppose cycling occurs in a major cycle in which wl is the distinguished

variable. Then, since w and z are monotonically increasing, both w and z are fixed
during cycling. However, it follows from Lemma 3 that M. >= 0 after a finite number
of steps. Therefore either w or z can be strictly increased after a finite number of steps,
in contradiction to the assumption that cycling occurs. V1

COROLLARY. In the sufficient matrix case, thePPM with least-index rule willprocess
the LCP q, M) in a finite number ofsteps.

Proof. Each major cycle of the algorithm reduces the number of negative compo-
nents in (w, z) by at least one. The assertion now follows from the theorem. []

Remark. In implementing the least-index rule it is important to obey statement
(A), which says that if the distinguished variable is among the tied blocking variables,
then it is to be chosen as the blocking variable. Failure to do so can lead to the false
impression that the problem is infeasible.
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Abstract. The inverse eigenvalue problems for symmetric Toeplitz matrices with complex-valued
(IEPSCTM) and real-valued (IEPSRTM) entries are studied. The main tools are complex and real algebraic
geometry. In the complex case it is shown that the IEPSCTM is solvable for most spectra and always solvable
for n =< 4. In the real case the natural decomposition of the space of all n n real symmetric Toeplitz matrices
to a finite number of connected components of matrices with a simple spectrum is given. It is then shown that
the solvability of the IEPSRTM for all spectra can be deduced if the corresponding map to the IEPSRTM has
a nonzero degree for at least one component. This is the case for n =< 4, which gives an alternative proof to
Delsarte and Genin’s results. The IEPSRTM for odd Toeplitz matrices with real-valued entries is also considered.
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1. Introduction. Let (t0, , tn- e Cn. Then the associated symmetric Toeplitz
matrix T= T(t) (aij)’{ Mn(C) is given by the equalities a0 tli_l, i,j 1, n.

C andT is called a real symmetric Toeplitz matrix if e R Denote by
R" the linear space of complex symmetric and real symmetric Toeplitz matrices, re-
spectively. The inverse eigenvalue problem for symmetric complex-valued Toeplitz ma-
trices (IEPSCTM) consists of finding T e c with prescribed n complex eigenvalues
( al, an }. The inverse eigenvalue problem for symmetric real-valued Toeplitz ma-
trices (IEPSRTM) consists of finding T with prescribed n real eigenvalues a,

0.n ). It is conjectured (e.g., D-G that the IEPSRTM is always solvable. This conjecture
is known to be true for n =< 4 [D-G]. In this paper, we outline an approach to the
IEPSRTM using the degree theory. For T let

0. 0.! (T) =< 02 0.2(T) _--< =< 0.n 0.,(T), 0. 0.(T) (0.1, 0.)

be the eigenvalues of T arranged in an increasing order. Denote by-r,o c - all matrices
with pairwise distinct eigenvalues. Let K, 1, be the connected components

whereof-n We then have the map 0. K9 -- Ar,o

xht_ {X, X (Xl, Xn), Xl < X2’’" < Xn }.
The topological degree d of this map is well defined. The continuity principle implies
that IEPSRTM is solvable if df 4 0 for some i. We show that this is the case for n 2,
3,4.

We now list briefly the contents of the paper. In 2, we study the IEPSCTM. Using
Bezout’s theorem as in [Fri ], we show that for n _-< 4 it is always solvable and the number
ofdistinct Toeplitz matrices with a prescribed spectrum is n! counted with multiplicities.
We also show that the map 0. is dominating. That is, 0.(-r,o) contains an open set for
all n. Section 3 is devoted to basic properties of real symmetric Toeplitz matrices. We
recall the well-known result (e.g., see D-G l) that the spectrum of T splits to the even
and the odd spectrum. It then follows that each component Kf induces a partition of

Received by the editors October 1, 1990; accepted for publication (in revised form) June 19, 1991.- Department of Mathematics, Statistics, and Computer Science, University of Illinois, Chicago, Illinois
60680 (U 12735@UICVM.BITNET).
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{ 1, n } to two (almost equal) sets which correspond to the even and the odd spectrum.
In 4, we show that the number of such partitions is at least 2 Ln/:j. In 5, we consider
the odd Toeplitz matrices -r’d c -r that are given by the condition t:m 0, m
0, .-.. The spectrum of odd Toeplitz matrices is odd. We then have a natural inverse
eigenvalue conjecture for the odd Toeplitz matrices. Any real odd set x is a spectrum of
some real odd Toeplitz matrix (?). This is true for n 2, 3, 4. We conclude our paper
by identifying all 10 components of -r4,o and those components on which the degree of
the map is equal to zero.

(2.1)

2. Complex symmetric Toeplitz matrices. Let

det (M T) Xn + (_ )isi(T) Xn- i, T -’,

s(T)=(Sl(T), ,sn(T)).

We thus have a polynomial map s" -c -- Cn. Note that each si(T) is a homogeneous
polynomial of degree i. IEPSCTM consists of finding the inverse image s-l(z), z C.
We now recall a few known facts about the spectral properties ofthe symmetric complex
Toeplitz matrices, which can be found in [D-G]. Let P M,(C) be the following per-
mutation matrix: P(xl, x:, x,_ l, x,) T (xn, x,_ l, x2, xl) r. Thus P is an
involution: p-1 pT p and P has ] eigenvalues equal to and/J eigenvalues equal
to 1. If we consider P as a linear transformation P C C, x Px, we then get the
following eigenspace decomposition

C= E+@E_, dim(E+)=[] dim(E_)=[nJ(2.2) -Px x, x e E+Px -x, x e E_.

Thus, if we view each T e- as a linear operatorObserve next that PT TP, T
T: C -- C, we deduce that

(2.3) T= T+(gT_, T+ E+ -- E+, T_:E_-E_.

Hence the characteristic polynomial of any complex symmetric Toeplitz matrix splits to
two factors:

(2.4)

pn(X) p+(X)p(X), p,(X) det (M- T((to, ..., t,_ 1))),

p+(X)=det(M-T+((t0,..-,t,_))), pS()=det(M-T_((t0,...,tn_,))).

There is a remarkable recurrence relation among the above polynomials proved in
[D-G]:

(2.5) p-I(X) 1/2[p+(X)p_z(X) + p()p,+-z(X)].

Let F: C" -- C" be a polynomial map. Denote by J(F) and det (J(F)) the Jaco-
bian matrix and the Jacobian of the map F. Recall that F is called dominating if
det (J(F)) O. It is a standard fact in basic algebraic geometry that the range of a
dominating map misses a thin set. Namely, C"\F(Cn) is a quasi variety, i.e., an algebraic
variety minus a subvariety. Consult, for example, Mum].- C is a dominating mapfor n AssumeTHEOREM 2.6. The map s -that <= n <-_ 4. Then s is surjective. Furthermore,for any z C, 2 <-_ n <= 4 the set s-l(z)
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consists of at most n! Toeplitz matrices. More precisely, for almost all z (outside the
critical complex variety ofcodimension ), the cardinality ofthe set s- (z) is equal to n!.

Proof. Clearly, we may assume that n >_- 2. Suppose, to the contrary, that s is not
dominating. That is, s(’) is a quasi variety. In that case, it is known that each fiber
s- (s(T)) is a finite union of irreducible varieties, each one of complex dimension one
at least (see Mum]). Let J T((0, 1, 0, 0)). Then J is the classical Jacobian
matrix. It is well known that J has n pairwise distinct eigenvalues (see, e.g., [Gan]).
(Actually, the eigenvalues of J are equal to 2 cos (s + r/(n + ], s 0, n 1.)
Let orb (J) c Mn(C) be the complex variety of all complex symmetric matrices having
the same eigenvalues as J. Assume that X e orb (J). As X is symmetric with pairwise
distinct eigenvalues, the standard argument shows thatXis (complex) orthogonally similar
to a diagonal matrix (see, e.g., Gan ). Let (gn be the algebraic group ofall n n complex-
valued orthogonal matrices. Then

orb (J) {X, X QjQT-, Q (9}.
Recall that gn is a complex manifold and a complex Lie group with the Lie algebra
1 c Mn(C) of complex skew symmetric matrices. As the stabilizer of any diagonal
matrix D orb (J) is a finite group, it then easily follows that orb (J) is a complex
manifold of dimension n(n )/2. Next note that s-(s(J)) orb (J) f) -. Thus to
get the contradiction, it is enough to show that the tangent space to orb (J) at J and- intersect transversally at J (see, e.g., [A-R]). From the arguments above it follows
that the tangent space of orb (J) at J is of the form Y ZJ- JZ, Z 1. That is, it

O2"nis enough to show that if ZJ JZ T(t) then 0. Clearly, trace (T(t)) 0.
Hence to 0. More generally, trace (JT(t)) 0, k 1, n 1. It now follows that
the condition trace (JT(t)) 0 t 0. Assume that we already showed that ti
0, 0, k 1. Use the condition trace (JT(t)) 0 to deduce that t 0. The
above arguments prove that s is a dominating map.

Since each si is a homogeneous function, the nonlinear alternative (essentially, the
precise version of Bezout’s theorem (e.g., [Fill])) yields that s is surjective whenever
s- (s(0)) 0. That is, s is surjective whenever we can prove that the only n n complex
symmetric Toeplitz nilpotent matrix is the zero matrix. For n 1, 2 this is straightforward.
Consider the case in which n 3. Suppose that T((to, t, t2)) is nilpotent. Then to 0.
As -t2 is an eigenvalue of any T((0, t, t2)), it follows that t2 0. Hence the nilpotent
T is t J. Therefore t 0. We now consider the case in which n 4. A straightforward
calculation shows

(2.7)
p-() 2 (2to + t + t3)) + (to + t3)(/o + t) (t + t2) ,
p-(k) k 2 (2to t t3)X + (to t3)(to t) (t t2) 2.

Suppose that T((to, t, t2, t3)) is nilpotent. Then p(X) p(X) )k 2. Using the fact
that the coefficients of ), in these two polynomials are equal to zero, we get that to 0
and t3 -t. The other two conditions boil down to

(t + t2) 2 (t t2) -tZl.
Clearly, the only solution to the above two equations is tl t2 0. Hence T 0. ff]

The arguments of the proof ofTheorem 2.6 show that the map s is surjective when-
ever we can show that the only nilpotent complex symmetric Toeplitz matrix is the zero
matrix. It may be the case that this statement is not valid for n >= 5. See [Fri3, Thm.
7.15 ], where a similar problem exhibits such behavior.

3. Real symmetric Toeplitz matrices. In what follows we shall need some basic
concepts and results in real algebraic geometry. For simple results and notions on real
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algebraic sets, see [Mil2 ]. For the basic notions of semialgebraic sets and Tarski-Sei-
denberg’s theorem, see, for example, [A-R, App. B ]. See [Bru for a thorough account
and references on semialgebraic sets. We now recall briefly the concepts and the results
on semialgebraic sets used here.

A set X c R is called (real) algebraic if it is a zero set of a finite number of real
polynomials. It then follows that any finite intersection or union of algebraic sets is
algebraic. A semialgebraic set is a finite union of sets Y c Rn such that either Y is an
algebraic set or Y { x, x X, pi(x) > 0, 1, k }. Here, X is an algebraic set and
Pl, Pk are real polynomials (depending on Y). Note that an algebraic set is semial-
gebraic. It easily follows that a finite intersection or union of semialgebraic sets is semial-
gebraic. Let F" Rm Rn be a polynomial map. Assume that X Rn is semialgebraic
(algebraic). It then follows that F-I(X) is semialgebraic (algebraic). Assume that Y
Rm is semialgebraic. Then the fundamental theorem ofTarski and Seidenberg states that
F(Y) is semialgebraic. It can happen that Y is algebraic, but F(Y) is semialgebraic and
not algebraic. The simplest example is served by the quadratic map F" R - R, x x2.
Here the real line R is an algebraic set but the half-line R/ F(R) is obviously semial-
gebraic and not algebraic.

Let A be the set of n ordered real numbers in increasing order and let Ao be its
interior:

{x,x= (x, ,x),x -<- x... <- x},

o { x, x (x, x), x < x. < x,,}.
Clearly, An, Ag, 0A hn\A are semialgebraic sets. By noting that (x, xn) e A
if and only if y; xi+ xg >- 0, 1, n 1, we deduce the isomorphism A
R R- For x (x, xn) e R n, let wg(x) be the ith elementary symmetric poly-
nomial for 1, n. Set oa(x) (o(x), wn(x)). Thus we have a polynomial
map o R -- Rn. Clearly, fn o(Rn) is a closed semialgebraic set which is not alge-
braic for n > 1. (fl has an interior and is not equal to R<) Furthermore, oa R" -- fl
is n! -- (counted with multiplicities). Finally, o A -- ftn is a homeomorphism. We
shall sometimes identify ftn with A and no ambiguity will arise.

Let T e - "r. Denote by

O" 0"1(T) _-< O"2 ff2(T) =< =< fin fin(T), r if(T) (o’1, "’’, fin)

the eigenvalues of T arranged in increasing order. Thus we have a continuous algebraic
map a" - r" -- An. Note that w o r s, where s is the polynomial map defined in (2.1).
As w" A -- fn is a homeomorphism, for our purposes, we may consider a as a polynomial
map. Recall that

trace T2) ai(T) 2,
(3.1)

trace ((T- Q)2) >= (o’i(T) o-i(Q)) 2, T, Q-rn.

The trace identity is obvious, while the inequality is due to Hoffman and Wielandt
[H-W] (see also [Fril]). Recall that A R has a natural Euclidean metric while -r
has a natural metric induced by the Frobenius inner product T, Q) trace (TQ). Thus
(3.1) is equivalent to the assertion that the map a is norm preserving and contracting.
Note that Theorem 2.6 implies that r is a dominating map. That is, r(-r) has an
interior. The inverse eigenvalue problem for real symmetric Toeplitz matrices consists
of determining -1 (x) for a given x An.
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Let

Disc (T) H ai(T)
<i<j<--n

be the discriminant of the polynomial det (M T). It is well known that Disc (T) is a
polynomial in the entries of T. (Arguments in [Fri3] yield that deg (Disc (T))
n(n ).) Set

ao’nr,o= a- (A)= {T, Te’n Disc(T)>0}

Disc (r) 0}0r,o r-(0An) { T, T - ’rThus ’r,o is an open semialgebraic set and its boundary is a real algebraic set. It is
known that an open semialgebraic set consists of a finite number of connected compo-
nents. See [Mill] for an estimate on the number of connected components. Let n be
the number of connected components in r,o. We show that n >-- 2n/. Denote by
K7 the connected components ofn By the construction of K7 we
have the relation

a-l (0A) f-) closure (KT) OKT, 1, ..., ,.
It then follows that we can define d? as the degree of the map a" K7 A,, 1,
n (see, e.g., [Nir]). To compute dT, we consider x A so that a-(x) fq K7 consists
of a finite number of Toeplitz matrices T, Tk such that det (J(a)(Ti)) 4: O,
1, k. Then

k

(3.2) d7 signum (det (J(a)(Ti))).

In particular, d7 0 if a-(x) 5 for some x A. In topological terms, d7 is the
value of the induced map a* Hn(closure (K7), OK?) H(A, 0A) on the relative Z
top homology. The continuity argument yields the conjecture a(-r) A if d? =/= 0 for
some =< =< n. This is the case for n 2, 3, 4. (The case n 4 is treated in {} 5.)

Observe that

PT( to, t,

a( T( to, /1, "’’, tn-))) r(T((t0,-tl,"" (-1)n-ltn-))),

(3.3) Pm(X, DTD) p]m(X, T), Pm(X, DTD) pm(X, T),

Pm-l(X, DTD) Pm-(X, T), P2-m-(X, DTD) Pm-(X, T),

D diag {1, -1, (-1)n-l}.
Hence

(3.4) det(J(r)(DTO)) (-1)’n/2Jdet(J(a)(T)).
In particular, DK7D K, j j(i), 1, Kn. That is, the action of D induces a
permutation of the components of -r,o. Use (3.2) and the above formula to deduce

(3.5) d7 (- )tn/2j dT DK7D K’.
Thus

L ](3.6) d7 =0, ifDKTD=K7 and is odd.
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For n 2 it is immediate that" r2,o consists oftwo components given by the inequality
t2 > 0. Clearly, the set a- (x), x e Ao consists of two distinct Toeplitz matrices, each of
them belonging to a different component. Hence [d,2. 1, 1, 2. The case n 3 is
slightly more complex.

THEOREM 3.7. The set -3r,o decomposes tofour connected components"

g3 { T((to, l, t2, t3)), It21 < t}, K32 -K3,
(3.8) g { T((t0, t, t2, t3)), t < t2 ), K34 g,
For each x A3o the set a- (x) consists of at least three points and at most four points
with the following distribution. The sets a- (x) fq K3i 1, 2 consist of exactly one
point. Hence d3i 1, 1, 2. There exists 3 <= i(x) <-_ 4 so that a- (x) N K3. Hence d3i O, 3, 4. Finally, if r( T( to, O, t2)) x A3o, for all (to, t2) R2 then
a- (x) consists offour distinct Toeplitz matrices.

Proof. Note that

(3.9) a(T((to, tn-1))) a(T((0, t, ,/n-l))) -k- (to, to).

Hence, it is enough to study the restriction of-r,o to the hyperplane to 0. In that case,
we easily deduce that

p()) )2_ t2)- 2t, p()) ) + t2.

Thus p()) has a multiple root if and only if tl t2 0. Furthermore, p(-t2) 0 if
and only if t2 t2. It then follows that the four components of" r3,o are given by 3.8 ).
Other claims can be verified by a straightforward computation. [3

4. Partitions of V’". Let WTM { 1, n }. Assume thatK is a connected com-
ponent of -r,o. Then K7 induces the following partition of

(4.1)
f" ’+ U ’-, card (’+) card(’-)

a( T+ { ai( T), e W7’+ }, a( T_) { ai( T), e W7’- },
For n 2, we have the immediate identities:

’+= {2}, W’-= {1), K= {T((t0, t,)), t, > 0},
(4.2) w,+ {), w,- {2), K { Tto, t,)), t, < 0}.
Using the results of Theorem 3.7 and its proof we deduce that

w,+= {,3), w,-= {2}, w,+= {,3}, w,-= (2),
(4.3)

w,+={2,3), w,-={), w,+=(,2}, w,-={3).
’rHzOZM 4.4. Let H" be thefollowing subgroup ofpermutations oforder n"

(4.5) II"= r,--{i,n-i}{i,n-i},i 1,..., .-
Then for each r II there exists at least one component K such that

In particular, -r,o has at least 2tn/2j connected components (K >-_ 2tn/2J).
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Proof. From (4.2) and (4.3) we deduce that our theorem holds for n 2, 3. For
n >= 4 we prove the theorem by induction. First note that T((0, -.., 0, a)), a 4 0 is a
rank-two matrix with zero trace. A straightforward calculation shows that

0-(T((0,-.., 0, a))) (-[a[, 0, ..., 0, lal),

(4.7) T((0, 0, a))(1, 0, 0, 1)T a(1, 0, ..., 0, 1)r,

T((0, ..., 0, a))( 1, 0, ..., 0, -1 )T -a( 1, 0, ..., 0, -1

Thus all the eigenvectors corresponding to the 0 eigenvalue are of the form (0, v2, "",

v_ , 0)T. Fix (t0, t ), t_ 4 0 and consider a Toeplitz matrix T(e) depending
analytically on a real parameter e, that is, T(e) T( (eto, eta, e&_ , t_ )). Rellich’s
theorem imph that all the eigenvalues and the eigenvectors of T(e) are analytic functions
ofa complex variable e in the neighborhood ofthe real line. Consider first the n eigenvalues
as analytic functions in the neighborhood of the origin. Restrict first the attention to
n 2 eigenvalues { 0-2(e), 0--(e)}, which are equal to 0 for e 0. Then the
classical variation formula (e.g., Kat or Fri2 ]) claims that { 0- (0), 0-,_ (0) }
are the eigenvalues of T((to,’", tn-3)). (This also follows from [Tre] when we

Tconsider the matrix 7 in his notation.) Assume that T((t0 tn 3)) E "n- 2 Ther,o

analyticity of the eigenvectors ;(e) ({(e), ..., (e)) implies that i(O)
(0, v(0), v; (0), 0) T, 2, n 1. Furthermore, the vectors (v(0),

v n 2 (0)) T, 2, n are the eigenvectors of T((t0, tn- 3)). Hence (up
to O(e2)),

(T+((eto,..., etn-2, t,_,))) { (e)} tO er(T+((to,’", t,_)))

forO< e (( 1, in-1 > O,

(4.8) 0-(T+((eto, e&_2, tn_))) {0-1(e)}tOe0-(T+((t0,’",&-3)))

for 0 < e (( 1, tn- <0,

T((t0, tn-3)) e ’r,a 2.

The above equality and the induction hypothesis prove the theorem. F-1
LEMMA 4.9. For n 4 anypartition ofg4 into two distinct sets having two elements

each is a partition corresponding to some K4
Proof. According to Theorem 4.4, the following partitions of ,./[/’4 ,/4+ tJ ,A/’4

are induced by the components of’4r,o
{1,2}to{3,4}, {1,3}to{2,4}, {2,4}to{1,3}, {3,4}U{1,2}.

We now show that the partition { 2, 3 } tO 1, 4 } is an induced partition. Let T T((0,
1, -1, )). We then deduce that the even spectrum of T consists of 0-2 0"3 and ihe
odd spectrum of T consists of 0-5 -3, 0-4 1. Consider the close by matrices T((0, 1,
-1, e)) with e > 0. Use (2.7) to deduce that 0-4(e) belongs to the odd spectrum.
Finally, the fact that the last partition { 1, 4 } tO { 2, 3 } is an induced partition follows
from (3.3).

The following lemma can be useful to study the sets 0--5(x) in the neighborhood of
special points x An. To make it slightly more general we stated the lemma in the
complex context.

LEMMA 4.10. A complex Toeplitz matrix T( to, tn-5) is a rank-one matrix

ifand only if either to t tn- 4 0 or to -tl (- )n- tn_ 4= 0. A
complex Toeplitz matrix T((O, t, tn-)) is a rank-two matrix if either to t

t,_ 2 O, tn-, 4 0 or to t2 t4 0, t t 4 0.
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Proof. For n 2 the lemma is immediate. Assume that n >= 3 and we prove the
lemma by induction. Suppose that T((to,..., tn-1)) is a rank-one matrix. Hence,
T((t0,..., tn-2)) is either a zero matrix or a rank-one matrix. The first possibility
implies that T(t) is either a zero matrix (tn_ 0) or a rank-two matrix. Thus the first
possibility is ruled out. Therefore, T((to, tn-2)) is a rank-one matrix. Assume for
the simplicity of the argument that to t t_ 2 4: 0. By considering the 2 2
minor of T(t) based on { 1, n } rows and columns, we deduce that either t,_ to or
t,_ -to. As n => 3 it follows that in the second case the first and the last rows of T(t)
are linearly independent. Hence, the second case is ruled out and we proved the lemma
for the rank-one matrices.

Assume that T((0, t, t,_ )) is a rank-two matrix. Hence, the matrix T((0,
l, tn_ 2)) is either a zero matrix, a rank-one matrix, or a rank-two matrix. In the

first case, we deduce that to t t,_ 2 0. Hence T(t) is a rank-two matrix if
and only if tn- 4: 0, as we claimed. In view of our result for a rank-one matrix, and the
assumption that to 0, the second possibility is ruled out. We are left with the case where
T((0, t, ..., t-2)) is a rank-two matrix. By induction we have two possibilities. Assume
first that to t tn- 3 0, t_ 2 4: 0. For n >= 4 the rows 1, 2, n 1, n are linearly
independent, which contradicts our assumption. For n 3 the matrix T(t) is rank-two
if and only if t2 0. In that case, we get one of our possibilities. Assume finally that
to t2 0, t t3 4: 0. Assume first that n >= 4 is even. Hence, the second
and the third rows of T(t) are linearly independent. It then follows that the first row of
T(t) is a linear combination of the second and the third rows if and only if the first row
is equal to the third row. That is, t_ In- 3. Assume now that n is odd. Since we already
discussed n 3, we may assume that n >= 5. As for the even case, it follows that the first
row must be equal to the third one. Hence tn_

COROLLARY 4.1 1. Assume that T( ’-r has exactly one nonzero eigenvalue
X X X )n-IXThen either (, -, -) or (, , (-1 ). Let T( t) -r have the

spectrum (-h, O, O, X), X > O. Then has one ofthefollowingforms:

t= +_(0, ..., 0, x),

(4.12) +--(0, 1, O, 1,..., O, 1), n 2m,
m

+
Vt;n(m 1)

(0, 1,0, 1,..-, 1,0), n=2m-l>l.

Note that in the first two cases of (4.12), the two nonzero eigenvalues split evenly
between the even and the odd spectrum of T(t). In the last case, the two nonzero eigen-
values belong to the even spectrum.

5. Odd Toeplitz matrices. Denote by the odd Toeplitz matrices the following sub-
spaces of the Toeplitz matrices:

Clearly

(5.2) DTD =-T, T= T((O,t,O, t3,...)), D=diag{1,-1,-..,(-1)-}.
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Combine (3.3) and the above equality to deduce

a( T+ ( T_ T -2rm’d a(T+) or( T+
(5.3) a(T_) a(-T_), TE-2rm-’d

a(T) a( T) T -,oa

Let

(5.4) Ao Ao.
It then follows that _" and o are isomorphic in a trivial way to the sets 0 ’/2 and
Oto"/2, respectively, where

O {x, x (x, x), x A, 0 _-< x},
(5.5)

Oo {x, x (x,, ..., x), x Ao, 0 < x, }.
IEPSROTM (the inverse eigenvalue problem for symmetric real-valued odd Toeplitz

matrices). Given x e/, does there exist T -r’ with a(T) x?
The arguments of Theorem 4.4 yield that the map a" -" rm’ -- k2m is dominating

and -2m,od has at least 2 components. For n 2, 3, 4 we identify all the components
of-n,od

F,O

THEOREM 5.6. For n 2, 3 4 the inverse eigenvalue problem on ’"’d is alwaysro
solvable. Moreover,

c c { t,, , > o }, c c -c,,
(5.7) C

C {(t,t3),O<t<-t3}, C]=-C, C=-C, C=-C.
The map a" C7 -- h is a homeomorphism for n 2, 3, 4 except in the cases n 4,

2, 5. In these cases, a is not surjective. (Hence the degree ofa is equal to zero in these
cases.) Furthermore, in these two cases, the map a C7 - a( C7 is 2 -- counted with
the multiplicities.

Proof. For n 2, 3 the theorem is immediate. Assume that n 4. Substitute the
values to t3 0 in (2.7). It then follows that p-(X) (p(,)) have a double root if and
only if t t3 0. Hence the boundary of -4,o is formed by all T -r4’ such thatr,o

these two polynomials have a common root. By considering p-() p; (2), we deduce
that either t + t3 0 or (t3 t )t 0. Moreover, if one of these equalities holds, then
p- and p have a common zero. These arguments show that ’-4.odr,o are partitioned into
the six components given by (5.7).

Let a < b be two real numbers such that a + b 4: 0. We then pose the problem
when a, b are the two roots of p-, that is, when the system

t / t3 a + b, (t3 tl)t ab

is solvable over the reals. Clearly, the above two equations are reduced to one quadratic
equation

(5.8) 2t (a + b)t + ab O.

This equation has two real roots if and only if

(5.9) (a- b) 2 >= 4ab.

Suppose first that ab < 0. Then 5.8 has two real roots with the opposite sides. We next
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observe for T e C, 4: 2, 5, that p has two real roots of opposite signs. Since t 0 is
one of the boundaries of -4,od we deduce that the map r" C -- j4 4 2, 5 is ar,o o,

homeomorphism. For T C the two roots ofp are positive. In view of (5.9) the pair
a 1, b 2 are not the roots of any p. Hence r C -- _4o is not surjective and the
degree of this map is 0. On the other hand, if we have two positive distinct numbers a
and b which satisfy the strict inequality (5.9), then we have two positive solutions for t
which correspond to two Toeplitz matrices in the component C. That is, a" C --a(C) is 2 -- map. The same arguments hold for the component C.

We close our paper with some results concerning the full map tr -4
__

A4

THEOREM 5.10. Let x (-b, -a, a, b ), 0 < a < b. Ifa, b satisfy the strict inequality
in (5.9) then r-(x) -4 consists of12 Toeplitz matrices, 8 ofwhich are odd. Ifa, br,o

do not satisfy (5.9) then a- (x) -4 consist of 8 Toeplitz matrices, 4 of which arer,o

odd. In that case, there is no T - so that either a(T+) { a, 19 }, a(T-) { -b, -a
or a( T+) {-b, -a}, a( T_) {a, b }. Ifthe equality sign holds in (5.9), then
-4 consists of 10 Toeplitz matrices, 6 ofwhich are odd.r,o

Proof. Assume that a(T) x. Then trace (T) 4to 0. As the last coefficients of
p and p given by (2.7) must coincide, we deduce that either t 0 or te 0. In the
first case, the two real roots ofp must have opposite signs. That is, the two roots of
p are either -a, b or -b, a. Thus we have four Toeplitz matrices:

(5.1 1) tl 0, t2 +/ab, t3 +_(b a).

In the second case we deduce that T is odd. We then use Theorem 5.6 to conclude the
proof of this theorem.

In Theorem 5.10 choose a e2, b where e is very small and positive. In that
case 5.9 is satisfied. Suppose that a(T(e) -e -, e2, ). If T(e) -4,od then 5 8r,o

yields that T(e) depends analytically on e 2. Otherwise, 5.11 shows that t2 (e) depends
analytically on e while t, t3 depend analytically on e2. Using the variation formula pointed
out in the proof of Theorem 4.4, we can show that such behavior is exhibited for general
n around the point a-((-1, 0, 0, 1)).

THEOREM 5 12 The boundary ofthe set -4 is given by the equationr,o

(5.13) (t t3)[t22(3t + t3) t(t + t3) 2] 0.

The set -4 decomposes to 10 connected components K 10. The six com-r,o

portents K, 1, 6 are the only extensions ofthe components C, 1, 6
4 is nonzero for 3, 4, 6of --4,oa Moreover, the degree of the map a K -- Ar,o

(Hence a is surjective in these cases.) For other values of i, the map a is not surjective.
(Hence its degree is equal to zero in these cases.)

Proof. We may assume that to 0, and it is enough to consider the partition ofthe
three-dimensional space (t, t2, t3) into the connected components. Then p (p) has a
double root only on the line t -t2 t3 (t t2 t3). As a line in three-dimensional
space does not separate the space, it follows that B 0-4 is obtained when p andr,o

p have a common root. Assume first that t + t3 4: 0. By considering p p, we
deduce that this common root is X -2tt2/(t + t3). Substituting this value of X to
p and multiplying by (t + t3) 2, we deduce that the intersection of B with t + t3 :P 0
is given by (5.13). Since B is closed, all the points satisfying (5.13 must be boundary
points. Assume that t + t3 0. Then p] and p have a common root if and only if
t t2 0. It then follows that these two lines satisfy (5.13). From the form (5.13), we
deduce that any two Toeplitz matrices T((0, a, a2, a3)), T((0, b, b2, b3)) such that
(a a3)(b b3) < 0 cannot lie in the same component. That is, the hyperplane t
t3 0 lies entirely on the boundary of --4r,o
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Discarding the factor (t t3), which partitions 4 into two components, we are
left with the boundary

(5.14) t(3tl / t3)- tl(tl + t3) 2 0.

It is then convenient to view this boundary as the following two surfaces in (t, t2, t3):

Note that in the region

t2 -+lt + t3l 3t + t3)"

(5.16) [tl(tl / t3)] 2 > 0, t(3t + t3) -< 0,

we do not have either ofthe two surfaces given by 5.15 ). We now show that the number
of K,4. for which tl > t3 is five. First note that the region

(5.17) t > 0, 3t + t3 =< 0

belongs to one component. Next, the hypersurfaces 5.15 decompose each of the three-
dimensional pieces over the two-dimensional regions: C, C, and C
into three parts. The upper and lower parts above C are connected in the region (5.17 ).
We call K the connected component of -4 which includes C It then follows thatr,o,

on K the left-hand side of (5.13) is negative. On the other hand, on the connected
component of-4 which includes C the left-hand side is positive. That is, the com-r,o

ponent K C is bounded by t t 0 and the inner boundary of K. Thus the top
and the bottom part regions over C and C, 3t + t > 0 created by the hypersurfaces
(5.15 give rise to two new components K, K for which the left-hand side of (5.14) is
positive. C extends to the unique component K whose boundary is formed by t
t 0 and the inner boundaries of K74, K. The same argument applies to the part t
t < 0. This shows that -r4,o decomposes into 10 connected components.

We now discuss the map a K4 -- A 4o. Let be as in Theorem 5.10. Suppose that
(5.9) does not hold. The results of Theorems 5.6 and 5.10 yield that a-l(x)

2, 5, 7, 8, 9, 10. Hence, for these values of i, a is not surjective. On the other hand,
for 1, 3, 4, 6, the set a-(x) K contains an odd number of points. We claim that
most x (-b, -a, a, b), 0 < a < b are regular values. (x is regular if, at each point of
a- (x), the Jacobian determinant of is not zero.) This claim is proved by direct com-
putation. Indeed, it is enough to consider the Jacobian of the equivalent map

(/1, t2, t3) (/l + t3, tt2, tt3 (t + t2) 2)
at tr- (x). As for these points, either t 0 or t 0, this claim is easy to verify. Compute
the degree of the map tr" K -- A4o by using the points a-1 (x) fq K. As the number of
these points is odd, the degree of a cannot be equal to zero.
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EQUALITY CASES IN MATRIX EXPONENTIAL INEQUALITIES*
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Abstract. The Golden-Thompson inequality states that for any Hermitian matrices A and B, tr ea eB >_-
tr ea+B and the Bernstein inequality states that for any matrix A, tr ea*+a >= trea*ea. In this paper,
tr (eX/EkeY/Ek)Ek is shown to be a monotonic sequence when X and Y are Hermitian matrices or when X
Y*. Then we prove that (i) equality holds in the Golden-Thompson inequality ifand only ifA and B commute,
and (ii) equality holds in the Bernstein inequality if and only ifA is normal.

Key words, trace inequality, matrix exponential

AMS(MOS) subject classifications. 15A18, 15A42, 15A45

1. Introduction. In studying statistical mechanics, Golden 5 and Thompson 8
proved independently that

tr eAe tr eA /8,

where .4 and B are Hermitian matrices. And, motivated by problems in optimal feedback
control, Bernstein proved that

tr eA*e < tr e* /

where .4 is any matrix and .4 * denotes its conjugate transpose. Like other inequalities,
it is interesting to know when the equality holds in these inequalities. In both cases, the
obvious sufficient condition turns out to be necessary as well. The answers, as stated in
the abstract, are contained in 3 and 4. The equality case for the first inequality was
mentioned by Lenard in [6] and, in turn was quoted by Marshall and Olkin [7], but no
proof was found in either case.

2. Preliminaries. In this section, we collect some facts for later reference. The first
fact is the following product exponential formula: For any n n matrices X and Y,
limm (eX/meY/m)m= ex+ r.

For the proof of this formula, we refer to the interesting discussion in [2 ]. Since
trace is a continuous function on matrices, we have the following lemma.

LEMMA 2.1. For any matrices X and Y,

lim tr (eX/mer/m) tr ex+ r.

Next is the local injectivity of the exponential function for matrices. To be precise,
we let ft be the set { L" Im h < 7r for each eigenvalue ofL } then the last statement
can be stated as: For X, Yft, ex e r implies X Y. A proof of this fact can be found
in [9, p. 111]. A useful consequence is presented in Lemma 2.2.

LEMMA 2.2. ForX 2 and invertible matrix T, T-1 exT is diagonal implies T-1XT
is also diagonal.

Note that Hermitian matrices form a subset of ft. Hence, we have the following
corollary.
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COROLLARY 2.3. For Hermitian matrices X and Y,

exer e rex iffXY YX.

Proof. The sufficiency is obvious. For the necessity, we proceed as follows. Since
ex and e r commute, there exists a unitary matrix U such that U* eXU and U* erU are
both diagonal. Then, by Lemma 2.2, U*XU and U* YU are also both diagonal. Hence,
X and commute.

Since all matrices with spectral radius p(X) < r form a subset of ft, by means of a
similar proof as that above, we obtain Corollary 2.4.

COROLLARY 2.4. For matrix X with spectral radius p(X) < 7r, X is normal ifand
only irex is normal.

3. Equality case in the Golden-Thompson inequality. We begin with a special case
of Weyl’s majorant theorem 4, pp. 39-41 ].

LEMMA 3.1. Suppose that { k } and { S ) are the eigenvalues and singular values of
a matrix X. Then - 2r= n_ 2rI,il < s where r is a positive integer.

LEMMA 3.2. For positive semidefinite Hermitian matrices X and Y, tr (XPYP)2q =<
tr (X2pY2P) q, where p and q are positive integers.

Proof. Since XPYp has nonnegative eigenvalues, by Lemma 3.1, we have

tr (XPYP)2q <= tr ((XPYP)*(XPYP)) q

tr (PXPXPYP)q

tr (X2pY2P)q.

The last equality is due to the cyclic-invariant property of the trace function.
THEOREM 3.3. IfA andB are Hermitian matrices, then { tr (eA/ZkeB/9-k)Zk } is mono-

tonically decreasing to tr eA + .
Proof. By Lemma 3.2, we have tr eAe >= tr(eA/Ze/2)2 >= tr(ea/4e/4)4 -> ".

Hence, the result follows from Lemma 2.1.
THEOREM 3.4. IfA and B are Hermitian matrices, then tr eA e tr eA + ifand

only ifAB BA.
Proof. We only need to prove the necessity part. Now suppose that tr e e

treA+. Then, by Theorem 3.3, tr eAe tr (eA/Ze/2) 2 and a direct computation
gives tr (eA/ZeB/2 eB/ZeA/Z)(eA/Ze/2 eB/2eA/2) * 0, which in turn implies that
eA/2e/2 eB/2eA/2. Finally, Corollary 2.3 gives the result AB BA.

COROLLARY 3.5. IfA and B are Hermitian matrices, then

eA e eA + B iffAB BA.

Example 3.6. This example shows that the above corollary is not true in general.
Take

A and B
0 -ri -2ri

then

Moreover,

Tri
A+B=

0 -37ri

0 -1 0 0 -1



1156 WASIN SO

Hence, eA eB eA + B, but

--27r 2
5/=

0 --2"x 2 BA.

4. Equality case in the Bernstein inequality. Fan 3 compared the singular values
ofan n X n matrix Xand those of its powerXp. Let trt. be the sum ofthe first eigenvalues
with largest absolute values. He obtained the following theorem.

THEOREM 4.1. For any matrix X and positive integer p,

trt. X*PXp tri (X’X)p.

The following consequence is essential.
THEOREM 4.2. For any matrix X and positive integers p, q,

tr (X*PXP)q tr (X’X)pq.

Moreover, equality implies that tr X*PXp tr (X’X)p.

Proof. Let a (al, a,) be the eigenvalues ofX*PXp in decreasing order and
b (bl, b,) be the eigenvalues of(X’X)p in decreasing order. Then Theorem 4.1
states that a is weakly majorized by b. Hence, there exists d (d, d,) [7, p. 123],
such that ai <= dt. and d is majorized by b. Since g(x) Ix[ q is a convex function, by
[7, p. 115], we have

tr(X*PXP) q =f(a) <= f(d) <= f(b) tr(X*X)pq,

wheref((xl Xn)) 7-,oo _, Ixl q

Now suppose that tr (X*PXP)q tr (X’X)pq, i.e.,f(a) f(b). Thenf(a) =f(d)
and so a d, since at. =< dt.. Consequently, a is majorized by b; hence tr X*PXp

tr (X’X)p

It is clear that ifX is normal, then tr (X*PXP)q tr (X *X)pq. The converse is also
true for p >= 2 and q >_- (see Corollary 4.5 ). We start with the basic lemma.

LZMMA 4.3. Iftr X*2X2 tr (X’X)2 then X is normal
Proof. Note that tr (X’X- XX*)(X*X- XX*)* 2[tr (x*Zx) tr (X’X)-]

0. Hence X*X- XX * 0 and so X is normal.
The idea in [3] helps to finish the crucial theorem.
THEOREM 4.4. Iftr X*PX tr (X*X)Pfor somep >= 2, then X is normal.
Proof. Suppose that X UH is the polar decomposition of X. Then U is unitary

and H is a positive semidefinite Hermitian matrix with eigenvalues hi >= k2 - kn
>= 0 and the corresponding orthonormal eigenvectors vl, , v,. We only need to consider
the case when X is nonzero, i.e., when there exists =< k =< n such that Xk > Xk+l, 0. Consider

k k

tr(X*X)p- tr X*vXp Z XP Z ]](UH)Pl)i]] 2

i=1 i=1

(where is the usual Euclidean norm)
k k

Z Xp , [l(UH)- 1gl)i 2

i=1 i=1

k

k Z { Xt2"p-2 II(UH)p -l Ul)i {12 }
i=1
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where

k

+ E
i=1

{k n

}x X x,2.’- Z I1(UH)p Vl)i 2 -[- D(k, p
i=1 i=1

X{tr (X’X)p-l- trX*P-lXp-1 } + D(k,p- 1)

D(t,s) {X,2. Xt2}{X,2.s- [I(UH)sUviII2}.
i=1

Note that [3, Thm. 2]

D(t+ 1, s)-D(t,s)= {3,]-Xt+l} X {X/2s- I[(UH)2UviII 2} >-0.
i=1

Therefore, D(k, p >= D(k- 1, p >= >- D( 1, p 1) 0. Consequently,
tr X*PX tr (X’X) implies that tr (X’X)- tr X*p- IXp- since Xk is nonzero.
Repeat the above argument until we have tr (X’X) tr X*2X2 and so, by Lemma
4.3, X is normal.

Although we do not need the following result in the remainder of this paper, we
include it because it is an extension of Theorem 4.4.

COROLLARY 4.5. Iftr (X*PXP)q tr (X*X)Pqfor some p >= 2 and q >= 1, then X
is normal.

Proof. Combine the results of Theorems 4.2 and 4.4 for the proof.
THEOREM 4.6. { tr (eA*/2keA/k)2k} is monotonically increasing to tr eA* +A

Proof. By Theorem 4.2, we have tr eA*eA <= tr eA* eA ) <= tr (eA*/4 eA/4 i < "
Then the result follows from Lemma 2.1.

THEOREM 4.7. tr eA*eA tr eA* / A ifand only ifA is normal.
Proof. Suppose that tr eA*eA treA* +A. Then, by Theorem 4.6, tr ea*ea

tr (exp (A */2 k) exp (A/2))2 for all k. Hence, by Theorem 4.4, exp (A/2) is normal
for all k. Choose k0 large enough such that o(A/20) < 7r. Consequently, A is normal by
Corollary 2.4. The converse is obvious.

COROLLARY 4.8. IfeA*eA eA* + A, then eA*eA eA eA*.
Remark 4.9. The converse of Corollary 4.8 is false, as the example

Tri )A
0 -Tri

shows. Now

But

A* + A and so
0 2 e- e-1 e + e-1
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BACKWARD ERROR ANALYSIS FOR A POLE ASSIGNMENT
ALGORITHM II: THE COMPLEX CASE*
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Abstract. In a previous paper [SIAM J. Matrix Anal. Appl., 10 (1989), pp. 446-456 ], Cox and Moss
proved that the pole assignment algorithm of Petkov, Christov, and Konstantinov [IEEE Trans. Automat.
Control, AC-29 (1984), pp. 1045-1048 is numerically stable for the real case. In this paper, a modified version
of the algorithm of Petkov, Christov, and Konstantinov for the complex case is analyzed and the full algorithm
(real and complex) is shown to be numerically stable.

Key words, backward error analysis, complex pole assignment, numerical stability

AMS(MOS) subject classifications. 65G05, 93B55, 93D15

1. Introduction. The pole assignment problem for a single-input, time-invariant,
linear control system can be posed in the following way. Determine k R so that for a
given A 6 Rnn and b 6 Rn, A bk T has specified eigenvalues that are real and/or
complex conjugate pairs. The name "pole" comes from the fact that these eigenvalues
are the poles of a related transfer function. It is well known that if the pair (A, b) is
completely controllable, a unique k can be found [K], [R].

A crucial question in evaluating any pole assignment algorithm is the question of
stability with regard to the effect of round-off errors [vD]. In a previous paper [CM ],
we showed that the algorithm of Petkov, Christov, and Konstantinov [PCK], when
restricted to the assignment of real eigenvalues, is numerically stable. This algorithm
also provides a method for assigning complex conjugate pairs of eigenvalues using real
arithmetic.

The goal ofthis paper is to extend our backward error analysis to the full algorithm.
However, to obtain a satisfactory result, we have found it necessary to modify that part
of the algorithm dealing with the assignment of complex conjugate pairs of eigenvalues.
In this paper we refer to our modification as the PCK algorithm.

The first step ofthe PCK algorithm is the reduction ofthe pair (A, b) to a canonical
form (A), b0)) where the matrix A) is unreduced upper Hessenberg, and the vector
b<) is a nonzero multiple of the first standard basis vector.

In the second step, as the eigenvalues are assigned, the components ofan orthogonally
transformed gain vector are found. One component of the gain vector is found when a
real eigenvalue is assigned. In [CM we referred to this procedure as PCK deflation. Two
components are found when a complex conjugate pair is assigned. We call this process
C-PCK deflation.

The third and final step of the PCK algorithm is the transformation of the resulting
gain vector back to the original coordinate system. The main result of this paper is the
following theorem.

THEOREM 1.1. LetA R , b R, and let thepair (A, b) be completely controllable.
Let kl, "’", kr’ Pl + iql, Pnc +- iq"c denote the eigenvalues to be assigned, with

nr + 2nc n. Let k denote the gain vector computed by the PCK algorithm usingfloating
point arithmetic, and denote the unit rounding error by u.

Received by the editors October 16, 1989; accepted for publication (in revised form) March 15, 1991.

" Department of Mathematical Sciences, Clemson University, Clemson, South Carolina 29634-1907
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Then there exist AA e Rn n and Ab e R so that A + AA (b + Ab)kT has the
desired eigenvalues where

A[[FAA[[F= O[ nr( 2nnc max n u + O(nu),
--.c IIAIIF

and

[[Ab[[2
O[nr(n + 2nc)U] + O(n2cU).

The operation count for the PCK algorithm is 10n3/3 flops, as stated in [CM].
In {} 2, the PCK algorithm for assigning real or complex conjugate poles is outlined.

A description of C-PCK deflation is given in 3, and a backward error analysis is given
in {} 4.

2. The PCK algorithm. In this section we describe the three steps in the PCK Al-
gorithm.

Step 1. The PCK algorithm first uses a product of Householder transformations P
to reduce the pair (A, b) to the canonical form (A{), b)) where A() := PTAPis unreduced
upper Hessenberg, and b) Pb is a nonzero multiple of the first standard basis vector,
e (see [CM]).

Step 2. Let the desired eigenvalues 1, Xnr, Pl + iq,, "’", Pnc + iqnc be given
with nr + 2no n.

(a) Real case. If nr =/= O, set

iend I nr, if nc 4 0,

n-2, ifnc-0.
For 1, iend, apply PCK deflation to the pair (A(i-1), b(;-1)) and the ei-

genvalue ,i to find the scalar ai and an n + by n + orthogonal matrix Q(
so that for any n vector k

Q(i-)rA(i-1)Qfi-1)_ [Q(i-1)b(i-1)][i k(i) r]
has the form

=l)’ A(i (i

[gi’k(i)T]’

where A(;) is an n by n unreduced upper Hessenberg matrix, b(;) b )el is an
(i)n vector with bli 4: 0, and C/i, 3’’ and "r21 are scalars. See [CM] for more details

about PCK deflation.
If n 0, apply PCK deflation to the pair (A(n- 2), b(n- 2)) and the eigenvalue

to find the scalar an-l and a 2 2 orthogonal matrix Qn-2 so that for any scalar

Q(n-2)TA(n-z)Q(n-2) [Q(n-2)Tb(n-2)][an-1,
has the form

Find the scalar an from an (3’ 22 kn)//n.



ERROR ANALYSIS FOR A POLE ASSIGNMENT ALGORITHM II 1161

(b) Complex case. If nc 4: 0, for j nr + 1, nr + nc, apply C-PCK (complex
PCK) deflation to the pair (A(J- 1), b(j- 1)) and the eigenvalue pair PJ-,r +- iqj-nr to find
the scalars a2.-.- , a2j.-, and a 2(nr 4- nc -j + by 2(nr 4- n-j + matrix Q_
so that

Q T. A(j b(j k(j T- )Q-I [Qf-i ][QjT-
has the form

Sj *:, I2j-nr-1

, [2j nr
0

0 A(J) "L
k(J)v02j nr- 1, 02j nr,

where j is a 2 2 matrix defined in 3, and (unlessj nr + nc) Au) is a 2(nr + j nc)
by 2(nr + j n) unreduced upper Hessenberg matrix and b(j) b )e with b J) 4: 0. If
j nr + nc, the resulting system consists of the upper left 2 2 blocks of each part.

Step 3. Transform back to obtain the gain vector k().
If n 4: 0, set

k(nc + nr Qnc + n ] Ol2nc + nr

l Ol2nc + nr

If nc > 1, For nr 4- n 2, nr

O2i nr + 11k{i) Qi ot2i_ n, + 2

k(i+ )

If nr =/= 0, set

If nr > 1, For nr- 2, 0,

Finally, set k Pk() R’.

k(i) Qi
Oli + ] R
k(i+ 1) E

3. C-PCK deflation. Let D() be an m m unreduced upper Hessenberg matrix
and let b() bO)e be an m vector with b ) 4: 0. We describe C-PCK deflation for the
pair (D(), b()) and the eigenvalue pair p +_ iq. C-PCK deflation finds scalars a and a2
and an m m orthogonal matrix Q so that for any rn 2 vector a

(3.1) C(m-l) := QTD()Q QTb()[ai, a2, aT]
is block 2 2 upper triangular with an upper left-hand 2 2 block , which is defined
below. Define D(m ).= QD(o)Q. In addition, if m > 2, let C(2" ’) and D(2 ) denote
the lower fight-hand_

) .(m) 2) (m 2) blocks of C(m- ) and D(m- ), respectively.
Then C" anct D22 are unreduced upper Hessenberg.

As in the real case, C-PCK deflation is based on computing an eigenvector. The key
facts are that D() and C() :- D() b()k()r are identical except for row 1. Thus for
any k(), C() is unreduced upper Hessenberg. Suppose that v() is an eigenvector of C()
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corresponding to the eigenvalue p + iq. Then V(m) 4: 0, and once V(m) has been chosen,
v() can be found by backward substitution without knowing k(). If q 4: 0, then v<) is
complex and v) x) + iy<O) with x() and y<O) linearly independent. Using only real
arithmetic, the vectors x) and yO) could be found by solving, via backward substitu-
tion, the system C()x() px() qy(O) and C()y() qx() + py(O). However, for q near
zero x() and y(O) could be nearly linearly dependent, which would result in a numerically
unstable algorithm. Suppose, instead, that the system C()x() px() qZy(O) and
C(o)y(o) x(o) + py(O) is solved. Then for q 4 0, x()/q + iy(O) is an eigenvector of C()

corresponding to the eigenvalue p + iq, and, for q 0, x() is an eigenvector and y(O) a
generalized eigenvector of C() corresponding to the eigenvalue p. Furthermore, it is
possible to make x() and y(O) orthogonal by proper choice of X(m) and y(m).

After x() and y() have been found, C-PCK deflation computes an orthogonal matrix
Q as the product of Givens rotations so that X(m- 1):__ QTx(0) X] 1)el with x] 1) :7/=
0, y(m-l).__ QTy(o) y]m- 1)el -t- y(2 1)e2 with y(2m-l) =/= O, and if rn > 2, [/31, /2, /3,
0, 0 r := Q vb(o) with/33 4 0, while if rn 2, 1, f12 T :__ Q Tb(0) with f12 5/= 0.

Now define

R (m-l)S
_q2 p 0 Y2

and

P- (m-l) (m-l) -It- (m-l) (m-l)
Xl Y2 Y2 X

q2 y(..mz 1) q2 y(.m, 1)

x]m_l)
pJI-

x]m_l)
and note that RSR -1. Since

c(O)[x(O), y(O)] [x(O), y(O)]s [0, 0],

it follows that

[e2, "", em]T{D()[x), y(O)] [x(O), y(O)]s } [0, 0].

Therefore, there exists unique scalars a l, a2 SO that

D(O)[x(O), y(O)] [x(O), y(O)]s b(O)[al, o2]R.

Multiplying on the left by Qr and on the fight by R -1, we find that

(3.2) D

from which it follows that the matrix C<m- 1) in equation (3.1) is block 2 2 upper
triangular with an upper left-hand 2 2 block given by

If rn > 2, (3.2) yields three equations for determining a and three equations for
determining a2. We use the equations involving the largest value of [/[, 1, 2, 3. A
similar strategy is used in the rn 2 case. This is the first of two ways in which our
version of the PCK algorithm differs from that in [PCK]. In [PCK] only the equations
involving ]/3i], 2, 3, were used. Our approach is required by the error analysis
of4.

Now Q (Vm-2Um- 1"’" V1U2)U1 where the Ui and V,. are Givens rotations. C-
PCK deflation computes the following transformations of x) and y(O). xtl).= Ulx(o),
y(l) Uly(o), x(2).__ V1U2x(1), y(2).= V1U2y(1), "’’, x(m-1).__ Vm_2Um_lx(m-2),
y(m-1) Vm_zUm_ly(m-2). As was pointed out in [PCK], by computing only those
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components of x(), y(O), ..., x(m-1), y(m-1) which are required, the operation count
and round-off error can be reduced. We now present the details of C-PCK deflation.

ALGORITHM (C-PCK DEFLATION). Given D() Rm unreduced upper Hessen-
berg, b() b )el e R with b 0) 4:0 and a pair of complex conjugate eigenvalues p +_

iq, compute al, a2,/31,/52, f13, and Q as follows:

Comment: Begin C-PCK deflation.

X(m) := 1, y(m) :=

(3.3) x)_l ((p- d(m)m)X q2y))/d?,,,-t

y(Om)_ (X(Om) + (p a(O) ,,(O)/a(O),,,mm,.rm "m,m-

Fori= 1,..-,m-
ifi4:m-

(3.4)

x:l) d-:l) )+,]/d(im 1.)1--[(P d 1.) 1) 1) X(m.lt,m-i)X(im--i q2y(lm--i i,m-i+l -t,m-i-1

y=l) [x:l)+ (p d:.) _i)Y(m/-_l) d-.) y=l)l,m 1,m-i+l i+l]/d(1i,m- i-

endif
Construct a Givens rotation U/- Ui(m i, m + Rmxm so that

U;x(i-lera- --: " 0
T Vix(i- 1) X(m/’)_ 0em-i+l ---: i+1

For k m + 2, m (do not execute ifm + 2 > m)
(i)

Xk "--0

repeat
Set

/(i-1) UiD(i-I)U[
T Uiy(i- 1) 1)

em-i ff--i
T Uiy(i-1)=.ff(im-_l)+em-i+

and note that the (m + 1, m element of/(i- 1) may not be zero.
If/:/:

Construct a Givens rotation E- E- (m + 1, m + 2) R
so that

eTm-i+lI/’i-l(i-l) Y)-i+I > 0

eTm_i+2Vi_l(i-l) y(m/)-i+2 0

Note that x(i) is unaffected when multiplied by V/_ 1.

For k m + 3, m (do not execute ifm + 3 > m)

y i) := 0

repeat
Set

D(i> Vi-1 b(i- 1)VL1

y(im)_i ..-- (i-m_il)
and note that the (m + 2, m element ofDi) may not be zero.
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else
Set

endif

(3.6) al (d-)- 2)/B2

a2 (d2 ) 22)/fl2

else

(3.5)

[3t, 32, 33, 0, 0] T’= Vm-2Um-bo

Comment: D(m-l) QTD()Q, C(m-l) QTD()Q- Qbo[QTk()] T

Comment: Vm- 2Um bo QTbo
If m 2, set/33 0.
If(l/31] >=max {I/321, 1/331})

01 (d]7-1)

1/331)

else

(3.7)

endif
end if

Comment: End of C-PCK deflation.

We conclude this section by showing that if m > 2, /3 5/= 0 and that C{2 1) and
D2’-1) are unreduced upper Hessenberg.

First note that for 1, ..., m 1,

(3.8)
X(im)-i [X(m/- })] 2 + [X(m/-l)i+ 1] 2 "--> x=li)+ 11 IX(m/1)(i-,)

Similarly,

(3.9) y(mi)-i+l > lyM’+:I > .--> lyM)I

By direct computation,

(3.10) y) -I dm- I. [x)]2 + q[y)]2
[(p Umm)X) qZ 2 t(0) X)]2m,m (0). y)] + m,m

Since Qrb) Vm- 2Urn- b), i O, 4, m and we have
.(m- 2)xm- 2)
Y3 bO).3 [-(m-2)]2 (m-2)]2[x]m-2) 2

Y2 + Y3 + [X 2) 2

Thus, because ffm-2) ym-Z), 3 O.

> ..(i-2)Xm-(i-2)1 > > x)l .

repeat
Comment: all components of x(- 1) and y(m-1) have been computed.

Set QT: Vm-2Um-’"VIUzU1 (ifm= 2, Qr:= U),
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Finally, we show that C(27 -1 and D2’-’) are unreduced upper Hessenberg. Fol-
lowing an argument similar to the one in CM ], it can be shown, using the zero, nonzero
structure ofx(i) and y(i), 0, .--, m 1, that D(m- l) is upper Hessenberg except for
fill-in in the (3, entry. Thus D2 l) is upper Hessenberg. Since C(m- l) and D(m- )

differ only in their first three rows, C2 1) and Dt2 ) differ only in their first row, so
that Ct2 1) must also be upper Hessenberg.

Now for any rn 2 vector a, C() D() b()[ al, a2, ar]Q r is unreduced upper
Hessenberg. Therefore, the pair (C(), b()) is completely controllable. It follows that
M’= QTb(), C(m- Q Tb(0), { C(m- 1) } Q rbtO)] has rank m. Define b 1).= 3,
0 0 r. Due to the block structure of C<m- 1), the (rn 3) rn matrix consisting of
rows 3, ..., rn ofM must have the form [btl), C(2- )btl), {C(2-)}m-lb<’)].
Consequently, if C(2 l) is not unreduced, then one or more of the last rn 3 rows of

(m--l)M must be trivial, which is a contradiction. Thus C(2 ) is unreduced, and so 022
must be also.

4. Backward error analysis. As in [CM], we use the notation of Wilkinson [W]
in the analysis of floating-point errors. All symbols representing computed quantities
denote floating point results, u represents the unit rounding error, and ddenotes a constant
of order one. We have tried to include enough details in the proofs so that a reader
knowledgeable in the subject could fill in what is left out. To shorten this analysis, we
assume that all Givens rotations are computed exactly. At the end of this section, we
point out the changes that must be made to take into account the errors in computing
these rotations.

We need Propositions 4.1, 4.2, and 4.3, together with the result of CM], to prove
Theorem 1.1. In these propositions, we use the notation of 3 with one exception. Let
x(m--1) :___ ael and y(m-l):= ye +/e2. Then

a "y] and == 0

q2T a q2"t’ 2
p -+

_q2 / qZ,y
p/

We begin with an analysis of C-PCK deflation.
PROPOSITION 4.1. Suppose that C-PCK deflation is applied using floating point

arithmetic. Then there exists matrices G, F Rm and a vector f R so that

where

D( + G + F- (b( + f)[al, a2, aT] Q Qr,
O

IID<)[IF
_-< 10 (rn Factor + Factor2

I[D<)IIF =< 11 fFactor du + 10f(m Factor + Factor2) du

+ 12fFactor -- 26Factor4 du,

b() 112
<-_ 4du,
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and

I[D() pill F Factor2Factor,
O()1[ F
q2,y2

Factor3 a/[ D()l[F’
171q-Factor4 O/I1[ O)llF"

Proof. We use a genetic floating point error factor (1 + e) where the e may be
different each time it appears. Rearranging the result ofapplying floating point arithmetic
to the C-PCK equations, we have

d(0) (m0) + (1 + e)(’4(0) p)X(m) q2 (0)(1 + ,,,m,m IX Ymm,m

(1 + e)d() y)__ + (1 + e)(d(o)m,m P) Y(mO) X (0)
,’m,m

and fori= 1, rn- 2,
-. -1) )x(i- 1)(1 + e)d ’ 1)

__
(1 -J- $)(d(m ,,m-,,m-i- lXg i-1 P

+ + e)d(Z ’) x( 1) 2y(i-1)i,m-i+ i+ -q m-i

-1)1) -[" (1 + e)(d: l) P)Yi(1 + e)d ’) Y l,m-i,m-i-

-’+ =x-’+(1 + e)d .) Yt,m-i+

where I1 --< 5 du. Now define

ao) X(mO_ + (,4(o)1"] (mO) e

,4o) y)_ + e(-) e.-m,m P)y)lTl

and fori= 1, rn- 2,

-. -1) + ed(mi- !) X(mi: 1)-n ,,m--, +<d !) -p)x
-).= ed:) -) + e(d-)- t,m i-lY ,,m i--P)Y )+ed i,m-i+lYl) )

i+

Also, set r/lm-2) 0 and m-2):= 0, and note that [<), <)] U[<), <o)] and for
2, m 1, [<i), <i)] Vi_Ui[<i- ), <i-)].
Then

[e;, ..., e]{m-[xm-), y<m-)]_ [xm-), y<m-)]S }

4.) [e, "--, e][,m-), m-)],

II<m-=)[12 m- ll liD<)- plllFllX<m-)l[2 5(m- )dullD)-plllFll,

and

IIg’m-=ll2 /m 111 lID P/IIFIlym-’)II2

=< 5(m- 1)dullD) -plllF3, 2 + 2
Set b ) := QTbt) [/31,/32, {/3, 0, 0 T. We find F’) R m, f(,) Rm, and

scalars al and a2 so that for any vector a R 2,

(4.2) {D(m-l) + F() (b(1) + ftl))[al, 0/2, olT]}[x(m-1),y(m-l)]

IX(m-1), y(m-1)IS [](m-1), -(m-1)].
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Define

G(1) :-- [ "rl(m-1) ’3/’rl(m- l) (m- l) ]a a ,0,’",0

Then [r<m- ), f<m-)] _G<)[x<m-), y<m-)] and

13’111n(m-1)ll2
/

Ili’(m-1)ll2IIa(1)llF----< +
I"1 131

Setting G QG(I)QT, we get the desired inequality for G.
Next, multiplying (4.2) on the fight by R -1, we obtain

(4.3) {D(m-l) + G (1) + F
C-PCK deflation solves for a and a2 using (4.3) in one of three ways, depending on the
magnitudes of 31,/32, and/3 relative to each other.

Case (I all >= max { I=1, 1/331 }). The floating point result for a2 can be written
as

m-l)(4.4) 0/2 [(1 + 61)d2 a/3-(1 + 62)q2T2/(otfl)]/[(1 / 63)1],

where 1611 ----< 2du, 121 6du, ]631 =< 4du. For al we have

(4.5) al [( / 64)(dI 1) p) / / 65)q2",//a]/[( / i3)/1]

where /641 =< 7du, 161 --< 9du. Combining (4.5) and the 1, part of (4.3) leads us to
(l) (1) (1) (m--l) 2set f := 6331 and f 11 :-- --gll / 64(dll p) + 65q 3, Using (4.4) and the

(1) (1) (m 1) 2 21, 2) part of (4.3) leads to f 12 :-- --g12 / 61 d12 / 62q "Y /(aft). It suffices to set
(1) (1) (l) (1) (1) (1)

all other entries ofF and f to zero, except for f 21 f 22 f 31 and f 32 which we
find in the following way. From (4.1), we find that there exists unique scalars &l and
&2 so that

D(m-2)[x(m-2), y(m-2)] [/(m-2), -(m-2)] [x(m-2), y(m--2)]S b(O)[l, 2]R.

Multiplying on the left by Vm-2Um-1 and on the fight by R -1, we have

(D(m-l) / G(1))[el, e2] b(1)[l, 2] [el, e2] ;,
from which we find that

(a) dl’-l)/ gll) 131/1 1, (d) dln-1) + g])- /1/2 ’12,

(4.6) (b) d(2 1) + g(21) fl2l g21,

(c) d7 -1) + gll) /3/1 O,

(e) d(27 -1) / g() 32&2 22,

(1)(f) d 1) / g32 33 2 O.

From 4.6 (a) and (b) we have

dz]n- l) + g21) (2/l)(d}n 1) / gll)l ’1 )-- if21 O.
(1)

Comparing this with the (2, part of (4.3) leads us to define f 21 so that

f(1) ffl O.21 20/1 / (2/l)(dl? 1) /

Using formula (4.5)for al, the definition ofgll, and the assumption that 1/311 1/321,
we find that

If(2)l < 166(di]"-1) p) gl 1) +
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where 66 du, 1671 13du. Similar considerations lead to

22 [63/(1 + 63)1 d(2 ) -p + 22 --qZT/l

+ I/{ + a,)l Iaa7--g- qy/{.)l,

If)1 < 168(dT- ) p) g) 2
where [68[ ldu, [69] 13du, and

3

m-l) (1) 2+ /( + 63) i,d g, 2a7 /()1.

With these bounds on the entries of Ft, we have

(4.7)
+ 12du3q272/lafl] + 26duq2[T/a[.

Case 2 ([f12] max {]fl[, [f13[)). The floating point result for a can be written
s

(4.8) , [( + 6,)d7-’ + a/]/[( + )],
where ]6] 4du, 2 4du. For a2 we have

(4.9) a2 [(1 + 63)(d-’- p) + (1 + 64)q27/a]/[(1 + )f12],

where 6. 7du, ],] 9du._t,Combining_t (4.8) and the (2, pa of (4.3) leads us to
set f 62fl2 and f2 := -g2 oa2 -. Using (4.9) and the (2, 2) pa of(4.3)

(m-)leads to f := 63(d22 p) -,- 64q7/a. It suces to set all other entries of
F(’) and f(l to zero, except for f,, f) (1) (1)f 3, and f 32 Using the same technique as
in the previous case, we find that

]f’l) < 12/(1 + 62)11 d}7-1) P + gl) + qe/al + 11/( + 6)1 I,dT l + gll I,
l) (m-) (l)If]z I 16s(d22 -p)-g22 + 64q2/al,

where 1651 =< du, and

if() (m 1) 1)+ I1/l(1 + 62)1 16,d2, g, 1,
-(1) (m-l) (1)]f32 66(d22 -P)- g22 -67qZ/al,

where 166 du, 167 3du. With these bounds on the magnitudes of the entries
ofF(), we have

(4.10) IlF(’)IIF -< ldu3llD(m-l) PlIIF + /3IlG(I)IIF + 26duq21’/ol.

Case 3 (I/3l >- max { I,1, Il }). The floating point representations for O/1 and
a2 can be written as

(4.11)

(4.12) a2 + e2)d’- ’)/3,

where e l, I1 =< au. It suffices to set all entries of F’" and f<" to zero, except for
() () m 4jl,fc() J2,..t’(1)r (22,1) f 31 and f 32 CO b rang and the (3, part of (4.3)

x’(1) (m- 1) (1) (1) _(m- l) g). Proceedingleads us to set j e d3 g3 Smflarly, f 32 := e2 u32
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as in the other cases, we find that

If)l __< IdT-)- g)l, Ifl?l _-< le2d
if(2l)l < leld,-l) gl)l if(l) (m-l) (1)

22 =< le2d32 -g32 I.
With these bounds on the magnitudes of the entries of F(l), we have

(4.13) IIF<’)IIF--< du/311D(m-1)-plIIr+ /31IG(I)II F.
Setting F := QF Qr, the desired inequality for Ffollows from (4.7), (4.10), and (4.13 ).
Setting f := Qf(l), the inequality for f follows from the above definitions. []

Proposition 4.2 verifies that through a simple restart procedure, the amplification
factors Factor2, Factor 3, and Factor4 can be made negligible.

PROPOSITION 4.2. Suppose that C-PCK deflation is repeated with starting values
(m) bq2 and (m) + b, where b is the root of

-0/’yq2b2 + (0/2 T2q2 -/2q2)b -t- 0/,g 0,

which maximizes I) I. Then f[(m-1) := e and (m-1) ,}e -I- e2, with 5/ O(u).
Proof. First, suppose that the computation is done in exact arithmetic. Define T,

a 2 2 matrix, by tll 1,/12 b, t2 -bq2, and t22 1. From [(m-1), (m-)]
X(m- ), y(m- )] T and TST- S, it follows that (m- r (m- 0. Since (m-

&e and (m- 1) e +/e2, " 0. Using floating point arithmetic, we find that &-
(m-1)r(m-) O(U), and hence Il --< O(u)/ll <= O(u)/IX)l.

The conclusion of Proposition 4.1 is simplified if C-PCK deflation is repeated in
the event that Factor2, or Factor 3, or Factor4 is tOO large. In our implementation of the
PCK algorithm, C-PCK deflation is repeated if

max { Factor2, Factor3, Factor4 } > 10,

in which case the conclusion of Proposition 4.1 may be modified so that

(4.14)
Flip

IIDO)IIF
_-< [468 + Factorl(330m 310)]du _-< 330(Factorlm + 2)u.

If we did not include repetition of C-PCK deflation in the PCK algorithm, our estimate
for AA IIF in Theorem 1.1 would contain Factor 2, Factor 3, and Factor4 and our result
would be degraded. We point out, however, that in our implementation of the PCK
algorithm, we have observed that C-PCK deflation is repeated only for extremely ill
conditioned problems. For such problems, we have yet to observe a case where repeating
C-PCK deflation changed the computed gain vector significantly. Next, we analyze Steps
2 and 3 of the PCK algorithm.

PROPOSITION 4.3. Suppose that the PCK algorithm is applied usingfloating point
arithmetic to the pair (D o), b o)) where D o) R is unreduced upper Hessenberg and
b() b )el with b ) 4: O. Let X, Xtlr, Pl +- iq, P,c + iq, denote the eigenvalues
to be assigned.

Then there exists positive constants Cl, C2, and C3 and matrices Z, AD) R
and Ab() R with Z orthogonal so that

(4.15) D<) + AD() + (b() + Ab<))k()r Z
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where

[IAD)IIF
[ID<)[IF <= Cnr(n W 2nc + l)u + f2 max {HD()--PilllF}n(nc + l) u

l<=i<--nc [ID() F

and

+ C22ncU + C3nc(nc- 1)u

Ilzb)ll2 IIb<)llzf3nu.

Proof by induction on n. Set C3 2du. If nr =/= 0, we apply PCK deflation with
m n and X X, and following the proof of Proposition 3.2 in CM], we obtain our
result. As an alternative, the method used in the proof of Proposition 4.1 can be applied
to the real case.

If n 0, we apply C-PCK deflation with m n 2n and p Pl, q q. We find
that

(4.16) D(n-l) + F

where

[01, O2, OfT

IIF()+G(1)[IF<I[D()I[FCz(IID()--PIIIIF2nc+2)u,=[]D(O)l[

f<’)[12 =< lib<)[12C32u, b<’) :/3el.

The const Cz is equal to 330 according to (4.14). The PCK algorithm proceeds by assigning
.-.(n- l)the remaining eigenvalues to 1/-)22 b()). Denote the resulting gain vector by k().

(n-l) 2)(n-2)From the induction hypothesis, we have matrices Z(), D22 G R"- with
Z() onhogonal, and an n 2 vector b() so that

IIAD-1)HF C2 max {][D()--PilllF}(n--l)ncU+ C22(nc-1)u’) I1 -

and

+ C3(n- 1)(no- 2)u,

II/b ) I1_ be’)112C3 (n 2 u,

(n- ) b() 1) Z Z(4.17) D(2 1)__ /D22 + _+_ mb( )k )T (1) (1)T

0
(n-l)Now set W’= diag (12, Z)), H :- diag (O2, AD22 ), where 12 denotes the 2

2 identity matrix and 2 the 2 2 zero matrix, and set J’= [0, 0, Ab)r]T[a, 2, 0].
Sincef)4=0onlyifl <i <3and <j <2,andfl ) 4=0onlyifi= 2, we findiJ"
using 4.16 and (4.17 that

D(n-1) + F() + G() + H + J- { [2 + f(1) -I- [o]}0 [o, o2, k(l)T]
Ab()
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Using (4.3), we obtain the estimate

IIJIIF_-< I,111zXb(1)ll2 / la2111Ab(1)ll2----< [ICl331-t-Ic2/331]C3(n- 2)u

IIOlle3(n- 2)u + O(u2).
n 1) n 1) Do) and b )ll 2 < b)]12. Setting

Z:=QW,

D() Q[F(l) + G(l) + H + j]Qr and b()’=Q{f()+[0,0,b()r]r}Q r,
and using the above estimates, we obtain the bounds on IIDt)IIF and

In conclusion, we prove our main result.
Proofof Theorem 1.1. Theorem 1.1 is a corolla of Proposition 4.3. The effect of

round-offeor on the ohogonal transformations in Proposition 4.3 can be analyzed as
in [CM]. Keeping only the highest-order terms in n, nr, and nc, we find that Z must be
replaced by Z + AZ with IIz I1 o[ nr(n + 2nc)U] and that the estimates in the
conclusion of this proposition must be changed to

IID(II
0 n 2nn + u + 0 max nu + O(nu),o liE D

I111 O[n(n + 2n)u] + O(nu).

The floating point analysis of the transformation back to the original coordinate system
appears in the proof of Theorem 1.1 in [CM ]. Finally, we have

A + AA + (b + zSb)k7= (T + AT) T + AT) -1,

0 &
with T orthogonal and with the same estimates for I[AAI[F/I[AIIF, I[Abl[2/llb[12, and

IlZXTII as for IIAD<)II/IID<)IIF, IIb<)ll=/IIb<)ll=, and IIAZ I1.
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CIRCULATIVE MATRICES OF DEGREE

HSIN-CHU CHENt

Abstract. In this paper a special class of matrices W in CnXn that are a generalization of
reflexive and antireflexive matrices are introduced, their fundamental properties are developed, and
a decomposition method associated with W is presented. The matrices W have the relation W
eiP*WP, x/-2-f, 0 E T, where e is the exponential function and P an n n unitary matrix with
the property pk I, k >_ 1. The superscript denotes the conjugate transpose and I is the identity
matrix. It is assumed that k is finite and is the smallest positive integer for which the relation holds.
The matrices W are referred to as circulative matrices of degree 0 with respect to P. Embedded in
this class of matrices are two special types of matrices U and V, U P*UP and V -P*VP, which
bear a great resemblance to reflexive matrices and antireflexive matrices, respectively. The matrices
U and V are simply called circulative matrices and anticirculative matrices, respectively, without
referring to their degrees, for the sake of brevity. These matrices are introduced and general theories
associated with them are developed. Then their special cases are discussed, and, in particular, two
more special classes of matrices are defined, which will be referred to as rotative and antirotative
matrices. These are a special case of the circulative/anticirculative matrices on one hand and a
generalization of (block) circulant/anticirculant matrices on the other. Numerical examples are
presented.

Key words, centrosymmetric matrices, circulant matrices, circulation matrices, circulative ma-
trices of degree 0, circulative (anticirculative) matrices, circulative decomposition method, dihedral
matrices, group representations, rotation matrices, rotative matrices, reflection matrices, reflexive
matrices

AMS(MOS) subject classifications. 15A03, 15A18, 15A59, 20C30

1. Introduction. In [ChSa87] and [Chen88] we presented two special classes of
matrices A and B in Cnn with the relations

(1.1) A-PAP and B- -PBP,

where P is some reflection (symmetric signed permutation) matrix. The matrices
A and B are referred to as reflexive and antireflexive matrices, respectively. The
special properties of these matrices and their applications to the numerical solution of
elasticity problems are further exploited in [ChSa89a] and [ChSa89b]. In this paper,
we first introduce a generalization of these two special classes of matrices, and develop
basic theories associated with this generalization. The new matrices, for example, W
in Cnn have the relation

27r
(1.2) W- eip*wP, i= v/Z-1, 0- ---j,
where j and k are integers, e the exponential function, and P an n n unitary matrix
with the following property:

(1.3) Pk -I, k >_ 1.

The superscript denotes the conjugate transpose; I is the identity matrix. We
assume that k is finite and is the smallest positive integer for which (1.3) holds.
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We call the matrix P a circulation matrix in this paper for two reasons: (1) all the
eigenvalues of P lie on the unit circle of the complex plane, and (2) the powers of P
circulate around I, P, p2,.. ", and pk-1. The matrices W are, therefore, referred to
as circulative matrices of degree 0.

Embedded in the class of matrices W are two special types of matrices U and V
that bear a great resemblance to the matrices A and B in (1.1). In other words, the
matrices U and V have the relations

(1.4) U=P*UP and V--P*VP,

which correspond to the matrices W with 0 0 and 0 , respectively. Evidently, the
matrices U are circulative of degree 0 and the matrices V circulative of degree . For
the sake of brevity in this paper, however, we call a matrix that is circulative of degree
0 a circulative matrix and a matrix that is circulative of degree an anticirculative
matrix, without referring to their degrees. After introducing these special classes of
matrices, we then discuss some of their special cases. In particular, we define another
two special classes of matrices, to be referred to as rotative and antirotative matrices,
which are a generalization of (block) circulant/anticirculant matrices [Davi79].

The matrices U possess several special properties that are not only theoretically
interesting but computationally useful. In addition to including reflexive matrices as a
special case, this class of matrices also contains rotative matrices as another important
special one. Reflexive matrices and rotative matrices frequently arise from a very wide
class of scientific and engineering applications. Numerical examples derived from the
discretization of certain partial differential equations are presented for demonstration
purposes. The matrices V, which do not seem to appear naturally from physical
problems, are the counterpart of the matrices U and include antirotative matrices
and antireflexive matrices as special cases.

Since the two classes of matrices U and V can be embedded in the class of matrices
W, in what follows we shall mainly address the special properties possessed by W and
show the necessary and sufficient conditions to split an arbitrary matrix A in Cnn
into matrices W1, W2, "-, Wm, 1 <_ m <_ k such that they are circulative of different
degrees with respect to the same circulation matrix P. In addition, a decomposition
method referred to as the circulative decomposition method will also be presented
for the solution of nonsingular linear systems Ax b with A being circulative of
degree 0 with respect to some circulation matrix P. The special properties and
decompositions associated with both U and V can easily be deduced from those of
W and are, therefore, only briefly stated.

2. The special matrices and vectors. Unless otherwise noted, matrices, vec-
tots, and scalars are represented by the uppercase roman, the lowercase roman, and
the lowercase Greek letters, respectively, throughout the paper. We use the su-
perscripts T, ,, -1, and / to denote the transpose, conjugate transpose, inverse,
and generalized inverse of matrices (or vectors), respectively. All matrix-matrix and
matrix-vector multiplications are assumed to be conformable. The subscripts and su-
perscripts i, j, k, ..-, n are considered to be positive integers except that i associated
with the exponential function e will be used exclusively for v/L-- 1 in this section. The
symbol 0 is assumed to be a real number. Before presenting the special properties of
the two classes of matrices mentioned previously, we give some basic definitions.

DEFINITION 2.1. Circulation matrices. Any matrix P E Cnxn is defined to be a
circulation matrix if (1) P is unitary and (2) pk I for some integer k _> 1.
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Note that the matrix P can be considered to be a matrix representation of the
cyclic group ( {I, r, r2, ..., rk-l} generated by some element r of order
frequently encountered in the area of group representation theory [CuRe62], [Hill75]
and its applications [Satt79], [Mulk89].

DEFINITION 2.2. Circulative vectors of degree 0. Let P be some circulation
matrix of dimension n. A vector x E Cn is said to be circulative of degree 0 with
respect to P if Px- eix.

DEFINITION 2.3. Circulative matrices of degree 0. Let P be some circulation
matrix of dimension n. A matrix A Cn is said to be circulative of degree 0 with
respect to P if A eoP*AP.

It should be noted that if e is an eigenvalue of P with pk I, then eko 1.
The converse, however, is not true in general. Therefore, in the definition of circulative
matrices of degree 0, we do not assume e to be an eigenvalue of P although
must be unity for A = 0.

DEFINITION 2.4. Circulative subspaces of degree 0. Let P be some circulation
matrix of dimension n. A subspace c (: is said to be circulative of degree 0 with
respect to P if Px ex for every x l. A subspace AA c 12n is also said to be
circulative of degree 0 with respect to P if A eoP*AP for every A

In the following, we define C(P) and C(P) to be, respectively, the subspaces
of vectors and matrices that are circulative of degree with respect to P. In other
words,

C(P) {x x C and Px- eix}

and

Cx (p) {A A Cx and A eP*AP},

where P is some circulation matrix of dimension n. Note that C(P) is the eigenspace
of P corresponding to the eigenvalue eie. Therefore, from the spectral theory of
normal matrices [HoJo85], it can easily be shown that Cue1 (P) and Cno. (P) are mutually
orthogonal if i01 k ei09., since P is normal. Although it is not the purpose of this
paper to discuss group representation theory, it is worth noting that the set of all
nonsingular matrices U that are circulative (of degree 0) with respect to the same
matrix P form a matrix group. The same, however, cannot be said for matrices
circulative of degree that is not a multiple of 2r, including anticirculative matrices V.
We are now in a position to introduce the special properties related to these vectors
and matrices.

LEMMA 2.5. A subspace of matrices or vectors is circulative of degree 0 with re-
spect to some circulation matrix P if and only if it is a subspace circulative of degree -0
with respect to P* i.e., C(P) cn_o(P* and Cn(P) C_(P*).

Proof. Since P is unitary, we have P* P-, and therefore Px eiex if and
only if P*x e-x. Likewise, A eP*AP if and only if A e-PAP
e-(P*)*AP*. Thus the proof is trivial.

LEMMA 2.6. Let and fl C.
(i) If A and B cxn(P), then (cA + fiB) cxn(p), (cA* + B*)

n
-e (P), and (cA+ + zB+) e cn_ (P).

Cnxn cnxn(ii) /fd E 0i (P) and B E (P) then (cA*A + ZB*B) and (aAA* +
ZBB*) E Cx(P); but AB e Cxn(P) where w Oi + 02.



CIRCULATIVE MATRICES 1175

Proof. The proof for (aA + fiB) and (aA* + 3B*) in (i) and for (ii) is trivial.
Therefore, we present only the proof for (aA+ + B+). To prove (aA+ + B+) E
C_’(P) in (i), where A and B are assumed to be circulative of degree with respect
to P, it suffices to prove that A+ is circulative of degree -0 with respect to P. The
generalized inverse of a matrix A is typically defined to be the unique matrix X that
satisfies the following four Moore-Penrose conditions [Davi79]:

(a) AXA A,
(b) XAX X,
(c) (AX)* AX, and
(d) (XA)* XA.
Premultiplying and postmultiplying both sides of (a) by P* and P, respectively,

and using the fact that P is unitary, we obtain

(2.1) P*APP*A+PP*AP P*AP,

where we have replaced X by A+ since A+ is the generalized inverse of A. Substitution
of A- eieP*AP into (2.1) yields

AYA- A

where Y e-ieP*A+P. Note that Y satisfies the first Moore-Penrose condition.
Applying the same procedures to (b), (c), and (d) shows that Y also satisfies all three
of these Moore-Penrose conditions. Therefore, Y is a generalized inverse of A. Since
the Moore-Penrose inverse is known to be unique, we conclude that A+ Y and,
therefore,

(2.2) A+ e-op,A+p C_>’(P).

Likewise,

B+ e-op*B+p C_n(P).

nxnHence, from (2.2) and (2.3) we conclude (cA+ + fiB+) e "-0 (P)"
From Lemma 2.6, it is clear that the sum of two matrices that are both circulative

of degree 0 with respect to a given P is itself circulative of degree 0 with respect to the
same P. The product of two matrices of which one is circulative of degree 01 and the
other circulative of degree 02 with respect to a given P is circulative of degree 01 + 02
with respect to the same P.

In the following, we use Pt* to denote (Pt)*, the conjugate transpose of the/th
nnpower of P. It is worth noting that if A Cn(P), then A ",0 (pn) for any

integer m. The converse, however, is not true in general.
THEOREM 2.7. Circulative decomposition of matrices. Let P be an n x n cir-

culation matrix with pk I. A matrix A Cnn can be decomposed into Wo,
m--1W1 Wm-, A- j=0 Wj such that Wj CnnCOy (P) for 0 <_ j <_ m- 1 if and

nXn p,only if A Cme where 0 7- with eke 1 and cOy + (2rrj/m) 1 < m < k
inxnProof. (a) If A "me (P’), then A- e’epm*Ap by definition. By taking

m-1
1 E eizcOJ Pz*APZ 0 < j < m- 1(2.4) Wj

/=0



1176 HSIN-CHU CHEN

we immediately obtain

m--lm--1

j=o d=o l=0

where we have interchanged the order of summations and used the geometric series
identity [Davi79]

m--1

(2.5) e,twy_( m if/-0,
0 otherwise.

j=O

Now, premultiplying Wj in (2.4) by eJ P* and postmultiplying Wj by P yields

eiwj P*WjP _11 ei(+)J P(t+)*AP(+)
m

l=O

m--1
1 e p,Ap
m

/=o

Wj.

nxnNote that eimWj eim(o+(2uj/m)) eimOe2rj eimO It is clear that Wj wj (P),
nxn pm.0 < j < m- 1 Therefore, the decomposition is completed if A mO

(b) Now, assume that A can be decomposed into W0, W,...,W_ such that
nxn pnn pm.Wjj (P),0jm-1. We want to show that d mO

n imj imOom Wj wj (P) and we have

(2.6) Wj eiwJ P*WyP ei2wy p2*WjP
eimWj pm*wjP eiOpm*wjP.

Since A is decomposed into Wy, 0 j m- 1, we obtain from (2.6)
m--1 m--1

j=o j=o

k =o
eimOpm,Apm.
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[n n (pm). This completes the proof.Therefore, A E
In the following, we show that the decomposition in Theorem 2.7 is unique (apart

from 0) if it exists. In other words, if the matrix A can be decomposed into W0, W1,
m--1W,_I, A -j=o Wj such that Wj E cnnwj (P) for0 <_j_< m-l, then (2.4)

holds. Observe that

m--1 m--1 m-1 m--lrn--1

/=0 /=0 r=0 /=0 r=0

m--lm-1 m--lm--1

r=0 /=0 r=0 /=0

e(- W mW, 0 <_ j <_ m- 1.
r=0 \/=0

Here we have again used the relations in (2.6) and the geometric series identity (2.5).
Obviously, we have

m--1

Wj -I E etWJ pt*APt’ O_< j _< rn-1.
/=0

The decomposition is, therefore, unique if it exists. Note also that the above decom-
[nXnposition is always possible when rn is equal to k since pk I implies A "ko (I)

C2n(I) cxn(I). For the particular case of circulative matrices U and anticircu-
lative matrices V, we have the following results.

COROLLARY 2.8. (i) A matrix A Cnxn can be decomposed into U and V,
A- V + V, such that e e cxn(p) and V e cnxn(p) if and only if A e cxn(p2).

(ii) Any matrix A Cx can be decomposed into U and V, A U + V, such
that U e cxn(p) and V e cnxn(p) if p2 I.

(iii) If p2+1 I for some integer i, then (nxn(p) {Onxn}.
Proof. Applying Theorem 2.7 with rn 2 and 0 0 to the matrix A yields the

result of (i). The statement (i) immediately implies (ii). To prove (iii), we use the
nxnfact that if A CoX’(P), then A "mO (P’) for any integer m. For any matrix

V Cx(P), we have

V -P*VP Pe*Vp2 -p3*vp3 (-1)’pm*vpm.

Therefore,

V- -V- 0 if p2j+l I

for some integer j. [

Analogous to circulative matrices of degree O, vectors that are circulative of degree
0 also possess the same circulating nature. In other words, if b C(P), then b
Cno(PTM) for any integer m. The converse is not true either. In particular, for the
circulative vectors u and anticirculative vectors v, we have

u- Pu- p2u P’u

and

v- -Pv- Pv- -p3v (-1)’pmv
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for any integer rn.
THEOREM 2.9. Circulative decomposition of vectors. Let P be an n n circulation

matrix with pk I. A vector b E cn can be decomposed into To, Wl,’",Wm-1,
m--1b- -j=0 wj, such that wy Coj (g) for 0 <_ j <_ rn 1 if and only if b cne(Pm)

where 0 T with eiko 1 and wj 0 + (2rj/rn), 1 <_ rn <_ k.
Proof. Take

1 ,,1 -itwy pt(2.7) wj e b, 0 <_ j <_ rn- 1.
m

/--0

The proof is then analogous to that shown in Theorem 2.7 and is therefore
omitted. [:]

COROLLARY 2.10. (i) A vector b n can be decomposed into u and v, b u+v,
such that u e C(P) and v e cn(P) if and only if b e C(p2).

(ii) Any vector b Cn can be decomposed into u and v, b u + v, such that
u e C(P) and v C(P) if P2 I.

(iii) /f p2j+l I for some integer j, then C(P)= {On}.
THEOREM 2.11. Given a linear system Ax b, A Cnn, and b, x C, if A

is nonsingular and circulative of degree 01 with respect to some circulation matrix P,
then x e C (P) if and only if b e C (P) where w 01 -- 022

Theorems 2.9 and 2.11 immediately suggest a decomposition method for the so-
lution of nonsingular linear systems Ax b with the coefficient matrix A being
circulative of degree 0 with respect to some circulation matrix P. The right-hand side
b can be arbitrary. From Theorem 2.9, it is clear that if pk =/,then any right-hand
side b can be decomposed, using (2.7), into k parts, w0, wl,.-., wk-1, such that each
part is circulative of some degree with respect to P. It can also be shown that, apart
from 0, the circulative decomposition of vectors is unique. Let

We have

Xj A-lwj, 0 <_ j <_ k- 1.

k-1 k-1 k-1

x- A-lb- A-1E wj E A-Iwj E xj.
j=0 j--0 j---0

Therefore, solving such a single system is equivalent to solving the following k inde-
pendent systems:

(2.8) Axj wj, 0 <_ j <_ k 1.

To solve the k independent systems, we can use Theorem 2.11 to take advantage of
the known information available among the components of the unknowns so long as
P is given. This approach therefore is referred to as the circulative decomposition
method.

To serve as an example of this special decomposition method, we assume in the
following that the matrix A is of dimension 6m and is circulative (of degree 0) with
respect to the following matrix P:

[ 0 T 0 ] [ cos 5 sin ]P- 0 0 T withT=Im(R)
T 0 0 -sin 5 cos 5
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where Im is the identity matrix of dimension rn and (R) denotes the Kronecker product.
Note that the matrix P is a circulation matrix with p3 I. From Theorem 2.9, the
circulative decomposition of the vector b into w0, wl, and w2 yields

[b / e-iwj Pb + e-2i’j p2b] 0 < j < 2,Wj "
where wj (2rj/3). Note that wj Czj (P). We now show how to take advantage
of the special properties possessed by the k (k 3 in this example) independent
linear systems (2.8). To begin with, let the linear system Axj wj be uniformly
partitioned, in accordance with P, as

(2.9) A21 A22 A23 x2j w2j
A31 A32 A33 x3j w3j

Since wj e Cj(P) and A e C(P), we know that xj e Cj(P) from Theorem
2.11. Therefore, from the circulation matrix P shown above, we have the following
relations:

(2.10) Xlj e-i’JTx2j, x2j e-iWTx3j, and x3j e-iWTxlj.

Apparently, the three blocks of components Xlj, X2j, and X3j are interrelated. Know-
ing the results of any one of them immediately yields the solution for the other two.
It is, therefore, not necessary to solve the whole system Axj wj for xj. In fact, by
expressing both x2j and x3j in terms of xj and substituting them into the first block
of equations in (2.9), AllXlj + A12x2j + A13x3j Wlj, we easily obtain the linear
subsystem

(2.11) 2jXlj Wlj

where

fij [A + e-2A2T2 + e-AI3T]
Now we can solve for xj much more efficiently from (2.11) since this subsystem is
of dimension 2rn, only one third of the dimension of the whole system. Once xj is
known, X2j and X3j can then be computed from (2.10), yielding the complete solution
of xj. Note that (2.11) is valid for 0 _< j <_ 2. This clearly indicates that this
decomposition method yields, in this example, three independent linear subsystems
that not only are smaller in size but also can be solved in parallel on multiprocessor
computers. The final solution of x is simply the sum of x0, x, and x2. This concludes
our demonstration.

3. Special cases. Depending on the circulation matrix P, the matrices (vectors)
presented in 2 consist of several other important special classes of matrices (vectors)
as special cases. For example, a matrix circulative with respect to P is also a reflexive
matrix if the matrix P is a reflection matrix (that is, a symmetric signed permutation
matrix) [Chen88], [ChSa89a]. On the other hand, a matrix reflexive with respect to
some reflection matrix P is always a circulative matrix since any reflection matrix
is necessarily a circulation matrix. The class of centrosymmetric matrices [Aitk49],
[Andr73a], [Andr73b], [CaBu76], [Good70] is of course a special class of circulative
matrices because it is a special class of reflexive matrices. In this section, we give
another important special case.
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Let Ul(X) 1 and U2(x) and U3(x), x 2rr/k for some positive integer k be the
following two orthogonal matrices obtained from coordinate transformations:

and

Also let V1 cos x and

Now we define

U2(x)-[ cosx. sin x ]--sln x cos x

U (x)
cos x sin x 0 ]-sin x cos x 0

0 0 1

V2- [ csx0 011
{U1, U2, U3} if k 2,(3.1) Tt(x)-It (R)U(x), U(x)E {U, U2, U3, V, V2} if k= 2,

where It is the identity matrix of dimension > 0. It should be mentioned that the
dimension of Tt depends on U, whose dimension can be 1, 2, or 3, depending on which
element is taken. Once U is decided, the dimension of T is fixed.

Before going any further, let us define a block circulant matrix C [Davi79],

c

Co C
Ck-1 Co

Ck-1
C/1

C1 C2 Ck-1 Co

by

C bcirc (Co, C1, C2, ...,
where the integer k after the vertical rule is used to indicate that the matrix has
block order k. Note that

bcirc (o, 0, ..., 01k
reduces to a block diagonal matrix with identical diagonal blocks Co. In other words,

bcirc (C0, 0, --., 0 k) Ik (R) Co.

We are now in a position to discuss three special types of circulation matrices.
Let Pc, Po, and Pt be square matrices given by

(a.a) Pc=bcirc (0, T(z), O, ..., O lk), l>O, k> 1,

(3.4) Po T,(x), m > O,
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and

(3.5) Pt P (R) Po,

where T(x), > 0, is as defined in (3.1) and the symbol (R) denotes the direct sum.
Note that the subscript and superscript i will, hereafter, be used as a positive integer
instead of x/Z-- 1. It is not difficult to see that P, Po, and Pt are all circulation matrices.
Indeed, from (3.1), we immediately have

T(x) T,(x), <_ <_

and

T(x) T(e.) .
The matrix T, is obviously orthogonal since

T(x)T,(x) , (R) (U(x)U(x)) .
Therefore, Po is a circulation matrix for any integer m > 0. Also from (3.1) and (3.3),
we can easily show the matrix Pc has the following properties:

PTPc I (R) (T(x)Tt(x)) I,
p2 bcirc (0, 0, T,(2x), 0,...,

p-i bcirc (0, 0,..., 0, T((k-

and, therefore,

P- bcirc (7)(kx), 0, ..., 01k
Ik (R) Tt(kx)
I,

where we have used the fact that Tt(ix)Tt(jx) Tt((i +j)x) and Tt(kx) T (2r) I.
The matrix Pc is, thus, a circulation matrix for any integer > 0. The matrix Pt is,
of course, a circulation matrix since Pc and Po are.

These special circulation matrices serve two different types of operations" (block)
cyclic permutations and/or coordinate transformations of unknowns through rotations
about principal axes in the three-dimensional real space. They can be used in many
discretized scientific and engineering problems to identify, from the matrix point of
view, whether rotational symmetry is present when the unknowns of the problem
are properly ordered. Therefore, circulation matrices of this special type are referred
to as rotation matrices for the sake of emphasizing the role they play. In addition,
any matrix resulting from any symmetric permutation of a rotation matrix will also
be considered as a rotation matrix since it does not change its physical nature. For
example, the matrix R,

R-bcirc (W(x), 0, ..., 011
with

W(x)- bcirc (0, U(x), O, ..., O lk),
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is also a rotation matrix. Based on this reasoning, we give the following definitions.
DEFINITION 3.1. Rotation matrices. Let 3dp {Pc, Po, Pt} where Pc, Po, and

Pt are defined in (3.3), (3.4), and (3.5). A matrix P is said to be a rotation matrix if
either P E Adp or there exists some permutation matrix H such that HTpH imp.

DEFINITION 3.2. Rotative and antirotative vectors, matrices, and subspaces.
Let R be a rotation matrix. Any vector, matrix, or subspace that is circulative (or
anticirculative) with respect to R is also said to be rotative (or antirotative) with
respect to R.

Now suppose P is a rotation matrix taking the form of Pc. Define S and Q to be

S-bcirc (0, I, 0, ...,
and

Q-bcirc (Tt(x), O, O, ..., O lk).

Then the matrix P can be rewritten as

(3.6) P=SQ=QS.

For a matrix A with the relation A pTAp, we have from (3.6)

A QTSTASQ STQTAQS

or, equivalently,

QAQT STAD and SADT QTAQ.

Since any (block) circulant matrix C has the relation C sTcs [Davi79], and since
the rotation matrix P reduces to S if Q is taken to be the identity matrix, it is obvious
that the class of circulant matrices is a special case of that of rotative matrices and,
accordingly, a special case of that of circulative matrices. To close this section, we
define another interesting special case of the class of rotative (antirotative) matrices.

DEFINITION 3.3. Dihedral and antidihedral matrices. A matrix A C’xn is said
to be dihedral (or antidihedral) with respect to R and S if it satisfies the following
three conditions:

A is reflexive (or antireflexive) with respect to R,
A is rotative (or antirotative) with respect to S, and
RSR-Sk-1 for somek, l<_k<n

where R is a reflection matrix and S a rotation matrix with Sk I.
It deserves mentioning that the main idea of this definition originates from the

concept of dihedral groups in group presentation theory. Dihedral and antidihedral
vectors and subspaces of vectors and matrices can be defined in a similar way. Since
a dihedral matrix is both reflexive and rotative, the special properties possessed by
these two classes of matrices can be applied to it directly. Examples of reflexive,
rotative, and dihedral matrices are provided in the next section.

4. Examples. Numerical discretizations of physical problems very often give
rise to circulative matrices when the problems exhibit some sort of symmetry and
are properly discretized. Reflexive symmetry usually yields reflexive matrices and
rotational symmetry results in rotative matrices, which all belong to the class of
circulative matrices. In this section, we present three such matrices obtained from
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y

(0,1)

U --1

Ou/On = 0

1 4

(0,0) = 0

(2,1)
3

u-1

2,0)
X

FIG. 1. Boundary conditions and ordering of unknowns of Example 1.

physical problems modeled by partial differential equations. The physical problems
are also briefly described.

Example 1. The matrix A given below is obtained from a numerical approximation
to a potential flow in a rectangular region discretized by four linear boundary elements
[LiLi83]:

0.750 0.250 -0.376 -0.357

A 0.250 0.750 -0.357 -0.376
-0.376 -0.357 0.750 0.250
-0.357 -0.376 0.250 0.750

Figure 1 shows the boundary conditions of the flow and the ordering of the unknowns
(Ou/On)i, 1, ..., 4, where u is the potential. The integral equations used to yield
such a matrix can be expressed as

a u(xi, yi) f (u Or
r On

In rn
where a is the interior angle between the boundary elements at the singular point
(x, y), r the distance between the point (x, yi) and another point (xj, yj), F the
boundary, and n the unit outward normal on F. Since it is not our purpose to discuss
how to apply the boundary element method to obtain such a matrix, we omit all
derivations. Interested readers should refer to [LiLi83] for details. Let

0 1 0 0 0 0 0 1 0 0 1 0
1 0 0 0 0 0 1 0 0 0 0 1

P1- 0 0 0 1 P2- 0 1 0 0
and P3- 1 0 0 0

0 0 1 0 1 0 0 0 0 1 0 0

It is easy to see that

and

A pTAP1 pTAp2 p3TApa.
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In other words, the matrix A is circulative with respect to P1, P2, and P3. Note that
P1, P2, and P3 are all reflection matrices. P3 is clearly a rotation matrix. In addition,
P1 and P2 are rotation matrices as well. The reason for P1 and P2 to be rotation
matrices is that they can be symmetrically permuted to yield P3. Therefore, A is
both reflexive and rotative with respect to all of them. This particular matrix is of
course centrosymmetric because of P2. It is also interesting to note that

PI=P2P3=P3P2, P2=P3PI=P1P3 and P3=PIP2=P2P1.

Accordingly, the matrix A is dihedral with respect to P1 and P2, to P2 and P3, and
to P3 and P1.

Example 2. We now show a matrix derived from the finite-difference approxima-
tion to Laplace’s equation

02u 10u 1 092u
Or2 +-r r r O0

=0

in a circular annulus subject to Dirichlet boundary conditions ua along the inner
boundary and Ub along the outer boundary, as shown in Fig. 2. The matrix under
consideration is one that, via proper discretization and ordering, has the following
block tridiagonal form [Smit78], [Gera78]:

(4.2) B
/2I

Bk-1 ctk-lI

where Bi, 1,..., k, is a circulant matrix of dimension rn given by

Bi circ (ai, bi, 0,..., O, bi rn)
ai bi
bi

bi

ai bi
bi bi ai

where ai and bi are some constants and the notation circ(.) is defined in the same way
as bcirc(.) except that now each block is just a scalar.

Let J1, J2, and J3 be matrices of dimension rn and be defined as
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Zt Ztb

FIG. 2. Domain and boundary conditions of Example 2.

0 Ip I if m- 2p,o

[o oI ]0 1 0
;p o o

if m 2p + 1,

where p is a positive integer and

J3 circ (0, 1, O, ..., O Ira).

It is apparent that

B jTBiJ, 1, ..., k

for any J E {J1, J2, J3}. Now let

P4=Ik(R)J1, P5=IkeJ2, and P6=IaeJ3.

We have

p: p:

and

B pTBp

for any P E {Pa, P5, P6}. Note that P4 and P5 are reflection matrices and P6 is
a rotation matrix. Therefore, the matrix B is reflexive with respect to P4 and P5,
rotative with respect to P6, and accordingly, circulative with respect to all of them.
Furthermore, B is dihedral with respect to Pa and P6 since

P4P6P4 Pn-1

The matrix B, however, is not dihedral with respect to P5 and P6 in general.
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6
5

FIG. 3. An equilateral triangular element for Example 3.

Example 3. The final example we consider is a stiffness matrix obtained from
the plane stress analysis of an isotropic elasticity problem using only one equilateral
triangular element shown in Fig. 3. The two arrows at each node in Fig. 3 denote the
displacements in the direction they point to. The governing differential equations for
such an analysis can be written as

TDu + b 0,

where u and b are, respectively, the displacements and body forces,-- 0 O/Oy and D- # 1 0
O/Ox c9/Oy 1-#2 0 0 (1-#)/2

in which E is the elastic modulus and # the Poisson’s ratio. Following the procedures
of the finite-element process [Sege76], we can obtain the following stiffness matrix:

(.)
C=

a + . (+ .) - +. ( ,) -2. -2,
x/-(# + u) 1 + 3u -(p- u) 1 3u -2u -2
-3 + - -(p u) 3 + u -(p + u) -2u 2
(-) 1 3 -(+ ) 1 + 3 2 -2

-2u -2u -2u 2u 4u 0

-2 -2 2 -2 0 4

where

u--(1-#)/2 and a=
12a2 1-.2

0 T 0
0 0 T
T 0 0

in which t is the thickness and 2a the lateral length.
Let

PT- J 0 0 and P8-
0 0 J
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where

We have

J-
0 1 -sin 2r/3

sin 27r/3
cos 2r/3

C pTTcp7 and C psTCPs.

Although it is not difficult to show by inspection that the matrix C is both reflexive
and rotative with respect to P7 (P7 is both a reflection and a rotation matrix), it
is almost unlikely to see, from the entries of the matrix C, that C is rotative with
respect to Ps. For a problem like this, an understanding of the material property, the
geometry, and the boundary conditions of the physical problem plays an essential role
in helping determine whether the derived matrix is rotative. Finally, we observe that
the matrix C is also dihedral with respect to P7 and Ps.

5. Conclusions. A special class of matrices, referred to as circulative matri-
ces of degree 0, and a special decomposition method, referred to as the circulative
decomposition method, have been introduced in this paper. The important special
properties associated with this class of matrices have also been exploited. Matrices
circulative of degree 0 are simply called circulative matrices when 0 0 and anticir-
culative matrices when 0 7, without mentioning their degrees for brevity. A new
special case of (anti)circulative matrices, referred to as (anti)rotative matrices, has
also been presented. Rotative (antirotative) matrices are themselves a generalization
of circulant (anticirculant) matrices.

Circulative matrices arise very often in many scientific and engineering applica-
tions. They include centrosymmetric matrices, reflexive matrices, circulant matrices,
and rotative matrices as important special cases. Numerical examples obtained from
discretized physical problems, modeled by partial differential equations, have been
provided to demonstrate their frequent occurrences. Anticirculative matrices, which
do not occur naturally, are the counterpart of circulative matrices. Analogous to circu-
lative matrices, these matrices contain the counterparts of centrosymmetric matrices,
reflexive matrices, circulant matrices, and rotative matrices as special cases.
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PARALLEL SOLUTION OF LARGE LYAPUNOV EQUATIONS*
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Abstract. In this paper two algorithms for the solution of large-order (100 _< n _< 1000)
Lyapunov equations AX + XAT + Q 0 are presented. First, a parallel version of the Hammarling
algorithm for the solution of Lyapunov equations where the coefficient matrix A is large and dense
is presented. Then a novel iterative parallel algorithm, called full-rank perturbed iteration (FRPI),
is presented for the solution of Lyapunov equations where the matrix A is large and banded.

Key words. Lyapunov equation, parallel computation, direct methods, iterative methods,
banded systems

AMS(MOS) subject classifications. 15A06, 65F05, 65F10

1. Introduction. The Lyapunov equation

(1.1) AX + XAT + Q 0, A, Q, X E ]nn

plays a significant role in numerous problems in control, communication systems the-
ory, and power systems. These include the problems of 7-/ optimal control [7]; system
balancing [22]; model reduction and reduced-order control of linear, time-invariant
systems [19], [22]; stability analysis of dynamical systems [21]; etc. In this paper we
address the parallel solution of large (100 <_ n <_ 1000) Lyapunov equations in the two
cases where the coefficient matrix d is (i) dense and (ii) banded.

Standard solution methods for small, dense Lyapunov equations [2], [13] make use
of the real Schur decomposition to transform the Lyapunov equation (1.1) into a form
that is readily solved through forward substitution. More recently, Lu and Wachspress
[23], [28] proposed the iterative numerical solution of the Lyapunov equation through
the alternating direction implicit method. The ADI method requires the reduction of
the matrix A to tridiagonal form through elementary transformations; stable reduction
of an arbitrary matrix A to tridiagonal form is discussed in [8].

Large scale systems, such as those arising from finite element models of flexible
structures [1], require the solution of Lyapunov equations of such large dimensions that
parallel solution on commercially available multiprocessors is rendered practical. In
this regard, O’Leary and Stewart [25] outline a parallel version of the Bartels-Stewart
algorithm for the case where A has strictly real eigenvalues. (It is straightforward
to generalize their method to the case where A has complex eigenvalues.) They
also propose a parallel method for the computation of the Schur decomposition A
USUT. (We are unaware of any numerical experiments involving this approach for
the computation of the Schur decomposition.) The ADI iteration readily admits a
parallel implementation.

In this paper, we present two new parallel algorithms for the solution of large
Lyapunov equations. We first present in 2 a parallel implementation of the Ham-
marling algorithm [13]. Our algorithm takes advantage of vector pipelining through
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a vector-segment wavefront (coarse grain) approach. (We do not consider the paral-
lel computation of the Schur decomposition A USUT for large, dense Lyapunov
equations. This is reasonable, since many algorithms [22], [26], [27] require the so-
lution of a number of Lyapunov equations that require only a single common Schur
decomposition.) Following this, in 3, we present the full-rank perturbed iteration
(FRPI) algorithm for the solution of large, banded Lyapunov equations (i.e., A is a
large, banded matrix). (A preliminary version of this algorithm may be found in [18].)
By exploiting available problem structure, the FRPI algorithm provides for dramatic
reductions in computation time relative to the Bartels-Stewart and Hammarling algo-
rithms, even when run on a single processor machine. This algorithm admits efficient
parallel implementation on shared-memory concurrent machines; hence we regard this
algorithm as a powerful tool for the solution of banded Lyapunov equations. In 4 we
detail our numerical experience with these parallel algorithms, and in 5 we summarize
our results and make some concluding remarks.

2. The Hammarling algorithm. In this section, we discuss the parallel im-
plementation of the Hammarling algorithm [13]. We first discuss in 2.1 the serial
Hammarling algorithm for solution of the Lyapunov equation. We then present a
vector segment parallel scheme in 2.2. (It is not advantageous to implement a block-
parallel scheme of the Hammarling algorithm.) We conclude in 2.3.

2.1. The serial algorithm. Hammarling [13] introduces a method to directly
compute the Cholesky factorization GGT X of the solution of the Lyapunov equa-
tion

(2.1) AX + XAT + BBT 0

without explicitly computing the product BBT and without first computing the so-
lution X. (The Hammarling algorithm requires that the eigenvalues of the matrix A
lie in the open left half-plane.)

The Hammarling algorithm is motivated as follows. Suppose that the matrix A
has strictly real eigenvalues and assume (without loss of generality) that A is in lower
Schur form (lower triangular), and that B is lower triangular. Substitute the Cholesky
factorization X GGT into (2.1) and partition

G22
B=

B2 A2

where g11, b11, and all are scalars; , b, and are (n- 1)-vectors; and G22, B22, and
A22 are lower triangular matrices in IR(n-1)(n-1). Algebraic manipulation of these
quantities reveals that

bll(2.2) gll--
v/_2al

(2.3) (A22 + aI) (gllt -[-
blX

\

(2.4) A22(G22G22T) -]-(G22G22T)A22T (B22BT22 + ]/T) R22R22,^̂T

where 9 - (bl/gll){7. Equations (2.2)-(2.4) are readily solved. Furthermore,
(2.4) is an order-(n- 1) Lyapunov equation that is in the same form as the original
problem. Hence, since (2.4) is an order-(n- 1) Lyapunov equation of the form (2.1),
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1. compute (TBT BT (QR factorization, B lower triangular, Q is not stored)
2. do j- 1, n

(a) gjj Ibjjl/ [-2ajj] 1/2

(b) if j < n then /* solve for subdiagonal vector */
i. bjj /gjj

ii. doi-j+l,n

gij gyjaij + /bij + E aikgky /(aii + ajj)
k=j+l

iii. end do
iv. /* update the Cholesky factor B for the next iteration */

doi=j+l,n
biy bj gij

v. end do
vi. doi=j,m

compute Givens rotation (c,s)ij to cancel biy and apply to
columns j and i.

vii. end do
(c) end if

3. end do

FIG. 2.1. The serial Hammarling algorithm.

we may recursively apply the Hammarling algorithm until all columns of G have been
computed. Note that no portion of X is formed during the computation of gll and .

We present a coded form of the serial Hammarling algorithm for the case where
A has strictly real eigenvalues in Fig. 2.1. Vector pipelining may be applied in steps
2((b))ii and 2((b))iv, and in the application of the Givens rotations in step 2((b))vi.
The serial Hammarling algorithm is easily modified for the case where A has complex
eigenvalues; see [13] for further details.

2.2. Parallelism in the Hammarling algorithm. In this section we discuss
parallelism in the Hammarling algorithm. We may attempt a parallel implementa-
tion of the Hammarling algorithm through the use of a parallel linear system solver
(see, e.g., [6], [9], [12], [14], and [15]) to compute the vector in (2.3), followed by
parallel application of the associated Givens rotations to the matrix B22 (see
(2.4)). Further concurrency in the Hammarling algorithm is difficult without aban-
doning the column-major approach of the serial Hammarling algorithm. While the
data dependencies in the Hammarling algorithm are more complex than those of the
Bartels-Stewart algorithm [2], [25] because of the rank-one updates of B (see (2.4)),
our strategy is to solve for the Cholesky factor G along antidiagonal wavefronts of

h [gij "’gi+h-l,j]Tvector segments "Yij

2.2.1. Static length vector level parallelism. We motivate our strategy as
follows. Consider the case h 1 and suppose gl and g21 are computed as in (2.2)
and (2.3). We may then update b22 completely, since the only Givens rotation applied
to 521 and 522 is (c, s)2 (see Fig. 2.1). Once 522 has been updated, we may compute
g31 and g22 in parallel. In general, once an element gij has been computed, rotations
(C, 8)j+l,j through (c, s)_,j are applied to bij,..., bi-l,i, and then a new rotation
(c, s)ij is computed to update b and b. This process is illustrated in Fig. 2.2. The
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]. +/-

FIG. 2.2. Computational nodes for parallelism.

Givens rotations associated with gij perform a partial QR update of B so that we may
immediately compute gi+l,j and gi,j+l. This is in contrast to the serial Hammarling
algorithm, where an entire column of G is computed before applying the corresponding
Givens rotations to an entire column of B.

A precise description of a computational node for general values of h is presented
in procedure vsolve (see Fig. 2.3). The kth antidiagonal wavefront of the matrix
G is computed by concurrently calling vsolve(k, 1),..., vsolve(1, k) for all applicable

h 0, the corresponding call to vsolve is notindices. (Since + h _< j implies 7ij
executed; similarly, wavefronts are truncated to remove elements gij that lie outside
the range 1 _< i, j _< n.)

The cost of parallelism is apparent in the additional storage required for the
Givens rotations used in partial updates. These storage requirements may be reduced
by concurrently solving for only p columns of G, which requires at most 2np floating
point words of storage for the associated Givens rotations. More precisely, if there
are p processors, then we concurrently solve for the first p columns of G along antidi-
agonal wavefronts of length p. (In order to increase efficiency, processors freed as the
wavefront drops through the nth row of G immediately "wrap around" to the next
available column of G.)

It is relatively straightforward to schedule calls to vsolve when the matrix A has
strictly real eigenvalues since each wavefront is of the form

9/ih+l,j, (i-1)h+l,j+l ")/(i-(p-1))h+l,j+p-1

that is, row indices differ by exactly h between consecutive columns. However, schedul-
ing is more complicated in the complex eigenvalue case due to varying block sizes in
the partition of G (h x 1, h x 2, (h + 1) x 1, and (h + 1) x 2). For this case, scheduling
is accomplished through the use of length p doubly linked lists i, j, and s. During
each iteration of vsched the indices of the upper left element of the block associated
with processor q are stored in iq, jq. 8q indicates whether column jq corresponds to
a Schur block in A. If so, then processor q simultaneously solves for columns jq and
jq + 1 by subdividing them into h x 2 and (h + 1) x 2 blocks. Otherwise, processor q
solves for column jq only by subdividing it into h x 1 and (h + 1) x 1 blocks. Once

"Iprocessor q has computed the block containing giqjq, it computes new indices Zq, .q, 8q
for use during the next iteration. These may be computed concurrently and then
copied into i, j, and s at the beginning of the next wavefront computation.
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Procedure vsolve(i’, j)" compute vector segment ih,j
1. - 1+ h(i’ 1)
2. if j /*diagonal solve--no update *//

(a) gj --[bj[/(-2aj) -1/2 /* scalar arithmetic--no pipelining */
(b) =+1

3. end if
4. 3 bjy /gjj
5. do i i, hi’ /* subdiagonal solve */

/* pipelined inner product */
i--1

gij -(gjjaij) +b + (ai + ajj) -1 E aikgkj
k=j+l

6. end do
7. do , hi’ /* update B; pipelined loop*/

bij bij gij
8. end do
9. do k j + 1, i- 1/* apply previous Givens rotations from column j */

(a) do i-i, hi’ /* pipelined loop */

(b) end do
10. end do
11. do , hi’ /* Compute and apply new Givens rotations */

(a) compute Givens rotation (c, s)j such that

bii bi [ cisi -sij]_[,ci O]
(b) do k- i, hi’ /* pipelined loop */

bik bi ]-[bi bi [ cisij -si 1
(c) end do

12. end do
end vsolve

FIG. 2.3. Parallel Hammarling solution procedure.

2.2.2. Dynamic length vector level parallelism. The static vector length
parallel algorithm loses efficiency as it progresses through the matrix G due to a
forced loss of achievable parallelism induced by shortened antidiagonal wavefronts. In
particular, the last h columns of G are computed serially since each vector segment

’z containing gnk must be computed before work can begin on vector segment h

That is, while a given static vector length h may be optimal for computation of
the entire Cholesky factor G (see 2.a), we may increase efficiency by dynamically
adjusting vector length during the course of the computation (see Fig. 2.4).

Such an approach requires only simple modifications to routine vsolve; specif-
ically, we define procedure dsolve(i,j, h) identical to vsolve except that the vector
length h is an input parameter. However, scheduling calls to dsolve is more complex
than the static length scheduling problem, since the wavefront indices (i,jl),...,
(ip,jp) cannot be directly adjusted; even though we may freely change the vector
length parameter h at any time, the distance iv -iv+l remains unchanged until the
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FIG. 2.4. Dynamic vector-length partition of G.

wavefront wraps around to the next vertical strip. That is, modifying the vector
length h changes only the time required to execute dsolve(i,j, h), and does not im-
mediately affect the "slope" of the wavefront. Our approach is to update the vector
length h each time a processor wraps around to a new vertical strip %. All processors
corresponding to elements in strip Vs will use the same vector length hs; a convenient
heuristic is to choose hs to minimize the time required to compute vertical strip %
(see 2.3). Observe that if s >_ 2 then hs may be chosen while neglecting the first
p- 1 wavefronts of %, since they are computed simultaneously with the last p- 1
wavefronts of vertical strip vs-1.

2.2.3. Block solution with accumulation of Givens rotations. Bischof and
Van Loan [3] use accumulated Householder transforms as a way of reducing computa-
tion time requirements in a block QR factorization. Since the update step in procedure
vsolve forms a portion of a QR factorization, one may attempt to use this method
in our parallel algorithm. Unfortunately, such an approach will actually increase
computational requirements.

Indeed, the product

Tqj (c, 8)j+l,j(c 8)j+2,j (c, 8)j+q,j

can be shown to be of the form

Tqj [ ull tT12 I
where 12 and 21 are dense q-vectors and U22 is upper triangular. That is, accu-
mulating q Givens rotations results in a dense matrix Tqj E IR(q+l)x(q+l), requiring
O(q2) storage, as opposed to 2q floating point words to store the original rotations.

Furthermore, multiplication by the matrix Tqj requires O(q2) flops, while the appli-
cation of q independent Givens rotations requires only 4q flops [12]. The reason that
the accumulated transform performs so poorly in our problem is that our application
(rank-one update) requires that we annihilate only O(n) elements of B, not O(n2),
as in [3]. We conclude that accumulation of Givens rotations is not desirable for par-
allelization of the Hammarling algorithm, in terms of both storage and computation
time requirements.
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2.3. Time analysis: Real eigenvalue case. We compare in this section the
computational requirements of the above parallel implementation of the Hammarling
algorithm with those of the pipelined serial Hammarling algorithm. We measure
algorithm performance in terms of the problem size n and two positive constants a
and 5 that provide a measure of pipeline efficiency. More precisely, we say that the
execution of n vector-pipelined floating point operations ("flops") requires time

(2.5) t(n, , ) + 5n,

where a is the pipeline "startup" time, and 5 is the maximum execution time of
the individual pipeline stages Our analysis indicates that, for a fixed number p
of processors, our parallel algorithm will increasingly outperform the Hammarling
serial algorithm as the dimension n of the Lyapunov equation (2.1) increases This
conclusion is consistent with the results of our numerical experiments, presented in

4. The details of the timing calculations in this section are in [17]; most of these
results were obtained with the aid of MathematicaTM [29].

The serial Hammarling algorithm solves for the matrix G in (2.1) in column-
major order. From Fig. 2.1, it can be seen that the computation of each column of
G requires the computation of a diagonal element gjj, the solution of a linear system
of equations (2.3), and a rank-one update to the right-hand side matrix B. Summing
the time for the computation of each column j yields Ts(n, a, 5) 55n3/6 + O(n2)
flops for the computation of the entire Cholesky factor G. Notice that the pipeline
startup time a does not enter into the dominant term of Ts, since the jth column is
computed in its entirety before proceeding to the j / 1st column.

We may similarly analyze the time requirements of the static vector length con-
current algorithm as follows. Suppose the vector length h divides n and the number
of processors p divides h. In order to aid in our analysis of the time requirements
of the static vector length approach, we respectively partition G into vertical strips
vl,..., vnv of width p and large vertical strips VI,. Vnh, where nh n/h,

and

gl,l+(s-1)p gl,sp 1V8 "*.

gn,l+(s-1)p gn,sp

gl,l+(a-1)h gl,ah 1gn,l+(a-1)h gn,ah

The time t (n, a, p, h, a, 5) required to compute all vertical strips v contained in the
large vertical strip V is

Thus the total time Tv(n, p, h, a, 5) required to compute G using pipelined static
vector length parallelism is

n/h

Tv(n,p,h,a, 5)- tv p h, 5) n3 55 o

a--1

+
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hNotice that each column of G is partitioned into vector segments %j; hence, the
pipeline startup time does enter the n3 term of Tv, in contrast to the time Ts associated
with the serial Hammarling algorithm. This additional cost may be reduced as n
increases by increasing the vector length h while preserving available parallelism.
From the above, we expect that the static vector length concurrent algorithm will
provide nearly linear speedup for large values of n. Both of these conclusions are
consistent with the experimental data presented in 4.

3. Parallel solution of banded Lyapunov equations. An important class of
problems in which large Lyapunov equations arise is that of control system design for
large flexible structures [1]. Finite element approximations of such structures yield
large-dimensional systems of linear differential equations such as

ic Ax + Bu,

where x E IRn is a state vector, u E IR" is an input vector, and A ]R’x is a
banded matrix.

To approximate these large-dimensional systems for purposes of controller design
and/or simulation it becomes necessary to solve several Lyapunov equations such as

(3.1) AX + XAT + Q 0

for various choices of the matrix Q (see, for example, [10], [22], and [26]). Neither the
Bartels-Stewart algorithm nor the Hammarling algorithm is suitable for this purpose,
since the required Schur decomposition will generally destroy the sparsity of A. Hence
we adopt a new approach, similar in spirit to Jacobi and Gauss-Seidel iteration for
solution of large, sparse, diagonally dominant systems of linear equations Ax b [12].
This algorithm, called full-rank perturbed iteration (FRPI), selects a block-diagonal
matrix A0 and searches for a sparse right-hand side perturbation matrix ( such that
the solution X of (3.1) also satisfies the perturbed Lyapunov equation

(3.2) AoX + XAoT + Q + O.

Since A0 is block diagonal, its lower real Schur form matrix So and the associated
orthogonal transformation U0 will also be block diagonal. That is, FRPI requires only
that we compute the lower real Schur form of the diagonal blocks of A0. Since the
computation of the Schur decomposition of an n x n matrix requires O(n3) time, the
Schur decomposition of the block-diagonal matrix A0 may be computed much more
rapidly than the Schur decomposition of the matrix A. We will show in 3.3 that this
feature of our algorithm provides dramatic savings in computation time, even when
FRPI is executed on a single processor.

Analysis of our algorithm requires that A + AT is negative definite (A + AT < 0).
This condition is reasonable since typically finite element modeling of physical systems
yields stable system matrices A that are diagonally dominant. Notice that A+AT < 0
implies that the system (sI A) -1 is passive, a condition that is typical for these large
structures; see [20] for further discussion. We shall henceforth assume that A + AT is
negative definite.

3.1. Algorithm description. We motivate our approach as follows. Suppose
that the matrix A in (3.1) was not only banded, but also block diagonal, i.e., A
diag(Al,..., ANN). Then the individual small blocks of the Lyapunov equation solu-
tion X (partitioned conformably with A) satisfy small, dense, independent Sylvester
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equations

AiiXij -t- XijAjjT + Qij 0,

whose solutions can be readily computed using the Bartels-Stewart algorithm [2] or
the related Schur-Hessenberg algorithm [11]. That is, each block Xij of X may be
computed concurrently with any other block of X. Our strategy is to construct a per-
turbed block-diagonal Lyapunov equation "nearby" the original Lyapunov equation
(3.1), which has the same solution X.

More precisely, for a general banded matrix A, we select a block size h such
that n hN and decompose A A0 + ft. where A0 block diag(All,... ,ANN),
Aii E Ihh, and ft. is low rank, block diagonal, and sparse. (We choose a block
size h that divides n for simplicity in exposition; this choice is not essential to our
algorithm.) (If the diagonal blocks of A0 are drawn from the corresponding blocks of
the matrix A, then the nonzero entries of appear in small "bow-tie-shaped" regions
along the diagonal.)

For Z E IRnn, define the linear operators

(z). n- - n--Co(Z)" IRnn
__

]Rnn

5(z) n"n - n
Z - AZ + ZAT,
Z AoZ + ZAoT,
z - z +z.

Notice first that A is Hurwitz (all its eigenvalues lie in the left half-plane) since A+AT
is assumed to be negative definite. As a consequence, the operator b is invertible.
Furthermore, A + AT < 0 implies that all principle submatrices of A are Hurwitz,
and consequently 0 is also invertible. However, is singular since A is low rank, i.e.,
-1 does not exist.

Let X be the solution of the original Lyapunov equation (3.1). Now observe that

(x) + Q 0(x) + (x) + Q 0.

Solving for X we obtain X -0-(Q+(X)), and so the perturbation matrix ( we
desire in (3.2) is ( (X). We make this substitution and apply the linear operator

to obtain

(3.4) 5- -$0-(Q + 5).

That is, the desired perturbation matrix ( is a (fixed point) solution of (3.4). Fur-
thermore, since (X) tX + XtT, is a sparse matrix whose nonzero entries
appear in horizontal and vertical strips centered every h rows and columns, respec-
tively.

In general, (3.4) may have several fixed points. However, if all eigenvalues of
0- lie inside the unit circle, then is the unique asymptotic limit of the solution
of the linear time-invariant discrete time system

k+l --0-1(k) 0-1(Q).

This result naturally suggests the FRPI algorithm shown in Fig. 3.1. Observe
that the Schur decomposition of the block-diagonal matrix A0 is computed only once.



1198 A.S. HODEL AND K. POOLLA

1. Co=O,i=O
2. Select a block size h and partition the matrix A to obtain block-diagonal

matrices A0 and A A- A0.
3. Concurrently compute the lower Schur decompositions UiiSiiUiT Au.
4. Repeat

(a) Compute in parallel 0i+1 0--1(0i)2I- (0--1(Q)
(b) i-i+l.

5. until IIi -111 <- .
FIc. 3.1. Full-rank perturbed iteration.

3.2. Proof of convergence. In this section we establish sufficient conditions on
the matrix A such that FRPI will converge to the correct solution X of the banded
Lya_punov equation (3.1). In the previous section, we showed that if the spectrum
of 0-1 lies inside the unit circle, then FRPI will conv_erge. Since it is difficult to
directly determine the eigenvalues of the linear operator 0-1, we will instead derive
a diagonal dominance condition on A such that $0-1 is a contraction, i.e.,

where II’llg is the Frobenius norm (see [12]). This condition is sufficient (but not

necessary) to ensure that the spectrum of 0-1 lies in the unit disc, and thus to
guarantee that FRPI will converge.

In order to derive this diagonal dominance condition, we shall require the following
simple result.

LEMMA 3.1. IIABIIF <_ min(llAIIF IIBII2, IIAI[2 IIBI[F).
Proof. Let B UEVT (singular value decomposition) with E diag(al >_ >_

an). Then

][ABIIF tr(ABBTAT) tr(AUZUTAT) tr(E2UTATAU).

Let Q uTATAU. Then

n n

IIAB[[ F tr(E2Q) E a’ q’’ < a2 E q’’ a2tr(UTATAU) IIA][ uFIIBII,
i--1 i--1

from which we have IIABIIF
_

[IAIIF IlBll.
IIABIIF

_
IIAII2 IIBIIF can be shown in a similar fashion, which establishes the

theorem. [3

Since A0 is Hurwitz, we can write

0-I(X) eAtXeATtdt.

We may bound the matrix exponential eAt using the log norm #(Ao) of A0. The log
norm #(A) of a matrix A E IRnn is defined as

I_(-(A -t- AT)).#(A)
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Notice that #(A) is not a norm in any sense since #(A) < 0 for A+AT positive definite.
Nevertheless, the log norm provides a useful bound on the matrix exponential when
A+AT <0.

THEOREM 3.2. Iletll _< e-(A)t for all A 1Rn’, t >_ O.
This bound is well known (see, e.g., [16] and [24]); hence the proof is omitted.
We are now in a position to establish our main convergence result.
THEOREM 3.3. For Ao blockdiag(All,...,ANN) define ai #(Ai), i

1,..., N, and let a max ai. Then the operator 0-1 is a contraction if

(3.6) 7 < 1.
a

Consequently, (3.6) is a sufficient condition for FRPI to converge to the correct solu-
tion X of the Lyapunov equation (3.1).

Proof. It is readily observed from Lemma 3.1 that

sup IIAX + xA II 211AII .

Similarly, since the eigenvalues of A0 lie in the open left half-plane, application of
Lemma 3.1, Theorem 3.2, and equation (3.5) yields

sup
cx

eAotXeAoT dt

Hence, if condition (3.6) holds, we have

I111 IIAtlldt 2tt(A0)"

(0-1 I1 11 [[o-1[1 211-,&ll < 1,

completing the proof.
Remark 1. Theorem 3.3 states that FRPI will converge to the desired solution X

of the Lyapunov equation (3_.1) if the "coupling" blocks contained in A are sufficiently
small. The constant IIAII2/a in condition (3.6) provides a bound on the speed of
convergence of FRPI, since

IlX X /IlIF < I[o-111 IIX X IIF <
The condition 7 < 1 may be interpreted as a diagonal dominance condition, and is
sufficient, but not necessary, for convergence of the FRPI algorithm.

3.3. Timing analysis. We now consider the computational requirements of the
FRPI algorithm. The Schur decomposition of an n n matrix requires roughly n3

O(n3) time [12]. However, the serial computation of the Schur decomposition of N
(n/N) (n/N) blocks requires O(N (n/N)3) O(n3/N2) time. If p _< N processors
are used to compute these Schur decompositions in parallel, then step 3 in Fig. 3.1
requires only O(n3/(pN2)) time. It is in this step that the FRPI algorithm achieves
its greatest advantage over standard techniques.

Since the solution X of (3.2) is symmetric, serial execution of step 4(a) of the
FRPI algorithm requires the solution of (1/2)N(N- 1) Sylvester’s equations in each

(i) of X may be computed initeration, or only O (n3/N) time. Since any block Xj
parallel with any other block of X, the algorithm is well suited for parallel imple-
mentation. In particular, if p <_ N(N- 1)/2 processors are used, each iteration of
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step 4(a) can be executed in O (n3/(pN)) time. Hence FRPI allows efficient solution
of large, banded Lyapunov equations.

These timing comparisons do not guarantee that the FRPI algorithm will always
be faster than the standard Bartels-Stewart or Hammarling algorithms. However, the
designer may use the figure of merit - 11[[2/#(A0) in order to predict the speed of
convergence through the use of Theorem 3.3; this data allows an intelligent choice of
the algorithm to be used.

4. Results. In this section we present the results of our numerical experiments
on an Alliant FX-8 vector-concurrent multiprocessor. We measure algorithm perfor-
mance in terms of the speedup s ts/tp, where ts is the execution time for a single
pipelined processor and tp is the execution time when using all available processors
(p 8 in our experiments). We also use the residue

R(2) Aft[ + 2AT + BBT

of the computed solution of the Lyapunov equation as a measure of its accuracy.
The error IIX- ){[[2 can be bounded above and below by using the residue of the
Lyapunov equation.

THEOREM 4.1 (see [18]). Let A, Q E 1Rnn, A + AT < O, and let X satisfy the
Lyapunov equation (1.1). If is an estimate of Xm, then

where #(A) is the log norm of A (see 3).

4.1. The Hammarling algorithm. We tested the static vector length paral-
lel implementation of the Hammarling algorithm and compared our results with the
pipelined serial Hammarling algorithm. Both of these approaches solve the Lyapunov
equation (1.1) where A is stable with (possibly) complex eigenvalues. We implemented
the pipelined serial Hammarling algorithm in routine dlych. In order to reduce mem-
ory requirements, dlych does not use vector pipelining when applying Givens rotations
to the right-hand side Cholesky factor B. We implemented our parallel version of the
Hammarling algorithm in two different routines, since the application of Givens rota-
tions cannot be pipelined in steps 9 and 11 of Fig. 2.3 for the scalar case h 1. We
solved the Lyapunov equation with vector lengths h 8, 16, 24, and 32.

We tested our routines on randomly generated diagonally dominant matrices
A E IRnn of dimension n 10, 20,..., 400; the corresponding Lyapunov equations
(1.1) were transformed so that A was in lower real Schur form before applying the
Hammarling algorithm to the transformed problem. The computed Cholesky factors
were back-transformed and "squared-up" in order to compute the Frobenius norm of
the residue of the Lyapunov equation. Differences between the solutions computed by
individual routines were also computed. Computed residues were consistently small
(II}(f()]IF/II.(IIF <_ 10-11). Speedup results are presented in Fig. 4.1.

The chief computational bottleneck in the solution of the Lyapunov equation is
the required Schur decomposition of the matrix A. In our numerical experiments the
computation time for the Schur decomposition A USUT exceeded the time required
for the solution of the transformed Lyapunov equation

sOO + OO s + (u B)(BrU) o
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Speedup

7.00 -[

n
0.00 100.00 200.00 300.00 400.00

FIa. 4.1. Speedup using the parallel Hammarling algorithm, p 8.

by a factor of 10-20. For example, the Alliant FX-8 requires roughly 270 seconds
to compute the Schur decomposition of a 400 x 400 matrix, while the corresponding
execution time for dclys is only 22 seconds. (This disparity is due, in part, to the
short Householder vectors used in the double-Francis QR algorithm.) Hence the
parallelism available in the actual solution of the transformed Lyapunov equation is
of significant benefit only when several Lyapunov equations must be solved that use
the same A matrix on the left-hand side, as in [26]. The parallel computation of the
Schur decomposition remains an area of active study [4], [5].

4.2. Full-rank perturbed iteration. We implemented the full-rank perturbed
iteration algorithm in our routine dcfrpi, dcfrpi was tested on randomly generated
diagonally dominant banded systems of order 50,100,..., 400 and bandwidth 3, 7, or
11. Each problem was perturbed into a block-diagonM Lyapunov equation (3.2) with
A0 having up to 16 blocks along the diagonal. The algorithm terminates either when
the perturbation term converges, or after 50 iterations. In all tested examples,

converged within 10-15 iterations. We compared execution times of the dcfrpi
routine with the pipelined serial Hammarling algorithm" dcfrpi speedup values were
consistently in the range of 2.0-5.0 for n >_ 50.

We also tested the algorithm on a single processor Sun workstation, where FRPI
provided reductions in required computation time over the serial Hammarling algo-
rithm. We wish to emphasize that this "speedup" on a single processor is due to the
n x n $chur decomposition required by standard solution methods; hence FRPI is an
effective method for solving banded Lyapunov equations even in a serial computing
environment.

Solution accuracy was checked by comparing the Frobenius norm of the residue of
dcfrpi with that of the standard Hammarling algorithm dlych. Corresponding relative
errors were consistently within an order of magnitude of each other (order 10-11), and
neither algorithm was found to be consistently superior to the other in this measure.
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5. Summary and conclusions. In this paper we have addressed the parallel
numerical solution of large, dense and large, banded Lyapunov equations (1.1). For the
large, dense case, we present a static length vector level parallel implementation of the
Hammarling algorithm. This method solves for the Cholesky factor GGT X of the
solution of the Lyapunov equation by partitioning G into vertical strips and solving
for G along antidiagonal wavefronts. In the large, banded case we present the full-
rank perturbed iteration algorithm that solves a sequence of block-diagonal Lyapunov
equations in order to compute the solution X of (1.1). Numerical experiments show
that these algorithms efficiently utilize the processors on an Alliant FX-8 for problem
sizes n >_ 100. We are in the process of acquiring physical plant models with which
to further validate our results obtained with randomly generated plant models.
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JACOBIS METHOD IS MORE ACCURATE THAN QR*
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Abstract. It is shown that Jacobi’s method (with a proper stopping criterion) computes small
eigenvalues of symmetric positive definite matrices with a uniformly better relative accuracy bound
than QR, divide and conquer, traditional bisection, or any algorithm which first involves tridiago-
nalizing the matrix. Modulo an assumption based on extensive numerical tests, Jacobi’s method is
optimally accurate in the following sense: if the matrix is such that small relative errors in its entries
cause small relative errors in its eigenvalues, Jacobi will compute them with nearly this accuracy.
In other words, as long as the initial matrix has small relative errors in each component, even using
infinite precision will not improve on Jacobi (modulo factors of dimensionality). It is also shown that
the eigenvectors are computed more accurately by Jacobi than previously thought possible. Similar
results are proved for using one-sided Jacobi for the singular value decomposition of a general matrix.

Key words. Jacobi, symmetric eigenproblem, singular value decomposition
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1. Introduction. Jacobi’s method and QR iteration are two of the most com-
mon algorithms for solving eigenvalue and singular value problems. Both are back-
ward stable, and so compute all eigenvalues and singular values with an absolute error
bound equal to p(n) IIHII2, where p(n) is a slowly growing function of the dimension
n of the matrix H, is the machine precision, and I[HII2 is the spectral norm of the
matrix. Thus large eigenvalues and singular values (those near IIHII.) are computed
with high relative accuracy, but tiny ones may not have any relative accuracy at all.
Indeed, it is easy to find symmetric positive definite matrices where QR returns neg-
ative eigenvalues. This error analysis does not distinguish Jacobi and QR, and so we
might expect Jacobi to compute tiny values with as little relative accuracy as QR.

In this paper we show that Jacobi (with a proper stopping criterion) computes
eigenvalues of positive definite symmetric matrices, and singular values of general
matrices with a uniformly better relative error bound than QR, or any other method
which initially tridiagonalizes (or bidiagonalizes) the matrix. This includes divide and
conquer algorithms, traditional bisection, Rayleigh quotient iteration, and so on. We
also show that Jacobi computes eigenvectors and singular vectors with better error
bounds than QR.

In fact, for the symmetric positive definite eigenproblem, we show that Jacobi
is optimally accurate in the following sense. Suppose the initial matrix entries have
small relative uncertainties, perhaps from prior computations. The eigenvalues will
then themselves have inherent uncertainties, independent of which algorithm is used
to compute them. We show that the eigenvalues computed by Jacobi have error
bounds which are nearly as small as these inherent uncertainties. In other words,
as long as the initial data is slightly uncertain, even using infinite precision cannot
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improve on Jacobi (modulo factors of n). For the singular value decomposition, we
can prove a similar, but necessarily somewhat weaker, result.

These results depend on new perturbation theorems for eigenvalues and eigen-
vectors (or singular values and singular vectors) as well as a new error analysis of
Jacobi, all of which are stronger than their classical counterparts. They also depend
on an empirical observation for which we have overwhelming numerical evidence but
somewhat weaker theoretical understanding.

First, we discuss the new perturbation theory for eigenvalues, contrasting the
standard error bounds with the new ones. Let H be a positive definite symmetric
matrix, and 5H a small perturbation of H in the sense that 15Hij/Hijl <_ U/n for all
and j. Then 115HII2 <_ rl IIHII:. Let Ai and be the ith eigenvalues of H and H + 5H,
respectively (numbered so that 1 <_ _< An). Then the standard perturbation
theory [16] states that

(1 1) IA- AI < r/IIHII2 < l[Hll2" liH-*ll2 r/(H),A A
where (H) --IIHII2" IIH-l[[2 is the condition number of H. We prove the following
stronger result: Write H DAD, where D diag (H/2) and Ai 1. By a

theorem of van der Sluis [21], [6], t(A) is less than n times minD t(/)Hi)), i.e., it
nearly minimizes the condition number of H over all possible diagonal scalings. Then
we show that

(1.2) IA- AI _< (A),

i.e., the error bound n(H) is replaced by t(A). Clearly, it is possible that t(A) <<
n(H) (and it is always true that n(A) <_ nt(H)), so the new bound is always at least
about as good as, and can be much better than, the old bound.

In the case of the singular values of a general matrix G, we similarly replace the
conventional relative error bound n(G) with n(B), where G BD, D chosen diag-
onal so the columns of B have unit two-norm. This implies n(B) n/2 minb n(G),
and, as before, it is possible that n(B) << n(G).

The effects of rounding errors in Jacobi are bounded as follows. We can weaken
the assumption of small componentwise relative error [SHj/H[ /n in the per-
turbation theory to SHj/(HHjj)1/2 /n without weakening bound (1.2). This
more general perturbation bounds the rounding errors introduced by applying one
Jacobi rotation, so that one Jacobi rotation causes relative errors in the eigenvalues
bounded by O(g)n(A). (In contrast, QR, or any algorithm that first tridiagonalizes
the matrix, only computes eigenvalues with relative error bound O()n(H).)

To bound the errors from all the Jacobi rotations, we proceed as follows. Let
Ho DoAoDo be the original matrix and let Hm DAD where H is obtained
from Hm-1 by applying a single Jacobi rotation, D is diagonal, and A has unit
diagonal. The desired error bound is proportional to n(A0), i.e., it depends only
on the original matrix. But our analysis only says that at step m we get an error
bounded by something proportional to n(A). Thus the error bound for all the Jacobi
steps is proportional to max n(A). So, for Jacobi to attain optimal accuracy,
max,, n(Am)/n(Ao) must be modest in size. In extensive random numerical tests, its
maximum value was less than 1.82. Wang [23] has recently found isolated examples
where it is almost 8. Our theoretical understanding of this behavior is incomplete
and providing it remains an open problem.
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We must finally bound the errors introduced by Jacobi’s stopping criterion. To
achieve accuracy proportional to (A), we have had to modify the standard stopping
criterion. Our modified stopping criterion has been suggested before [22], [5], [3], [20],
but without our explanation of its benefits. The standard stopping criterion may be
written thus:

if Hijl <_ tol. max ]Ha], set Hij O,
kl

whereas the new one is

if IHij[ <_ tol. (HiiHjj) 1/2, set Hij 0

(here tol is a small threshold value, usually machine precision).
Now we consider the eigenvectors and singular vectors. Here and throughout

the paper whenever we refer to an eigenvector, we assume its eigenvalue is simple.
Again, let H be a positive definite symmetric matrix with eigenvalues ,i and unit
eigenvectors vi. Let 5H be a small componentwise relative perturbation as before,
and let ,k and v’ be the eigenvalues and eigenvectors of H + 5H. Then the standard
perturbation theory [16] says that v can be chosen such that

(1.3) I1 ll < + 0(),
absgapi

where the absolute gap for eigenvalues is defined as

(1.4) absgap), min

We prove a generally stronger result, which replaces this bound with

(1.5) [iv vll _< (n 1)l/2g(A) /

relgapx +

where the relative gap for eigenvalues is defined as

(1.6) relgapx min
[Ai

The point is that if H has two or more tiny eigenvalues, their absolute gaps are
necessarily small, but their relative gaps may be large, so that the corresponding
eigenvectors are really well conditioned. We prove an analogous perturbation theorem
for singular vectors of general matrices. We also prove a perturbation theorem which
shows that even tiny components of eigenvectors and singular vectors may be well
conditioned. Again, we show that Jacobi is capable of computing the eigenvectors
and singular vectors to their inherent accuracies, but QR is not.

To illustrate, consider the symmetric positive definite matrix H DAD, where

H 1029 1020 109 A .1 1 .1
1019 109 1 .1 .1 1

D diag (102, 1010, 1).

Here (H) 1040 and (A) 1.33. Thus r/ relative perturbations in the matrix
entries only cause 4 relative perturbations in the eigenvalues according to the new
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theorem, and 3. 104 r relative perturbations according to the conventional theorem.
Also, the absolute gaps for the eigenvalues of H are absgapl,2,3 10-2, 10-20 1

whereas, the relative gaps relgapl,2,3 are all approximately 101. Thus the new

theory predicts errors in Vl and v2 of norm 2.10-1r, whereas the old theory predicts
errors of 1027. Jacobi attains these new error bounds, but QR generally does not.
For this example, QR computes two out of the three eigenvalues as negative, whereas
H is positive definite. In contrast, Jacobi computes all the eigenvalues to nearly full
machine precision. In fact, for this example we can show that Jacobi computes all
components of all eigenvectors to nearly full relative accuracy, even though they vary
by 21 orders of magnitude; again, QR does not even get the signs of many small
components correct.

One might object to this example on the grounds that by reversing the order of the
rows and columns before tridiagonalizing and applying QR, we compute the correct
eigenvalues. However, we can easily find similar matrices (see 7) where Jacobi gets
accurate eigenvalues and QR gets at least one zero or negative eigenvalue, no matter
how the rows and columns are ordered.

We also show that bisection and inverse iteration (with appropriate pivoting, and
applied to the original positive definite symmetric matrix) are capable of attaining
the same error bounds as Jacobi. Of course, bisection and inverse iteration on a dense
matrix are not competitive in speed with Jacobi, unless only one or a few eigenvalues
are desired and good starting guesses are available. We use these methods to verify
our numerical tests.

This work is an extension of work in [2], where analogous results were proven
for matrices that are called scaled diagonally dominant (s.d.d.). The positive definite
matrix H DAD is s.d.d, if IIA-III2 < 1. This work replaces the assumption that A
is diagonally dominant with mere positive definiteness, extending the results of [2] to
all positive definite symmetric matrices, as well as to the singular value decomposition
of general matrices.

This work does not contradict the results of [8] and [2], where it was shown
how a variation of QR could compute the singular values of a bidiagonal matrix or
the eigenvalues of a symmetric positive definite tridiagonal matrix with high relative
accuracy. This is because reducing a dense matrix to bidiagonal or tridiagonal form
can cause large relative errors in its singular values or eigenvalues independent of the
accuracy of the subsequent processing. In contrast, the results in this paper are for
dense matrices.

We also discuss an accelerated version of Jacobi for the symmetric positive definite
eigenproblem with an attractive speedup property: The more its accuracy exceeds
that attainable by QR or other traditional methods, the faster it converges. See also
[22] where earlier references for Jacobi methods on positive definite matrices, as well
as for one-sided methods, can be found.

We use the following terminology to distinguish among different versions of Jacobi.
"Two-sided Jacobi" refers to the original method applying Jacobi rotations to the left
and right of a symmetric matrix. "One-sided Jacobi" refers to computing the SVD
by applying Jacobi rotation from one side only. "Right-handed Jacobi" is one-sided
Jacobi applying rotations on the right, and "left-handed Jacobi" is one-sided Jacobi
applying rotations on the left.

The remainder of this paper is organized as follows. Section 2 presents the new

perturbations theorems. Section 3 discusses two-sided Jacobi for the symmetric posi-
tive definite eigenproblem. Section 4 discusses one-sided Jacobi for the singular value
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decomposition, and also presents the accelerated version of Jacobi just mentioned.
Section 5 discusses bisection and inverse iteration. Section 6 discusses bounds on

maxm ,(Am)/t(Ao). Section 7 contains numerical experiments. Section 8 presents
our conclusions and discussion of open problems.

2. Perturbation theory. In this section, we prove new perturbation theorems
for eigenvalues and eigenvectors of symmetric positive definite matrices, and for singu-
lar values and singular vectors of general matrices. In 2.1, we consider eigendecom-
positions of symmetric positive definite matrices. In 2.2, we discuss the optimality
of these bounds. In 2.3, we consider the singular value decomposition of general
matrices. In 2.4, we discuss the optimality of this second set of bounds.

2.1. Symmetric positive definite matrices. The next two lemmas were proved
in [2].

LEMMA 2.1. Let H and K be symmetric matrices with K positive definite. Let
the pencil H- AK have eigenvalues Ai. Let 5H and 5K be symmetric perturbations
and let A be the (properly ordered) eigenvalues of (H + 5H) A(K + 5K). Suppose
that

IxTbHxl <_ ?7H xT and xTKxl ?7K" xTKxl
for all vectors x and some ?7H < 1 and ?TK < 1. Then either Ai A 0 or

1-- 77H < __A < 1 -- ?TH
1 + ?TK Ai 1- ?7K

for all i.
LEMMA 2.2. Let H /kTHAHAH and AH be symmetric matrices. H and AH

need not have the same dimensions, and AH may be an arbitrary full-rank conforming
matrix. Similarly, let K- ATKAKAK and AK be symmetric positive definite matri-

ces, where K and AK need not have the same dimensions and AK may be an arbitrary
full-rank conforming matrix. Let 5H AtbAHAH be a perturbation of H such that
IxTAHX[ <_ ?HIxTAHxl for all x where ?TH < 1. Similarly, let 5K ATKbAK/kK be
a perturbation ofK such that IxTbAKXl <_ ?TKIxTAKxl for all x where ?TK < 1. Let A
be the ith eigenvalue of H AK and A the ith eigenvalue of (H + 5H) A(K + 5K).
Then either 0 or

1 ?TH < __A < i + ?7H
1 + ?7K Ai 1- ?7K

THEOREM 2.3. Let H DAD be a symmetric positive definite matrix, and
D diag (HI/2) so di 1. Let 5H DbAD be a perturbation such that IIbAII2
?7 < /min(A). Let A be the ith eigenvalue ofH and A be the ith eigenvalue ofH+bH.
Then

(2.1) -- /min(A)
(A).?7.

In particular, if IbHij/Hijl <_ ?7In, then 115Allu <_ and the bound (2.1) applies.
Proof. Note that for all nonzero vectors x,

xTbHx
xTHx

xTATbAAx
xTATAAx yTAy
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Lemma 2.2 yields the desired bound, using K I and 5K 0. It remains to prove
that 15Hij/Hjl <_ /n implies 115AII2 <_ . But Au 1 and A positive definite imply
that no entry of A is larger than 1 in absolute value. (Note that this means (A) is
at most n times larger than 1/,min(A).) Therefore,
and so 115AII2 _< , as desired. [:]

Proposition 2.10 in the next subsection shows that the bound of Theorem 2.3 is
nearly attained for at least one eigenvalue. However, other eigenvalues may be much
less sensitive than this most sensitive one. The next proposition provides individual
eigenvalue bounds which may be much tighter.

PROPOSITION 2.4. Let H DAD be as in Theorem 2.3, with eigenvalues
and unit eigenvectors v. Let H + 5H D(A + 5A)D have eigenvalues . Let
II(AII2 ? /min(A). Then the botnd

+ 0()(2.2) IA A[< wllDvll =

is attainable by the diagonal perturbation (hAjj
Proof. Bound (2.2) is derived from the standard first-order perturbation

theory, which says that Ai(H + 5H) Ai(H) + vTihHvi + 0(11HII22), and substitut-
ing IvhHvi IvTiDhADvil < IIDvill2llhAII2. The inequality IvTiDhADvil <
I]DvilI22115AII2 is clearly attained for the diagonal choice of 5A in the statement of
the proposition.

We may also prove a version of Lemma 2.1 in an infinite-dimensional setting [14,
VI.3].

Now we turn to eigenvectors. A weaker version of the following theorem also
appeared in [2].

THEOREM 2.5. Let H DAD be as in Theorem 2.3. Define H(e) D(A+eE)D,
where E is any matrix with unit two-norm. Let A(e) be the ith eigenvalue of H(e),
and assume that A(O) is simple so that the corresponding unit eigenvector v(e) is
well defined for sufficiently small e. Then

(?- 1)1/2 (- 1)l/2n(A)e[[Vi() Vi(0) II2 /min(A) relgap),i
+ O(e) < + O(e2)"

relgapi

Proof. Let vk(O) be abbreviated by vk. From [11] we have

TDEDvi() +

Let y Dv, so that

T
Yk Eyi(.a) () +
_ v + O(eU).

v + O(:).

The pair (Ai, yi) is an eigenpair of the pencil A- AD-2. Thus

T T,k "kYk D 2yk Yk Ayk >_/min(A)

and so IlYk]12 <- (/k//min(d)) 1/2. Letting zk Yk/IlYklI2 lets us write. z[EzVi(e) Vi -- Z ()i - i)7kXi) 1/2 Vk -- O((2),
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where [ikl IlYkll211YilI2/(,’ki) 1/2 1//min(A). Taking norms yields the
result.

Proposition 2.11 in the next subsection shows that the bound in Theorem 2.5 is
nearly attainable for all vi.

As in Corollary 3 in [2], it is possible to derive a nonasymptotic result from
Theorem 2.5.

COROLLARY 2.6. Let H
5- 115AII2//min(A) satisfies

DAD be as in Theorem 2.3. Suppose that

3.2-1/2 5
and

1 5 < relgapai.

Let vi be the ith unit eigenvector of H DAD. Then the ith unit eigenvector v of
H D(A + 5A)D can be chosen so that

(n- 1)1/25

Proof. Let H(e) D(A + . 5A/I]SAII2)D. Let A(e) be the ith eigenvalue of
H(), and abbreviate A(0) by A. Let relgap(e) denote the relative gap of the ith
eigenvalue of H(e), and relgap(a, b) ]a- bl/(ab)/. The idea is that if e is small,
then A(e) can only change by a small relative amount, and so relgap(e) can only
chnnge by a smM1 bsolute or relative amount. Note that min(A) cn decrease by as
much as 5A2. Then by Theorem 2.3, we cn bound relgap(e) below by

relgapi(e) min
A(e)- Ak() > min

]A- Akl- 5(1 --5)-(A + A)
+ 5(1

((1--5) minki relgapx(Ai, Ak)-- 1--5" (AiAk)l/2

We consider two cases, relgapx(A, Ak) 2-1/2 and relgapx(A, Ak) < 2-1/2. The first
case corresponds to Ai and Ak differing by at least a factor of 2, whence

(AA)I/
3. relgap(Ai, A).

The second case corresponds to Ai and A differing by at most a factor of 2, whence

< 3.2-/
()/

Altogether, we have

relgap(e) (1 5) 1
1 5 relgap

1 5

Now integrate the bound of Theorem 2.5 from e 0 to e [SA][2 to get the desired
result.

In complete analogy to [2], we may also prove the following proposition.
PROPOSITION 2.7. Let 1 n be the eigenvalues of H and h h

be its diagonal entries in increasing order. Then

,min(A) < A__/ </max(A).



JACOBI’S METHOD IS MORE ACCURATE THAN QR 1211

In other words, the diagonal entries of H can differ from the eigenvalues only by
factors bounded by a(A).

Proof. See the proof of Proposition 2 in [2].
PROPOSITION 2.8. Let H DAD with eigenvalues )i. Let di be the diagonal

entries of D. Let vi be the th eigenvector of H normalized so that its th component
v (i) 1. Then

Iv(j)l <_ (j) ((A))3/2. min jj

We also have

Ivi(j)l <_ (t(A))3/2. min
dj

In other words, the eigenvectors are scaled analogously to the diagonal of H.
Proof. See the proof of Proposition 6 in [2].
PROPOSITION 2.9. Let H(e) and v(e) be as in Theorem 2.5, and (j) be as in

Proposition 2.8. Then

Iv(e)(j) v(O)(j)l <_ (2n- 2) 1/2

/min(A) min(relgapi, 2-1/2)
e. (j) + O(e2).

In other words, each component of each eigenvector is perturbed by a small amount
relative to its upper bound of i(j) of Proposition 2.8. Thus small components of
eigenvectors may be determined with as much relative accuracy as large components.
Note that relgapi exceeds 2-1/2 only when Ai differs from its nearest neighbor by at
least a factor of 2.

Proof. See the proof of Theorem 7 in [2]. [:]

We illustrate these results with two examples. First, we consider the matrix
H DAD of the introduction:

1029 1020 109 A .1 1 .1
1019 109 1 .1 .I 1

D diag (102, 1010, 1).

To six correct figures, H’s eigenvalue matrix A and eigenvector matrix V (normalized
to have the largest entry of each eigenvector equal to 1) are

A diag (1.00000.1040, 9.90000.1019, 9.81818.10-1)

and

1.00000 1.00000 10-11
1.00000 10-11 1.00000
1.00000 10-21 9.09091 10-12

-9.09091.10-22 ]-9.09091 10-12

1.00000

We may compute that a(H) 1040 and a(A) 1.33. Thus, according to Theorem
2.3, changing each entry of H in its seventh decimal place or beyond would not change
A in the figures shown. The refined error bounds of Proposition 2.4 are essentially the
same in this case. We can further verify the assertion of Proposition 2.7 that the ratios
of the eigenvalues to the diagonal entries of H are bounded between .9 =/min(A) and
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1.2 /max(A). One may also compute that the relative gaps relgap for all three
eigenvalues are approximately 10l. Thus, according to Theorem 2.5, seventh-figure
changes in H would not change its eigenvectors by more than 10-16 in norm. In fact,
the eigenvectors are even more accurately determined than this. Let V {i(j)} be
the matrix of upper bounds of entries of V as defined in Proposition 2.8"

1.5 1.5.10-1 1.5.10-20 ]1.5.10-1 1.5 1.5 10-1

1.5.10-20 1.5.10-1 1.5 10-20

Then, according to Proposition 2.9, seventh-figure changes in H cause changes in at
most the fifth digits of all the entries of V. In other words, for this, examples of
all the eigenvalues and all the components of all the eigenvectors, are determined to
nearly full relative precision by the data. Later, we show that Jacobi can compute
them with this accuracy. In contrast, QR does not even get the signs of the two small
eigenvalues or many components of the eigenvectors correct.

The second example serves to illustrate the difference between Theorem 2.3 and
the refined bounds of Proposition 2.4. Let H DAD where D is the same as before
and

1 1-# 1-# ]1-# 1 1-#
1-# 1-# 1

where # 10-6. The eigenvalues of H are 104, 2. 1014, and 1.5. 10-6. Now
a(A) 106, so according to Theorem 2.3, an relative change in the matrix entries
causes as much as a 106r/relative change in the eigenvalues. In contrast, the refined
bounds predict a relative change of in 104o and 1067 in the two smaller eigenvalues.
Thus the largest eigenvalue is just as insensitive as predicted by standard norm-based
perturbation theory.

2.2. Optimality of the bounds for symmetric positive definite matrices.
In this section, we show that the bounds of the last section are attainable. In other
words, the only symmetric positive definite matrices whose eigenvalues are determined
to high relative accuracy by the matrix entries are those H DAD, where A is well
conditioned.

In particular, we give explicit small, componentwise, relative perturbations, which
attain the eigenvalue bounds; it suffices to choose a diagonal perturbation. We have
(necessarily) slightly weaker results for the optimality of our eigenvector bounds.

We begin by showing that the assumption 115A[[2 </min(A) of the last section is
essential to having relative error bounds at all. If this bound were violated, A + 5A
(and so H + iH) could become indefinite, implying that all relative accuracy in at
least one eigenvalue is completely lost. In contrast to standard perturbation theory,
however, which assumes a bound on IIbHll2 instead of llbAll2, one cannot say which
eigenvalue will lose relative accuracy first. In the conventional case, as IIgll2 grows, it
is the smallest eigenvalues that lose accuracy first, the larger ones remaining accurate.
As IIAII2 grows, however, any eigenvalue in the spectrum (except the very largest)
may lose its relative accuracy first. The following example illustrates this:

1020 1
1 .99 1 .99
.99 1 .99 1

10-2 1
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and D diag (101, 1, 1, 10-10). Note that Amin(A)- .01. As []5A[[2 approaches .01,
the eigenvalues near 1020, 1.99, and 10-20 retain their accuracy, but the one near .01
can lose all its relative accuracy.

We next show that the relative error bound of Theorem 2.1 can be nearly attained
for at least one eigenvalue simply by making appropriate small relative perturbations
to the diagonal of H.

PROPOSITION 2.10. Let H DAD be symmetric positive definite, with D
diag (Hlii/2) diagonal and Aii= 1. Let 5A I, 0 < / < Amin(A), and H + 5H
D(A + 5A)D. Then for some we have

A(g + 5H)
i(H)

1 + min(A
1 + nmin(A)"

Proof. We have

i(H) det(DAD) det(D) det(A) det(D2) Ai(A)

and

Ai(H + 5H) det(D(A + I)D) det(D2) det(A + I) det(D2) (Ai(A) + ).

Therefore,

H Ai(H + 5H) Ai(A) + r] r]

A(H) H A(A)
_> 1 +/min(A)’

implying that at least one factor A(H + 5H)/Ai(H) must exceed (1 + T]//min(A)) 1/n.
This last expression is approximately 1 + /(nAmin(A)), when << .min(n).

The example at the beginning of this section showed that the error bound of Theo-
rem 2.3 and the last proposition may only be attained for one eigenvalue. Proposition
2.4 of 2.1 showed that for asymptotically small I]5AII2, the maximum perturbation
in each eigenvalue may be attained only with small diagonal perturbations of A.

After we show that the rounding errors introduced by Jacobi are of the form
115AII2 O(c) in 2.3, Propositions 2.10 and 2.4 show that Jacobi (modulo the as-
sumption on maxm (nn)/(no)) computes all the eigenvalues with optimal accuracy,
provided that only the diagonal entries of H have small relative errors. The same op-
timality property is true of bisection.

Now we consider eigenvectors. Here our results are necessarily weaker, as the
following example shows. Suppose H is diagonal with distinct eigenvalues. Then
small relative perturbations to the matrix entries leave H diagonal and its eigenvalue
matrix (the identity matrix) unchanged. Therefore, the only way we can hope to
attain the bounds of Theorem 2.5 is to use perturbations 5A, which are possibly
dense, even if H is not. Furthermore, a block diagonal example like the first one in
this section shows that the attainable eigenvector perturbations do not necessarily
.grow with (A). Thus the following is the best we can prove.

PROPOSITION 2.11..Let H DAD, ii, v, 5H, 5A and let l be as in Proposition
2.4. Let v’ be the unit eigenvectors of H + 5H. Then we can choose 5A, 115AII2
r] << min(A), 80 that

+ o(2).[IVi Viii2 -- Anax(A)relgap),i
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Proof. Consider expression (2.3) for vi- v (there, 5A is written eE). By using
a Householder transformation, we can prove that there exists a symmetric 5A such
that ySAyi Ilykll211yill2115AII2 for arbitrary
I]ykll2Amx(A), we can find 5A to make y[SAy (ik)l/2]]n]2/max(n). Choosing
k so that Ak is closest to A completes the proof.

2.3. Singular value decomposition. The results on singular values and sin-
gular vectors are analogous to the results for eigenvMues and eigenvectors in the first
subsection, so we do not include the proofs. Just as we derived perturbation bounds
for eigenvalues from a more general result for generalized eigenvMues of pencils, we
start with a perturbation bound for generalized singular values and then specialize to
standard singular values.

Let G1 and G2 be matrices with the same number of columns, G2 of full column
rank, and both arbitrary. We define the ith generalized singular value cry(G1, G2)
of the pair (G1, G2) as the square root of the ith eigenvalue of the definite pencil

GTIG1 AGT2G2 [11]. If we let G2 be the identity, r(G1, G2) is the same as the
standard singular value a(G1) of G1.

LEMMA 2.12. Let G1 and G2 be matrices with the same number of columns, G2
of full column rank, and both arbitrary. Let 5Gj be a perturbation of Gj such that

for all x and some 71j < 1. Let ri be the ith generalized singular value of (G1,
and r be the ith generalized singular value of (G1 + 5G1, G2 + 5G2). Then either

0 orO- T

1+7111--71"/1 < o% <
1+712 o-i 1--712

LEMMA 2.13. Let G and G2 be as in Lemma 2.12 Let Gj Bj/kj, where Aj
has full rank and is otherwise arbitrary. Let 5Gy 5BjAj be a perturbation of Gy

be the ithsuch that 115Bjxll2 < 71yllByxl12 for all x and some 71 < 1 Let cr and a
generalized singular values of (G, G2) and (G1 + 5G, G2 + 5G2), respectively. Then

I-0 oreither a a

1+7111-711 <r_A <
1 + 712 i i 712

THEOREM 2.14. Let G- BD be a general full-rank matrix, and let D be chosen
diagonal so that the columns of B have unit two-norm (i.e., D equals the two-norm
of the ith column of G). Let 5G 5BD be a perturbation of G such that I]5B112

be the th singular values of G and G + 5G, respectively.71 < O’min (B) Let c and (r
Then

(2.4) I’ crl < 71
cri Crmin(B)

_</,,(B) 71,

where n(B) (Ymax(B)/fYmin(B) <_ nl/2/rmin(B), and n is the number of columns of
G. In particular, if 15Gij/Gijl < 71/n, then [[5B[[2 <_ 71 and the bound (2.4) applies.

Just as the bounds of Theorem 2.3 were not attainable by all eigenvalues, neither
are the bounds of Theorem 2.14 attainable for all singular values. Analogous to
Proposition 2.4, we may derive tighter bounds for individual singular values.
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PROPOSITION 2.15. Let G BD be as in Theorem 2.14, with singular values ai,

right unit singular vectors vi, and left unit singular vectors u. Let G+SG (B+SB)D
where [(5B[[2 r] rmin(B). Then the boundhave singular values ai,

(T O"

is attainable by the perturbation 8B ui(Dvi)T/I]Dvi]]2.
Now we consider the singular vectors. For simplicity, we assume that G is square.

We use the fact that if G UEVT is the singular value decomposition of G, then

2-1/2" I VU -uV ]
is the eigenvector matrix of the symmetric matrix [11]

0 GT

Therefore, we can use perturbation theory for eigenvectors of symmetric matrices to
do perturbation theory for singular vectors of general matrices.

We also need to define the gaps for the singular vector problem. The absolute 9ap

for singular values is

0" O"kabsgap _= min

i.e., essentially the same as the absolute gap for eigenvalues. However the relative gap
for singular values,

" O"krelgaPi min
ki ri +

is somewhat different from the relative gap for eigenvalues.
The standard perturbation theorem for singular vectors is essentially the same as

for eigenvectors. Let G have right (or left) unit singular vectors vi, and let G + 5G
have right (or left) unit singular vectors v. Let r] 115GII2/IIGII2. Then

absgaPi

We improve this in the following theorem.
THEOREM 2.16. Let G BD be as in Theorem 2.14. Define G(e) (B + eE)D

where E is any matrix with unit two-norm. Let () be the ith singular value of
and assume that cry(O) is simple so that the corresponding right unit singular vector
vi(e) and left unit singular vector u() are well defined for sufficiently small . Then

relgapoi
+

COROLLARY 2.17. Let G BD be as in Theorem 2.14.
[[B[]2/O’min(B) satisfies

Suppose that

< relgap.
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Let vi and ui be the unit right and left singular vectors of G, respectively, and let v
and u be the unit right and left singular vectors of G’ (B + 5B)D, respectively.
Then

There are analogues to Propositions 2.7-2.9 of the last section, obtained by con-

sidering H GTG:
PROPOSITION 2.18. Let G BD be as in Theorem 2.14. Let (rl <_ <_ an be

the singular values of G and dl <_ <_ dn the diagonal entries of D in increasing
order. Then

o-
(min(B)

_
i <- (max(B).

PROPOSITION 2.19. Let G BD be as in Theorem 2.14 with singular values
O’1

_ _
fin. Let vi be the ith right singular vector of G, normalized so that its ith

component vi 1. Then

Ivi(j)l<_i(j) (t(B))3. min (a.. O"

We also have

d dj )Iv,(j)l _< a. min jj’-7/

PROPOSITION 2.20. Let G(e) and v(e) be as in Theorem 2.16, and i(j) be as in
Proposition 2.19. Then

Iv(e)(j) v(O)(j)l <_ 2(n- 1) 1/2
2

O’min(B) relgapai
e-(j) + O(e2).

There are analogues to all the results in this section for matrices G DB scaled
from the left instead of the right. Thus we can choose to scale either the rows or
the columns of G to have unit two-norms, whichever one minimizes the condition
number. It is natural to ask if we can do better by considering two-sided diagonal
scaling DIGD2; to date, we have been unable to formulate a reasonable perturbation
theory. To see why, note that if G is triangular, it can be made as close to the identity
matrix as desired by two-sided scaling, even though its singular values can be quite
sensitive.

2.4. Optimality of the bounds for the singular value decomposition.
The results in this section are analogous to, but necessarily weaker than, the results
of 2.2. In particular, it is no longer the case that the perturbation bounds for the
singular values can be attained by small relative perturbations in the matrix entries.

First, consider the restriction 115BII2 < amin(B). Just as in the symmetric positive
definite case, this is necessary so that B + 5B remains nonsingular. When B + 5B
becomes singular, at least one singular value necessarily loses all relative accuracy.
The same kind of block diagonal example as in 2.2 also shows that only one singular
value may have its sensitivity depend on t(B), and it might be anywhere in the
spectrum (except the very largest singular value).
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In order to prove an analogue of Proposition 2.10, we must permit perturbations
5B of B which are small in norm but may make large relative changes in tiny entries
of B (a similar perturbation was needed to prove that the bound in Proposition 2.15
was attainable).

PROPOSITION 2.21. Let G BD with D diagonal and the columns of B having
unit two-norm. Then there exists a 8B with 115BII2 r] < (Tmin(g) such that for
G + 5G (B + 5B)D we have, for at least one i,

ai(G)
> 1 + 1 +

O-min (B) n(Tmin (g)

If we restrict 5B so that ]bBij/Bijl <_ r, then such a perturbation 5B may not exist.

Proof. The proof is very similar to that of Proposition 2.10. Let X be a rank-one
matrix of minimal two-norm such that B + X is singular, and let 5B -rlX. Then,
as in Proposition 2.10, we discover that

a(G)
1 + min(B)

and so at least one term a,(G + 5G)/er,(G) exceeds (1 + /(min(B)) 1In. To see that
small componentwise relative perturbations are not sufficient, consider the matrix

G--B--- [1 1]
with e << 1. The condition number of B is approximately l/e, and relative perturba-
tions of size r/in its entries cannot change its singular values by more than a factor
of about (1 + r/) 2.

As in Proposition 2.11, our lower bound on the attainable perturbations in the
singular vectors requires a dense 5B and does not grow with (B).

PROPOSITION 2.22. Let G BD, r, ui, v; 5G 5BD; and rl be as in
and be the unit left and right singular vectors of G +Proposition 2.15. Let u v

respectively. Then we can choose 5B, 115BII2 =_ r] << ffmin(B), So that

max(llu uill2, Ilv viii2) > 2a/2ermax (B)relgap +

3. Two-sided Jacobi. In this section, we prove that two-sided Jacobi in float-
ing point arithmetic applied to a positive definite symmetric matrix computes the
eigenvalues and eigenvectors with the error bounds of 2.

In this introduction, we present the algorithm and our model of floating point
arithmetic. In 3.1, we derive error bounds for the computed eigenvalues. In 3.2, we
derive error bounds for the computed eigenvectors.

Let H0 DoAoDo be the initial matrix, and Hn D,A,D,, where H, is
obtained from Hm-1 by applying a single Jacobi rotation. Here D, is diagonal
and A, has unit diagonal as before. All the error bounds in this section contain
the factor max, (A,), whereas the perturbation bounds of 2 are proportional to
n(A0). Therefore, our claim that Jacobi solves the eigenproblem as accurately as
predicted in 2 depends on the ratio max, t(A,)/t(Ao) being modest in size. Note
that convergence of H, to diagonal form is equivalent to the convergence of A, to
the identity, or (A,) to 1. Thus we expect t(Am) to be less than (A0) eventually.
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We have overwhelming numerical evidence that maxm (Am)/a(Ao) is modest
in size; in 7, the largest value this ratio attained in random testing was 1.82. Our
theoretical understanding of why this ratio is so small is somewhat weaker; we present
our theoretical bounds on this ratio in 6.

The essential difference between our algorithm and standard two-sided Jacobi is
the stopping criterion. As stated in the introduction (and justified by Theorem 2.3),
we set Hij to zero only if Hij/(HHjj) 1/2 is small. Otherwise, our algorithm is a
simplification of the standard one introduced by Rutishauser [16]. We have chosen a

simple version of the algorithm, omitting enhancements such as delayed updates of
the diagonals and fast rotations, to make the error analysis clearer (an error analysis
of these enhancements is future work).

ALGORITHM 3.1 (Two-sided Jacobi for the symmetric positive definite eigenprob-
lem). tol is a user-defined stopping criterion. The matrix V whose columns are the
computed eigenvectors initially contains the identity.

repeat
for all pairs < j

/* compute the Jacobi rotation which diagonalizes

Hji Hjj =- c b /*

(b- a)/(2c);t-sign()/(ll + V/1 + 2)
cs 1/V’1 + t2; sn cs t
/* update the 2 2 submatrix */
Hii =a-c,t
Hjj =b+c,t
H H 0
/* update the rest of rows and columns and j */
for k 1 to n except and j

trnp Hik
Hik cs trnp- sn Hjk
Hjk sn trap + cs Hjk

H H; H H
endfor
/* update the eigenvector matrix V */
for k 1 to n

trnp Vki
Vi cs trap sn Vj
V sn trnp + cs Vj

endfor
endfor

u.ti co.vrg. ( IHI/(HH)I/ <_ to)
Our model of arithmetic is a variation on the standard one: the floating point

result fl(.) of the operation (.)is given by

(3.1)
fl(a -t- b) a(1 + el) b(1 + e2),
fl(a x b)= (a x b)(1 + e3),
fl(a/b) (a/b)(1 + g4),
fl(vd) v/-d(1 +

where I[ _< and << 1 is the machine precision. This is somewhat more general
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than the usual model, which uses fl(a +/- b) (a +/- b)(1 + El) and includes machines
like the Cray, which do not have a guard digit. This does not greatly complicate the
error analysis, but it is possible that the computed rotation angle may be off by a
factor of 2, whereas with a guard digit the rotation angle is always highly accurate.
This may adversely affect convergence, but as we see it does not affect the one-step
error analysis.

Numerically subscripted a’s denote independent quantities bounded in magnitude
by . As usual, we make approximations like (1 + i1)(1 + j2) 1 + (i + j)3 and
(1 + i1)/(1 + j) 1 + (i + j)3.

3.1. Error bounds for eigenvalues computed by two-sided Jacobi. The
next theorem and its corollary justify our accuracy claims for eigenvalues computed
by two-sided Jacobi.

THEOREM 3.1. Let Hm be the sequence of matrices generated by Algorithm 3.1
in finite precision arithmetic with precision ; that is, Hm+ is obtained from Hm by
applying a single Jacobi rotation. Then the following diagram:

floatingHm Jacohl /-/m+l

+SHin I /exact-/
Ha/

Jacobi

commutes in the following sense: The top arrow indicates that Hm+ is obtained from
Hm by applying one Jacobi rotation in floating point arithmetic. The diagonal arrow
indicates that Hm+ is obtained from H by applying one Jacobi rotation in exact
arithmetic; thus Hm+ and H are exactly similar. The vertical arrow indicates that

H Hm + 5Hm. 5H is bounded as follows. Write Hm DmSAmDm. Then

(3.2) ]]SAm]] (182(2n- 4)/ + 104).

In other words, ff ]]SAI]2 < min(Am), oe step of gacobi 8atiCe8 the a88ptios
needed for the error bounds of 2.

COROLLARY 3.2. Assume that Algorithm 3.1 converges, and that HM i8 the final
matrix whose diagonal entries we take as the eigenvalues. Write Hm DmAmDm
with Dm diagonal and Am with ones on the diagonal for 0 m M. Let Aj be the
j th eigenvalue of Ho and A be the j th diagonal entry of HM. Then to first order in, the following error bound holds:

M. (lSe(e 4) + 104) + n. to ).
Aj OmM

Remark. In numerical experiments presented in 7, there was no evidence that
the actual error bounded in (3.3) grew with increasing n or M.

Proof of Corollary 3.2. Bound (3.3) follows by substituting the bound (3.2) and
the stopping criterion into Theorem 2.3.

Remark. A similar bound can be obtained based on the error bound in Proposition
2.4.

Proof of Theorem 3.1. The proof of the commuting diagram is a tedious compu-
tation. Write the 2 2 submatrix of Hmrn being reduced as

c b zdidj d



1220 j. DEMMEL AND K. VESELI(

where we assume without loss of generality that a _> b and c > 0. By positive
definiteness, 0 < z _< 2 ((A,)- 1)/((Am)+ 1) < 1. Let a’ and b’ be the new
values of Hii and Hjj computed by the algorithm, respectively. Let x =_ dj/di <_ 1.
We consider two cases: x <_ 2 (v/- 1)/2 .62, and x > 2.

First consider x _< 2. Systematic application of formulas (3.1) shows that

fl((b a)/(2 c))
(1 + c4)(((1 + c1)b- (1 + c2)a)/((1 + c3)2c))
(1+c4)(1+c2)(/}-a)l+ca2c

where -- (l+c1)b/(l+c2)-- (l+cb)b, ICbl <_ 2C. Thus -- (1+c)(/}-a)/(2c)
where Ic1 _<

Let t(c) denote the true value of t (i.e., without rounding error) as a function of
a,/, and c. Using (3.1) again, we can show t (1 + ct)t(c) where

Next,

b’ fl(b + ct) (1 + cs)b + (1 + c6)(1 + cT)ct

(3.4) (1 + c2)(11+c1+ c5) ( + (1 + c1)(1(1 + c2)(1+ c5)
+ c6)(1 + c7)(1 + ct)ct(c))

(1 + Cb,)(b + (1 + cct(c))ct(c)),

where Icct(c)l _< 12c and ICb, _< 3c. Since It(c)l is an increasing function of c, we can
write (1 + ct())ct(c) (1 + c)c. t((1 + Cc)C) for some Cc where ICcl <_ Ict()l <_ 12c.

Now we can define 5 (1 + c)c, and , , ds, and sn as the true values of the
untilded quantities computed without rounding error starting from a, b, and 5. cs
and sn define the exact Jacobi rotation

cs sn 1Jn- _sn cs

which transforms Hm into Hm+l in the commutative diagram in the statement of the
theorem: jTHJ, H,+.

Now we begin constructing 5H,. 5Hm is nonzero only in rows and columns and
j. First, we compute its entries outside the 2 2 (i,j) submatrix. Using (3.1) we can
show cs (1 + cs)cs and sn (1 + cs,)n, where [ccl _< 22c and Ic,] _< 30c. Now
let Hk and H}k denote the updated quantities computed by the algorithm. Then

Hk fl(cs, Hia sn, Hjk)
(1 + c10)(1 + C8)cSHik (1 + c9)(1 + Cll)8rtHjk
(1 + c10)(1 + cs)(1 + Ccs)sHik (1 + c9)(1 + Cll)(1 + Csn)8nHjk

+

Similarly,

(3.6)
Hjk fl(sn H.ik + cs Hjk)

(1 + c4)(1 + c2)(1 + Cn)snHik + (1 + c3)(1 + c15)(1 +
=_ + +
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Now x dj /di implies

2 2 x2b a dj d 1

2 25didy 22x

where 2 z(1 + c). Then x <_ 2 implies

i :2"
2 1 2

Also, ]] {[, so this last expression is an upper bound on [ as well. Subsitutin
this bound on n, s 1, [H dd, andH djd into (3.5) nd (3.6) yields

[e(H) 56adage2,

]e(H}k)] E 56adjdk2/(1 22).

Thus

Ha =J" Hjk + e(Hjk)

j f [ Hik T
Hjk ] + Jm" [ e(Hik

a- 11+
where laa’l _< 21a.

Now let

where IHikl <_ ll2adidk2/(1- 2) and IHjkl <_ ll2djdk2/(1- 2).
Now we construct the 2 2 submatrix A of H, at the intersection of rows and

columns i and j. We construct it of three components"
Consider the formula a’ fl(a c ) for the i, i entry of Hm+l. Applying (3.1)

systematically, we see that

a’ (1 + 18)a- (1 + a17)(1 + E16)c
(1 + s)a (1 + 17)(1 + 16)(1 + t)ct(c)

(1 + 18)a- (1 + 17)(1 + 16)(1

)()(1 + als)a- (1 + et()

where[()] 21. Since a > 0 and t() < O, we get

+
E18a

a- ]

c bb -- c [- b

From earlier discussion we see that

b +A1 Jm 0



1222 J. DEMMEL AND K. VESELI(

Next let

Thus

c b +AI+A2 Jm -(1+’)[ a-St(5)0 D +05t(5) ]
0 b’((1 +e,)/(1 +eb))

Finally, let

Aa J’ 0 b’(1-- ((l + e,)/(l + sb))) J--

where leb" I_< [a’l--Ib[ -- 24. Then

c b + 1 + 2 + 3 Jm

sn2eb,,b Ksseb,,b
Kss b, b c82 b, b

as desired. This completes the construction of 5Hm. We may bound

(3.7) [[hAmll2 < (112(2n 4)1/22
1_22 +104

le(Hk)l < 56didk2 and le(Hjk)l < 56did2,

whence

15Hikl <_ 112eddk2 and lSHjkl <_ 112edjdk2/2,

and so

(3.8) 115Atoll2 <_ (112(2n 4)1/22
+104

Finally, we note that our choice of 2 makes the upper bounds in (3.7) and (3.8) both
equal, with 1/(1- 22) 1/2 < 1.62, proving the theorem. S

Remark. The quantity 182(2n- 4) 1/2 in the theorem may be multiplied by
maXm,iCj Am,ijl, which is less than one. Thus if the Ar are strongly diagonally
dominant, the part of the error term that depends on n is suppressed.

Commutative diagrams like the one in the theorem, where performing one step
of the algorithm in floating point arithmetic is equivalent to making small relative
errors in the matrix and then performing the algorithm exactly, occur elsewhere in
numerical analysis. For example, such a diagram describes an entire sweep of the
zero-shift bidiagonal QR algorithm [8], and is the key to the high accuracy achieved
by that algorithm.

Now we consider the second case, when x > 2. The only thing that changes in
the previous analysis is our analysis of 5Hik and 5Hjk, since n is no longer small.
Instead we substitute the bounds [n < 1, Ices] < 1, ]Hk < ddk2, <_ djdk2,/c, and
IHykl <_ djdk2 into (3.5) and (3.6) to get
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3.2. Error bounds for eigenvectors computed by two-sided Jacobi. The
next two theorems justify our accuracy claims for eigenvectors computed by two-sided
Jacobi.

THEOREM 3.3. Let V Iv1,..., Vn] be the matrix of unit eigenvectors computed
by Algorithm 3.1 in finite precision arithmetic with precision . Let U [ul,..-, un]
be the true eigenvector matrix. Let F; maxm t(Am) be the largest t(Am) of any
iterate. Then the error in the computed eigenvectors is bounded in norm by

(3.9) Ilvi uill2 <
(n 1)1/2(n tol + M. (182(2n 4) 1/2 + 104))K

relgapi
+ 46M.

Proof. Let H0,..., HM be the sequence of matrices generated by the Jacobi
algorithm, where HM satisfies the stopping criterion. Let J, be the exact Jacobi
rotation which transforms H to H,+I in the commuting diagram of Theorem 3.1:
JTHJ, H,+I.

We use the approximation that relgapi is the same for all H,, even though
it changes slightly. This contributes an O(e2) term to the overall bound (which we

ignore), but could be accounted for by using the bounds of Theorem 3.1.
Initially, we compute error bounds for the columns of Jo"" JM-1, ignoring any

rounding errors occurring in computing their product. Then we incorporate these
rounding errors.

We prove by induction that the ith column vm of Vm J,"" JM-1 is a good
approximation to the true ith eigenvector Umi of Hm. In particular, we show that to
first order in ,

I1 , 0,11 <_ 1)1/2(n" tol + M. (182(2n 4) 1/2 + 104)a)R
relgapi

The basis of the induction is as follows. VM I is the eigenvector matrix for HM,
which is considered diagonal since it satisfies the stopping criterion. Thus the norm
error in VM follows from plugging the stopping criterion into Theorem 2.5:

1) 1/2 n. tol.

relgaPi

For the induction step we assume that

Ilu,+l,i vm+l,i[[2 <_ (n- 1)1/(n tol + (M rn 1). (182(2n 4) 1/2 + 104))
relgapi

and try to extend it to rn. Consider the commuting diagram of Theorem 3.1. Ac-
cordingly, the errors in V, JmVm+l considered as eigenvectors ofH are the errors
in V,+I premultiplied by Jm. This does not increase them in the two-norm, since
J, is orthogonal. Now we change Hm to Hm. This increases the norm error in
v, by an amount bounded by plugging the bound for 115A,112 into Theorem 2.5:
(n- 1)1/2(182(2n- 4) 1/2 - 104)/relgaPi. This proves the induction step.

Finally, consider the errors from accumulating the product of slightly wrong values
of Jm in floating point arithmetic. From the proof of Theorem 3.1, we see that the
relative errors in the entries of Jm are at most 30, and from the usual error analysis
of a product of 2 2 rotations, we get 32/M 46M for the norm error in the
product of M rotations. This completes the proof of bound (3.9).
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Now we consider the errors in the individual components of the computed eigen-
vectors lui(j)- vi(j)l. From Proposition 2.9, we see that we can hope to bound this
quantity by O()i(j)/min(relgapxi, 2-1/2), where

(3.10) i(j)

is a modified upper bound for the eigenvector component v(j) as in Proposition 2.8.
In other words, we may have high relative accuracy even in the tiny components of
the computed eigenvectors; this is the case in the example in the introduction and at
the end of 2.1.

We use (j) as defined in (3.10) for each H,, even though the values of ,i and
j vary slightly from step to step. This error contributes an O(2) term to the overall
bound (we are ignoring such terms), but could be incorporated using the bounds of
Corollary 3.2.

THEOREM 3.4. Let V, U, and be as in Theorem 3.3, and (j) be as in (3.10).
Then we can bound the error in the individual eigencomponents by

(3.11) lug(j)- v(j)l < p(M, n) (tol + ). . i(j)
min(relgap),i, 2-1/2)"

Here p(M, n) is a "pivot growth" factor, which is given in (3.21).
Proof. The proof is similar to that of Theorem 3.3. One difference is that we

use Proposition 2.9 instead of Theorem 2.5 to bound the errors in the eigenvectors.
Another difference, which introduces the growth factor p(M, n), is that we need to
use the scaling of the entries of J, to see how small eigenvector components have
small errors; not being able to use the orthogonality of Jm introduces p(M, n). We
can only prove an exponentially growing bound for p(M, n), although we believe it to
be much smaller.

As in the proof of Theorem 3.3, let V, Jm"" JM-1, where JTmHJm Hm+l.
Set VM I. The proof has three parts. In the first part, we show that the ith column
of V0 is a good approximation to the eigenvectors of H0 in the sense of the theorem.
In the second part, we show that the (i, j) entry of J0"" Jm is bounded by a modest
multiple of i(j). In the third part, we show that the rounding errors committed in
computing Jo"" Jm in floating point are small compared to i(j).

For the first part of the proof we use induction to prove that the ith column Vmi
of Vm is a good approximation to the true ith eigenvector Umi of Hm. This shows
that

(3.12) lug(j) voi(j)l < Po
(tol + ). . i(j)

min(relgap),i, 2-1/2)
where P0 is a constant (part of the "pivot growth" factor) we need to estimate. The
base of the induction follows from plugging the stopping criterion into the bound of
Proposition 2.9, yielding

]UMi(j) VMi(j)I < (2n 2)1/2. n tol.

min(relgapxi, 2-1/
< PM

(to1 + a). . fi(j)
min(relgapi, 2-1/2)

where PM n(2n- 2) 1/2. The induction step assumes that

lUm+l,i(j) Vm+l,i(j)l <_ Pm+l
(tol + e). . i(j)

min(relgapixi 2-1/2)
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which we try to extend to m. Consider the commuting diagram of Theorem 3.1.
Accordingly, the errors in the columns of Vm JmV,+l considered as eigenvectors
of Hm are just the errors in V,+I premultiplied by J,; let emi denote this error for
the ith column of V,. Suppose J, rotates in rows and columns k and l; then e,i is
identical to Um+l,- Vm+l# except for em(k) and em(1). We may assume without
loss of generality that k < and dk >_ dt (d2k and d are the diagonal entries of Hm).
As in the proof of Theorem 3.1, there are two cases: x =_ dt/dk <_ 2 =_ (v- 1)/2,
andx >2.

In the first case, x <_ 2, we know (as in the proof of Theorem 3.1) that s-n, the sine
in the rotation Jm, is bounded in magnitude by x/(1-22). Write Inl <_ Cm(ikt/ikk) 1/2

1/2 frominstead, where Cm is a modest constant. We can do this because d .,r

Proposition 2.7. This lets us bound

(3.13)

Now consider case 2, x > 2. Now Ak and At are reasonably close together. Thus
we may bound Is-nl simply by 1 in the derivation (3.13). This leads to the same bound
with a possibly different Cm; we take the final c, as the maximum of these two values.
This bounds the error in the columns of V, considered as eigenvectors of H.

Now we change H to H,. This increases the bound for lUmi(j)- Vmi(j)l by an
amount bounded by plugging the bound for IlhAmll2 from Theorem 3.1 into Propo-
sition 2.9" (2n 2)1/2(182(2n 4) 1/2 + 104). . . i(j)/min(relgapi, 2-1/2). This
completes the induction with

(3.14)
lu.(j) v.(j)l

<_ ((1 + c.)p.+l + (2n- 2)1/2(182(2n- 4) 1/2 + 104)).

Pm
(tol + v). . i(j)

min(relgapxi, 2-1/2)"

(tol + ). . V(j)
min(relgapi, 2-1/2

Here
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(1 + Cm)Pm+l + (2n 2)1/2(182(2n 4) 1/2 + 104) PM n(2n 2) 1/2

Pm satisfies an exponential error bound, but it is clear from the derivation that linear
growth is far more likely than exponential growth. This completes the first part of
the proof.

In the second part of the proof we show that the (i, j) entry of V, Jo"" Jm is
bounded by a modest multiple of i(j). To do this we prove by induction that

(3.16) Im(j)l <_ -,(j),

where Vm [,1,’", mn] and -m is a constant (part of the "pivot growth" factor)
we need to estimate. The base of the induction is for m -1, i.e., the null product,
which we set equal to the identity matrix. This clearly satisfies (3.16) with ’-1 1.
Now we assume that (3.16) is true for rn- 1 and try to extend it to m. Suppose Jm
rotates in rows and columns k and./. Postmultiplying l)m-1 by Jm only changes it
in columns k and 1. Assume as before that k < and x- d/dk <_ 1. There are two
cases, as before: x _< 2 and x > 2.

First, consider the case x <_ 2. We may bound the (j, k) and (j, l) entries of Vm
as follows"

(3.17)

Tra--la;3/2 min

1 cm X-)x 1/2
cm

a/2(1 + c)

x min

[rn-1,j (]g), )m--l,j(l)] --8n

,kk 1/2 j

1/2 I
jj ,min

-,-1 (1 + Cm)[;k(j), t(j)]------ -,[k (j), t (j)].

1/2

1/2

In the second case, x > 2, we get a similar bound. Here ,kk At, and we can simply
bound Inl _< 1. This yields a slightly different Cm; for the final Cm, we again take the
maximum of the two. This ends the second part of the proof with

(3.18) -m (1 + Cm)Tm-1, 7"--1 1.

Even though this only yields an exponential upper bound for TM, it is clear from the
derivation that linear growth is far more likely than exponential growth.

In the third and final part of the proof, we show that the rounding errors in the
(i, j) entry of the computed approximation to 1,-1 is bounded by O()Vi(j). Let
be the actual rotation which only approximates J,. From the proof of Theorem 3.1,
we have that cs Ks(1 +cs) with ]cs[ _< 22, and sn n(1 + sn) with [sn[ _< 30.
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Let I, fl(,-i * m) be the actually computed eigenvector matrix after the

rnth Jacobi rotation. The final computed eigenvector matrix is V VM-1. We use
induction to prove that

(3.19) I)m,i(j) rn,i(j)l <_ Xmei(j),

where [,..-, n] and X is constant (part of the "pivot growth" factor)
we need to estimate. The basis is again for m -1 when V-1 -1 I and
X- 0. Now we assume that (3.19) is true for m- 1 and try to extend it to m.
As before, we assume that J rotates in rows and columns k and with k < and

x d/d 1. Write i v vi. The (j, k) and (j, l) entries of V are

[,j(k), ,j (/)]- [m_,j(k)ds(1 + )(1 + )(1 + 2)
m-l,j(1)(1 + sn)(1 + 3)(1 + 4),

m-l,j()n(1 + sn)(1 + a5)(1 + 6)
+ _l,j(1)s(1 + )(1 + 7)(1 + s)]

+
+
32lfn6m_,j(k) + 24128m-l,j(1)]

+ [(1 + 249)8m-l,j(k)+ (1 + 3210)nm-1,j(1),
(1 + 32)nm-1,j(k)+ (1 + 242)dsm-l,j(1)]

so that [m,j(k), m,j(1)] I1 +
AS before, there are two cases: x 2 and x > 2. Consider the case x 2. Using

In Cm(At/A)/2, dsl 1, and I_l,i(j)l 7_1i(j), we get

IIl e7_3/2(24 + 32Cm)
Aj 1/2 Ak 1/2 1/2 1/2

x min
eTm-l(24 + a2cm)[k(j), k(1)],

and

Ihl < Xm-l(1 -t-Crn)[k(j), k(/)].

Taken together, we get

(3.20) X. (1 + Cm)Xm_ -[- STm_ (24 + 32Cm) )-1 O.

In the second case, x > 2, we get a similar bound with a possibly different c,. Again,
we take the maximum of the two. This completes the third part of the proof.

Finally, combining (3.19) and (3.12) we get

(3.21) Ivy(j)- u(j)l < (po + XM-1) (tol + e). . i(j)
min(relgap,xi 2-1/2)

proving the theorem with p(M, n) po + XM-I.
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4. One-sided Jacobi. In this section we prove that one-sided Jacobi in floating
point arithmetic applied on the right of a general matrix computes the singular values
and singular vectors with the error bounds of 2. Here we present our algorithm;
the model of arithmetic was presented in 3. In 4.1 we derive error bounds for the
computed singular values. In 4.2 we derive error bounds for the computed singu-
lar vectors. In 4.3, we present two algorithms for the symmetric positive definite
eigenproblem H, which do either left-handed or right-handed Jacobi on the Cholesky
factor L of H. The second of these algorithms cannot compute eigenvectors quite as
accurately as the first, but it may be much faster than either the first algorithm or
two-sided Jacobi.

Let Go BoDo be the initial matrix, and Gm BmDm, where Gm is obtained
from Gin-1 by applying a single Jacobi rotation. Here Dm is diagonal and B has
columns of unit two-norm. All the error bounds in this section contain the fac-
tor max (B), whereas the perturbation bounds in 2 are proportional to (B0).
Therefore, as in 3, our claim that Jacobi computes the singular value decomposi-
tion (SVD) as accurately as predicted in 2 depends on the ratio max (Bm)/(Bo)
being modest. In exact arithmetic, right-handed Jacobi on G BD is identical to
two-sided Jacobi on H GTG DBTBD DAD, so the question of the growth of
(B) (A)1/a is essentially identical to the question of the growth of (A) in
the case of two-sided Jacobi.

ALGORITHM 4.1 (Right-handed Jacobi for the singular value problem). tol is a
user-defined stopping criterion. The matrix V whose columns are the computed right
singular vectors initially contains the identity.

repeat
for all pairs < j

/.compute [a c]c b
the (i, j) submatrix of GTG */

n 2

b=E 2
k=l Gkj

C- =1 aki * Gkj

/* cmpute the Jacbi rtatin which diagnalizes [ ac c],/b
+ +

cs --1/l + t; sn cs , t
/* update columns and j of G *//
for k- 1 to n

trap-
Gk cs trap sn Gkj
Gky sn trap + cs Gkj

endfor
/* update the mtrix V of right singular vectors *//
for k 1 to n

trap- Vk
Vk cs tmp sn Ykj
Ykj 8n $ trap + cs Ykj

endfor
endfor

until convergence (all c]/ tol)
/* the computed singular values are the norms of the columns of the final G */
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/* the computed left singular vectors are the normalized columns of the final
G */

4.1. Error bounds for singular values computed by right-handed Ja-
cobi. The next theorem and its corollary justify our accuracy claims for singular
values computed by right-handed Jacobi. The proofs are analogous to those in 3;
details may be found in [10].

THEOREM 4.1. Let Gm be the sequence of matrices generated by the right-handed
Jacobi algorithm in finite precision arithmetic with precision ; that is Gm+l is ob-
tained from Gm by applying a single Jacobi rotation. Then the following diagram:

floatinGm Jacobi {Jm+l

exact--((m
/ rotation

commutes in the same way as in Theorem 3.1. The diagonal arrow indicates that
Gm+l is obtained from Gm by applying one Givens (not necessarily Jacobi) rotation
in exact arithmetic. Gm is bounded as follows. Write 5Gm 5BmDm, where Dm is
diagonal such that Bm in Gm BmDm has unit columns. Then

(4.1) [lBml[2

In other words, one step of Jacobi satisfies the assumptions needed for the error bounds
of2.

COROLLARY 4.2. Assume that Algorithm 4.1 converges, and that GM is the final
matrix which satisfies the stopping criterion. For 0 < m <_ M, write G, BmD,
with Dm diagonal and Bm with unit columns. Let aj be the jth singular value of Go
and a the j th computed singular value. Then to first order in the following error
bound holds:

(4.2)
lay

(72. M + n2 + n. tol). max a(Bk) + He.
aj 0<<M

Remark. A similar bound can be obtained based on the error bound in Proposition
2.15.

4.2. Error bounds for singular vectors computed by right-handed Ja-
cobi. The next two theorems justify our accuracy claims for singular vectors com-
puted by right-handed Jacobi.

THEOREM 4.3. Let V [vl,..., Vn] be the matrix of unit right singular vectors
and U [u, Un] be the matrix of unit left singular vectors computed by Algorithm
4.1 in finite precision arithmetic with precision . Let VT [VT,’’’, VTn] and UT
[UT, UTn] be the matrices of true unit right and left singular vectors, respectively.
Let =_ max, a(B,) be the largest a(B,) of any iterate. Then the error in the
computed singular vectors is bounded in norm by

max(llUTi till2, llVTi

(4.3) < (n-.5) 1/2. . (72M. + n. tol + n2. )
relgapi

+ (9M + n +
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Then consider the errors in the individual components of the computed right
singular vectors IVTi(j)- vi(j)l. From Proposition 2.20, we see that we can hope to
bound this quantity by O(e)2i(j)/relgapi, where

(4.4) (j) 3 min (a--, ).
We use (j) as defined in (4.4) for each Gin, even though the values of ai and aj

vary slightly from step to step. This error contributes an O(s2) term to the overall
bound (which we ignore) but could be incorporated using the bounds of Corollary
4.2.

THEOREM 4.4. Let V, VT, and be as in Theorem 4.3, and (j) be as in (4.4).
Then we can bound the error in the individual components of v by

(4.5) IVTi(j) vi(j)l < q(M, n) (tol + e). 2. i(j)
relgap

where q(M, n) has a bound similar to that of p(M, n) in Theorem 3.4.

4.3. Using Cholesky followed by one-sided Jacobi for the symmetric
positive definite eigenproblem. In this subsection we consider two algorithms for
the symmetric positive definite eigenproblem H, both based on performing Cholesky
on H, and using one-sided Jacobi to compute the SVD of the Cholesky factor L.
The first algorithm (Algorithm 4.2) does left-handed Jacobi on L, returning its left
singular vectors as the eigenvectors of H and the squares of its singular values as the
eigenvalues of H. The second algorithm (Algorithm 4.4), originally proposed in [22],
does Cholesky with complete pivoting (which is equivalent to diagonal pivoting) and
then right-handed Jacobi on L, again returning its left singular vectors and squares
of its singular values.

The first algorithm, left-handed Jacobi, is about as accurate as two-sided Jacobi,
but permits purely column oriented access to the data following the initial Cholesky
decomposition; this can have speed advantages on machines with memory hierarchies.
The second algorithm, right-handed Jacobi with pivoting, is less accurate than the first
because it will not always compute tiny eigenvector components with the accuracy
of Theorem 3.4, although it does compute the eigenvalues as accurately, and the
eigenvectors with the same norm error bound. However, it can be several times faster
than either the first algorithm or two-sided Jacobi.

ALGORITHM 4.2 (Left-handed Jacobi on L without pivoting for the symmetric
positive definite eigenproblem H).

1. Form the Cholesky factor L of H: H LLT.
2. Compute the singular values a and left singular vectors v of L using left-

handed Jacobi.
2 The eigenvectors of H are v3. The eigenvalues A of H are A a,.

We show that this method is as accurate as using two-sided Jacobi directly on H.
The proof involves a new error analysis of Cholesky decomposition, so we begin by
restating Cholesky’s algorithm in order to establish notation for our error analysis.

ALGORITHM 4.3 (Cholesky decomposition H LLT for an n n symmetric
positive definite matrix H).

for i--lton
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Lii (Hii i- 2 /2k= Lik)
for j=i+lton

Ek--1 LjkLik)/Lii
endfor

endfor

LEMMA 4.5 (see [10]). Let L be the Cholesky factor of H computed using Algo-
rithm 4.3 in finite precision arithmetic with precision . Then LLT H + E where

IEI <_ (n + 5)(H,H)/.
THEOREM 4.6. Let L be the Cholesky factor of H DAD computed in floating

point arithmetic using Algorithm 4.3. Let ai and VLi be the exact singular values and
right singular vectors of LT, and Ai and VHi be the eigenvalues and eigenvectors of
H. Let i(j) be as in Proposition 2.8. Then

2I a _< (n2 + 5n). . a(A),

IIVLi VHill2 <_ (n2 + 5n)(n 1)1/2. a(A) + O(2),
relgap),i

Ic(J) ()1 -< ( +)( )/" e" ,(A). ()
min(relgap)i, 2-/) + O(e)"

Proof. Plug the bound of Lemma 4.5 into Theorem 2.3, Theorem 2.5, and Propo-
sition 2.9. [:]

Theorem 4.6 implies that the errors introduced by Cholesky are as small as those
introduced by two-sided Jacobi. Write H DAD and LA D-L. Since IIA-
LALTA]I2

_
(n2 + 5n), a(A) (t(LA))2 (unless both are very large). Since the

columns of L have nearly unit two-norm, the accuracy of left-handed Jacobi applied
to L is governed by t(LA). Thus Cholesky followed by left-handed Jacobi on L
results in a problem whose condition number t(LA) is approximately the square root
of the condition number of the original problem a(A). Corollary 4.2 and Theorems
4.3 and 4.4 guarantee that the computed eigenvalues and eigenvectors are accurate.
In exact arithmetic, left-handed Jacobi on L is the same as two-sided Jacobi on
DAD H LLT D(LAL)D, so the question of how much a(LA) can grow during
subsequent Jacobi rotations is essentially identical to the question of the growth of
t(Am) during two-sided Jacobi. The second algorithm follows.

ALGORITHM 4.4 (Right-handed Jacobi on L with pivoting for the symmetric
positive definite eigenproblem H).

1. Form the Cholesky factor L of H using complete pivoting. Then there is a
permutation matrix P such that pTHp LLT.

2. Compute the singular values ai and left singular vectors vi of L using right-
handed Jacobi.

2 The eigenvectors of H are Pvi.3. The eigenvalues Ai of H are hi ors.
Even if we did not do complete pivoting, Theorem 4.6 would guarantee that the

squares of the true singular values of L would be accurate eigenvalues of H, and
that the true left singular vectors of L would be accurate eigenvectors of pTHp.
Since we are computing left singular vectors of L, Theorem 4.4 does not apply, but
from Corollary 4.2, we know that the computed eigenvalues are accurate, and from
Theorem 4.3 we know that the computed eigenvectors are accurate in a norm sense.
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Numerical experiments in 7 bear out the fact that tiny eigenvector components may
not always be computed as accurately by Algorithm 4.4 as by Algorithm 4.2.

Note that Algorithm 4.4 is mathematically equivalent to doing two-sided Jacobi
on LTL, so we in effect take a single step of the symmetric LR algorithm [22] before
beginning Jacobi, thus giving Jacobi a "head start." (An analogous head start is
attained by preceding left-handed Jacobi for the SVD with a QR decomposition with
column pivoting [12].) Writing LTL H1 DIAIDI, we see it is tc(A), which
governs the accuracy of step 2 of the algorithm, as well as its speed, since it is (A1)
that must be driven to 1. We discuss this in more detail in 6, where we show that
(A) can be much smaller than (A), where H DAD is the original problem.

There are two other algorithmic variations one might consider: Cholesky with
pivoting followed by left-handed Jacobi on L, and Cholesky without pivoting followed
by right-handed Jacobi on L. We can measure the quality of both algorithms as we
did in the last paragraph: We find symmetric positive definite matrices H2 and H3
such that the algorithms are mathematically equivalent to doing two-sided Jacobi on

H2 and H3, respectively. Then their accuracies and running times depend on n(A2)
and (A3) where Hi DiAiDi. One may show that t(A2) (A), so there is
no advantage to pivoting and left-handed Jacobi, and also that (A3) can greatly
exceed (A), so that right-handed Jacobi without pivoting can be harmful. We do
not consider these algorithmic variations further.

5. Bisection and inverse iteration. Here we show that bisection and inverse
iteration applied to the symmetric positive definite matrix H DAD can compute the
eigenvalues and eigenvectors within the accuracy bounds section of 2. Let inertia(H)
denote the triple (n, z, p) of the number n of negative eigenvalues of H, the number z
of zero eigenvalues of H, and the number p of positive eigenvalues of H. These results
are simple extensions of Algorithms 3 and 5 in [2], and detailed proofs may be found
there and in [10].

ALGORITHM 5.1 (Stably computing the inertia of H- xI DAD xI).
1. Permute the rows and columns of A- xD-2 (which has the same inertia as

H- xI) and partition it as

All xD2

A21

so that if 1 xd-2 is a diagonal entry of All xD2, then xd-2 _> 2n + 1, where n
is the dimension of H.

2. Compute X A22 xD2 A2(AI xD2)-IA12, using Cholesky to
compute (AI xD2)-A12.

3. Compute inertia(X) (neg, zero, pos) using a stable pivoting scheme such
as in [4].

4. The inertia of H xI is (neg + dim(Al), zero, pos).

We need to partition A- xD-2 as above in order to make the proof convenient,
but it may not be necessary algorithmically [10].

THEOREM 5.1. Let be the machine precision in which Algorithm 5.1 is carried
out, where we assume that neither overflow nor underflow occur. Then Algorithm
5.1 computes the exact inertia of D(A + 5A)D- xI, where 115AII2 0(). Thus
Algorithm 5.1 can be used in a bisection algorithm to find all the eigenvalues of H to
the accuracy of Theorem 2.3 or Proposition 2.4.
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ALGORITHM 5.2 (Inverse iteration for computing the eigenvector x of a symmetric
positive definite matrix H DAD corresponding to eigenvalue z). tol is a user-
specified stopping criterion.

1. We assume that eigenvalue z has been computed accurately, for example,
using Algorithm 5.1.

2. Choose a starting vector Y0; set i 0.
3. Compute the symmetric indefinite factorization LDLT of P(A- zD-2)PT

[4], where P is the same permutation as in Algorithm 5.1, step 1.
4. Repeat
i=i+1
Solve (A- zD-2)i yi-1 for using the LDLT factorization of step 3.

y r.
until (r <_ tol)

5. x D-ly

THEOREM 5.2. Suppose that Algorithm 5.2 terminates with x as the computed
eigenvector of H- DAD. Then there is a diagonal matrix with ii 1 + O(tol)
and a matrix 5A with IIbAII2 O(tol), such that Jx is the exact eigenvector of
D(A + 5A)D. Thus the error in x is bounded by Theorem 2.5, Corollary 2.6, and
Proposition 2.9.

6. Upper bounds for maxm tc(Am)/tc(Ao). As stated in 3 and 4, our claims
about the accuracy to which Jacobi can solve the eigenproblem depend on the ratio
maxm t(Am)/t(Ao) being modest. Here H0 DoAoDo is the initial matrix, and
H, DmA,D, is the sequence produced by Jacobi (Hm+l is obtained from Hm by
applying a single Jacobi rotation, D, is diagonal, and Am has ones on the diagonal).
The reason is that the error bounds for Jacobi are proportional to maxm t(Am), and
the error bounds of 2 are proportional to a(A0).

In this section, we present several results explaining why maxm a(A,)/a(Ao)
should not be expected to grow very much. Recall that convergence of Hm to diagonal
form is equivalent to the convergence of Am to the identity matrix, or of t(Am) to 1.
Thus we expect t(Am) < a(A0) eventually. The best situation would be monotonic
convergence, but this is, unfortunately, not always the case.

We have not been able to completely explain the extremely good numerical results
of 7, that maxm t(Am)/t(Ao) never exceeded 1.82, and averaged 1.20 in random
experiments. (Wang [23] has found a sequence Hn of matrices of dimension n where
this ratio grows slowly with n, reaching 8 for n 50. Changing the sweep strategy
eliminated this growth.) A complete theoretical explanation of this remains an open
question.

We only speak in terms of two-sided Jacobi in this section. This is no loss of
generality because, in exact arithmetic, right-handed Jacobi on G is equivalent to
two-sided Jacobi on GTG.

Our first result shows that t(Am)/t(Ao) cannot be too large if Am is obtained
from A0 by a sequence of Jacobi rotations in pairwise disjoint rows and columns. The
second result gives a cheaply computable guaranteed upper bound on
max, (Am)/(Ao) in terms of the Hadamard measure of A0. This bound is gen-
erally quite pessimistic unless the dimension of A is modest and (A0) is small--at
most a few hundred. The third and fourth results will be for right-handed Jacobi with
pivoting (Algorithm 4.4). The third result shows that the wider the range of numbers
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on the diagonal of H, the smaller n(A1) is for that algorithm. This in turn makes it
converge faster. The fourth, rather surprising, result is that n(A1) is bounded by a
constant, depending only on the dimension n, not on A0. These last two results lead
us to recommend right-handed Jacobi with pivoting Jacobi as the algorithm of choice
(unless it is important to get small eigenvector components to high accuracy; see the
discussion in 4.3).

PROPOSITION 6.1. Let Ho be n n. Let Hm be obtained from Ho by applying rn
Jacobi rotations in pairwise nonoverlapping rows and columns (this means m <_ n/2).
Write Hm DmAmDm as before. Then

(6.1) t(A) < 1 + maxl<k<m ]Ao,2-,.1 < min(n(Ao) 2n).a(Ao) 1 max<t<m [Ao,2c-,2tl

Also,

(6.2) (Ai+l) < min(a(Ao) 8).
t(Ai)

Furthermore, the spectrum of Am is independent of Do, even though the entries of
Am depend on Do. More precisely, the spectrum of Am coincides with the spectrum
of the pencil Ao )Ao, where Ao coincides with Ao on every rotated element and is
the identity otherwise.

Proof. We begin by deriving a matrix pencil depending only on A0 whose eigen-
values are the same as Am. This proves that the eigenvalues of Am depend only on

A0. We assume without loss of generality that the m Jacobi rotations are in rows and
columns (1,2), (3,4),-.., (2m- 1, 2rn). This lets us write jTHoJ Hm, where J is
block diagonal with the 2 2 Jacobi rotations (and possibly ones) on its diagonal.
Rewrite this as

Am (Dn1JTD0)A0(DOJDI) ZTAoZ,
where Z has the same block diagonal structure as J. Let A be a block diagonal
matrix with the same block structure as Z and J, where A is identical to A0 within
its 2 2 blocks, and has ones on its diagonal when J does. Since Hm,12 Hm,34

0, also Am,2 Am,23 0. Thus Am has 2 2 identity matrices on its
diagonal matching the block structure of Z, J, and A. Thus Am ZTAoZ implies
Z-TZ-1 Ao Therefore, the eigenvalues of Am ZTAoZ are identical to those of
the pencil Ao )Z-TZ-1 Ao )Ao

Now we apply the minimax theorem to bound/rnin(Am) below by

xTAox minllxl]=., xTAox(6.3) /min(Am) min >
x0 xTArox maxllxll=l xTAox

/min (A0)
1 + maxl<k<m ]Ao,2k-l,2k]"

We may bound l+max<k<m [Ao,2k-,2[ from above by both/kmax(Ao) and 2, yielding

(6.4) /min (Am)

_
Amin(A0)

min(2,/kmax (A0))

Now we bound /max(Am) from above. First, by the minimax theorem we may
write

xTAox/max(Am) max
xO xTAox

maxll xTAox ,max(A0)
minllll= xTAox 1 max<k<m IAo,2k_,2kl’
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which, when combined with (6.4), yields

n(A.) <_ (n(Ao)),
proving half of (6.1). For the other half, note that 1 _< Amax(A) <_ n for all i, so that
)max(Am)/)max(Ao) n. Now combine this with (6.4).

Now we show Amax(A+l) <_ 4Amax(A), which, when combined with (6.4), yields
(6.2). It suffices to show Amax(A1) <_ 4Amax(A0). Write

All Ale 1A0 A21 A2e

where AI is 2 2. Then by the minimax theorem, there exists a conformally parti-
tioned unit vector xT [XlT, x2T] where

TA
/kmx(A1) xT1AllXl q- 2xT1A12x2 q- x2 22X2

xAx + xT x
Write xTlXl (0 1), xT2x2 1--, xT1AllXl "FI, and xT2A22x2 ’2(1--),
so that

/max(A1) n q- 2xTIAlexe + ’(1 --)

The maximum of this last expression over all 0 _< < 1 is

2 + 2-2 <_ 2 + 2,kmax(A22) <_ 4/kmax(Ao).

Our second bound is based on the Hadamard measure of a symmetric positive
definite matrix H:

7-t(H) det(H)

PROPOSITION 6.2. The Hadamard measure 1-l(H) has the following properties:
1. (H) <_ 1 an_d (H) 1 if and only if H is diago_nal.
2. TI(H) 1-l(DHD) for any nonsingular diagonal D.
3. Let H DAD with D diagonal and A with unit diagonal. Then

/-/(H) det(A)
,kmin (A)_

where e exp(1).
4. Let H’ be obtained from H by applying a Jacobi rotation (in exact arithmetic)

in rows and columns and j. Then

7-t(H) >1-I(H’)
1 Ai

5. Let H0,..., Hm,"" be a sequence of symmetric positive definite matrices ob-
tained from Jacobi’s method in exact arithmetic. Let Hm DmAmD, with Dm
diagonal and Am with unit diagonal. Then

mmaxn(A’)-< det(Ao) 7-t(Ho)



1236 J. DEMMEL AND K. VESELI(

Proof. 1. Write the Cholesky decomposition H LLT. Then

Hll Hnn H Li2k -> Li2 det(H).
i=1 k=l i=1

2. det(D2) factors out of the numerator and denominator of 7-t(/H/).
3. From part 2 above T/(H) -/(A) det(A), so it suffices to show Amin(A) _>

det(A)/e. Let 0 < A1 <_"" <_ An be the eigenvalues of A. Since A1 det(A)/I]n__2 A,
nwe need to show l-[i=2 A -< e. Now Ei=2 A -< tr(A) n. Since ab >_ (a + x)(b- x)

for alla_> b_> x_> 0, we see that n1-Ii=2 A is greatest when all A n/(n 1) in
nwhich case I-Ii--2 )i ((n- 1)/n)n-1

_
e.

4. From Proposition 6.1 we have

T/(H’) det(AA’-1) det(A)/(1 A2j) T/(H)/(1 A2j),
where A I except for Aj A} Aij.

5. This is directly implied by parts 3 and 4.
Thus part 5 of this proposition gives us a guaranteed upper bound on

maXm t(Am) at a cost of about n3/6 flops, compared to 2n3 flops per Jacobi sweep
(4n3 if accumulating eigenvectors). If we use the algorithm in 4.3, where we must
do Cholesky anyway, this upper bound comes nearly for free.

Basically, this upper bound is only useful as long as (A0) is quite small and A0
has low dimension; otherwise, it is much too large to be useful.

Our third and fourth bounds are for right-handed Jacobi with pivoting (Algorithm
4.4). Recall that this algorithm begins by doing Cholesky with complete pivoting on

H0 to get PHoPT LLT, where P is a permutation matrix. Then it does right-
handed Jacobi on L, which is equivalent (in exact arithmetic) to two-sided Jacobi on
LTL. Therefore, Algorithm 4.4 essentially starts with LTL- HI DAD.

Our third result, which we state rather informally, is that the larger the range of
numbers on the diagonal D2 of H, the smaller is (A) (this effect was also observed
in [22]). We argue as follows. Let L DLA be the factor obtained from complete
pivoting. Here, LA has rows of unit two-norm. Since Algorithm 4.4 does right-
handed Jacobi on L, its performance depends on the condition number of DLAD,
where D is chosen diagonal to make the columns of DLAD unit vectors. From van
der Sluis’s theorem [21], we know the condition number of DLAD can be at most
n times DLAD-1, so it suffices to examine (DLAD-1). The effect of complete
pivoting is essentially to reorder D so that D >_ Di+l,i+, and to keep LA, as
large as possible. Now (DLAD-) LA,ii is unchanged, and the subdiagonal entry
(DLAD-1)j LA,jDDj is multiplied by the factor DDj, which is between
0 and 1. The more Djj exceeds D, the smaller this factor, and the more nearly
diagonal DLAD- becomes. Since complete pivoting tries to keep the diagonal of LA
large, this improves the condition number.

Our fourth result shows that, surprisingly, max,> t(A,) is bounded indepen-
dent of H0.

PROPOSITION 6.3. Let PHoPT LLT be the Cholesky decomposition of the
n n matrix Ho obtained with complete pivoting. Let H1 LTL DIAID1. Let
Hm DmA,Dm, m > 1, be obtained from two-sided Jacobi applied to HI. Then

1. TI(HI) >_ TI(Ho).
2. TI(H) >_ l/n!. This bound is attainable.

_< _<
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Proof. 1. Since det(H1) det(H0), it suffices to show that 1-Ii H0,i _> rI HI,.
2Assume without loss of generality that P I. Then Ho,i k=l Lik and Hl,i

n J 2k= L. Complete pivoting is equivalent to the fact that Li >_ -k= Ljk for all

j > i. We wish to prove Hi=I 2 nn -k=l Lk -- 1-Ii=l -k= L2ki We systematically use the
fact that ab >_ (a + x)(b- x) for a _> b _> x _> 0. We illustrate the general procedure
in the case of n 3"

(L121)(L221 + L222)(L321 + L]2 + L3) >_ (LI + L1)(L22)(L]l + L]2 + L3)
>_ (L121 + LI + LI)(L2)(L]2 + L]3)
_> (L121 + L221 + L]1)(L222 + L]2)(L]3).

2. We have
n 2 n 2 n

1 1det(L) 2 I-[:1 L ]-[ Li -> II--(H1) n n 2 =L n!rI=l (LTL)i 1-[=1 (’k= nki) .= =1

To see that this bound is attainable, let H LLT where Li #(-1)/2 and Lj
(1 #)1/2#(-1)/2. Now let # > 0 become small.

3. The result follows from part 2 and Proposition 6.2, part 5. [:]

The example in part 2 of the proposition for which the Hadamard bound is at-
tainable unfortunately has the property that the resulting upper bound in part 3 is
a gross overestimate. While the upper bound grows as e. n. n!, t(A1) only grows
like n3/2. However, (A0) grows like #-n/2, which can be arbitrarily larger than the
bound in part 3. The choice # 0.5 provides an example in which the upper bound
in part 3 can arbitrarily exceed both (A0) and maxm>_l (A) for large n.

Nonetheless, in numerical experiments the upper bound e. n/Tl(H1) on

maxm>l (Am) never exceeded 40. We also always observed that (A1) _< (A0)
in all cases, although this is not true in general [23].

Recently, Slapnihar [17] has improved the e. n-n! bound to O(4n) and has shown
that this improved bound is attainable; see also related results in [13].

7. Numerical experiments. In this section we present the results of numerical
experiments. Briefly, we tested every error bound of every algorithm presented in this
paper, and verified that they held in all examples. In fact, the performance is better
than we were able to explain theoretically, both because we could observe little or
no growth in actual errors for increasing dimension, and because of the surprisingly
small values attained by max, (A,)/(Ao) (see 6).

These tests were performed using FORTRAN on a SUN 4/260. The arithmetic
was IEEE standard double precision [1], with a machine precision of 2-53 10-16

and over/underflow threshold 10+3s.
There were essentially four algorithms tested: two-sided Jacobi (Algorithm 3.1),

one-sided Jacobi (Algorithms 4.1 and 4.2), right-handed Jacobi with pivoting (Algo-
rithm 4.4), and bisection/inverse iteration (Algorithms 5.1 and 5.2). All were used
with the stopping criterion tol 10-14.

Since we claim that these algorithms are more accurate than any other, we tested
their accuracy as follows. We considered only symmetric positive definite eigenprob-
lems, and solved every one using every algorithm. The different answers were com-
pared to see if they agreed to the predicted accuracy (which they did). They were
also compared to the EISPACK routines tred2/tql2 [18], which implement tridiago-
nalization followed by QR iteration. Small eigenvalues computed by EISPACK were
often negative, indicating total loss of relative accuracy.
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For example, the matrix

1040 1019 1019 ]H 1019 1020 109
1019 109 1

has all its eigenvalues computed to high relative accuracy by Jacobi, whereas QR
computes at least one negative or zero eigenvalue, no matter how the rows and columns
are ordered. This shows that QR cannot be made to deliver high relative accuracy
on appropriately graded matrices, as suggested in [18].

The remainder of this section is or,,anized as follows: Section 7.1 discusses test
matrix generation. Section 7.2 discusses the accuracy of the computed eigenvalues.
Section 7.3 discusses the accuracy of the computed eigenvectors. Section 7.4 discusses
the the growth of maxm (Am)/(Ao). Section 7.5 discusses convergence rates; here
the speed advantage of right-handed Jacobi with pivoting is apparent.

7.1. Test matrix generation. We generated several categories of random test
matrices according to three parameters: the dimension n, tA, and tD. First, we
describe the algorithm used to generate a random matrix from these parameters and
then the sets of parameters used.

We tested matrices of dimensions n 4, 8, 16, and 50. Since testing involved
solving an n n eigenproblem after each Jacobi rotation (to evaluate t(Am)) and there
are O(n2) Jacobi rotations required for convergence, testing costs O(n5) operations
per matrix.

Given A, we generated a random symmetric positive definite matrix with unit
diagonal and approximate condition number A as follows. We began by generating
a diagonal matrix T with diagonal entries in a geometric series from 1 down to 1/A.
Then we generated an orthogonal matrix U uniformly distributed with respect to Haar
measure [19], and formed UTUT. Finally, we computed another diagonal matrix K
so that A0 KUTUTK had unit diagonal. This last transformation can decrease
the condition number of UTUT, but usually not by much. For 4 4 matrices, it
decreased it by as much as a factor of 500, for 8 8 matrices by a factor of 20, for
16 16 matrices by a factor of 5, and for 50 50 matrices by a factor of 1.5. (This
decreasing variability is at least partly due to the fact that we ran fewer tests on
the larger matrices.) For a more complete discussion of the test matrix generation
software, see [9].

Given D, we generated a random diagonal matrix Do with diagonal entries whose
logarithms were uniformly distributed between 0 and log D. This means the diagonal
entries themselves were distributed from 1 to tD. The uniform distribution of the
logarithm essentially means that every decade is equally likely, and so matrices Do
are generated with entries of widely varying magnitudes.

The resulting random matrix was then H0 DoAoDo.
We generated random matrices with five possible different values of A: 10, 102,

104, 10s, and 1012; six possible different values of D: 105, 1010, 102, 103, 105,
and 10100; and four different dimensions n 4, 8, 16, and 50. This makes a total of
5 6 4 120 different classes of matrices. In each class of dimension n 4 matrices,
we generated 100 random matrices, in each class of n 8, we generated 50 random
matrices, in each class of n 16, we generated 10 random matrices, and in each class

This was using version 3.5h of Matlab on a SUN 4/260. Later versions of Matlab may get
different results. For more analysis, see [7] and [15].
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of n 50, we generated one random matrix. This makes a total of 4830 different test
matrices.

The matrices had, in some cases, eigenvalues ranging over 200 orders of magnitude
(when nD 10100). The relative gaps relgap ranged from .028 to 2.1042.

7.2. Accuracy of the computed eigenvalues. There are two accuracy
bounds for eigenvalues from 2 which we tested. The first one is based on Theo-
rem 2.3 (or Theorem 2.14 together with Theorem 4.6), which says that if A and/k’
are approximations of hi computed by two of our algorithms, then

n(Ao)A

should be O(tol), where tol- 10-14 is our stopping criterion. For two-sided Jacobi
and one-sided Jacobi, (1 never exceeded 2.10-15. For two-sided Jacobi and right-
handed Jacobi with pivoting, Q1 also never exceeded 2.10-15. Every matrix had an
eigenvalue for which Q1 exceeded 4.10-is, showing that the bound of Theorem 2.3
is attainable, as predicted by Proposition 2.10.

In the case of bisection, we did not run a bisection algorithm to convergence for
each eigenvalue, but rather took the eigenvalues A computed by two-sided Jacobi,
made intervals [(1- tol. (A0)), (1 + tol. (A0))] from each one, and used bi-
section to verify that each interval contained one eigenvalue (overlapping intervals
were merged and the counting modified in the obvious way). All intervals successfully
passed this test.

The second accuracy bound is from Proposition 2.4 (or Proposition 2.15 together
with Theorem 4.6), which predicts that

should be O(tol). Here vi is the unit eigenvector computed by two-sided Jacobi. For
two-sided Jacobi and one-sided Jacobi, Q2 never exceeded 2.10-14. For two-sided
Jacobi and right-handed Jacobi with pivoting, Q2 never exceeded 9.10-15. Every
matrix had an eigenvalue for which Q2 exceeded 5.10-16, showing that the bound of
Proposition 2.4 is attainable, as it predicts.

In the case of bisection, we again made intervals [A-tol-IIDovi 1122, A +tol. IIDovi I1]
from each eigenvalue A and verified that each interval contained the proper number
of eigenvalues.

Finally, we verified a slightly weakened version of Proposition 2.7, that

,min (A0) tol < - < /max (A0) + tol
hi

for the eigenvalues computed by two-sided Jacobi. Here hi is the ith smallest
diagonal entry of H0. Adding and subtracting tol to the upper and lower bounds
takes into account the errors in computing .

7.3. Accuracy of the computed eigenvectors. There is one bound on the
magnitude of the components of the eigenvectors, and two accuracy bounds, one for
the norm error and one for the componentwise error.

We begin with a few details about our implementation of inverse iteration. We
used the eigenvalues computed by two-sided Jacobi, and the vector of all ones as a

starting vector. Convergence always occurred after just one iteration.
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The componentwise bound on the magnitude of the eigenvectors is based on
Proposition 2.8, which says that the components of the normalized eigenvector
should be bounded by

((/i/1/2 (/Jl 1/2)Ivi(j)l <_ i(j)- ((A0))a/2. min

This was verified for the eigenvectors computed by all four algorithms. We note that
since this bound is proportional to (A0)a/2, it becomes weaker as (A0) becomes
larger, and indeed becomes vacuous for matrices with (A0) large and eigenvalues in
a narrow range.

The norm error bounds are based on Theorem 2.5 (or Theorem 2.16 together
andwith Theorem 4.6), which predicts that if v vi are approximations of the unit

eigenvector vi computed by two of our algorithms, then

Q3 [Iv vTll 
((Ao)/relgapxi) + 1

should be O(tol). (We add the 1 in the denominator because a single roundoff error
in the largest entry can cause a norm error of e; see Theorem a.3 or Theorem 4.3.)

For two-sided Jacobi and one-sided Jacobi, Qa never exceeded 3.10-16. For
two-sided Jacobi and right-handed Jacobi with pivoting, Qa also never exceeded 2.
10-14. For two-sided Jacobi and inverse iteration, Qa never exceeded 8.10-14. Every
matrix had an eigenvector for which Qa exceeded 10-is for every pair of algorithms
compared, showing that the bound of Theorem 2.5 is nearly attainable, as predicted
by Proposition 2.11.

The second accuracy bound is based on Proposition 2.9 (or Proposition 2.20 and
Theorem 4.6), which predicts that

Q4
[v(j) v’(j)l min(relgapxi, 2-/2)

should be O(tol). For two-sided Jacobi and one-sided Jacobi, Q4 never exceeded
3-10-17. For two-sided Jacobi and inverse iteration, Qa never exceeded 3. 10-15.
For two-sided Jacobi and right-handed Jacobi with pivoting, Q4 was as large as .02,
which is consistent with the fact that right-handed Jacobi with pivoting computes the
eigenvectors as left singular vectors of L, for which we only have a normwise error
bound (Theorem 4.3). For the other algorithm, Q4 was only 10.3o for matrices with
(A0) 10e; this reflects the factor (Ao)/ in the denominator of Q4, a weakness
of Proposition 2.8. In other words, the componentwise error bounds are generally
only interesting for small to medium (A0).

7.4. Growth of max (A)/(Ao). In computing

Q maxa(Am)/e;(Ao),

we note that a single computation requiring M Jacobi rotations supplied us not just
with one value of Qs, but rather M- 1" Since every Ai can be thought of as starting
a new eigenvalue computation, we may also measure max,_>i (A,)/(Ai) for all
< M. Thus, all told, our 4830 different matrices represent over 900,000 data points

of Qs.
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TABLE 1
Hadamard upper bound Q6 on maxm a(Am)/a(Ao).

10 10 104 10s 1012
4 5.8 13 590 6.3.106 6.1.1010
8 21 410 1.1.107 9.1.1017
16 200 2.7.105 1.8.1015 x
50 6.4.105 8.0.1016 cx) cx

The largest value of Q5 encountered was 1.82. This was for an 8 8 matrix
with a(A0) 1.4.1012, and eigenvalues ranging over 133 orders of magnitude. 141
Jacobi rotations (a little over 5 sweeps) were required for convergence, plus 28 more
steps (one more sweep) where no work is done to recognize convergence. In Fig. 1, a
plot is shown of a(Ai)- 1 versus i. We plot a(Ai)- 1 instead of t(Ai) in order to
see the quadratic convergence of a(Ai) to 1. The graph appears nearly monotonic,
except for a slight rise near i 20. This is seen more clearly in Fig. 2, which plots
max,_>i a(A,)/a(Ai) versus i. Here the maximal nonmonotonicity of the curve near
i- 20 is apparent.

Recently, Wang [23] found a family of examples where Q5 was as large as 8 for
matrices up to dimension 50. These matrices have 1 on the diagonal and 1-e on the
offdiagonal, where e is small. However, by using a different pivoting strategy than
cyclic-by-rows, namely, the parallel pivoting discussed in Proposition 6.1, this growth
could be eliminated.

Now we consider the Hadamard-based upper bound on Q5 from Proposition 6.2"
e.n

Q <_ Q-
7-t(H0). a(A0)"

Table 1 gives the maximum values of this upper bound for different values of dimen-
sion n and gA g(A0). Recall that the true value of Q5 never exceeds 1.82. As
Proposition 6.2 suggests, this upper bound should not depend on Do and indeed the
values observed depended very little on Do.

As can be seen, the Hadamard-based bound is of little use except for very small
matrices of modest a(A0), c means the value overflowed.

Now we consider right-handed Jacobi with pivoting. Let us recall the notation of
6" Let PHoPT LLT be Cholesky with complete pivoting, and let LTL H1
DIA1D1. As suggested in that section, we expect both a(A1) to be smaller than
(Ao), and the Hadamard-based upper bound

Q5 _< Q7 max 1,
7-[(H1) (A0)

on Q5 to be much smaller than the one for two-sided Jacobi.
First, a(At)/a(Ao) never exceeded . In fact, a(Ai) never exceeded 40 for any

matrix. This is quite remarkable. This means that all essential rounding errors
occurred during the initial Cholesky decomposition. Finally, the Hadamard-based
upper bound Q on Qs never exceeded 29. (Recently, Wang [23] found an example
where a(A1)/a(Ao) slightly exceeded 1; in his example, a(A0) was close to 1.)

7.5. Convergence rates. We begin with a few details on how we counted the
number of Jacobi rotations required for convergence. In all algorithms (two-sided
Jacobi, one-sided Jacobi, and right-handed Jacobi with pivoting), we stopped when
the last n(n- 1)/2 stopping tests IHijl. (HiiHjj) -/2 <_ tol succeeded; this means
every off-diagonal entry of H satisfies the stopping criterion. In the case of two-sided
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FIG. 1. a(Ai)- 1 versus i.
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FIG. 2. maxm>i a(Am)/a(Ai) versus i.

Jacobi, this means the last n(n- 1)/2 Jacobi rotations involved almost no work. For
the two one-sided Jacobis, however, evaluating the stopping criterion costs three inner
products, so the last n(n- 1)/2 rotations involve a significant amount of work, even if
no rotations are performed. This must be kept in mind when comparing the number
of rotations for two-sided and one-sided Jacobi.

We used the same standard cyclic pivot sequence for all the algorithms: (1,2),
(1,3),..., (1,n), (2,3),..., (2,n), (3,4),..., (n- 1,n).

We begin by comparing two-sided Jacobi and one-sided Jacobi. In exact arith-
metic, these two algorithms are identical. In practice, they usually took the same
number of steps, although one-sided Jacobi did vary from 20 percent faster to 50 per-
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TABLE 2
Average number of sweeps for two-sided Jacobi (TsJ) and right-handed Jacobi with pivoting

(RhJwP).

Dimension n

A D 4 8 16 50
TsJ RhJwP TsJ RhJwP TsJ RhJwP TsJ RhJwP

10 105 3.7 3.0
101 3.5 2.5
1020 3.1 2.2
1030 3.0 2.1
1050 2.8 1.9
101 2.7 1.7

102 105 3.8 3.0
101 3.5 2.5
1020 3.2 2.2
1030 3.0 2.0
1050 2.9 1.9
10l 2.8 1.6

104 105 4.0 2.9
101 3.7 2.5
1020 3.2 2.2
1030 3.1 2.1
1050 2.9 1.9
10l 2.7 1.7

108 105 3.9 2.7
101 3.6 2.3
1020 3.3 2.1
103o 3.1 2.1
1050 2.9 1.9
10l 2.9 1.7

1012 105 3.8 2.5
101 3.6 2.2
1020 3.4 2.1
1030 3.1 2.0
1050 2.9 1.9
10l 2.8 1.6

4.9 3.7
4.6 3.3
4.5 2.8
4.6 2.5
4.4 2.3
4.5 2.0
5.2
5.1
4.9
4.8
4.8
4.7
5.8
5.6
5.3
5.2
5.2
4.9

6.4
6.3
5.7
5.5
5.3
5.1

3.8
3.3
2.9
2.6
2.2
2.0
3.6
3.3
2.9
2.6
2.4
2.2

3.5
3.2
2.8
2.6
2.3
2.0

6.8 3.1
6.4 3.0
6.0 2.7
5.8 2.5
5.6 2.3
5.2 2.0

5.7 4.4
5.6 4.1
5.5 3.6
5.5 3.4
5.5 3.1
5.6 2.6
6.4
6.2
6.2
5.8
6.1
6.0

7.5
7.2
7.2
6.8
6.6
6.9

9.7
9.4
8.9
8.6
8.5
8.7

4.5
4.1
3.9
3.3
3.0
2.7
4.5
4.1
3.7
3.1
3.0
2.4

4.1
3.8
3.5
3.4
3.1
2.6

10.6 4.0
10.3 3.9
9.8 3.5

10.2 3.3
9.3 3.2
8.7 2.7

6.4 5.0
6.4 5.0
6.0 4.0
6.3 4.0
5.8 4.0
5.8 3.0
7.5
7.4
7.1
6.8
6.5
6.8
9.2
9.3
8.5
8.2
8.5
8.0

13.5
12.4
11.7
12.0
11.6
11.6

6.0
5.0
4.0
4.1
4.0
3.4

6.0
5.0
4.9
4.0
4.6
3.9

6.0
5.0
4.7
4.0
4.0
4.0

16.5 6.0
15.6 5.0
15.3 5.0
15.2 4.0
13.7 3.9
15.2 3.0

cent slower than two-sided Jacobi on some examples. Hereafter, we will only compare
two-sided Jacobi to right-handed Jacobi with pivoting.

The most interesting phenomenon was the speedup experienced by right-handed
Jacobi with pivoting with respect to two-sided Jacobi. In Table 2 we present the raw
data on the number of sweeps required for convergence.

There are a number of interesting trends exhibited in this table. First, RhJwP
(right-handed Jacobi with pivoting) never takes more than six sweeps to converge
for any matrix, whereas TsJ (two-sided Jacobi) takes up to 16.5. In fact, RhJwP is
almost always faster than TsJ (in one example it took 5 percent longer), and can be
up to five times faster (3.0 sweeps versus 15.2 sweeps for ;A 1012, D 10100, and
n 50). Second, the number of sweeps increases with increasing tA for TsJ, but not
for RhJwP. Third, the number of sweeps increases with increasing dimension for both
TsJ and RhJwP, but much more modestly for RhJwP (from two to three up to six)
than for TsJ (from three to four up to fifteen). Thus the running time for RhJwP is
much less dependent on the problem size or sensitivity (as measured by tA) than TsJ.
Fourth, the number of sweeps decreases as gD increases, both for TsJ and RhJwP,
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but much more markedly for RhJwP (up to a factor of 2) than for TsJ (usually just
one sweep).

8. Conclusions. In this paper we have developed new perturbation theory for
the eigenvalues and eigenvectors of symmetric positive definite matrices, as well as
for eigenvalues of symmetric positive definite pencils. This theory assumes that the
perturbations are scaled analogously to the way the matrix is scaled, letting us derive
much tighter bounds than in the classical theory. In particular, we get relative error
bounds for the eigenvalues and individual components of the eigenvectors, which are
(nearly) attainable. The bound for symmetric positive definite pencils may be applied
to matrices arising in finite element modeling.

Second, we have shown both through formal error analysis and numerical experi-
went that Jacobi’s method (with a proper stopping criterion) computes the eigenval-
ues and eigenvectors with these error bounds. We also show that bisection and inverse
iteration (applied to the original matrix) attain these bounds. In contrast, methods
based on tridiagonalization (such as QR, divide and conquer, traditional bisection,
etc.) fail to attain these bounds. In particular, QR can fail to attain these bounds
whether or not preceded by tridiagonalization.

We have similar perturbation theorems for the singular value decomposition of
a general matrix and the generalized singular values of a pair of matrices, and sire-
ilar error analyses and numerical experiments for one-sided Jacobi applied to this
problem. We may also use one-sided Jacobi to solve the symmetric positive definite
eigenproblem.

We have discussed an accelerated version of Jacobi for the symmetric positive
definite eigenproblem, which has the property that the more its accuracy exceeds
that of QR (or other conventional algorithms), the faster it converges. However, it
cannot compute tiny components of eigenvectors as accurately as the other versions
of Jacobi, although it computes the eigenvectors with the same norm error bounds.
Unless getting the tiny eigenvector components is important, we recommend this
accelerated version of Jacobi for the symmetric positive definite eigenproblem.

The quantity max, (An)/t(Ao) was seen to be central in the analysis of Jacobi’s
accuracy. Numerical experiments show it to be much smaller in practice than we can
explain. For the accelerated version of Jacobi we provide an inexpensive estimator
of max, t(A,)/t(Ao), which works very well in practice. Explaining the excellent
behavior of max, (A,)/(Ao) is an important open problem.

The error analyses of Jacobi dealt only with the simplest implementations. It
would be worthwhile to extend these analyses to cover various enhancements intro-
duced by VeseliS, Hari, Rutishauser, and others. These include delayed updates of the
diagonal entries and an alternate formula for updating the off-diagonal entries [16],
[22], as well as block Jacobi methods.

In future work, we plan to extend these results to the symmetric positive definite
generalized eigenproblem, as well as indefinite matrices. Any extension requires an
appropriate perturbation theory; therefore, we do not expect to be able to extend
the result to all indefinite matrices, since there is no guaranteed way to compute the
zero eigenvalues of a singular matrix to "high relative accuracy" without computing
them exactly, a feat requiring high precision arithmetic. A class of indefinite matrices
for which a suitable perturbation theory exists are the scaled diagonally dominant
matrices [2]. The perturbation theory also already exists (at least for eigenvalues) for
the symmetric positive definite generalized eigenproblem.
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A TRICYCLIC TRIDIAGONAL EQUATION SOLVER*

DAVID S. DODSONt AND STEWART A. LEVIN$

Abstract. An improved method for solving tridiagonal equations on CONVEX computers is
exhibited. The method employs cyclic reduction by powers of three and has several advantages over
conventional power-of-two reduction. The number of divisions per element is cut in half, while the
number of multiplications and additions remains almost exactly the same. Memory bank conflicts are
minimized because all vector strides are powers of three, i.e., odd. The number of memory accesses
is reduced by a quarter. This is especially important for the CONVEX where cyclic reduction is
memory limited. Last, the algorithm supports modification in a recently published manner that
maximizes the use of full vector register segments throughout the reduction JR. Reuter, Parallel
Comput., 8 (1988), pp. 371-376].

Key words, tridiagonal linear systems, cyclic reduction, vector computers
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1. Introduction. Cyclic reduction in various forms is used routinely to improve
the speed of solution of tridiagonal systems on vector and parallel computers. Vari-
ables are grouped into two disjoint index sets and simultaneously eliminated from the
corresponding tridiagonal equations to yield a descending sequence of progressively
smaller tridiagonal systems to solve. Because this reduction process and correspond-
ing back substitution are vectorizable, this algorithm is beneficial despite the doubled
arithmetic load it incurs when compared to the conventional serial algorithm, e.g.,
SGTSL from LINPACK [3].

In the past, the index sets have been the even and odd variables, resulting in a
halving of the system size at each reduction step. Problems that researchers have
wrestled with are memory bank conflicts due to the even strides between vector ele-
ments and inefficient use of vector registers due to end effects and short vectors.

In this report we explore a different choice of index sets, specifically every third
variable in one set and the rest in the other, and show that it leads to a faster
tridiagonal solution algorithm on a CONVEX computer.

2. Tricyclic reduction.

2.1. Algorithm. We describe the in-place version of power-of-three cyclic re-
duction. Denote the subdiagonal elements aj, j 1,..., n- 1, the diagonal elements
by, j 0,..., n- 1, the superdiagonal elements cj, j 0,..., n- 2, and the input
right-hand side dj, j 0,..., n- 1. Pictorially,

a3j-2 b3j-2 c3j-2

a3j-1 b3j-1
a3j

c3j-1

b3j
a3j+l

c3j

b3j+l
a3j+2

c3j+l
b3j+2 c3j+2

are the matrix entries participating in the reduction steps.

d3j-2
d3j-1
d3j
d3j+l
d3j+2
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The first step is to invert the submatrices

b3j+l c3j+l /a3j+2 b3j+2

which we do directly using Cramer’s Rule to produce

( bt3j+2 -cj+l ) 1 ( b3j+2 -c3j+l )--a3j+2 b3j+l b3j+lb3j+2 c3j+la3j+2 -a3j+2 b3j+l

Here the primed entries may be stored in place of the original unprimed matrix entries.
This matrix inverse is then multiplied into the corresponding rows of the original
system to bring it into the form

a_ 0

--aj_l 0 1

a3j

-4- d’_
C3j_l d3j_l
b3j c3j d3j
a3j+l 1 0 -c3j+1 d3j+

--aj+2 0 1 c3j+2 d3j+2

where

d3j+l b3j+2d3j+1 ct3j+ld3j+2,
d3j+2 b3j+itd3j+2 a3j+2d3j+l,
a3j+2 a3j+2a3j+l

a3j+ a3j+lb3j+2
tt

C3j+1 C3j+lC3j+2
--CC3j+2 3j+2b3j+l

replace the previous values of the indicated variables.
To complete the reduction step we eliminate a3j and c3j to produce

a3j_2 1 0

-a3_ 0 1

a3j 0 0

-4-, d’_.
Ct3j_l d3j_l

o o
a3j+ 1 0 --c3j+1 d’3j+

tt
--a3j+2 0 1 c3j+2 d3j+2

with

b3j b3j c3ja3j+l a3jc3j_ 1,

d3j d3j c3jd3j+l a3jd3j_ 1,

tt
a3j a3j a3j_

caj caj caj+

again replacing the corresponding unprimed quantities.
We recognize now that the equations in aj, b3j, c’3j and d’3j now form a tridiag-

onal system one-third the size of the original system. Thus we reapply the tricyclic
reduction to this reduced system.
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Having solved the reduced system for the components dj of the solution vector,
we back-substitute according to the formulas

II II II I!d3j+ d3j+ a3j+ d3j at- c3j+ d3j+3,
d3+2 d3j+2 zt- a3j+2a3j c3j+2d3j+3

to obtain the remaining components of the solution.
Straightforward modifications are required at the ends of the tridiagonal systems

to avoid computations with undefined indices. The timing results below include these
special cases as well as switching to a conventional, scalar, tridiagonal solver for system
sizes smaller than 25 equations.

2.2. Operation counts. To analyze this algorithm, we separately tally the op-
erations load, store, add, multiply, divide, and shift. Here shift is the operation of
moving the components of a vector one element left or right. On the CONVEX, this
may be accomplished by (assembly language) register-to-register vector compression
or by storing to memory and then reloading with an offset. Forming the submatrix
inverse requires four load’s, six mult’s, one add, and one div. Applying the submatrix
inverse takes four load’s, eight mult’s, two add’s, and six store’s. Finishing the reduc-
tion uses four load’s, three shift’s, six mult’s, four add’s, and four store’s. Finally, the
back substitution uses seven load’s, one shift, four mult’s, four add’s, and two store’s.

The number of reductions and back substitutions is approximately

1 n

3J 2’
j=l

leading to an average operation count per equation of

!(12 load + 3 shift + 20 mult + 7 add + 1 div+ 10 store)2

for reduction, and

! (7 load + 1 shift + 4 mult + 4 add + 0 div + 2 store)2

for back substitution.

The comparable operation counts for power-of-two cyclic reduction are

8 load + 3 shift + 9 mult + 4 add + 1 div + 7 store

for reduction, and

4 load + 1 shift + 2 mult + 2 add + 0 div + 1 store

for back substitution.
Figure 1 summarizes these operation counts graphically for the CONVEX. Note

that we have conservatively equated each division to 2.25 multiplications [1]. It is
apparent that on a CONVEX the power-of-three algorithm is never inferior to the
power-of-two method in this measure of performance.
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Operation Count Summary"
Reduction

16

14

Power of two

Power of three

12

10

memory shift mult/div add

Operation Count Summary"
Back Substitution

16

14

12

10

Power of two

Power of three

memory shift mult add

FIG. 1. Average per-element operation counts for power-of-two versus power-of-three tridiagonal
cyclic reduction algorithms on the CONVEX. Tricyclic reduction is always as good or better than
the power-of-two method.
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2.3. Analysis. As noted in [9], "cyclic reduction is just Gaussian elimination
applied to a permuted system As a result, the cyclic reduction algorithm is nu-
merically stable for matrices for which Gaussian elimination is stable without pivoting,
such as symmetric positive-definite or diagonally dominant matrices." This applies to
power-of-three cyclic reduction as well, when the two-by-two principal subminors are
solved by Gaussian elimination without pivoting and even more so when, as above, the
subminors are inverted directly. To better appreciate other relative merits of power-
of-three versus power-of-two cyclic reduction, we start by looking at some limiting
cases.

2.3.1. Fast memory. In this setting, we neglect memory accesses and find that
(24 mult / 11 add + 1 div) operations per elementthe power-of-three method uses

and the power-of-two method uses 11 mult+ 6 add+ 1 div operations per element. If,
as typical on vector computers, a division is 2 to 3 times slower than a multiplication,
then the power-of-three has slightly less arithmetic than power-of-two. An analogous
finding for fast Fourier transforms (FFTs) was made in [2], where it was observed
that, arithmetically, the power-of-three FFT is about 6 percent more efficient than
the power-of-two version.

2.3.2. Fast arithmetic. When arithmetic is much faster than memory access
times, we neglect computation time and find that power-of-three reduction uses

-(19 load + 4 shift + 12 store) operations and power-of-two uses 12 load + 4 shift /2
8 store operations per equation. In this setting, the power-of-three approach saves 25
percent over power-of-two cyclic reduction, regardless of whether the shift is imple-
mented by memory operations or by register-to-register vector compression. In our
fastest FORTRAN versions of these cyclic reduction algorithms, all but one of the
shift s translate into two memory operations.

For vector computers there is an additional factor that affects memory access
speeds. Invariably, the memory is divided into interleaved banks in order to permit
faster reference to contiguous vectors. Accessing vectors with an element-to-element
stride differing from unity can be significantly slower if the spacing causes particular
memory banks to be addressed too quickly in succession. In practice, this usually
penalizes access to vectors with strides divisible by a power of two, exactly the case
in power-of-two cyclic reduction. To minimize this additional cost, many power-
of-two cyclic reduction codes are implemented using additional storage to compact
intermediate results into contiguous vectors, thereby avoiding strides greater than
two.

For parallel, distributed-memory computers, the memory accesses involve proces-
sor-to-processor communication. This is generally much slower than arithmetic. In
practice, though, communication is usually fastest for elements spaced a power-of-two
apart and then the scales tip towards power-of-two cyclic reduction. An example
of this is the hypercube multiprocessor architecture wherein elements spaced by a
power-of-two are no more than two hops apart in the physical processor grid. On
the other hand, with a processor ring, the amount of communication per step in the
reduction is approximately constant. Therefore, the power-of-three is better by the
ratio log 3/log 2 because there are fewer reduction steps.

2.3.3. Early termination. One of the more useful, though infrequently men-
tioned, advantages of cyclic reduction is the rapid decrease in the off-diagonal terms of
the reduced systems when the original system is diagonally dominant. By predicting
or monitoring this decrease, one can terminate the reduction stage early when the
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off-diagonal components become negligible.
To attain the same off-diagonal reduction, the power-of-three method will use

two-thirds of the number of reduction steps needed by the power-of-two version. This
slightly increases the ratio of the number of elements processed by the two methods
from its asymptotic value of 1:2 improving the competitiveness of power-of-two re-
duction a little. More importantly, the power-of-two algorithm has more places it
can stop, and thus might shave one or two iterations from the asymptotic 3/2’s of
the iteration count of power-of-three cyclic reduction. This is potentially a significant
savings for large tridiagonal systems. In some cases, this savings may be partially
offset by changing the last reduction by three into a reduction by two.

2.3.4. Cache. The first-generation CONVEX C1 required that vector opera-
tions on noncontiguous elements first be staged into cache memory. (The C200 Series
bypasses cache for all vector operations.) Since cyclic reduction, whether by powers
of two or three, involves noncontiguous vector access, cache usage becomes a concern.
Our aim is to minimize the number of passes over the data so that cache is "missed"
as few times as possible. Because it uses fewer passes over the data, tricyclic reduction
has an advantage. This advantage is nullified, however, if the partial reduction in [6]
is employed. In this variation, a partial reduction plus a shuffle is used to reduce the
tridiagonal system by one (or two) vector register lengths. The result is that the data
is traversed only twice: once forward during reduction and once backward during
resubstitution. Cache misses are minimized. Additionally, vector register usage is
maximized. We are not aware of any comparative round-off study for this variation.

2.3.5. Parallelism. Cyclic reduction can be parallelized to a good degree on the
CONVEX C200 Series by the conventional method of distributing the iterations of the
stripmine sections of the relevant DO-loops among the available processors. The shift
operations cause some difficulty for the calculations at each end of a vector segment
in a reduction step because some of the required data is assigned to a cooperating
processor. This can be handled by synchronized memory references or by duplicating
the end calculations in both relevant processors. The latter is advantageous when the

shift operation is handled by vector-to-vector compression.
Memory bank conflicts are a significant concern for parallel operations. The more

simultaneous power-of-two memory accesses occurring in parallel, the slower each
becomes. For this reason, tricyclic reduction is to be preferred because memory bank
conflicts are resolved by a systematic increase in startup time for memory operations
rather than a systematic increase in per-element memory transfer time.

2.4. CONVEX timings. The analysis above has indicated that tricyclic reduc-
tion is a choice method for solving tridiagonal equations on CONVEX computers. We
have programmed the algorithm in both FORTRAN (compiler version 6.0) and CON-
VEX assembly language for the C200 Series. Both the FORTRAN and the assembler
versions vectorize and parallelize. We have also compiled the FORTRAN version
with parallelization disabled. Lastly, for comparative timings, we have programmed
power-of-two cyclic reduction in FORTRAN, using auxiliary space to compress inter-
mediate results. This we label sericr following standard terminology [4]. Figure 2
displays CPU times for these four algorithms. As predicted, FORTRAN savings are
nearly 25 percent for the power-of-three algorithm over the power-of-two version. As-
sembly programming buys an additional 10 percent efficiency over FORTRAN. The
small gain achieved with assembler language demonstrates that the algorithm can be
expressed in FORTRAN without hiding the available parallelism, that the method
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TRIDIAGONAL SOLVE TIMES

FOR CONVEX C-240
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FIG. 2. CPU times for solving tridiagonal equations using power-of-three and power-of-two
cyclic reductions. Because it uses fewer memory operations, tricyclic reduction is around 25 percent
faster than power-of-two cyclic reduction (sericr) on the CONVEX.

is matched well to the CONVEX architecture, and that the CONVEX FORTRAN
compiler’s vectorization, parallelization, and instruction scheduling are quite mature.
Figure 3 displays parallel performance of the tricyclic algorithm. For large systems,
parallel speedup, i.e., the ratio of CPU time to wall clock time, levels off at around
3.5 out of a possible 4. In comparison, the power-of-two speedup peaks at a lower
value of about 3.1. This reflects the fact that the power-of-two algorithm uses more
DO-loops with less work per loop and so synchronization occurs more frequently with
concomittant loss of parallelism.

3. History and related work. Sweet [7] published a power-of-a block cyclic
reduction for the case of symmetric, constant-coefficient block tridiagonal systems in
1974. In that setting, he found that power-of-two cyclic reduction was best, using 40
percent less arithmetic than power-of-three reduction. To our knowledge, vectorized
tricyclic reduction for general tridiagonal systems first appeared in 1980, when it was
employed by Levin to speed up an implicit finite-difference program running on an
IBM 3838 array processor. It was later resurrected for a Cray-1 assembly language
exercise in 1986. About the same time, Phuong Vu of Cray Research independently
devised the algorithm for use on the Cray-2 [8].

Tricyclic reduction is closely related to the hybrid algorithm GECR [5], [10],
a method that applies Gaussian elimination to uniform-sized blocks of consecutive
equations to produce one smaller tridiagonal system that is solved by cyclic reduc-
tion. Indeed, when GECR is specialized to partitions of size three, a single reduction
step in both procedures will produce results identical up to round-off variations. There
are two differences, however. First, Cramer’s Rule is used in tricyclic reduction as
compared to Gaussian elimination in GECR. This cuts -the number of divide oper-
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C-240 TRIDIAGONAL SOLUTION
PARALLEL PERFORMANCE
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Speedup 2 Assembler
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FIG. 3. Parallel speedups of wall clock times over CPU times for power-of-three and power-
of-two cyclic reduction on a four-processor CONVEX C240. Tricyclic reduction is better because it
has fewer loops with more work per loop than power-of-two reduction.

ations in half compared to GECR. Second, GECR does not recursively reapply the
reduction to the smaller resulting system, as it is assumed that a proper choice of par-
tition size renders further parallel reduction unnecessary. For the CONVEX, GECR
would subdivide the equations so that the reduced size would be as close as possible to
the vector register length of 128. At that point, another algorithm, cyclic reduction,
would be applied to this reduced system. We do not yet know whether, in practice,
GECR is faster or slower than tricyclic reduction for the CONVEX.

4. Conclusions. Cyclic reduction by powers of three is significantly faster than
cyclic reduction by powers of two for solving tridiagonal equations on the CONVEX.
The algorithm achieves its better performance primarily by reducing the number of
memory accesses needed to solve the system. Additionally, it uses memory more
efficiently because vector strides are always odd. Last, its use of half the division
operations in fewer loops with more arithmetic per loop produces a somewhat better
arithmetic balance and compiler utilization. These performance gains have also been
proven on the Cray-2 by independent invention of the algorithm.
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A DIAGONALLY STABLE MATRIX TO BE POSITIVE DEFINITE*

H. HUt

Abstract. For a diagonMly stable matrix M, a projective method is presented that can find
a positive diagonal matrix D such that DM + MTD is positive definite in finitely many iterations,
and that provides an upper bound on the total number of iterations needed for finding such a D.
The upper bound obtained is determined by the rescaling measure of positive definiteness of M.
The method is extended to solve the problem of finding a positive diagonal matrix D such that
DM - MTD is positive semidefinite if such a D exists.

Key words, positive definite, can be rescaled positive definite, rescaling measure of positive
definiteness, orthogonal projection
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1. Introduction. A real square matrix M is said to be diagonally stable if there
exists a positive diagonal matrix D such that DM+MTD is positive definite [4]. Such
matrices are called "Lyapunov diagonally stable" in [7], "Volterra-Lyapunov stable"
in [6], and "can be rescaled positive definite" in [8]. It is well known that diagonally
stable matrices play an important role in economics and dynamic systems [1], [3], [4],
[5], [7], [11]. Let x be a vector and D(x) be the diagonal matrix with diagonal elements
xl, xn. A positive vector x is called a rescaling vector of M if D(x)M + MTD(x)
is positive definite. So far, there are two general methods for finding a rescaling vector
of a diagonally stable matrix M. The first method was given by Khalil [11]. He defines
a function g(x) to be the smallest eigenvalue of D(x)M + MTD(x). His method finds
a positive x such that g(x) > 0 as follows: At iteration k, if g(xk) > 0, then stop,
because xk is a rescaling vector of M; otherwise, find a direction dk by solving a
linear program and then construct xk+ as a convex combination of xk and dk such
that xk+l is in the interior of the unit box of R. If M is diagonally stable, then his
method will find a rescaling vector in finitely many iterations. If his method does not
stop finitely, then M is not diagonally stable. The second method [8] approaches the
problem in the following way: First transform the problem into an infinite system of
linear inequalities and then solve the infinite system of linear inequalities by generating
and solving a sequence of standard linear programs. The common drawbacks of these
methods are that at the kth iteration a linear program with at least k columns needs
to be solved and hence, in practice, the number of iterations that can be performed is
limited, while no upper bound on the total number of iterations (when M is diagonally
stable) has been found for these methods.

Herein we present a projective method for finding a rescaling vector of a diagonally
stable matrix M. This method "solves" the same infinite system of linear inequalities
as in [8], but each iteration of this method is very simple: The new iterate xk+l is
the orthogonal projection of the current iterate xk on a plane constructed from a unit
eigenvector corresponding to the smallest eigenvalue of D(xk)M + MTD(xk). There-
’fore, the amount of work at iteration k does not increase as k increases. Moreover,

*Received by the editors August 21, 1989; accepted for publication (in revised form) March 7,
1991.

Department of Mathematical Sciences, Northern Illinois University, DeKalb, Illinois 60115-
2888 (hu@math.niu.edu).
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we are able to provide an upper bound on the total number of iterations needed for
finding a rescaling vector of a diagonally stable matrix. The upper bound we obtained
is determined by the rescaling measure of positive definiteness of M. This method is
inspired by the orthogonM projection method for solving systems of linear inequalities

The remainder of this paper is organized as follows. In 2, we explain notation
and definitions. In 3, we specify the method and prove the convergence. In 4, we
provide an upper bound on the total number of iterations needed for finding a rescaling
vector of a diagonally stable matrix. In 5, we present computational results. In 6,
we extend the method to solve the problem of finding a positive diagonal matrix D
such that DM + MTD is positive semidefinite if such a D exists.

2. Notation and definitions. First, let us extend the definition of a positive
definite matrix. We define an n n real matrix M, not necessarily symmetric, to be
positive definite if xTMx > 0 for all 0 x E Rn, and to be positive semidefinite if
xTMx >_ 0 for all x Rn. By this definition, a matrix M is diagonally stable if and
only if there exists a positive vector x such that D(x)M is positive definite. As D(x)M
is the rescaling of the rows of M, we say that M can be rescaled positive definite if M
is diagonally stable.

Let S-1 {x R" xTx 1} denote the unit sphere in R
Sn-1 x >_ 0} denote the set of nonnegative vectors in Sn-.

Let Ilxll be the Euclidean norm of x R and IIMII (Ei,j=l mi)/2 be the
Frobenius norm of M R. In particular,

Given a real square matrix M, we define its measure of positive definiteness to
be AIM] min{uTMu’u S-}. For a real symmetric matrix M, AIM] equals
the smallest eigenvalue of M and AIM] V[M]TMV[M] where VIM] denotes a
unit eigenvector corresponding to AIM]. For a nonsymmetric matrix M, AIM]

+
Given a real square matrix M, we define its rescaling measure of positive definite-

hess to be

[M]- max min uTD(x)Mu max A[D(x)M].
xS- uS- S+-1

It is known that M can be rescaled positive definite if and only if its rescaling measure
of positive definiteness is positive [8].

Given a point 2 R and a hyperplane aTx b, where a, x R and b R1,
we say that 2 is on the right side of aTx b if aT

_
b and 2 is on the wrong side if

aT <b.

3. The method. If M can be rescaled positive definite, then m > 0 for all
1, 2, n. Hence, without loss of generality we may assume that all diagonal

elements of M are positive in 3-5. The following lemma transforms the .problem
into an infinite system of linear inequalities. The lemma becomes trivial if one knows
the identity (D(u)Mu)Tx- uTD(x)Mu.

LEMMA 1. M can be rescaled positive definite if and only if the infinite system
of linear inequalities

(I) (D(u)Mu)Tx >_ 1 for all u Sn-1

has a solution. Moreover, if 2 is any solution of (I), then 2i >_ mi-i
n and D(2)M is positive definite [8].

for all 1,
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Lemma 1 tells us that in order to find a rescaling vector, we only need to solve the
infinite system of linear inequalities (I). The method that we present "solves" (I) by
generating a sequence {xk E Rn k 0, 1,... }. If D(xk)M is positive definite, then
the method stops; otherwise, the new iterate xk+l is the orthogonal projection of xk on

(D(uk)Muk)Tx 1, where uk is an approximation of a unit eigenvector corresponding
to the smallest eigenvalue of the symmetric matrix D(x)M + MTD(xk).
METHOD 1.
Step 0.

0>0foralli_l n;Let x be a point in Rn such that x
let 0 <_ e < 1 be a fixed small number;
let k 0.

Step 1.
Find a k such that I)k [D(xk)M + MTD(x)] <_ /2;
if Ak > e/2, then D(xk)M is positive definite, stop.
Otherwise, find a u E Sn-1 such that
u V[D(xk)M + MTD(xk)] -- e/(4

Step 2.
If D(uk)Muk

_
0, then M cannot be rescaled positive definite, stop.

Otherwise, let xk+l xk {(D(uk)Muk)Txk 1}D(uk)Muk/llD(uk)Mukll2
be the orthogonal projection of xk on (D(uk)Muk)Tx 1;
k:=k+l;
go to Step 1.

Comments on Method 1. (a) If A > e/2, then A[D(x)M+MTD(xk)] > 0, which
implies that D(xk)M+MTD(x) is positive definite and therefore D(xk)M is positive
definite. Because m > 0 for all i, we know that xk must be a positive vector.

(b) As xk+ is the projection of x on (D(uk)Muk)Tx 1, (D(uk)Muk)Txk+l
1 and thus xk+ = 0 for all k 0, 1,

(c) Since any solution of (I) is positive, if D(uk)Muk <_ 0, then (I) has no solution
and hence M cannot be rescaled positive definite.

THEOREM 1. If M can be rescaled positive definite, then Method 1 can find a

rescaling vector of M in a finite number of iterations.

Proof. If the method does not stop at Step 1, then

)[D(xk)M + MTD(x)] <_ Ak + /2 <_ ,
and

ucTD(xc)Mu V[D(xk)M + MTD(xc)]TD(xc)MV[D(xk)M + MTD(xk)]
<_ lukTD(xk)M(u V[D(xk)M +
+ (uk V[D(xc)M + MTD(xk)])TD(xc)MV[D(xc)M + MTD(xk)]-- 21] xk]]’]]M]l’]]u V[D(x)M + MTD(xk)]

<_ 12.
Hence

(D(u)Muc)Tx ucTD(xk)Mu_
V[D(xk)M + MTD(xk)]TD(xk)MV[D(xk)M + MTD(xk)] +
)[D(x)M + MTD(x)]/2 + /2
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That is, if Method 1 does not stop at iteration k, then xk is on the wrong side of
(D(uk)Muk)Tx 1. It follows that

(1)
IIMIl.llxk+ Xkll >_ IID(uk)Mukl]’llxk+l Xkll

>_ (D(uk)Muk)T(xk+l xk)
>1-.

Let S be the solution set of (I) and d(x) min{llx- YlI: Y e S} be the Euclidean
distance from x to S. It follows from the assumption of Theorem 1 and Lemma 1
that S is nonempty. Now suppose that the method generates an infinite sequence
{xk k 0, 1,... }. For any y E S we claim that for all k 0, 1,

Indeed, let ak be the angle between x -xk+l and y- xk+l. Because x is on the
wrong side of (D(u)Muk)Tx 1, y is on the right side, and xk+l is the orthogonal
projection of xk on (D(uk)Mu)Tx 1, we know that a >_ r/2. By the cosine law,

_< IIx yll 2 -Iix /l xkll2.

For all k- 0, 1, let yk be the point in S nearest to xk. Using (2) repeatedly, we
have that for any fixed k > 0,

iix,+a yk i]2 <_ iixk yk 112 d(x)2 for all n 0, 1,

That is, {xn+k n 0, 1,... } is contained in the closed ball B(yt, d(xk)) with center
yk and radius d(xk). Therefore, the sequence {xk k 0, 1,... } is bounded. From
(2) and the fact that y+l is the point in S nearest to xk+l,

(4) d(xk+l) Ilxk+ yk+lI[ IIxk+l yk < IIxk ykII d(xk).

That is, x approaches S steadily. Moreover,

IIxk+ yk+lll2

__
IIXk+l ykll2__
IIXk ykll2 --IIxk+ xkll 2

Now let -k (1- Ilxk+l -xll/llx -y ll all k- 0, 1,... ;then 0 < -k < 1
and Ixk+l y /lll <_ w IIx ykll. It follows

<_

As {IIo-i >_ 0" k 1, 2,... } is a decreasing sequence, we discuss two cases.
OOCase 1. Hi=0-i 0. By (5) d(xk) -- 0, which implies that {xk" k 1 2 } is

convergent sequence.
Case 2. Hi=0-i > 0. This implies that -i 1. By the definition of -k and (4)

IXk+l xkll 2 (1 T)d(xk) 2 (1 -2)d(x)2,
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and hence IIXk+l Xkll ---+ O.
As both cases contradict (1), we conclude that the method must stop after a finite

number of iterations. [3

4. Estimation of upper bound. Theorem 1 shows that if M can be rescaled
positive definite, then Method 1 will find a positive xk such that D(xk)M is positive
definite after a finite number of iterations. In this section, we give an upper bound
on the total number of iterations needed for finding such an xk. We assume that

0; that is, we calculate the exact smallest eigenvalue and a corresponding unit
eigenvector in Step 1. Let us call it Method Ip.

Let H(x) max{(1 -(D(u)Mu)Tx)+:u E Sn-l} be the biggest violation by x
of (I). In particular, if D(x)M is not positive definite, then

H(x) max{(1 -(D(u)Mu)Tx)+’u e Sn-}
max{(1 uTD(x)Mu)+’u n-1}
1 [D(x)M]
1 [D(x)M + MTD(x)]/2.

Let S and d(x) be defined as before. Let {xk k 0, 1,... } be generated by
Method 1 and yk be the point in S nearest to xk.

LEMMA 2. /f there exists a unit vector & such that (D(u)Mu)T& >_ 7 > 0 for all
u e S-1, then d(x) <_ 7-H(x) for all x e R [10].

THEOREM 2. If M can be rescaled positive definite and IIMII 1, then an upper
bound on the number of iterations of Method 1’ is of order fl[M]-21n(fl[M] -1), where
0 </[M]

_
1 is the rescaling measure of positive definiteness of M.

Proof. Since A[D(x)M] is a continuous function of x and S-1 is compact, we

may assume that/[M] is attained at x* S_-1. It follows that

1 >_ (D(u)Mu)Tx -uTD(x*)Mu >_/[M] > 0 for all u

By Lemma 2,

(6) IIx yll- d(xk) [M]-H(xk) for all k O, 1,

If Method 1 does not stop at iteration k, then

(7)

1 -(D(uk)Muk)Txk

IIx+ xll

>_ 1 ukTD(xk)Muk

1 [D(xk)M + MTD(xk)]/2
H(xk)

> IIx
As in the proof of Theorem 1, we still have

(8) Ilxk+l y+ll 2 Ilxk ykll 2 -Ilxk+ xkll2,

Equations (6), (7), and (8)imply that

(9) Ilxk+ yk+ll 2 Ilxk ykll2(1 --/[M]2).
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Using (9) repeatedly, we have ]Ixk Ykll -< (1 [M]2)k/211x yl]. As xk+l and xk

are contained in the closed ball with center yk and radius IIxk ykll

(10)
Ilx + x ll <_ 2(1 Z[M] ) / llxO yll

_< 2(1 )
(1 Ao).

Let K 21n([M]/(2-A))/ln(1-[M]2). It is easy to see that if Method 1’ does not
stop at iteration k and k > K, then Ilxk+l--xkll < 1. On the other hand, if Method 1’

does not stop at iteration k, then (D(uk)Muk)T(x+ --x) 1- uTD(xk)Mu
>_ 1 and hence IIxk+ -xll >_ 1. Therefore, the total number of iterations cannot ex-
ceed K. The theorem then follows from the fact that limz[M]--.0 K/([M]-21n([M] -1))

2"
Remarks. (a) Theorem 2 indicates that the amount of work needed for finding a

rescaling vector is related to /[M]. For example, if [M] 0.1, then
/[M]-21n(/[M] -1)-’230. In practice, if the method does not stop after a large number
of iterations, then we know that M cannot be rescaled positive definite or/[M] is very
small.

(b) There are additional ways to obtain an upper bound on the number of itera-
tions. (1) If we have found a unit vector 2 such that D(2c)M is positive definite, then
letting A A[D()M+ MTD(c)]/2, we know that/3[M] >_ A > 0 and an upper bound
on the number of iterations is of order A-21n(A-1). (2) If we know that there exists a

solution 2 of (I) with [[21[ <- a, then an upper bound on the number of iterations of
Method 11 is of order a21na.

5. Computational results. We have coded the method in FORTRAN. We use
EISPACK subroutine RS to calculate eigenvalues and eigenvectors, and we assume
that RS can return "exact" eigenvalues and eigenvectors [12]. The input data were
randomly generated and the program was executed on SUN 3/80.

First, we provide a step-by-step example of using the method to find a rescaling
vector.

EXAMPLE.
0.5020

M -0.1828
-0.0804

Iteration O.
xo (1.0000, 1.0000, 1.0000),
o -0.1819,
uo (-0.4518, 0.3149, 0.8347).

Iteration 1.
x (-3.7970, 1.8417, 2.7288),

-5.6399,
u (-0.8760,-0.2940,-0.3823).

Iteration 2.
x2 (1.5508, 1.6155, 2.5651),

-0.1405,
u2 (-0.4591, 0.3797, 0.8072).

0.4730 0.6128
0.3038 -0.0828

-0.0580 0.0797
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Iteration 3.
x3 (-3.0156, 2.7400, 3.9989),
A3 -4.6355,
u3 (-0.8742,-0.2955,-0.3854).

Iteration 4.
x4 (1.6299, 2.5435, 3.8564),
/k4 0.0793.

Additional information.
A-21n(A-1) 73558, and a21n(a)= 15743.

We have solved a number of problems in different dimensions (see Table 1). Based
on our computational experience the method seems efficient. The theoretical (order
of) upper bounds A-21n(A-1) and a21n(a) mentioned in the remarks of the last section
are very loose and are omitted.

In addition, we have tried a heuristic approach to accelerating the convergence.
Instead of projecting xk on (D(uk)Muk)Tx 1 as in Method 1, we now project xk on
(D(uk)Muk)Tx .[D(xk)M + MTD(xk)]. We have tested this idea using the same
data as the problems in Table 1, and it seems that this heuristic approach is more
efficient than Method 1 (see Table 2).

Finally, we have implemented the method proposed in [8]. The method is also
coded in FORTRAN and executed on SUN 3/80 using the same data as the problems
in Table 1 (see Table 3). Based on our computational experience, the heuristic version
of the projective method seems most efficient.

TABLE 1

Problem dimension 5 5 6 6 7 7 8 8 9 9
No. of iterations 27 15 32 50 30
CPU time (sec.) 5.28 4.92 14.16 30.40 25.48

TABLE 2

Problem dimension 5 5 6 6 7 7 8 8 9 9
No. of iterations 14 3 11 12 14
CPU time (sec.) 2.80 1.32 5.20 7.64 12.06

TABLE 3

Problem dimension 5 5 6 6 7 7 8 8 9 9
No. of iterations 3 3 7 6 11
CPU time (sec.) 17.48 19.64 45.38 42.54 89.34

6. Rescaling a matrix positive semidefinite. In this section, we discuss
how to rescale a matrix positive semidefinite, i.e., how to construct a positive diagonal
matrix D such that DM is positive semidefinite if it exists. Such matrices are called
"Lyapunov diagonally semistable" in [7]. Without loss of generality, we assume that
the diagonal elements of M are nonnegative. It is not difficult to see that M can be
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rescaled positive semidefinite if and only if the infinite system of linear inequalities

(II)
(D(u)Mu)Tx >- 0

eiTx > 1

for all u E Sn-1 and

for all 1,...,n

has a solution, where e is the ith unit vector in Rn, and if 2 is a solution of (II), then
D(c)M is positive semidefinite.

METHOD 2.
Step 0.

0>lforalli=l, n;Let x be a point in Rn such that xi
let k := 0.

Step 1.
Find Ak A[D(xk)M / MTD(xk)];

kif A _> 0 and x > 0 for all 1, n,
then D(x)M is positive semidefinite and xk is positive, stop.

Step 2.
Find uk V[D(xk)M / MTD(xk)];
find ejTxk 1 min{eTxk 1 1,... n};
if (D(uk)Muk)Txk

_
ejTxk 1,

then let xk+ xk {(D(uk)Muk)Txk}D(uk)Muk/ilD(uk)Mukll2
be the orthogonal projection of xk on (D(uk)Muk)Tx 0;
otherwise, let xk+ xk -{ejTxk 1}eJ
be the orthogonal projection of xk on ejTx 1;
k:=k+l;
go to Step 1.

THEOREM 3. If M can be rescaled positive semidefinite and Method 2 does not
stop finitely, then the sequence {xk k 0, 1,... } generated by Method 2 converges to
a solution of (II).

The proof of Theorem 3 is similar to that of Theorem 1 and is omitted. Finally, we
point out that if (I) has a solution, then the interior of the solution set S is nonempty.
This property enables us to calculate inexact eigenvalues and eigenvectors in Step 1
of Method 1, to prove the finiteness of Method 1, and to obtain an upper bound on
the number of iterations of Method 11 in the case where M can be rescaled positive
definite. Because (II) does not have this property, we can only prove the convergence of
Method 2 under the assumption that exact eigenvalues and eigenvectors are calculated
in Steps 1 and 2.

Acknowledgment. I wish to thank Professor G. B. Dantzig for his suggestions,
which helped to improve the bound in Theorem 2.
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Abstract. Many applications involve repeatedly solving linear systems of equations while the
coefficient matrix is modified by a rank-one matrix at each iteration. The QR factorization is often
used in such situations, and algorithms that update the QR factorizations in O(n2) time are well
known. To avoid excessive round-off error in solving equation systems, it is useful to monitor the
condition number of the matrix as the iterations progress. In this paper, general (i.e., nonsym-
metric) matrices undergoing rank-one changes are considered and an adaptive condition estimation
algorithm, "GRACE," is developed to monitor the condition number of the matrices during the
update process. The algorithm requires only O(n) overhead beyond the cost of updating the QR
factorization. Potential numerical difficulties in the algorithm are analyzed and modifications to
overcome these are introduced. These modifications are also applicable to the ACE algorithm of
Pierce and Plemmons that handles symmetric updates. Finally, experimental results are presented
that demonstrate that GRACE works well in practice.

Key words, adaptive condition estimation, updating, orthogonal factorization
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1. Introduction. In certain applications we are interested in repeatedly solving
systems of linear equations

(1) Akxe be,

where the matrix is modified by low rank updates, typically rank-one updates, at each
iteration, i.e.,

T where A E 7n n and we, Vk .]pn(2) Ae+l Ae + weve

We deal with the problem of adaptively estimating the condition numbers of the
matrices Ae. By "adaptive" we mean that we use the estimate at iteration k to
compute the estimate at step k + 1.

When the Aes are symmetric and positive definite, such as in recursive least
squares applications, the linear systems are usually solved via the Cholesky factoriza-
tion Ak RTR. Efficient O(n2) algorithms that update the Cholesky factorization
in such situations are well known. Adaptive condition estimation in this setting has
been the subject of recent work by Pierce and Plemmons [8] as well as by Ferng,
Golub, and Plemmons [3].

If, on the other hand, the Aks are symmetric indefinite or in general nonsymmet-
ric, such as in quasi-Newton methods for optimization (e.g., Broyden’s method), other
techniques are usually used for solving the systems involved. One approach would be
to note that a rank-one update to Ae can be written as two symmetric rank-one up-

Tdates to Ae Ae. If we are willing to solve the linear systems (1) using the Cholesky
factorization of TAe Ae, i.e., the "normal equations," we can update the solutions using
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the same algorithms as for recursive least squares. For condition estimation in this
case we could simply treat the problem as two symmetric rank-one updates to AAk
and use Pierce and Plemmons’s adaptive condition estimation (ACE) algorithm twice.

However, it is well known that solving linear systems by the normal equations
is relatively less stable since the error is governed by the square of the condition
number, ((Ak))2, rather than (Ak). This is why QR factorizations of Ak are often
used instead. Algorithms for updating the QR factorization of general matrices under
rank-one updates are also well known [6], and one such algorithm is described in 2.
Our goal is to adaptively estimate the condition number of the Ak’s in such situations.

The QR updating algorithm requires O(n2) operations and so we would like our
condition estimation algorithm to require only an insignificant amount of overhead,
i.e., O(n) at most. (This is similar in spirit to the ACE algorithm of Pierce and
Plemmons for the symmetric positive definite case, since their algorithm requires
only O(n) extra work as well. The algorithm of Ferng, Golub, and Plemmons, on the
other hand, requires O(n2) extra work.) Our algorithm will fulfill this requirement
by utilizing information obtained as a by-product of the QR updating process.

In 2 we briefly review the algorithm for updating the QR factorization. In 3 we
derive our general rank-one adaptive condition estimation algorithm, which we call
GRACE. We discuss the numerical difficulties involved and suggest ways to overcome
them. It turns out that some of the modifications introduced for numerical stability
will also prevent the breakdown of the ACE algorithm [7], [8]. In 4 we describe the
results of numerical experiments using the proposed algorithm. Finally, we present
our conclusions in 5.

2. Modifying the QR factorization. An algorithm for updating the QR fac-
torization of a matrix modified by a rank-one matrix is described in Golub and Van
Loan [6] and is based on the work of Gill, Golub, Murray, and Saunders [5]. We briefly
review this algorithm below.

Given B QR, the QR factorization of B E rnn, we wish to compute the QR
factorization of B + wvT. But B + wvT Q(R + uvT) where u QTw, thereby
reducing the problem to determining the factorization of R + uvT.

We will use J(i,j,O) to denote a Givens rotation in the (i,j) plane, i.e., the
orthogonal matrix which differs from the identity only in the (i, i), (i, j), (j, i), and
(j, j) positions, where it is:

(Jii Jij)_( cos0 sin0)Jj Jyy sin cos 0

The first step is to compute n- 1 Givens rotations G J(1,2,l)...J(n-
1, n,n-1) such that Gu is a multiple of el, the first column of an identity matrix.
We have

G
(a)

X X X X X X X X X

x x x x x x x x
X X X X

X X X X X X

X X X X

R + uvT H -- ?elvT [-t

where H and/ are upper Hessenberg matrices. Next a second set of n- 1 Givens
rotations U J(n- 1, n,#)...J(1,2,#n_) is computed to restore / to upper
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triangular form:

(4)
U

X X X X X X X X

X X X X X X X

X X X X X

X X X

The updated QR factorization is B + WVT Q(TUTRnew QnewRnew, and
13n2 flops are required to compute Qnew and Rnew.

3. General rank-one adaptive condition estimation. Recall that we are
considering situations in which a succession of rank-one updates are being performed,
and at each step the QR factorization of the current iterate is being updated using
the algorithm of the previous section.

Our purpose is to inexpensively monitor the extreme singular values, and con-
sequently the condition number, of the matrix at each step of this process while
performing only O(n) extra work in addition to the O(n2) work required in the QR
update itself.

Condition estimation algorithms usually exploit the relationship

(5) xTR- dT ffmin(R) x]2

In prticulr, if x is a left singular vector of R corresponding to the smallest singular
value of R (in the future we will cM1 such a vector the "smallest left singular vector"
of R), then the lower bound in (5) is achieved. Similarly the upper bound is achieved
if x is the "largest left singular vector" of R.

We will maintain vectors Xmin and Xmx, each of unit norm, which will be approx-
imations to the smMlest and lrgest left singular vectors of R, the triangular factor of
the current iterate B. We also maintain the numbers RTxmi and RTxmx 2 as
approximations to the singular values of R (nd also of B, since a(B) a(R)). We
derive below the algorithm that will give us new approximate singular vectors and
singular value estimates for Rnew, the triangular factor of B + wvT.

3.1. Derivation. For the moment we restrict the discussion to updating only
the smallest singular vector. In the ACE Mgorithm of Pierce and Plemmons [7],
[8], which considers updating the QR factoriztion when a row is appended to the
matrix, the relationship between the new approximate singular vector and the old
approximation is of the form

(6) ( Xnew ) Y ( Xld )p

where V is the orthogonal matrix used in the update. Their algorithm determines
the parameters a, , nd p to minimize ]]RnewXnew]2T while constraining Xw to be of
unit norm.

In our algorithm we are considering generM rank-one updates and consequently
a simple relationship like (6) does not suffice; a more complicated relation between
Xnw nd Xold is required.

One flop consists of one floating point multiplication and one floating point addition.
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Let us assume we are given Xold, an approximate left smallest singular vector for
R, the triangular factor of B, as well as dold RTXold We first outline the basic
steps of GRACE before giving the details.

Step I. Let R be partitioned as

0 4 where/1 E ,]n- n-- 1.

Then form x, an approximate singular vector for R1, from the first n- 1 components
of Xod by scaling; also compute d RT1x"

Xold l:n- dold l:n- 1)
and d(8) x-

[iXod(:n_l)[[2 [[Xod(1:_1)[12

Step 2. Recall the first stage of the updating algorithm of 2. Rewrite the first
n 1 columns of (3) as

ox), and define by ()-G( ),
where , , and 0 are parameters to be determined. Note that R is just the lower left
piece of the Hessenberg matrix H in (a) and is therefore upper triangular. Also,
consists of the leading n- 1 components of the first row of H.
om (9) it follows that

(10) r Rz 0.

The motivation for this step is that we can obtain an approximate singular vector
for by minimizing IIrll while constraining I111 1. This can be viewed as using
the ACE technique of Pierce and Plemmons "backwards," since we are removing the
row r rather than appending it.

Step g. We now consider the second stage of the QR updating algorithm. Let
+ v(:-l), i.e., consists of the leading n 1 components of the first row of

H in
We rewrite the first n- 1 columns of (4) as

(11) U .T 0T
and define by U

with undetermined parameters 7, , and . Note that is just the n- 1 x n- 1
leading principal submatrix of Rnew in (4) and is therefore upper triangular.

The following relationship now follows"

6R x +
So we can obtain an approximate singular vector for by performing another
constrained minimization. (This is similar to an ACE step where a row T is appended
to the matrix R.)

Step 4. We have obtained an approximate singular vector for , but we need to
obtain one for

(13) Rnw-- (0r ), where ()-UG()



1268 G.M. SHROFF AND C. H. BISCHOF

is the last column of the updated triangular factor, Rnew.
To this end we apply the technique of "incremental condition estimation" or ICE,

due to Bischof [1]. Using ICE we form the estimated singular vector for Rnew as

(14) Xnew COS?/)

determining the angle to minimize IlnnewXnewll2T while restricting IlXewll2 1.
To summarize, then, we first obtain an approx)mate singular vector for R1 by

truncation, for R by a "backward" ACE step, for R by an ordinary ACE step, and
finally for Rnew using an ICE step. We now turn to the implementation details,
including numerical difficulties and modifications of the basic algorithm that overcome
them.

3.2. Implementation. The GRACE algorithm may be implemented as de-
scribed above, but we can compress the two ACE-like steps (i.e., Steps 2 and 3)
into one, giving rise to one constrained minimization problem with three unknowns
instead of two problems with two unknowns each. We describe this formulation first
and then briefly mention the alternative formulas as well.

Steps 2 and 3 (x ). We are given x and d RTx, and we wish to obtain
2, by arriving at values for the unknown parameters a, fl, 5, and y. Let (qT, q2) be
the first row of G, (ul, u2T) the last row of U, and (wT, w2) the last row of W UG.
So

(15)

W =UG

Wl
T

W2

We note that since G and U are each products of n- 1 Givens rotations, all these
rows can be accumulated in O(n) time.

The following relations involving the unknown parameters a, fit, 0, 7, 5, , and
the intermediate vector 2 follow from (9) and (11):

(16) 0 aqx + q2,

(17) Ul + 5u,
and

(18) awT X + ZW tU + U’2.
Now we proceed to set up the minimization problem. Using (10), (12), and (16)

we get

(19)
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We already know d- RT
& 5a and/ 5/. Rewriting (19) we have

(20)

x. Define b d- yqx, and introduce the new variables

Therefore

(21)
IIT2]I T 9Tb bTb --q2bTy , where

_q29Ty _q2bTy qyTy

M

We need to minimize the above quadratic form TM subject to the constraint
that 11211 1. From (11)we have

(22)

Since Ilxl12 1, (9) gives

Using this in (22) and after some algebra (which we omit) involving the liberal use of
equations (16)-(18), we can express 112112 also as a quadratic form in ,
(23) --tlZ

--ltlZl mltlZ2
1 -(qlTx)2 z --Z2Zl --q2qT1x
--Z2Zl q2qT x 1 q Z

N

where Z and z2 are defined by

(24) Zl wT1 x uIqT1 x and z2 w2 ulq2.

Minimizing TMq2 subject to TNq2 1 is equivalent to solving the generalized
eigenvalue problem (see Golub and Van Loan [6])

(25) MF ANF.

The matrices M and N above are symmetric and semidefinite. For the moment we
will assume that N is positive definite, postponing to a later section discussion of the
"singular case" when N is singular or ill conditioned. If N is nonsingular, the pencil
(25) is symmetric definite and we can always determine three generalized eigenvalues/k
and three corresponding eigenvectors F. Choosing F to be the generalized eigenvector
corresponding to the minimum generalized eigenvalue, the vector

F
(26)

v/FTNF

minimizes q2TM with qfTNff-- 1.
Having computed , we have ?, &, and/. The parameter 5 is determined by

normalizing the intermediate vector 2,

(27) [lY[12 a2 +/32 02 1,
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so that

(28) +/9 0.
Writing 0 in terms of a and/3 from (16) we get

(29) 52=(& /)( 1-(qTx)2 --q2qTx I (&--q2qT1 x 1 q

Now we can compute 2 from (9) and the desired vector 2 from (11). Once again,
since G and U are products of Givens rotations, this requires only O(n) work. The
vector -/T2 is obtained from (20), again with only O(n) work.

Steps 2 and 3 (alternative formulation). Before we proceed to the next
step of the algorithm, we mention that Steps 2 and 3 could have been performed
independently instead of together as we have above. The following two minimization
problems would be involved in such an alternative formulation; we state the formulas
below since they will be useful later when discussing the "singular case."

In Step 2, the generalized eigenvalue problem

( bTb --q2bTy ) (1--(qTlx)2 --q2qTlx )(30) _qbTy qyTy Pl A1 --q2qT x 1 q
MI N1

Pl

is solved and we obtain a and from the smallest eigenvector as

In Step 3, the problem is

(31) \

M:

1 U --UlU2T )r: 1

N

where =/T2 ab- 3qY and 7 and 5 are given by

v/rNr
Step 4 (2 Xew). This step uses the ICE technique of Bischof [1]. om (13)

and (14) we hve

(32) T =( T2sin )RnewXnew Tsin + cos

So we can write

( ( )co Rnew[122 (sin cos ) (T2) 2
T (T(

__
(T2) (T&) sin

S

This quadratic form is minimized by choosing (sin COS/;)T to be the eigenvector
corresponding to the minimum eigenvalue of the symmetric semidefinite matrix S.

T is obtained from (32).Once we have , Xnew is given by (14) and dnew RnewXnew
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This completes the description of the algorithm for updating the approximate
smallest singular vector. The algorithm for updating the largest singular vector is
almost identical, except that all minimizations are replaced by maximizations. The
extra work involved in the condition estimation can now be calculated; of course, we
only consider the O(n) terms. Also, we consider updating both approximate singular
vectors, Xmax and Xmin, since some of the work can be shared (i.e., computing ql, u2,
and Wl ).

Step 1: two norms, four scalings, 6n
Step 2: ql, u2, and wl, 12n

b, and all inner products, 13n, 2, and d, 18n
Step 3: pT2, Xnew and dnew, 6n

55n

So, the total cost of updating the QR factorization and maintaining the adaptive
condition estimates is 13n2 +55n+O(1). We now turn to a discussion of the numerical
issues involved.

3.3. Numerical issues. In the above description of the algorithm, we have
avoided discussion of potential numerical difficulties. We will now identify the po-
tential problem cases and suggest ways to overcome them.

3.3.1. Step 1 can fail. Clearly, if Xold en, i.e., if the first n- 1 components
of Xold are very small or zero, then I]Xod(l:n-x)ll2 0 and Step 1 breaks down. In this
case our algorithm will fail and we cannot proceed further. However, consider when
such a situation may be expected to arise. If e is an approximate smallest singular
vector, then R(,) is in fact a very good estimate for rmin(R). It is likely then that
R(,n) is much smaller than the rest of R and that R is almost singular. (Of course,
examples can be constructed when this is not true, for example, the identity matrix.
However, it may be expected to hold in the generic case.) Our condition estimation is
not really supposed to be working with singular matrices, but is supposed to identify
cases when the matrix becomes almost singular after an update. We note that if
R is well conditioned before the update and becomes singular after the update, the
algorithm will work, producing Xnew e, but it will not work for future updates.
In practice, we did not encounter the above problem in any random situation and do
not consider it "likely" to occur except in the manner indicated. In the code we check
for this situation and insert a call to some other condition estimator such as the one
suggested by Bischof [1] or the one due to Cline, Conn, and Van Loan [2], even though
these are both O(n2) estimators.

3.3.2. Singular case, det(N) 0. If the matrix N in the generalized eigen-
value problem (25) is singular or ill conditioned, some of the generalized eigenvalues
may be infinite or undefined (i.e., the eigenvalue problem may be ill posed). In such a
situation there are two separate numerical problems. The first is to accurately com-
pute the generalized eigenvectors. We do not discuss this problem in detail here since
it is covered elsewhere, for example, in the text by Golub and Van Loan [6] and in the
paper by Fix and Heiberger [4]. The second problem arises because the eigenvectors
F corresponding to these "bad" eigenvalues are such that FTNF is zero or very small,
rendering the computation of in (26) unstable.
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To investigate when N can be singular, it is instructive to look at the alternative
formulation in terms of two 2 2 eigenvalue problems involving the pencils (M1, N1)
and (M2, N2), i.e., (30) and (31). This is justified because if N1 is singular, a solution
2 0 exists and therefore 7 0 yields a solution 2 0, so N must be singular.
Alternatively, if N2 is singular but not N1, again we have a solution 2 0 and N
is singular. Conversely, if N is singular, either 2 0 or not, and one of the above
situations must be true.

Consider the matrix N,

(q x) -q q l X )(34) N1 _q2qTl x 1 q22

The matrix N2 is similar with ql replaced by u2, q2 by Ul, and x by 5:. Such a matrix

(35) (A) ql=0 and (0 /1
is the null vector,

or

(36) (B) ql--x/q’’ql/- and
/\|v/qTlql| is the null vector.
\ /q2

In Step 2 (9), cases (A) or (B) can arise only if the vector u in the rank-one
update uvT is

(37) u=cen or u=
q2

In Step 3 (11), we have similar conditions (A) and (B) but with u2 instead of q,
etc. The case (A) can arise only if the vector in (9) is zero. Case (B) can arise if

u$T + uu:2T O.

This situation is likely to occur if R is singular, in which case we can have ][u2[[2 1
and u 0, i.e., u2 is the null vector for R.

Of course in practice in all the above cases "singular" should become "almost
singular" and all equality signs are "almost equal" signs. But we must conclude from
this analysis that N may in fact approach singularity in precisely the situations the
condition estimation algorithm is supposed to detect: sharp increases in condition
number.

As an aside, notice that Step 3 is actually an application of the ACE algorithm
of Pierce and Plemmons [7], and such a breakdown is also likely to occur in their
recursive least-squares setting for precisely the same reasons.

3.3.3. Modification 1. Our first modification is very simple. First, the ma-
trices M and N are both symmetric and nonnegative definite. Therefore, the pencil
(M, N) is diagonalizable, i.e., there exists a nonsingular matrix X of generalized eigen-
vectors such that XTMX and XTNX are each diagonal (this can be shown using the
generalized singular value decomposition; see Golub and Van Loan [6]). rther note
that although N can be singular, rank(N) > 0 (i.e., if N 0) since qql + q 1
(or uu2 + u 1). Therefore, at least one of the eigenvectors is such that rvgr is
positive.

is singular if and only if either
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Now we argue that since we are starting with an approximate smallest/largest
singular vector Xold, it is often the case that all the eigenvalues of the pencil (M, N) are
reasonably small/large. So, the modification is to discard the eigenvectors for which
FTNF is smaller than some threshold -, and choose the smallest/largest eigenvector
of those that remain. By the preceding argument, there will be at least one such
eigenvector.

Some of the experiments presented in the next section are specially constructed
so that a singular N often occurs; in other situations it may occur because of ill-
conditioning, and this simple strategy appears to work well. Again we mention as an
aside that we expect that this idea could also be used effectively in the ACE algorithm
for the recursive least-squares setting.

3.3.4. Modification 2. Our experiments indicated that very occasionally our
algorithm would fail to track sharp increases in condition numbers. Such situations
were not like the singular cases above where N was ill conditioned; however, the
smallest singular value estimates for/ were much larger than the actual value (by
about a factor of I00). The diagonal elements of R, on the other hand, which we
know are upper bounds for its smallest singular value, were in fact of the same order
as amin(/). Thus, though we do not have an explanation for these rare situations
when the estimates are not accurate, we can easily detect their occurrence using the
diagonal elements of/, and we propose a second heuristic that appears to correct
such problems. At the end of Step 3, we have an approximate smallest singular value
for/ given by III12. If our estimate is significantly larger than the smallest diagonal
element, we perform the following correction step using the ICE methodology.

Truncate and obtain a singular vector for its n- 2 n- 2 leading submatrix,
much as was done in Step 1 for R. Now use one step of ICE to obtain a new singular
vector for/ starting from this truncated singular vector. Note that this costs only
O(n) operations.

We may think that such a fix should be done whenever our estimate exceeds
the minimum diagonal element of/, since the latter is obviously a better estimate.
However, recall that we are really interested in the estimate for Rnew, not/. If we
perform the fix too often, it leads to worse estimates for Rnew, not better. In practice
we perform this step only if

Estimated O’min(/) ) lOmin I/iil.

In the next section we present and analyze some numerical experiments, including
specially constructed situations where the above modifications become active.

4. Experimental results. In the first set of experiments we start with a random
matrix of condition number a, having singular values that decrease exponentially from
1 down to i. We then perform a succession of rank-one updates uvT using random
vectors u and v that have been scaled so that Ilul12 Ilvl12 1.

Figures 1 and 2 show the results of such experiments with 40 40 matrices for
different values of a. Figure 1 shows the estimated and actual condition numbers
in one such experiment for each value 1, 10, 106, 1011. Figure 2 shows the ratio
between the actual and estimated condition numbers in three such experiments for
each value of a. The ratios for the experiments shown in Fig. 1 are displayed as solid
lines in the corresponding plots of Fig. 2.

First we notice that when we start out with a well-conditioned matrix as in
Fig. l(a), GRACE successfully tracks the gradual increase in condition number as
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updates progress. From Fig. 2(a) we see that the estimated condition number is
usually within a factor of 2 of the actual. This situation is the most probable in
practice, i.e., a well-conditioned matrix degrading with time, and GRACE works well
in this case.

In Fig. l(b) the matrix starts out mildly ill conditioned. The updates result in
a rapid oscillation of the condition number. Our estimator is able to track these
variations, though it is now often off by a larger factor (see Fig. 2(5)). The point to
note is that even such rapid oscillations are tracked, and from Fig. 1 we see that the
"shape" of the oscillations is reproduced in the estimate.

In Figs. l(c)-l(d), we start with even more ill-conditioned matrices. The condition
number now decreases with time, and the estimator is able to monitor this decrease.
We note that even in Fig. 2(d), with very ill conditioned matrices, the estimate is
usually off by a factor of less than ten.

Finally, we mention that in all these experiments neither of the modifications
discussed in the previous section was required by the algorithm (i.e., a singular case
did not occur, neither was the estimated min much larger than min([/ttii[)).

The second set of experiments involves some "special" updates designed to create
"singular cases" as discussed in the latter part of the previous section. In each update
uvT, the vectors u and v are chosen to be multiples of the left and right smallest
singular vectors of R. This produces a singular case according to (37). More precisely,
we start with a random matrix; if at each update step,

n
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anUnVT. Thus the conditionwe construct the rank-one update such that ltVT -number doubles with every update. Figures 3(a) and 3(c) show the results of three
such test cases, with Fig. 3(a) showing the actual and estimated condition numbers
and Fig. 3(c) showing the ratio of the two (the erratic behavior of the ratio is largely
due to the compressed scale of the figure, but it may be seen that the ratio is always
extremely small). In Figs. 3(5) and 3(d) such updates are interleaved with updates
in which u and v are multiples of the singular vectors corresponding to an-1 instead
of an. Again the estimate is very close to the actual condition number.

In each of these updates, modification 1, as discussed in the previous section, was
activated. The results demonstrate that modification 1 actually works quite well-
in its absence the algorithm would break down, and its use results in even better
performance for random matrices. We note that we repeated the experiment with
updates that were "close" to the special updates by adding small perturbations to
the u and v vectors used above, and the behavior remained similar to the above.
We conclude that this modification works well and handles the "singular case" in a
numerically stable fashion.

We also performed a number of experiments starting with random matrices of
different sizes ranging from n 20 to n 80, and condition numbers ranging from
t 10 to 1011. On each such matrix fifty random updates were performed. The
ratios of actual and estimated condition numbers in all these experiments (a total of
2400 update steps in all) is displayed as a histogram in Fig. 4. For example, in 1385
cases the ratio is less than 3, and, in most cases, the ratio is less than 10.

Finally we mention that the second modification suggested in the previous section
is harder to generate, but very occasionally it is in fact required. For example, of the



ADAPTIVE CONDITION ESTIMATION FOR QR FACTORIZATIONS 1277

2400 experiments used for Fig. 4 it was activated in only one case, with a 40 40
matrix and condition number around 106 Without the modification, the estimate
was off by a factor of over 100, whereas with the modification it came within a factor
of 3 of the actual value. In general, this modification is very rarely activated, but
seems very effective when it is.

We conclude that GRACE is numerically robust and tracks the condition number
well in practice.

5. Conclusions. In this paper we developed an algorithm (GRACE) to adap-
tively monitor the condition number of general (nonsymmetric) matrices as they are
modified by a sequence of rank-one updates. The algorithm costs only O(n) extra
flops beyond the O(n2) cost of updating the QR factorization of the matrix with each
update. We analyzed potential numerical difficulties in the algorithm and suggested
modifications to overcome them.

A number of numerical experiments were presented for random matrices of various
sizes, both well conditioned and ill conditioned. The updates included situations in
which the condition number increased as well as those in which it decreased, and also
cases when the variation in condition number was quite rapid. The results demon-
strate that GRACE works well in practice producing an estimate for the condition
number that is usually within a small factor of the actual condition number.

Experiments were also carried out that tested the modifications introduced to
handle numerical difficulties, and the modifications were seen to work very well in
practice. Further, since some of the steps in GRACE use techniques similar to the
ACE algorithm developed by Pierce and Plemmons [8] for symmetric updates, these
modifications can be used to overcome the numerical difficulties and improve the ACE
algorithm as well. (Subsequent to the research in this paper, Pierce and Plemmons
[7] have considered these modifications in the context of the ACE algorithm; [7] also
contains a more careful investigation of the "singular case" considered in 3.3.2.)

Finally (as was pointed out by one of the referees), the algorithm presented here
can be used with minor modifications for rank-one updates of QR factorizations of
m n matrices (with m > n), which could arise in more general least-squares appli-
cations.

With the development of this algorithm, O(n) adaptive condition estimation al-
gorithms for the three basic modified QR factorizations are now available: append-
ing/deleting rows or symmetric rank-one updates (ACE), appending columns (ICE),
and general rank-one updates (GRACE).
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RANK DETECTION METHODS FOR SPARSE MATRICES*
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Abstract. A method is proposed for estimating the numerical rank of a sparse matrix. The
method uses orthogonal factorization along with a one-norm incremental condition estimator that is
an adaptation of the LINPACK estimator. This approach allows the use of static storage allocation
as is used in SPARSPAK-B, whereas there is no known way to implement column pivoting without
dynamic storage allocation. It is shown here that this approach is probably more accurate than
the method presently used by SPARSPAK-B. The method is implemented with an overhead of
O(nu log n) operations, where nu is the number of nonzeros in the tipper triangular factor of the
matrix. In theory, it can be implemented in O(max{nu, n log n}) operations, but this requires the
use of a complicated data structure.

It is shown how a variant of this strategy may be implemented on a message-passing architecture.
A prototype implementation is done and tests show that the method is accurate and efficient.

Ways in which the condition estimator and the rank detection method can be used are also
discussed, along with the rank-revealing orthogonal factorizations of Foster [Linear Algebra Appl.,
74 (1986), pp. 47-72] and Chan [Linear Algebra Appl., 88/89 (1987), pp. 67-82].

Key words, sparse matrices, orthogonal factorization, condition estimation, numerical rank
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1. Introduction. The problem of rank detection, that is, choosing a set of lin-
early independent columns from a given matrix within a tolerance of machine preci-
sion, is a common subproblem in matrix computations.

We consider here the case of an s n matrix C where n and s are large and C
is sparse. Traditional methods of rank detection include the singular value decom-
position [25, pp. 571-576]; orthogonal factorization with standard column pivoting
[3], [12]; rank-revealing orthogonal factorizations (RRQR) [9], [13], [14], [19]; and the
threshold strategy in SPARSPAK-B [20], [23], [27]. The singular value decomposition
is clearly impractical for large sparse C, so we consider the other three strategies, all
of which are based upon orthogonal factorization.

That is, we factor C according to

0 0 0

where U (U1 U2) is a q n upper trapezoidal matrix, U1 is a q q nonsingular
upper triangular matrix, U2 is a q (n- q) matrix, Q is an s s orthogonal matrix,

rank(C), and P must be chosen during the course of the factorization.
Ideally, we would have preferred to construct a factorization of the form (1) where

U1 is nonsingular and V-1 (-1 for some prescribed tolerance and norm 11" II.
Received by the editors August 23, 1990; accepted for publication (in revised form) August 16,

1991.
Department of Computer Science, The Pennsylvania State University, University Park, Penn-

sylvania, 16802-6196 (barlow(C)cs.psu.edu). The research of this author was supported by Air Force
Office of Scientific Research grant AFOSR-88-0161 and was done in part while the author was visiting
Oak Ridge National Laboratory under the support of the Applied Mathematical Sciences Research
Program of the Office of Energy Research, U.S. Department of Energy, under contract DE-AC05-
840R21400 with Martin Marietta Energy Systems, Inc.

Department of Computer Science, University of Central Florida, Orlando, Florida 32816-0362
(vemula(C)cs.ucf. edu). This research was supported by Office of Naval Research grant N00024-85-C-
6041 while the author was a Ph.D. student at the Pennsylvania State University, University Park,
Pennsylvania.

1279



1280 JESSE L. BARLOW AND UDAYA B. VEMULAPATI

It is possible to design such an algorithm, but we know of no algorithm that can do
it with an overhead of O(nu log n) operations or any comparable complexity. Here
we define overhead to mean the operations necessary to choose the column ordering.

The RRQR factorizations due to Foster [19] and Chan [13] can actually obtain
a U1 matrix satisfying V-1 II- -1. However, their overhead is O(d. nu) where
(n-d) is the rank. If d O(n) (which is possible) or O(f(n)) where f(n) >_ t(log n),
then this procedure could be quite expensive.

Foster [19, p. 57] points out that his method can be implemented with a static
data structure. We found this to be true, but, as discussed by BjSrck [11] and 4 of
this paper, some of the factor U would have to be stored implicitly. The same could
be done with the RRQR technique of Chan [13].

To discuss how P is chosen, we now give one possible context for the use of the
factorization (1). Consider the equality-constrained least-squares problem of finding
an n-vector y such that

(2) IIb-AyI[2 min IIb-Ax112,
xESc

where Sc is the set of minimizers of

(3) min [[g-Cxl[2.
xE

Here A is an m n matrix, b is an m-vector, g is an s-vector, and n < s + m. The
standard procedures for solving (2) and (3) assume that we can adequately detect
the rank of C using a factorization of the form (1) (el. [4], [5], [3], [37], [23]). For
the strategy in [1] and [37], it is necessary to compute the orthogonal factorization
of B (cA )’ where T is some large weight. Thus the sparsity pattern of B is very
important.

Our strategy for choosing P should have two desirable features"
It should be possible to implement it using a static data structure;
It should be easy to implement on a message-passing architecture.

To have a static data structure, we choose an initial column ordering P1 according to
the George-Heath strategy from the nonzero structure of BTB. To preserve as much
of the sparsity structure as possible, we base the rank detection ordering P upon the
sparsity ordering P. We also make certain that the factored matrix U fits into a
static data structure.

We could discover no way to implement column pivoting without some dynamic
storage allocation. It is also difficult to implement on a message-passing architecture
because its computations proceed in a lockstep fashion. There is no effective method
for exploiting pipelining. We cannot overlap the application and formation of orthog-
onal factorization, since all column norms must be updated in order to decide which
column is the next pivot. Recently, Bischof and Hansen [8] reported some significant
progress in this direction using an idea due to Bischof [7] on controlled local pivoting.

For that reason, we design a condition estination strategy based upon a modifi-
cation of the LINPACK one-norm estimator of Cline, Stewart, Moler, and Wilkinson
[15], [18]. We show that this rank detection method is probably more accurate than
the method presently used in SPARSPAK-B [27], [23], a property that column pivot-
ing does not share.

On a sequential computer, our strategy can be implemented with an overhead
of O(max{nu,n log n}) where nu is the number of nonzeros in U. Since nu is
usually at least O(n log n), that overhead can be considered to be O(nv). However,
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to obtain that efficiency, we must use Fibonacci heaps [21], which are complicated
data structures. Our implementation requires at most O(nv log n) operations. The
strategy in SPARSPAK-B requires O(nv) operations. The value nv is about the
same for the two procedures. As is shown in 3, it is easy to exploit pipelining in the
implementation of this procedure.

We outline our procedure and discuss its analysis in 2. Computational examples
are given in 3. Section 4 is a brief discussion concerning how this method can be
used as a preprocessor to an RRQR routine. Section 5 is the conclusion.

2. Rank detection for a sparse underdetermined system. We now give a
strategy for finding the column ordering P in (1). It is assumed that we have already
obtained the column ordering P1 through the use of the George-Heath strategy [22],
which is given below.

1. Determine the symbolic structure of BTB.
2. Find a permutation matrix P1 such that PITBTBpI has a sparse Cholesky

factor R.
3. Perform the symbolic Cholesky factorization of pTBTBP1 to generate a

storage structure for R.
It should be noted that P1 is determined using no numerical information. Unfor-

tunately, the rank of a matrix is determined using numerical information and must be
done by altering the column ordering during the factorization. Thus U could have fill
elements whose positions cannot be predicted by any strategy before the factorization
(1). That makes it more difficult to maintain a static data structure.

BjSrck [11] proved the following result, which we use to show that the algorithms
in this section can be implemented using static data structures.

THEOREM 2.1. Let B (bl, b2,..., bn) be a column partition of B and let

(bjl bj2,... bjk), 1 _< jl < j2 <"" < jk

_
n

be a submatrix of B. Denote the Cholesky factors of BTB andT by R and ,
respectively. Then the nonzero structure of R is included in the nonzero structure
of R.

The reason that column pivoting cannot make use of the above result is that it
reorders the columns in a random fashion from the original ordering. Column pivoting
skips a column whose norm is less than the maximum and then eliminates it later.
The extra fill occurs in the column that is skipped, and it is not possible to predict
that fill before factorization.

The first strategy, Algorithm 2.1, just skips columns whose uneliminated parts
are negligible, thus no extra storage is necessary. It is a columnwise version of the
method used in SPARSPAK-B [23]. The method is explained as a rowwise algorithm
by Heath [27]. We call it threshold pivoting.

The column ordering P is denoted by pl,p2,... ,pn and P (epl,... epn ). With-
out loss of generality, we can assume that the ordering P from SPARSPAK-B is
1,2,...,n.

ALGORITHM 2.1 (THRESHOLD PIVOTING STRATEGY).
Assume that we are given a drop tolerance e. Set p +- i, i 1, 2,..., n; done --false; k +- 1; q -0;

while not done do

if7 _> e then
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q--q+l;
Construct an orthogonal transformation Hq diag(Iq_i, Hq) such that

-Iq(Cq,k, Cs,k
T -{-e(s-q)l

Compute C - HqC
Set pq +-- k; k -- k + 1;

else
temp - k; pq +-pq+i; Pn *- temp; k -- k + 1;

endif
done-q_>sor k>n

endwhile

Algorithm 2.1 creates no nonzeros in U that cannot be predicted by the George-
Heath algorithm [27]. Empirical tests by Heath [27] show that it rarely gives a different
value for the rank from that given by column pivoting. We obtain a matrix of the
form

Di Vi
0 0 D2 V2

(4) U
0 0 Da-1 Vc-i
0 0 0 0 D V

where D1, D2,..., Da are upper triangular. More dramatic failures in rank detection
are possible for Algorithm 2.1 than for column pivoting. A simple example is the
bidiagonal matrix

1 a 0
0 1 a

c
0 1 a

Clearly, C is considered full rank to machine precision for any value of a, even though
it could be arbitrarily badly conditioned. Recently, Foster [20] showed that the ran-
dom matrix generation scheme given by Stewart [36] yielded badly conditioned upper
triangular factors with large diagonal elements with substantial positive probability.
This leads us to believe that the example (5) is not altogether rare.

Our improvement to that strategy is designed to make each (Di, V) block in
(4) have full row rank to machine precision. First, we discuss the role of condition
estimation in column selection. We now give an incremental condition estimator
similar in spirit to the one discussed by Bischof [6].

The differences between our estimator and that of Bischof [6] are that our estima-
tor estimates the one-norm instead of the two-norm and our estimator employs "looka-
head." Bischof’s two-norm estimate requires O(q2) operations where q rank(C).
Bischof, Pierce, and Lewis [9] have recently implemented an improvement of that
strategy for sparse matrices, but that procedure forces us to use the elimination tree.
Our method is a simple modification of the sparse matrix ordering output from, say,
SPARSPAK-B.

Also, an estimate without lookahead can fail on 3 3 matrices. For instance, let

L- 2 1 0- -Tw 2
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For the value w 1 xf, the Bischof algorithm’s estimate of the smallest singular
value is 1, independent of -, while the actual two-norm of L-1 is about _2. In fact,
for any 3 3 matrix

L(3)_ / L(2)
"/-v3
T /33

if we choose v3 to be orthogonal to the smallest singular vector of L(2), Bischof’s
estimate is the same for all values of -. This type of failure is discussed by Bischof [6]
and is possible for any estimator that does not employ lookahead. However Bischof’s
estimator works well in practice for heuristic reasons given in [6].

Define the sequence of upper triangular matrices W(k), k 1, 2,..., l, by

(6) W(1) -(Wll) where wlx --II Cp 112,

(7) W(t:+) (W(k)0 +v+ )
where

Here

c) (c() c(!), 1,j’’’’’

is column j of C after Hi,..., Ha have been applied.
An estimate k of [W(k)] -1 ]11 is formulated recursively as follows. Let

and

L(k) [w(k)]T

a(1) --(1),
(1 1/Wll 1/ %1 112-- 1//1,

x(1) a()/wll.
For k > 1 we now define aK+l recursively. Assume that x(k) has been selected at step
k to satisfy

L()x(k) a(),

where a(k) is a vector of -t-1. Then compute

x(k+l) (x(k),k+l)T,
where

--1 T X(k)) T--sgn(vk+ x ).k+l 7k+l( Vk+
(k)
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Thus

’k-F1 max{&k, I:+1} -II x(k-t-1) Iloo.

This procedure is precisely the LINPACK estimator without the lookahead property.
To incorporate lookahead, we consider the partial sums

vj x(k) vj x(k)

P-= ,(k) + and p;- ,(k) --F
j=k+l,...,n,

where

k++ -1 T x(k) -1 T (k)
"Yk+l (1 -+1 (-1 xVk_F1 Vk_F1k+l

(k) ,.(k) Tvy [cy ,...,a,) j k+ 1,...,n.

Note that the entry .(k) is not known until after we use column Pk to form Hk The"k+l,j

pj can be accumulated throughout the computation. For weights tl,t2,... ,tn > O,
we then examine

(8) + +

jENonz(c[k+ 1]) jENonz(cU+l])

where

(9) Nonz(c[k+l]) {j’j > k + 1, .(k) k 0}.’-’k+l,j

Then choose

x(k+l) { (x(k),k+-+.l))TT
The choice of weights ty is heuristic. LINPACK chooses tj u-1 However, we have

Pj ,2"

not computed u-1 at this point, so we choose tj 7p-l where -yy is defined in (7)Pj ,9

These are lower bounds on the LINPACK weights, that is, tj <_ lUp,j 1-1. For the set
of weights, tj 1, j 1, 2,..., n, counterexamples have been found where there is

--1 -1dramatic failure [16], [28]. To our knowledge, for either t -lUp,jl or tj ’pd, no
such counterexamples have been found.

Our algorithm performs the condition estimator upon the most recently formed
diagonal block Di until either

1. it finds a diagonal entry below a tolerance el, or
2. the estimate D-I II1 exceeds e-l.

Here e #. In either case, we restart the condition estimator with all Pi 0 (implic-
itly) and then begin block Di+I. Under case (2), we must find a dependent column
in Di. Fortunately, this is easily done with this condition estimator, and we can still
use a static data structure.

Note also that under case (2), the condition estimate concludes that

lID7Ta(a) -Il x()
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since if T (k) x(k) 2) for x(k-l)ek x I11 IIo, then case occurs
Hager [26], [29] to develop his condition estimator. Thus

This duality is used by

-1 < ][a(c)]TD-(-lek] <--II Dlek ]]1,

since a(k) is a vector of :hl. We now can locate the dependent column using ideas
similar to that originally given by Golub, Klema, and Stewart [24]. That procedure
has been generalized to blocks by Hong and Pan [30], but their algorithm is not
practical. Solve Dih ek. Let v be an index such that

l<_j<_k

Reorder Di into i such that

and compute

where (i is orthogonal and i is upper trapezoidal. We can conclude that i is of
rank k- 1.

That conclusion is based upon the following heuristic. Columns di) d(ki)_ are
considered linearly independent by the condition estimator. The addition of column
d(ki) does not increase the rank and cannot decrease it. Thus Di must have k- 1
linearly independent columns. The reordering of the columns is to ensure that the
kth component of d(i) should be of magnitude Ih1-1, which is less than ke and thus
negligible. This is a simple column deletion update [32, Chap. 24]. We then let

Di bi ((1, ^(i) (i) i)d,-l +1 )"

The nonzero structure of Di is included in the nonzero structure of the original Di.
We can store d) in a special full vector. Because of structure (4), we need only one
full vector of length s for the entire factorization, and that is the only extra storage
beyond that allocated by the George-Heath algorithm. That vector would consist of

We summarize our procedure as Algorithm 2.2.

ALGORITHM 2.2 (CONDITION ESTIMATION RANK DETECTION PROCEDURE).
Assume that we are given the tolerance e that is near machine precision. Let c[q]

denote the qth row of C at step q, and let Nonz(.) be defined by (9).
Initializations.
Set q 0; done false; k I; firstk i; firstq i; Pi i;

while not done do
Compute -- 9’- 1 (_sign(pk) Pk)

I 1}
if -1 > then
q+-q+l
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Construct an orthogonal transformation Hq diag(Iq_l, Hq) such that

(,...,)
Compute
C HqC; pq k;
for j Nonz(c[q])

2

endfor
-(-1 );

4+ 15+1; 4- 15-;
for j Nonz(c[q])

+ + + ;;;
_ _

+ ;;1;
endfor
if (+ k (- then

mx{, I+1}, No.;([)
else

, i No;([.])
endif

else
if ; 1 then
firstq q + 1; firstk k + 1;
temp k; pq pq+l; ...,pu-1 pn; p k;
p 0, 1, 2,..., n(implicitly)

else
Let D be the submatrix of C from rows firstq through q
and columns firstk through k.
Solve Dh (0, 0,..., 0, 1)
Let be an index such that I1- mx() I1
Move column so that it is the last column of D
Compute D TD
where OT is an orthogona] transformation that puts D into
upper triangular form.
Apply to the appropriate rows of C.
first/ l; firstH H + 1; pi 0, 1, 2,..., u (implicitly).

endif
endif
kk+l; donelksorkkn

endwhi]e

0) -C

We note that like Algorithm 2.1, Algorithm 2.2 requires only one pass through
the columns of C. The backsolves are with separate matrices Di, i 1, 2,..., , and
thus require no more work than one backsolve with all of U in (1).

Most of the overhead in Algorithm 2.2 is in updating the pi and 7i, i 1, 2,..., .
Updating the 7i is just O(n) operations where n is the number of non,eros in U.
Normally, updating the pi would also be O() operations except that they must
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be set to zero when we start a new block Di, 1, 2,..., c. That can be done by
storing only the nonzero values of the pi. In order to make access as fast as possible,
we stored the p in a hierarchical data structure based upon the indices. A Fibonacci
heap could be used to get access time down to O(max{nu, n log n}), or we could
use a standard heap for which total access time is O(nv log n). We chose the latter
because of its simplicity, and because it makes only a second-order contribution to
the complexity of the problem. The orthogonal updates operate upon each element
of U a constant number of times, and thus require at most O(nv) operations. Thus
the total complexity of the overhead computations is O(nu log n). This is only a
second-order contribution to the complexity of the computation (1).

In the sequential algorithm, during each step, we generate two possible values
for p, namely, p+ and p-. Depending on whether + >_ -, we set p to either p+
or p-. But the computation of + and (- requires that all columns be updated
with the factorization. However, on message-passing machines, we want to overlap
the computation of the factorization with the computations of the next column by
pipelining. One way of doing this is to compute 4+ and - using columns held by
the local processor only (i.e., limited look-up), as opposed to using the information
from all the columns of the matrix. The other approach is to postpone the decision of
setting p to either p+ or p- until the next column is computed. Here we compute p+
and p- as usual, but we do not set p. In order to proceed to the next column, we need
the value of p. Since we do not have the value of p, we calculate both possibilities for
all variables that depend on the previous value of p. The idea is that, by the time the
computations are completed for the jth step, the information required to set the value
of p that corresponds to the (j- 1)th step would have been known to all processors.
Computationally, there is no difference between this parallel implementation and the
sequential counterpart. We only try to overlap and pipeline some computations in

order to avoid blocking the algorithm to wait for computation of p at each step. In
the following segment of parallel code, we show how that can be done. One point to
note here is that there are some redundant computations in this approach.

During the qth step
for j E Nonz(c[q]) on this processor

G- G +
+ +

endfor
Wait for information from the other processors about the previous column
that would allow us to compute and for the previous column.
if ; then

pj pj
+

else

pj pj
endif

In our implementations, we used the latter strategy.
useful analytic property.

Algorithm 2.2 has one other
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THEOREM 2.2. Let rankl(C) be the rank as determined by Algorithm 2.1 for
tolerance e and let rank2(C) be the rank as determined by Algorithm 2.2 with tolerance. Then, excluding the effects of rounding error, rank2(C) _< rankl(C).

Proof. We show that applying Algorithm 2.2 after Algorithm 2.1 obtains the same
rank as applying Algorithm 2.2 by itself. Thus Algorithm 2.2 must obtain at least as
small a value for the rank as that for Algorithm 2.1.

Assume that the factorization

U1 U2)pTC-Q1
0 U3

is output from Algorithm 2.1. Here, U1 is an nonsingular upper triangular matrix,
rank1 (C) l, U2 is an (n- l) matrix, and U3 is a matrix whose columns satisfy

u3) 112-< e and are thus negligible.
If we then apply Algorithm 2.2 to

we get the factorization

U-Q2 ( -1 f2 ) IT0 U

where 1 is an [ [ nonsingular upper triangular matrix, rank2(U) _< [, 2 is an
[ (n- [) matrix, and 3 is a matrix whose columns satisfy ])]2 l. That yields
the factorization of C given by

C Q1Q2 ( I 2 ) TpT
o u

Clearly, [ 1. Now we must argue that [- rank2(C).
By uniqueness, results on orthogonal factorization [35, p. 214], and a simple

induction argument, Algorithm 2.2 directly applied to C must generat the same
coefficients i,pi, 1,2,... ,n. Thus the same columns are selected for U1, and we
have the factorization

0 U

By uniqueness, and 2 are the same except for the signs of the rows. 3 can be
different but must satisfy ) [[2= )[2 for each column of and 3. Hence,
rank2(C) [ l- rankl(C).

The following example shows that column pivoting does not share the property
given in Theorem 2.2.

Example 2.1. Let

C diag(1, s, s2,..., 8
n-

-c -c -c 1
1 -c -c 0
0 1

0 1 -c 0
0 1 0

diag(/3, f12,..., 3n- 1, 1),
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where 0.9999, n 100, c 0.2, c2+s2 1. Let # 10-7 be the machine
unit. Algorithm 2.1 will produce the factorization C QU, where u100,100 10-s.
Thus it will conclude that rank(C) <_ 99. Column pivoting will permute column 100
into the pivoting position and then conclude that rank(C) 100. Note that this is
just a slight alteration of a famous example due to Kahan [31]. Thus Algorithm 2.1
can sometimes yield a smaller value for the rank than does column pivoting. This
example was improved with the help of one of the referees.

However, column pivoting can sometimes do better than either Algorithm 2.1 or
2.2. Consider the following example, suggested by one of the referees.

Example 2.2. Let

C= 0 0 0
0 0 a

The singular values of C are approximately 1, a2, and 0. Algorithms 2.1 and 2.2 would
both conclude that this matrix has rank 2 if a > e. However, if a2 < e, the numerical
rank of C is 1.

Maximal column pivoting obtains the orthogonal factorization

( c s 0 )( v/l+a2 a/v/l+a2 0 )C- -8 c 0 0 a2/v/l+a2 0 pT,
0 0 1 0 0 0

where c l/v/1 + a2, s ca, and pT is the permutation (3, 1,2). Note that the
numerical rank can be read off of the diagonal.

Our argument for the use of Algorithm 2.2 is mainly that it is more time and
storage efficient than column pivoting and about as reliable. These two examples
show that the only meaningful way to compare Algorithm 2.2 with column pivoting
is empirical tests such as those in 3.

3. Parallel implementation and empirical tests. We implemented a mod-
ified version of Algorithm 2.2 on the Intel iPSC/2. This system consists of P 2d

independent processors, each with its own local memory. Here d is the dimension of
the cube. The processors are numbered from 0 to P- 1 and there is a connection
between two of them if and only if their numbering differs by exactly one digit. Thus
no two processors are more than log2 P connections apart.

In a straightforward manner, the columns of C are mapped onto the processor in
a wrap mapping according to the ordering generated by the George-Heath algorithm.
For the sake of simplicity, we may assume that the processors form a ring, i.e., that
a ring embedding is used, although other connections are sometimes used for "broad-
cast" purposes. Each processor makes a decision as to whether to include the next
column in the factorization, and sends a message to other processors along with the
necessary transformations (if the column is included). The updating of the rest of the
columns on the same processor is done only after sending the information to other
processors. This procedure can be pipelined very efficiently.

There are a couple of obvious bottlenecks for this algorithm when implemented
on a parallel machine. The "back-solve" process, when a bad column is found, in-
volves accessing the partially formed upper triangular factor. Li and Coleman [33],
[34] discussed good back-solve procedures for hypercubes that are effective on dense
matrices. We used similar techniques in our implementation, but the overall result
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TABLE 1
Timing results on factorization with the condition estimator.

No. of Time
processors (secs)

2 40.59
4 28.59
8 20.42
16 14.69
32 10.35
64 7.34
128 5.24

is not impressive on sparse matrices because the arithmetic complexity is quite low
compared to the communication overhead. This also causes the algorithm to come
to a virtual pause, losing some of the advantages of the asynchronous behavior of
the algorithm. However, this happens only occasionally, so we can still expect good
speed-ups.

The "lookahead" part of the algorithm, where it needs to find out which value of
p is to be made permanent, is another bottleneck. We used the compromise lookahead
strategy as explained in 2.

3.1. Timing results on the hypercube. The above algorithm was imple-
mented on an Intel iPSC/2 hypercube with 128 nodes, each with four megabytes
of memory. The static data structure was generated on another machine (as that was
not the part of the problem that we were trying to parallelize) and was fed into the
hypercube.

Our data structure, described in detail in [38], allowed us to efficiently execute
steps of the form

forj E Nonz(c[]).
Since this type of step arises in an inner loop of the algorithm, efficient implementation
is critical.

The constraint matrices generated for the tests were sparse. The sparsity pattern,
as well as the entries of the nonzero elements, were randomly set. While generating
the sparsity pattern, the number of nonzeros was selected randomly between a lower
and an upper limit (the limits themselves were computed as a fixed fraction of the
number of columns in the matrix). The matrix A was taken to be a tridiagonal matrix
with diagonal elements as unity and off-diagonal elements as 10-3 The test matrices
had up to 104 columns and approximately 105 nonzeros in the final upper triangular
factor. Typical results (averaged over several test matrices) are tabulated in Table 1.
The results indicate that each time the number of processors is doubled, the speed-up
obtained is approximately 1.4.

3.2. Robustness tests. To test the effectiveness of our algorithm, we tested
both the condition estimator and the resulting rank detection procedure. As was
suggested by Stewart [36], we generated test matrices of dimension 10, 25, and 50
with a known condition number--the values being 10, 103, 106, and 109. For each
of these possibilities, we generated two types of matrices--one where there is a sharp
break in the singular value distribution, and the other in which the singular values
are exponentially distributed between one and the condition number.

The algorithm always estimated the condition correctly (within two decimal digits
accuracy), if there was a sharp break in the singular value distribution, and hence the
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10
lO3

lO6

lO9

TABLE 2
Our condition estimation tests.

n 10 25 50
o./o.
o.o/o.s
o.11/o.48
o.12/o.51

o.3a/o.a
0.20/0.42
o.12/o.36
o./o.aa

0.30/0.43
0./0.7
0.10/0.27
0.09/0.26

TABLE 3
LINPACK condition estimation tests.

k2 n 10
10 0.29/0.46
103 0.29/0.56
106 0.46/0.76
109 0.68/0.86

25
0.24/0.30
o.eo/o.aa
0.20/0.46
o.4/o.

50
0.17/0.23
0.19/0.26
0./0.a
0.23/0.40

results in Table 2 illustrate the case in which there is an exponential distribution of
singular values. For each dimension n, 500 test matrices were generated, k2 is the
condition number of the matrix in the Euclidean norm. The numbers quoted are the
minimum/average value of the ratio of the estimated condition number to its actual
value. The results are rounded to two significant digits.

Comparative results are included in Table 3 for the LINPACK estimator. These
tables bound the constant/ in (9).

Our tests for rank detection in Tables 4 through 9 were quite similar. The test
matrices were generated in exactly the same manner, except that there were only two
values of the condition of the matrix, 106 and 109 We compared Algorithm 2.2 with
maximum column pivoting and the SPARSPAK-B procedure. In each of the tables, n
is the dimension of the test matrix, and k2 is the condition number (in the Euclidean
norm). Each entry is of the form j/s under each of the min/avg/max columns where
j is the rank detected by the algorithm and s is the jth singular value of the matrix.
In all of the estimates a cut-off of 10- was used to detect the rank, and hence the
singular value gives us an indication of how accurate the estimate is. The following
points summarize the test results.

Our algorithm always gives a more conservative estimate than the other two
strategies. More often than not, it gives a slightly lower value for the rank than the
singular value decomposition. In general, for solving least-squares problems, this is
better than overestimating the rank. The improvement of our strategy over that in
SPARSPAK-B is dramatic.

Column pivoting seems to obtain a stable value for the rank, with the smallest
difference between its maximum and minimum estimates.

All of the algorithms appear to be reasonably accurate.

4. Use with rank-revealing orthogonal faetorization.

4.1. Summary of the algorithm and notes on implementation. We show
how our procedure can be merged with an RRQR procedure to perform a more efficient
RRQR for a sparse matrix. A scheme similar to this is considered by Barlow [2] in an
early version of this work. It should be pointed out that all known procedures that
make only one forward pass through the columns of the matrix, such as Algorithms
2.1 and 2.2 and column pivoting procedures, should be considered as preprocessing
routines for RRQR procedures.
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TABLE 4
Rank detection tests of our algorithm (k2 1.0e6).

n min
Ji0 7/1.0e-4
25 18/5.7e-5
50 38/3.0e-5

vg
8/2.23-5
19/3.2e-5
40/1.7e-5

max

9/4.6e-6
22/5.6e-6
44/5.4e-6

TABLE 5
Rank detection tests of column pivoting algorithm (k2 1.0e6).

n
10
25
5O

min

8/2.2 e-5
20/1.7e-5
42/9.5e-6

nvg
8/2.2e-5
21/1.0e-5
44/5.4e-6

9/4.6e-6
22/5.6e-6
46/3.1e-6

The resulting algorithm sacrifices three advantages of Algorithms 2.1 and 2.2.
We know of no way that it can explicitly store the matrix in statically

located storage. Described below is an implicit storage scheme (which could not be
used for the Businger-Golub [12] or Barlow-Handy [3] column pivoting schemes).

It does not pipeline well because of its dependence upon back substitution
using columns that may not be contiguous.

Its best complexity bound is O(d.nv), where d could be O(n) (but it is rarely
this large).

Let U be the upper trapezoidal matrix output from Algorithm 2.1 or 2.2. Let
be the left-most subset of columns of U that form an upper triangular matrix, and let
U2 be the remaining columns. Define the functions upper.part(.) and nonupper.part(.)
by

U1 upper.part(U), U2 nonupper.part(U).

To be consistent with Algorithm 2.2, we use a version of the condition estimator
in 2 to develop an implementation of the Foster [19] RRQR routine based upon the
one-norm. Chan [13] developed a similar RRQR based upon the two-norm which
cannot be adapted to our estimator. Both papers provide rigorous bounds on the
accuracy of RRQR procedures.

Since the matrix U will always be upper trapezoidal and is assumed to be out-
put from Algorithm 2.2 (say), we change the condition estimator in 2 so that the
weights tl,t2,... ,tq in (8) are t lU/1)1-1, where U (u)), since these values are
now known. The condition estimation procedure is called condest(W, q, k, rankdef,
described below in Algorithm 4.1

ALGORITHM 4.1 (RANK-REVEALING ORTHOGONAL FACTORIZATION).
Assume that we are given a drop tolerance e for the estimate of U- I1-1" Let

U be the upper trapezoidal matrix, rankdef is a logical variable that is true if U is
rank deficient to the tolerance e. k is the index of the first k k principal submatrix
of U1 that is rank deficient or k q if rankdef is false.
U1 - upper.part(U); U2 - nonupper.part(U);
q row dimension(U1);
condest(U1, q, k, rankdef, e);
while rankdef do

Solve U1 h ek
Let [h[ max<<q
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TABLE 6
Rank detection tests of threshold pivoting algorithm (k2 1.0e6).

n min
10 8/2.2 e-5
25 21/1.0e-5
50 44/5.4e-6

23/5.6e-6
46/3.1e-6

m&x

10/1.0e-6
24/1.8e-6
48/1.8e-6

TABLE 7
Rank detection tests of our algorithm (k2 1.0e9).

n
10 4/1.0e-3
25 12/7.5e-5
50 25/4.9e-5

min avg
5/1.0e-4
13/3.2e-5
27/1.7e-5

max

6/1.0e-5
14/1.3e-5
29/7.2e-6

Let H be a permutation matrix that makes column
the last column of U1.
UI +--- Ui lI
Factor
U1 QI orthogonal factorization
gl -- 1; U2 -- (Tg2; ?lq) +-- 0;
U1 *- upper.part(U); U2 *- nonupper.part(U);
q row dimension(U1);
condest(U1, q, k, rankdef, e);

endwhile
qrrqr row dimension(U1)
end algorithm

procedure condest(W, q, k, rankdef, e)
pi +--0 1,2,...,q;
donee-- false; rankdef -- false
a-0; kl;
while not done do

Compute-- w-k (--sign(pk) Pk);
& max{a, [[};
if&- >e then

+ w2(1 Pk); - w2(-1 Pk);

for j Nonz(w[k]);

endfor
if + (- then

max{a,
J Nonz(w   );

else

p2; J Nonz(w   );
endif
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TABLE 8
Rank detection tests of column pivoting algorithm (k2 1.0e9).

10 5/1.03-4
25 13/3.2e-5
50 27/1.7e-5

min avg max

6/1.0e-5
14/1.3e-5
28/1.1e-5

6/1.0e-5
15/5.6e-6
30/7.9e-6

TABLE 9
Rank detection tests of threshold pivoting algorithm (k2 1.0e9).

n
10 5/1.03-4
25 14/1.3e-5
50 28/1.1e-5

min avg max

6/1.0e25
15/5.6e-6
30/7.9e-6

7/L0e-6
16/1.3e-6
31/3.0e-6

k,-k+l; done-k_<q;
else

done ,-- true; rankdef ,- true;
endif

endwhile
end condest

We note that for both Examples 2.1 and 2.2, Algorithm 4.1 obtains the correct
value for the rank. It obtains the same factorization as Algorithm 2.2 for Example
2.1 and the same factorization as maximal column pivoting for Example 2.2.

condest(U1, q, k, rankdef, ) requires at most O(nu) operations. Therefore, Algo-
rithm 4.1 requires O(d. nu), where d is the number of times through the outer loop.
If we use Algorithm 2.1 or 2.2 as a preprocessing routine and q and pq are the final
values of those parameters, it is easy to show that

d <_ n pq - q qrrqr.

By Theorem 2.2, Algorithm 2.2 never obtains smaller values of q or pq than Algorithm
2.1; thus this bound is more favorable for Algorithm 2.2.

Note that each time Algorithm 4.1 permutes a vector to the end of U1, it creates
a column whose sparsity pattern cannot be predicted before factorization. Thus to
store it explicitly would require some dynamic storage allocation or we could store
them in a small dense array. If d is small, this would be the wise method to handle
these columns.

BjSrck [11] proposed the following scheme. Essentially the same scheme was
independently discovered by Coleman and Hulbert [17]. Assume that we are storing
the original matrix C. Let u be a dependent column found by Algorithm 4.1 and let
c. be the corresponding column of C. Then u. satisfies

(10) UTu, CT c,,

where C1 are the columns of C corresponding to U1. The corrected seminormal
equations [10] can be used to solve (10). It should be noted that to obtain u from c
requires one back solve, two forward solves, and two matrix-vector multiplications. If
d, the number of columns that we are setting aside this way, is large (as it is for the
applications of interest in [11], [17]), this is a practical alternative.
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TABLE 10
Results of RRQR tests.

Preprocessing
algorithm
Alg. 2.1
Alg. 2.2
Col. Piv.

Rank detected
min/avg/max

12/13/14
12/13/14
//4

Improvement
over preprocessing

Times
condest called

3.9
1.6
1.7

4.2. Test results on RRQR algorithm. We carried out tests on random ma-
trices using Algorithm 4.1. The upper trapezoidal matrix U in each case was the result
of the factorization of a random matrix that was used in 4.2. The dimension of each
matrix was 25 with a condition number of 1.0E-9. The sample size was 500 and e was
set to 1.0E5. It is noted that the 12th, 13th, and 14th singular values of the test ma-
trices were 7.5E-5, 3.2E-5, and 1.3E-5, respectively. Table 10 shows the rank detected
by Algorithm 4.1 after the preprocessing of the matrix by Algorithm 2.1, Algorithm
2.2, and column pivoting, respectively. From these tests, we conclude that Algorithm
2.2 is a very good preprocessor for a rank-revealing orthogonal factorization.

5. Conclusions. We have demonstrated an accurate algorithm for detecting the
numerical rank of a sparse matrix. The method is compatible with any sparse ma-
trix ordering and provably more accurate than the strategy in SPARSPAK-B. It uses
only static data structures. On sequential architectures it has an overhead of only
O(nu log n) operations where nu is the number of nonzeros in the upper triangular
factor. In theory, it can be implemented with an overhead of O(max{nu, n log n}) op-
erations, but this implementation is very complicated. The method can be efficiently
implemented on message-passing architectures.

It has also been noted that this technique can be used to reduce the number of
operations in a rank-revealing orthogonal factorization.
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Abstract. A new way of looking at a class of methods for the weighted linear least squares
problem minx IIM-(i/2)(b- Ax)ll2 where M diag(#i) is presented by introducing a modified
QR-decomposition with Q M-invariant, i.e., QMQT M. One of the main advantages with this
approach is that linear constraints are easily incorporated by letting the corresponding diagonal
elements in M become zero. Householder reflections are generalized to M-invariant reflections, and
an algorithm for solving the constrained and weighted linear least squares problem is described. The
system equations (or the augmented system equations) are used to derive condition numbers, and the
connection between these condition numbers and the rounding error in the solution is investigated.

Key words, least squares, weights, constraints, QR-decomposition, condition numbers, stability
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1. Introduction.

1.1. Notation and problem formulation. In a pioneering paper by Gene
Golub [10] in 1965 it was shown how the linear least squares problem

(1) min b Ax
xEa

could be solved by using the QR-decomposition of the matrix A (the norm is always
the Euclidean norm if nothing else is stated). In this paper we are going to consider
algorithms for an overdetermined system of equations

(2) Ax b,

where the overdetermined system of equations (2) corresponds to a weighted and
constrained linear least squares problem

min (b2 A2x)TM-I(b2 A2x) s.t. Ax b,
xEa

where

A-
A2 q b2 q

and M2 diag(#i), with i+l

_
i, i p + 1,..., m and Pp+l > 0. It is assumed

that ra >_ n > p.
An equivalent formulation of (3) is

(4) 0 M: A2 2 b2
AT AT 0 x 0
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where /1 is the Lagrange vector and MA is the residual. It is easily seen that (3)
has a unique solution if and only if rank(A1) p and rank(A) n, and we assume
that these two conditions are fulfilled.

If we take

(5) M o o]0 M2 M2 nonsingular,

we can write (4) as

(6) [ M A b

where MA is the residual. We generally assume that M diag(#i), ti+ __) t __)
O, 1,..., m- 1. This restriction on M is not necessary in many of the results
presented in later sections, but is assumed if nothing else is stated.

If there are no constraints, the matrix M is invertible and we formulate our
problem as

(7) min (b- Ax)TM-I(b- Ax)
xR

whereAER"xn bER" andm>n
For the ordinary least squares problem, we get M I,, and for an unweighted

constrained least squares problem we get M2 Im-p.
We may write the overdetermined system (2) as Ax b where the "inverse

weight matrix" M, by the system of equations (6), exactly defines in which sense b
approximates Ax. The system of equations (6) also implies that there exists a matrix
B such that x Bb. Just as we avoid computing the inverse of a matrix A when
solving a system of equations Ax b, we avoid explicitly computing the matrix B.
Instead we are going to base our algorithms for (3) on a modified QR-decomposition
of the matrix A.

1.2. The basic idea of a modified QR-decomposition. If the matrix A
equals [RT, 0] T with R a nonsingular n x n-matrix, then the approximation problem

Ax M b has the solution x [R-1, 0] b. The following theorem gives a condition on

the matrix Q1 that makes the problem Ax b equivalent to QAx M Qlb.
THEOREM 1.1. Let the nonsingular matrix Q satisfy the condition

(8) QIMQT1 M.

Then Ax M b if and only if QIAx M Q1 b.

Proof. Since

0 Im_n AT 0 0 Im-n ATQT 0

Ax M b implies that

M
ATQT
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and hence that Q1Ax Q b. The converse is proved in exactly the same way. [:]

A nonsingular matrix that satisfies the identity (8) is called M-invariant. We
describe a modification of the QR-decomposition that uses M-invariant reflections
Q,..., Qn to transform the given problem Ax b into a triangular system.

The following theorem whose simple proof is analogous to that of Theorem 1.1,
shows how the modified QR-decomposition is used to solve the approximation problem
Axb.

Choose an M-invariant matrix Q and an orthogonal matrix HTHEOREM 1.2.
such that

with R upper triangular. If the matrix in (6) is invertible then the solution of (3) (or
equivalently, (6)) is given by x H(R-, O)Q-b, and if we partition M as

(9) M=[Mn 0 ]0 ]t/m-n

with M,_ an (m- n) x (m- n)-matrix, the vector in (6) is given by

,_Q_T[O 0 ] b.o Q-

1.3. Summary, intentions, and related works. We are going to use M-
invariant matrices Qi, i.e., matrices that satisfy QiMQ M, to solve the weighted
and constrained linear least squares problem. In 3, we give an algorithm for that
purpose and outline the properties of a QR-decomposition with the matrix Q M-
invariant.

Before doing so, it is suitable to discuss the general properties of M-invariant
matrices, which we do in 2. Note that if M is singular, the matrix Q gets a typical
block lower triangular form as is seen in Lemma 2.3. Since we are going to use
elementary matrices in our algorithm, we give a detailed analysis of M-invariant
matrices of that kind. We especially focus on the M-invariant oblique reflections
that play the same role as Householder reflections for ordinary least squares. It is,
of course, possible to use M-invariant rotations instead of reflections, and these are
discussed in [15].

In a way, we develop a framework that allows us to see the ordinary QR-decom-
position, the Powell-Reid method [20] for weighted linear least squares, and the
Bjbrck-Golub method [7] for constrained least squares as the same method applied
to different problems.

Yet, there are two other fundamentally different ways to use the augmented sys-
tem: the dual approach developed by Paige (see [17], [18], and [14]), and the direct
solution of the augmented system described in [6] and [1].

In 4, we introduce the relevant condition number for (3). We illustrate in a dia-
gram how for some test problems the rounding error in the solution becomes roughly
proportional to the condition number. A condition number that depends on the
residual was first derived in [12]. The system of equations was used extensively for
studying the conditioning in [3] and [4]. A perturbation theory that also covered the
rank-deficient case was developed in [21]. The perturbation identity from [21] can be
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used for an elementwise perturbation analysis, as shown in [8]. Relevant condition
numbers for constrained least squares were given in [9] and a generalization covering
rank-deficient equality-constrained least squares problems is given in [23]. Here we
use the perturbation theory in [22] that covers both the weighted and constrained
linear least squares problem, including the rank-deficient case.

In 5, we use the earlier test problem to show the connection between different
condition numbers and rounding errors when our algorithm is used with and without
column pivoting.

Finally, we discuss the stability of the method. We have not yet proved results
as strong as we think necessary. We present the results we have derived and try
to identify the main difficulties in the backward error analysis. The standard error
analysis for the ordinary QR-decomposition computed with reflections can be found in
[24, pp. 440-441]. An error analysis for the special case when there is only one weight
(in the limit when the weight tends to infinity, we get the BjSrck-Golub algorithm)
can be found in [2].

2. M-invariant matrices.

2.1. General properties. We begin with the basic definition. Assume that
Q E Rmm and M amm; then Q is said to be M-invariant if it is nonsingular
and QMQT M.

The identity matrix is, of course, M-invariant, and the following lemma charac-
terizes the inverse and transpose of an M-invariant matrix as well as the product of
several M-invariant matrices (the proof is trivial).

LEMMA 2.1. If Q is M-invariant, then Q-1 i8 also M-invariant and if in addition
M is nonsingular, then QT is M-l-invariant. If Q1 and Q2 are M-invariant, then
QIQ2 and Q2Q1 are also M-invariant.

From Lemma 2.1 we now have all the properties of M-invariant matrices to state
the following theorem.

THEOREM 2.2. The M-invariant matrices Q Rm’ form a group with the
identity matrix Im as the identity.

The last lemma concerns the structure of Q when M is given by (5).
LEMMA 2.3. Assume that Q is nonsingular and M has the same properties as in

(5). Then Q is M-invariant if and only if

Qll 0 ] M, TQ- Q21 Q22 Q22 2Q2-M2,

and Qll is nonsingular.
Proof. Take

Q Q

and use the special form of M in (5) to write QMQT M on the form

(10) QMQT- [ Q12M2QT Q12M2QT22Q22M2Q1}’22 Q22M2Q2T2
0 0

From (QlM12/2)(Q12M/2)T 0 it follows that Q12 0. Obviously, (10) is satisfied
M Tif and only if Q12 0 and Q22 2Q22 M2, which proves the lemma.
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2.2. Elementary M-invariant matrices. In this section we derive the explicit
form of elementary M-invariant matrices Q, i.e.,

(11) Q I- 2cdT, c, d E Rm,
and then look at how c and d should be chosen so that

(12) Qa -ael, a : 0,

when Q2 I, i.e., Q is a reflector. Before dealing with elementary M-invariant
matrices we look at the norm of a general elementary matrix. We then need the
following lemma, which we state without proof.

LEMMA 2.4. Assume that u, v e Rn with ]lull Ilvll 1; then

(13) max uTx VTX- 5(1 + uTv).

dTUsing Lemma 2.4 with the fact that IIQII 2 maxllxll= IIQxll 2 1+4 maxllxll= 1 x-
(llcll2d- c)Tx, we immediately get that

(14) IIQ[[- ? + V/2 2- + 1,

where lid[[ I[c][ and 7 cTd. If Q is a reflector, we have 7 1 and (14) can be
simplified to

() I111-, + ff, 1.

We start by examining the case when M is nonsingular and then the case when
M has the same structure as in (5). M nonsingular gives us the following lemma.

LEMMA 2.5. Assume that Q I- 2cdT, dTMd O, and Q is M-invariant with
M nonsingular. Then

Q-- I- 2MddT/dTMd with Q2 I,

i.e., Q is a reflector.
Proof. The condition QMQT M gives, with Q I- 2cdT by direct identifi-

cation, that Q I- 2MddT/dTMd if dTMd 0 and (Md) 0, 1,... m. The
second restriction is eliminated by the nonsingularity of M. The proof of Q2 I is
triviM.

The uniqueness of Q is given by the fact that an orthogonal reflection is unique
and that M-1/QM1/2 is n orthogonal reflection.

The norm of Q when M is nonsingular is given by (15) where [[d[[ [[Md[[/dTMd.
Obviously, in an algorithm where c and d are constructed, it is essentiM to keep Md
as parallel to d as possible if we want Q to be well conditioned.

The form of the elementary M-invariant matrices for the second case with M as
in (5) is given by the lemma below.

LEMMA 2.6. Assume that Q I- 2cdT with Q M-invariant and that M has the
form as in (5). Then either dTMd 0 and

(16) Q I- 2MddT/dTMd with Q2 I

or

c2 0
with Q2 I if and only if clTdl 1,
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where in the latter case we have used the partition

c and d
c2 q d2 q

Proof. Using the partition defined in the lemma and QMQT M, we get

clc d2 M2d2
0 M2 symmetric

clcT dT2 Md2 + cldT2 M2 1
(Iq + d2cT2 )M2(Iq + dgcT2 T J

which implies that either cl 0 or dT2M2d2 O. In the former case, we may choose
c2 and d2 as in Lemma 2.5 and the form and uniqueness of (16) is proved. For the
latter case, we get by the nonsingularity of M2 that d2 0. We finally get cTd 1
directly from Q2 I and (17) is proved.

When Q is given by (16), the Euclidean norm given by (15) is mainly determined
by

(18)
d2TM2d2

which gets large when d2 becomes almost orthogonal to M2d2.
form (17) and Q2 I, then

If Q has the other

Ilcll IId 

must be small if Q is to be well conditioned.

2.3. M-invariant reflections. If we impose the condition in (12) on Q when
M is nonsingular, we get by Lemma 2.5 that

dTa
(20) Qa a- 2dTMdMd -Oel, a # O,

and thus Md E span{a, e} or

(21) Md a + ae.

Multiplying a with the sign of the first element in a makes it easier to calculate our
reflection with small rounding errors (this is not necessary, however; see Parlett [19]).
Another argument for the sign is that the corresponding rotation (see [15]) gets a
minimal rotational angle which seems natural.

The form of Md in (20) gives, after some straightforward calculations, that

(22) o sign(al )V/#laTM-la,

which determines Q. If we define N M-l#l diag(#l/#i), we can write Q as

(23) Q (a + +

where ( sign(a)x/aTNa. For the sake of simplicity, in what follows, we assume
that a _>0.
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With this form on Q we have that

(24)

with subsequent ill-conditioned Q when a+ ael is nearly orthogonal to Na+ ae, i.e.,
when a is much smaller than Ilall.

We now turn to the case when M is given by (5) and Q is given by Lemma
2.6. The form of Q in (16) is not suitable when we want (12) to be satisfied because
according to (20) and (21) we then must have ai 0, 2,... ,p, which is a severe
restriction on a. Now make the partition

a al]p62 q

and observe that al is now a vector. We use the other form of Q in (17) where Q
is a reflector, i.e., cTldl 1 and choose c (a + Ilallel)/(211all) and dl (al --Ilallel)/(llall +a)) where a) denotes the first element in a. The final Q can then
be written as

(a+ae) a

(25) I
0

-[- Oel

Ila (l[ax / a1))
f w comp () wit () a sume that im.,o /a, 1 fo <, w see
that when

M
0 M

or equivalently, N diag(Ip, 0), we have that

(26) Q in (23) Q in (25)

and a sign(a))[a[.
Using these limits and (24), we see that Q is ill conditioned when

Note that (26) suggests that we could define our problem (1) with M +eI instead
of just M, and then let e tend to zero demanding the solution x(e) to be continuous.
The advamge is, of course, that the M-invariant matrix Q is unique and (26) is given
directly.

We conclude this section by giving n algorithm for computing the M-invriant
reflection Q. We hve chosen to use a stylized MATLAB notation similar to that used
in [11].

ALGORITHM RPRvec.
Given an n-vector a and an n-vector p with the inverse of the weights, this function

computes vectors u and v such that Qa (I- uvT/u(1))a is zero in all but the first
component.
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function [u, v] =RPRvec(a, #)
n =length(a); =ones(n); u a; v a
fori--2:n

if # 0

end
Vi l]ia

end
a sign(al)vfv
Ul Ul +; Vl 1
u ula; v via

end

3. The use of M-invariant transformations to solve the weighted and
constrained linear least squares problem.

3.1. Existence and uniqueness. Let us consider existence and uniqueness
problems connected with the modified QR-decomposition

(27) A=Q [ R10
when A is nonsingular. If we start by analyzing the case when M is nonsingular,
the modified QR-decomposition exists with Q M-invariant and the upper triangular
matrix R unique if the diagonal elements in R are positive. This result follows directly
from the properties of the ordinary QR-decomposition where Q is orthogonal. If we
assume that A has the modified QR-decomposition in (27) and M is nonsingular we
have

[ M-1/2R ]M-I/2A (M-1/2QM/2)
0

with M-/2QM1/2 orthogonal and M-/2R upper triangular. If the matrix M-/2R
has positive diagonal elements, it is unique (see BjSrck [3]) and hence the matrix R
is unique too.

We now turn to the case when M is singular and especially has the form as in
(5). We then have the following theorem describing the existence and uniqueness of
the modified QR-decomposition. For the proofs of the next theorem, see [15].

THEOREM 3.1. Assume that Q is M-invariant with M as in (5) and that A is
nonsingular. Partition

A
A21 A22 a’
p n--p

where p is the number of linear constraints to problem (1). A decomposition

with R upper triangular and diagonal elements ri > O, i 1,..., n exists if and only
if AI is nonsingular. The matrix R is unique if and only if M is nonsingular, i.e.,
there are no constraints, i.e., p O.

The role of the M-invariant transformations when solving the weighted linear
least squares problem is evident from Theorem 1.1.
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3.2. An algorithm for the constrained and weighted linear least squares
problem. It is now quite obvious how M-invariant transformations can be used to
solve (1). It is not as obvious what kind of pivoting strategy we shall use. The strategy
is in step k, to find the smallest weighted norm of the columns in n(k) such that22

m

"’jmax-- max 7 ]aijl
k_j_n

i=k Pi

We then exchange column jmax with column k in A(k) if jmax k. Observe that this
will give exactly the same procedure as in the Powell-Reid algorithm if all the weights
are equal to one. There will be an additional work load of approximately mnl2 -nl3

flops for our method if we do not use the fact that

(29) (k+) #k+ (Tj). (a(k))2), j k + 1,..., n.

We can expect numerical trouble when the quotient k+l/Pk becomes very large,
.(+)but this possibility is easy to check and avoid merely by cMculating .j using the

definition in (28). A short analysis of the numerical behavior of the updating formula
(28) including an Mgorithm determining when to recalculate the weighted norms can
be found in [15].

It is also possible to use row pivoting, but it seems that there is no real need for
that, as can be seen from the numericM examples in [14]. It is also seen that the
example in [20], which gives bad results with the Powell-Reid algorithm if the weight
is lrge and no row pivoting is used, cuses no problem here because we have Mready
sorted the weights in decreasing order and the problem is well conditioned.

We now give a description of the Mgorithm which we cM1 the revised Powell-Reid
algorithm (RPR).

ALGORITHM RPR.
Given A Rmx with m n and the inverse of the weights in the vector p, where

p +1, i 1,..., m- 1, this function computes the factoriztion AH QR, where
H is a permutation matrix permuting the columns according to (28) with k 1. The
matrix A is overwritten by R in its upper triangular part, nd information about Q
is stored in the strict lower prt of A. An output vector u is needed for additional
information about Q and the element pcolr contains the position of the column that
was permuted with column r in step r.

r n tio [A, =aPa(A,,)
Determine 7 according to (28); 7 maxljn 7
Find smallest p with 1 p n so that p 7; r 0
while 7 > 0

r=r+l
pcol -p; Swap % with yp; Swap a:, with a:,p

for j r n
t T--Vr:mar:m,j/r
ar:m,j ar:m,j r:mt

end
ar+l:m,r r+l:m
ifr<n
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Update 7 according to (29); T- maxr+l<_j<_n
Find smallest p with r + 1 _< p

else
--0

end
end

end

The work load for this algorithm is the same as for the method of Powell and
Reid and test examples in [14] indicate that our method is at least as accurate as the
Powell-Reid method.

Using the output from Algorithm RPR, i.e., A, u, and pcol, it is an easy task to
calculate the solution x II(R-1, O)Q-lb (assuming that the full-rank conditions in
the introduction are fulfilled). An implementation of Algorithm RPR and a solver in
FORTRAN can be found in [14].

4. Condition numbers and rounding errors for the algorithm.

4.1. The perturbation identity. The condition number of a computational
problem is a measure of how sensitive the solution of the problem is to perturbations
of the input data. In our case the matrix A and vector b are the input data. For a
certain problem, we generally assume the. inverse weight matrix M to be fixed, but
it is perfectly possible to consider the effect on the solution of a perturbation 5M of
the matrix M, too.

It can be shown (see [22]) that the inverse of the matrix in (4) can be written as

AT 0 B -BMBT

where B is a generalized inverse of A. The solution of problem (7) is given by x
Bb and A Hb. Assume that the perturbed matrix in (4) is nonsingular and take
2 x + 5x and A A + 5A as the solution of the perturbed problem. It is then fairly
straightforward to get the identity

(30) 8x -BhA2 + BSb- BhM + BMBTSAT.

4.2. Normwise perturbation bounds. If we define

we have from (30) that

I111 IIMIIIIII) llMllllll(he) 115xll < . + + + + o()IIxll IIAxll IIAxll IIAxll
where e- IIAll/llAll. It is easily seen that _< and that is not changed when
M is multiplied with a scalar.

To know the condition of our problem (1), it is necessary to estimate IIBII and
IIBMBTII. From Theorem 1.2, B- [R-I, 0] Q-1 and we have

(33) IIBll II[n-, o]-ll,
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an expression not easily simplified unless M Im or M2 Im-n. Using the relation
M QMQT and the explicit form of the solution in Theorem 1.2, we get

(34) BMBT HR_I[In, O]M [ I ] R_THT IIR_IMnR_THT,

and we easily deduce that IIBMI/211 IIR-M,‘n/211. Hence we have from (31) that

(35) a IIAII II R-, 0]
The estimate (32) looks complicated and, superficially, it would seem suitable to

use the condition number of the system matrix

S- AT 0

that occurs in (6). It is also true that IISII IIS-II >- IIAII IIBII However, we cannot
allow perturbation in all elements of S and, in many cases, the condition number of
S is much larger than

If the vector b is perturbed into b + 5b and the matrix A is left unchanged, then
we get the sharp estimate

and is just as relevant a condition number for a general inverse weight matrix M
as for an ordinary system of equations where B A-1. However, with respect to
perturbations of A, the weight matrix makes a difference. If an ordinary system of
equations Ax b is perturbed into (A + 5A)(x + 5x) b, then

In this case the condition number is independent of the vector b. For the weighted
least squares problem, we get the following fairly sharp estimate with respect to
perturbations in A directly from (32)"

It is seen that this estimate critically depends on the vector b in its second term.
om the discussion above it is naturM to define the true condition number for

perturbations only in A as

IIAxll
4.3. Componentwise perturbation bounds and row equilibration. A com-

ponentwise perturbation estimate can just as easily be derived from (30). Let
 IAI, 15bl lbl, and 15MI cM; then

(37) [6x[/e ]BI(IA[ Ix[ + Ib[) + IBM[ [At + [BMBT[ [6AIT [A[ + O(e).
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Row equilibration might be useful if we get much sharper bounds from (37) than
from (32) for a certain problem class. The revised Powell-Reid algorithm for (3) is
still applicable. If the matrix DA, with D diag(D1, D2) a diagonal scaling matrix
with strictly positive elements, is much more well balanced than A, we can change A
to DA, b to Db, and M2 to M2D1. Finally, we sort the equations so that we have
tti <_ tti+l. However, when A is well scaled, the componentwise perturbation bound
(37) will not lead to sharper bounds than (32).

4.4.. An illustrative example. Since B AAB and A BAAf, the condi-
tion number s- IIAII IIB[I satisfies the inequality

(38) max{[[AB]], s2(A)}

_ _
s2(A)[]ABll, s2(A) -]lAll [IA]l.

The norm of the projection AB is greater than 1 if it is not an orthogonal projection
and B equals A. It is easy to prove (38), but the conclusion that can be drawn from
it is far from trivial. Our weighted least squares problem can get a large condition
number I]A[[ [[Bil for exactly two reasons: s2(A) is large or the norm of the projection
AB is large. The condition number s2(A) does not depend on M and

0 I r
does not depend on the scaling in R. We want an example where we can vary
and IIABII independently. The following example has that property. Set

1 1 5 4
1 2 4 2
1 3 3 el
1 0 6 1
1 6 e2 2

and b MA + Ax, where A dl d- (5/1 1)d2, dl [-1,-1, 1, 1,0]T, d2
[1,-2, 1, 0, 0]T Then we get the solution x [-12, 1, 3, 3, IT for any inverse weight
matrix M. The parameters 1 and 2 determine the conditioning of the problem. For
1 1 and 2 10, we get a well-conditioned problem. Using MATLAB notation, we
have liml_0 r3(A1:3,:) 0 and lim2_.o a4(A) 0, i.e., for decreasing [1 the subma-
trix A1:3,: converges to a rank-deficient matrix and for decreasing 2 the whole matrix
A approaches a rank-deficient matrix.

Let us first choose M as the unit matrix to get an ordinary linear least squares
problem. In this case, s sx IIAll IIAt[[ and the ordinary QR-decomposition
without column pivoting is a stable method. Assuming that the computed vector x
is the solution of a problem with A slightly perturbed, we have that log(llbx[I/llxll
log(n) + log(llbAII/llAII so that when varying 2 from 10 to 10-6 (and thus creating a
more and more ill conditioned problem) the logarithm of the relative error will vary
linearly with the logarithm of 2. This can easily be illustrated in a figure similar to
Fig. 1.

To get the norm of the projection IIABII large we take e2 10 and choose #1
#2

_
#3 very small but fixed and vary el from 1 to 10-6. The norm of the projection

IIAB]I then increases while s2(A) I]AII]IAI[ stays moderately great. From (32)
we have log([lbxll/llxll

_
log(sA) + log(llbAII/[IAll) and, again, the logarithm of the

rounding errors grows linearly with the logarithm of the true condition number
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5. The connection between condition numbers and rounding errors.
When we use the Powell-Reid method to solve the weighted least squares problem
(7), we first transform the given problem (3) to

(39) min IIY xll

with / M-1/2b and M-1/2A before solving problem (39) with the QR-
decomposition. Even if the rounding errors introduced by multiplying A with M-1/2

and b with M-1/2 can be ignored, we do something potentially dangerous. The condi-
tion number of . is IIM-I/2AII II(M-/2A)II and it goes to infinity when tt/ttm
goes to zero. The condition number for problem (39) that corresponds to the con-
dition number A defined in (36) is here called the "false" condition number and is
defined as

(40) + II/ --_  xll
IIAxll

It can be shown that ;A is almost proportional to when ;A is much larger than/A.
Hence, in this case, it is not the residual term that gives us any trouble.

Take 1 1, (2 10, and # [7, r/, r/, 1, 1] in the example of the previous section.
In Fig. 1 the true condition number and the relative error of the solution with and
without column pivoting are plotted as a function of the "false" condition number
when the parameter goes to zero.

101 101

FIG. 1. True condition number (,) and relative error for our method with (--) and without
(- -) column pivoting as a function of the false condition number.

In Fig. 1 it is seen that the true condition number does not change with the
"false." Neither do the rounding errors when we use column pivoting. The effect is
very different when column pivoting is not used in that the rounding errors become
almost proportional to the "false" condition number. For a harmless problem with
tA small and A large we have almost no precision left in the result. The reason is,
of course, that the submatrix AI A1:3,1:3 in our example is singular, and when

goes to zero the first three equations of Ax M b become satisfied with equality.
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6. On the error analysis of the modified QR-decomposition with col-
umn pivoting. It is evident from the discussion above that when solving the weighted
linear least squares problem with the modified QR-decomposition, we get transforma-
tion matrices that may have very large elements (and consequently very large norm).
The question then arises as to whether the algorithm is numerically stable or not. We
only discuss the results we have achieved so far. For a more detailed discussion on
error analysis for linear least squares, see, e.g., [5] or [16].

It is quite natural that most error analyses have been done on algorithms us-
ing Gauss transformations or orthogonal transformations. Obvious reasons are that
Gauss transformations have very nice structural properties as well as being relatively
cheap to stabilize, and the orthogonal transformations preserve the Euclidean and the
Frobenius norm of the transformed vector or matrix and thus do not enlarge errors.

On the other hand, it is not evident that unstable transformations, i.e., trans-
formations not necessarily having relatively small elements, give a backward unstable
algorithm; the LU-decomposition of a matrix A with Gauss transformations using
column pivoting is backward stable despite the fact that the transformations can be
very ill conditioned.

Our results of error analysis concern the important special case where the system
matrix looks like

0 0 AllS-- 0 Iq A2 0<<oo,
Af A 0

i.e., we want to solve (3) with M2 Iq, which is the linear least squares problem

(41) min Ilb2-A2xll s.t. Alx bl.

We assume, without any loss of generality, that 1. For the proof of Theorem 6.1
we refer to [13]. This result is not entirely new and similar results can be found in
[2], but the approach here is different.

THEOREM 6.1. If c is the computed solution we get by solving problem (41) with
the modified QR-decomposition using column pivoting, then

(42) (A + F)2 b + f.

We have the following partitioned bound for the error matrix F:

(43) IIIIF
cxPUlIAiiFu J / O(u)c2(q(n p) + p(n + p2).p) IIAe[IFU

where 1 <_ 7 <_ 1 + is a growth factor and u is the roundoff unit. For the right-hand
side we have

(44) I[flll o

and

(45) IIf211 c(p + (n p)(m n + q)) Ilb21lu + O(u2).
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The three constants Cl, C2, and cf are of modest size and are independent of the
problem size.

We have, as mentioned in the introduction, not proved a theorem analogous
to Theorem 6.1 in the general case. The main reason is that the transformations
are no longer divided into Gauss transformations and Householder reflections, but
we now have general M-invariant transformations with neither the structure of the
Gauss transformations nor the Euclidean or Frobenius norm invariant properties of
the Householder reflections.
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